
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

6-2015

CALIFORNIA STATE UNIVERSITY SAN BERNARDINO WiN GPS CALIFORNIA STATE UNIVERSITY SAN BERNARDINO WiN GPS

Francisco A. Ron

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Ron, Francisco A., "CALIFORNIA STATE UNIVERSITY SAN BERNARDINO WiN GPS" (2015). Electronic
Theses, Projects, and Dissertations. 261.
https://scholarworks.lib.csusb.edu/etd/261

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/261?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

CALIFORNIA STATE UNIVERSITY

WIN GPS

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Francisco Anibal Ron

December 2015

CALIFORNIA STATE UNIVERSITY

WIN GPS

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Francisco Anibal Ron

December 2015

Approved by:

David Turner, Advisor, Computer Science Date

Kerstin Voigt

Ernesto Gomez

© 2015 Francisco Anibal Ron

ABSTRACT

The objective of this masters project is to develop a working application for Android

devices. This is an application intended to be used by CSUSB. It has its own database,

which has information about most of the facilities on campus. There are many GPS

applications on the market, however I chose to design and implement WiN GPS, short

for Walking GPS, because it will allow the possibility of a personalized GPS for the

school and for users should they choose to do so.

In order to develop WiN GPS it was necessary to research the available tools, and

to become familiar with the ones that were selected. These tools such as map appli-

cation providers, i.e. Google-maps, integrated development environments, database

managers, software development kits, and mobile device emulators were analyzed and

compared.

Once the tools were selected, it was necessary to study, to become familiar with,

and to learn how to use them. Finally an app is developed and its main functions/code

will be explained. This masters project will allow potentially Android developers to

evaluate possible barriers, such as price and limitations of map application providers,

so they can make an informed decision.

Keywords: GoogleMaps, Android, app, SQLite3, Eclipse, Java, Database, GPS,

mobile development

iii

ACKNOWLEDGEMENTS

Upon reflecting on the journey traveled to put this masters project together, I have

come to realize that without the assistance of the following persons there would not

be such a project.

My committee members Dr. Turner, Dr. Voigt, and Dr. Gomez. I want to thank

especially Dr. David Turner, my project advisor: he has been very helpful, not only

through the development of this project, but also on every class I took with him.

His knowledge in up-to-date technologies has been helpful. I also want to thank Dr.

Schubert. It was an honor to be one of his students. Finally, it’s my pleasure to

mention Mrs. Monica Latimer always committed to help students.

iv

TABLE OF CONTENTS

Abstract . iii

Acknowledgements . iv

List of Figures . vii

1. PROJECT SUMMARY . 1

1.1 Purpose . 1

1.2 Scope . 2

1.3 Development Tools . 2

1.4 Definitions, Acronyms, and Abbreviations 2

2. OVERVIEW OF DEVELOPMENT TOOLS 4

2.1 Maps . 4

2.2 IDE . 7

2.3 Java . 11

2.4 SDK and Google Packages . 12

2.5 ADB . 13

2.6 Emulators . 13

2.7 Database . 13

3. WiN-GPS MECHANICS . 15

3.1 Summary . 15

v

3.2 Screens . 15

3.3 Walking Navigation . 16

4. SOFTWARE ARCHITECTURE AND DESIGN 32

4.1 Main Activity Class . 32

4.2 DBmanager Class . 36

4.3 DisplayTrackingMap Class . 42

4.4 New Location Class . 50

4.5 Edit Location Class . 53

4.6 Get Coordinates Class . 55

4.7 Show Location Info Class . 58

4.8 Changing Font for the Entire Application 61

5. CONCLUSION AND FUTURE DIRECTION 63

5.1 Conclusion . 63

5.2 Future Direction . 63

References . 64

vi

LIST OF FIGURES

2.1 Project Defined in Google Console 5

2.2 Credentials for the Project . 6

2.3 API Key in the Manifest . 7

2.4 Eclipse Features I . 8

2.5 Eclipse Features II . 9

2.6 Values Definition . 10

2.7 Android Application Life Cycle[8] . 12

3.1 Screen Flow Diagram . 16

3.2 Initial Screen . 17

3.3 Walking GPS Global Screen . 18

3.4 Walking GPS Initial Screen . 19

3.5 Walking GPS I . 20

3.6 Walking GPS II . 21

3.7 Info Screen . 22

3.8 Walking GPS III . 23

3.9 Initial Screen . 24

3.10 Add a New Location Screen . 25

3.11 Add a New Location Partially Filled Screen 26

3.12 Get Coordinates Screen . 27

3.13 Select a Location from Screen . 28

3.14 Save a New Location Screen . 29

vii

3.15 Initial Screen . 30

3.16 Edit Location Screen . 31

4.1 UML Package Application . 33

4.2 UML Diagram of DBmanager and MainActivity Relationship 34

4.3 Main Activity Code (Database Opening) 34

4.4 Populating the List . 35

4.5 When a Location is Clicked . 35

4.6 Calling the Methods to ”Add” a New Location 36

4.7 On Long Click: Edit a Location . 36

4.8 Table Android Meta-Data: Structure 37

4.9 Table Locations: Structure . 37

4.10 UML DBmanager Class . 38

4.11 UML DBmanager Instantiations . 39

4.12 Database Definition . 39

4.13 Edit Location, Code . 40

4.14 Deleting a Location . 41

4.15 Get Info For a Location . 41

4.16 Creating a New Location. 42

4.17 UML Instantiation of Fragment Activity 43

4.18 Fragment Definition in Map Layout 44

4.19 Map Fragment Instantiation in DisplayTrackingMap 45

4.20 Initializing the Map . 46

4.21 Importing ConnectionCallbacks . 47

4.22 Request: Parameters for Callback . 47

4.23 OnConnected Definition . 47

4.24 Updating User’s Movement . 49

4.25 New Location Graphic Layout in Eclipse 50

viii

4.26 New Location Layout Code . 51

4.27 New Location Declaring Layout . 51

4.28 Saving a New Location on Locations Table 52

4.29 Looking for Coordinates . 52

4.30 Look Up for Location Information . 53

4.31 Update a Location Information . 54

4.32 Deleting a Location . 55

4.33 Defining Callback Parameters . 56

4.34 Connecting Map Layout to Activity (Class) 56

4.35 On Long Click Select Lat. and Long 57

4.36 onConnected Method requestLocationUpdate 57

4.37 Return Latitude and Longitude . 58

4.38 Location Info Layout . 59

4.39 Displaying Location Information . 60

4.40 Returning to Caller . 61

4.41 Font Imported Into Project Assets 61

4.42 Font Defined to be Used in a Button 62

ix

1. PROJECT SUMMARY

Mobile applications are quite popular nowadays. It’s possible to find apps pretty

much for anything, and yet, there is still so much to be done. One particular area of

mobile apps deals with maps and their management. Multiple applications have been

designed using maps, such as GPS, transit information, bike routes, and so on[3].

This masters project’s purpose is to create a walking navigation GPS app for the

CSUSB campus.

It must be noted also that mobile devices come in different shapes, brands, and

operating systems. This particular project will focus on mobile devices using the

Android Operating System.

1.1 Purpose

This is a masters degree project, therefore the main purpose is to deliver an applica-

tion according to the masters program level of knowledge. The application might be

used by CSUSB visitors unfamiliar with the facilities, or students that are familiar

with them, but they want to point out their ’preferred’ places on a map. Another

purpose, not less important, is to provide a document that might be useful to students

interested in Android applications.

1

1.2 Scope

The scope of this project is limited to maps on Android devices. Several tools are

available toward this kind of development, therefore I’ll mention the most popular

and I’ll explain the reasons I chose, or not, to use some of them.

Subjects such as publication, usage, distribution, or modifications of this app are

out of scope of this report. Also out of the scope is image designing.

1.3 Development Tools

This project deals with several tools:

• Programming language: Java version 1 (1.7.0 51) for Android

• Programming tools: Java JDK, Java SDK, Android Debug Bridge

• Database: Sqlite3

• IDE: Eclipse

• Maps: Google maps, Google play services, Google API client

• Graphic design: Photoshop CS4

1.4 Definitions, Acronyms, and Abbreviations

• ANDROID: Operating System. Open-source operating system for mobile devices

such as cell phones, and tablets. Android is Linux based.

• API: It stands for Application Programming Interface. This is a particular set

of previously written classes and interfaces for the developer to use. Example: a

calendar, Google Maps, etc.

2

• WiN-GPS: The CSUSB walking navigation application (deliverable from this

project).

• IDE: It stands for Integrated Development Environment. It is a software applica-

tion that provides the appropriate environment to develop a software application

i.e. Eclipse for Android, JavaBeans for java, etc.

• MOBILE APPLICATION: It refers to any software or application that runs on

current mobile phone and/or smart technology such as tablets.

• SDK: It stands for Software Development Kit. A library of previously written

functions that aids a programmer to re-use code[3].

• TAP/TAPPING/PRESSING/CLICK/DOUBLE-CLICK/LONG-CLICK: Ways

of input used on a mobile device through a touch screen interface. Tapping is

quite equivalent to a click on a standard desktop computer.

• ADB: Android Debug Bridge is a tool that allows commands to be sent from a

terminal to an Android device Zigurd, Laird (2010)[3].

• GEO CODING: worldwide location translator.

• WALKING: A path from point A to point B with everything in between.

• POI: points of interest.

• PHOTOSHOP: An image editing software developed by Adobe Corporation.

3

2. OVERVIEW OF DEVELOPMENT TOOLS

2.1 Maps

It’s long gone the time when static GPS devices were the only way to manage maps.

Most map software based applications have been moved to smart devices. This project

deals with Android devices, so I’ll mention some of the main map applications avail-

able for them.

Map Quest: It has been in the industry for a while now. They have the background

expertise working with map software development. I personally used it on the web

even before I knew about the existence of Google maps. Map Quest offers a developer

account for free. The only prerequisite is to create an account with them. The basic

services are offered for free for the first 15,000 transactions per month. Technical

support is restricted to paid accounts, and developer forums are not quite common

on the Internet. All in all, Map Quest is definitely a good choice to be considered

when it comes to map development[7].

Yahoo Boss Geo Services: It offers location and search services worldwide. It is

a paid service, which begins at six dollars for up to 10,000 queries per day. In the

present case a paid service is a limitation[9].

Google Maps: This is nowadays the most known web mapping service for develop-

ers. Among other benefits, it offers unlimited free usage of maps through the Android

APIs[6]. There’s plenty of technical information on the Internet, plus there are lots

of independent developers sharing their experiences on websites such as Stack Over-

flow; where I happened to post most of my novice questions at the beginning of this

4

development[2].

This development does not contemplate a budget for using a mapping service,

therefore Yahoo maps in not an option. On the other hand, Map Quest has lim-

ited technical service, so in conclusion Google Maps is the adequate choice for this

particular project.

In order to develop a google map based app, we must acquire a Google Maps

API key. For that purpose it is necessary to have a google account. A shortened

description on how to generate an API key is as follows. Sign in with your account

and create a project in the google console developers. Figure 2.1 shows the website

address as well as the project created for WiN GPS[6].

Fig. 2.1: Project Defined in Google Console

Select the project; on the next screen select ”use Google API”[6]. See Figure 2.2:

5

Fig. 2.2: Credentials for the Project

Follow the instructions and an API key will be generated. This API key must be

part of the AndroidManifest.xml file of the project or it won’t even start. This is part

of the AndroidManifest. xml where the API key is present[4]. See Figure 2.3

6

Fig. 2.3: API Key in the Manifest

More detailed instructions on how to generate an API key can be found at the fol-

lowing site: https://developers.google.com/maps/documentation/android-api/config

2.2 IDE

By the time this project started two IDE were available for Android development:

Eclipse and Android Studio. Eclipse was released in the industry before Android

Studio. I have used Eclipse for a couple of projects so I gained some expertise on it.

That is the only reason I chose Eclipse over Android Studio on this particular task[4].

ECLIPSE the IDE of choice for this task may be used for different kinds of de-

velopment i.e. Java, or Android Development. Using the figures 2.4 and 2.5, I will

explain the components for an Android development[3].

7

Fig. 2.4: Eclipse Features I

As follows:

1: name of the project

2: Java code source

3: libraries imported for this project

4: database, database backups, and imported font

8

Fig. 2.5: Eclipse Features II

Following:

On 1: images used for the project. PNG format keeps the accuracy of images in the

smaller size if they don’t have motion incorporated, which is the case for the present

project. All the images for this project were manipulated with Photo-shop. For an

Android project it is possible to use high, low, middle, extra high, and extra extra

high density files. There is a tab for each of them so the operating system might

automatically find them.

On 2: Layouts, a layout is nothing but a screen that a program will use to interact

with the user. It is possible, sometimes it becomes mandatory though, to have more

than one layout for the same program. When the user shifts a device from vertical to

9

horizontal the operating system will handle to shift the information from a vertical

layout to an horizontal one. If there’s a XML file in the layout-land it will use it,

if not it will just crop some items so they fit in the current screen position: either

vertical or landscape. A layout that is used by the same program must have the same

name either vertical or landscape.

On 3: Values. All the system values to be used.

On 4: the package’s definition file. This is the first file the application will look

for before anything else.

Values, in light blue, might be defined globally, or they can be determined every

time they are gonna be used in a program. For example, instead of typing an hex-

adecimal number every time we need an item to be black, we can simply define it as

a value and use it by its name when necessary. The following figure 2.6 depicts this

process:

Fig. 2.6: Values Definition

10

2.3 Java

Java is a programming language, its virtues and capacities are beyond the study of

this project. Eclipse, the IDE used for this project is Java based. The supporting li-

braries for eclipse are Java based as well. Naturally Java is the programming language

of choice for this project. Java and Java for Android have quite similar capabilities,

however there are some dissimilarities basically due to the devices that will host the

applications[3]. A desktop, for instance, won’t have some of the problems a mobile

device might have, such as: a discharged battery , an incoming call interrupting a

process, etc. Besides, the hardware capabilities a desktop has are quite different from

the ones of a mobile device. For instance: memory restrictions plays an important

role in mobile development. Due to these differences a Java program for Android

has a different life cycle than a Java source for a desktop has. The following graphic

was presented in the course: ”Programming Mobile Services for Android Handheld

Systems”. It is a self explanatory Android application life cycle. [8]

11

Fig. 2.7: Android Application Life Cycle[8]

2.4 SDK and Google Packages

The Software Development Kit has to be installed along with the IDE. However, there

are some additional packages that must be installed, such as Google APIs, and Google

Play Services. These packages can be obtained free of charge from the Google develop-

ers website: https://developers.google.com/maps/documentation/android-api/config

These are typical installations that won’t present a problem if the instructions are

12

followed properly[6].

2.5 ADB

Android Debug Bridge is the terminal for android. It becomes handy when a malfunc-

tion occurs with the project. It happens sometimes that a session ends abnormally for

any reason. For instance, if things are not working properly on the next connection,

the command ’adb kill-server’ from a terminal will fix the issue[3].

2.6 Emulators

An emulator is a piece of software that allows us to test an app if we don’t have

an actual device or several devices for that mater. It is also useful to emulate the

actual device behavior, such as a low battery[8]. Eclipse comes with its own emulator

system, however it takes quite a while to load an app. This makes it cumbersome to

test an application in the process of development. In order to overcome this problem,

Blue Stacks is a solution.

Blue Stacks Is an Android emulator service. It’s fast and reliable. Once it’s

installed it’s just a matter to locate the file applicationName.apk double click on it

and the emulator will open it[5]. Blue stacks will open the application in a matter of

seconds compared to minutes that the Android emulator takes.

Other than emulators, it is always safe to test an application over the actual device

it’s supposed to work on. For this project I used Blue Stacks to test the app on a

emulated tablet. I also tested the app on a phone LG Stylus with OS Android 5.1.1

2.7 Database

The native database for Android applications is SQLITE3. It is possible to work with

other databases, however, according to its specifications a SQLITE3 database would

13

easily manage up to 10,000 records. This application is intended to manage no more

than 500 locations at a time, and that’s quite optimistic, so SQLITE3 will handle

with no problem WiN GPS database[8].

14

3. WIN-GPS MECHANICS

3.1 Summary

WiN-GPS is a personalized GPS Google maps based application. It comes with an

installed database, in other words: it’s a Google map with an address book incorpo-

rated that will help you to get to that place you still don’t know the address to, or

the location of it is not in a regular map.

3.2 Screens

WiN-GPS uses touch screen inputs, and GUI buttons to navigate between the differ-

ent app screens. This is shown in the next figure 3.1:

15

Fig. 3.1: Screen Flow Diagram

3.3 Walking Navigation

The initial screen lists all predetermined locations. The list consists of location code

and description. From this screen the user might start a walking GPS, add a new

location, or modify a location. See Figure 3.2.

16

Fig. 3.2: Initial Screen

By tapping on a location: the walking GPS will start. The following screen will

show a map on a global scale with both user’s current location and target destination.

On this screen the distance between user location and target destination is shown in

meters. However, it is necessary to zoom on the map in order to get a close up of the

area. Figure 3.3 shows the global view of the map.

17

Fig. 3.3: Walking GPS Global Screen

Now, this figure shows a street level map where user will clearly see their starting

location (’you started here mark’). A blue dot will show the user’s current position.

A red line will show their walking along the campus. Finally a red arrow indicates

the selected destination. All the tools that are necessary to help the user to get to

their destination are available on this screen. See Figure 3.4.

18

Fig. 3.4: Walking GPS Initial Screen

The following figures show a complete walking GPS, from the user’s starting point

to their target destination. This print screens were generated while walking from

point A to point B in a test. See Figures 3.5 and 3.6.

19

Fig. 3.5: Walking GPS I

20

Fig. 3.6: Walking GPS II

While using the map, the user can at any point, press the ”Info” button. This

will display some information like the telephone of the selected destination. Figure

3.7 shows is the information screen:

21

Fig. 3.7: Info Screen

Finally the user arrives to their destination. The user will visually see the complete

path. Figure 3.8 shows an entire walking GPS from point A to point B.

22

Fig. 3.8: Walking GPS III

Once the walking GPS has been reviewed, let’s remember that in the initial screen,

the user can also create a new location by pressing the ”Add” button. See Figure 3.9.

23

Fig. 3.9: Initial Screen

The add button will display a form in a new screen. Here the user can create the

information about a preferred location, or a favorite spot. See Figure 3.10.

24

Fig. 3.10: Add a New Location Screen

Most of these attributes are pretty straight forward and the keyboard is part of

the Android system. Most of the information to be entered here is pretty straight

forward. See Figure 3.11.

25

Fig. 3.11: Add a New Location Partially Filled Screen

However, attributes Latitude and Longitude are values not easy to remember,

neither they are handy without help. So, the application offers the possibility of

selecting the location directly from a map. That’s what the ”Get Coordinates” button

is for. See Figure 3.12.

26

Fig. 3.12: Get Coordinates Screen

After pressing the ”Get Coordinates” button, a screen with a map will be shown.

A blue marker indicates the current user’s location. In this street level map the

user can select a destination by making a ”Long Click” over the map. A red arrow

will appear showing a location has been selected. By pressing ”Save”, latitude and

longitude values are sent to the ”Add location” or ”Edit location” screens, depending

on which one did the call. Figure 3.13 shows this:

27

Fig. 3.13: Select a Location from Screen

In this case the ”New location” class called the ”Get Coordinates”. This is how

the add a location screen will look like. Here the user may save a new location or

discard the process. See Figure 3.14.

28

Fig. 3.14: Save a New Location Screen

Let’s remember that in the initial screen the user can also make a ”long click” in

order to modify an existing location. See Figure 3.15.

29

Fig. 3.15: Initial Screen

We have just reviewed the walking GPS functionality of the app, and the ”Add”

button. Now, let’s check the modification of a specific location. By making a long

click over an specific location in the list the process will start. See Figure 3.16.

30

Fig. 3.16: Edit Location Screen

The application shows in a screen the current information of a location. The

user may edit any attribute on this screen. The functioning of the button ”Get

Coordinates” is just as it was described above. Something important to point out is

the button ”Delete”. By pressing this button, that specific location will be deleted.

31

4. SOFTWARE ARCHITECTURE AND DESIGN

4.1 Main Activity Class

The entire app can be accessed from the main activity class. From this class the user

can add, modify, or delete a location. The user also may use the walking GPS to

navigate in the campus. The following UML package graphic explains it visually[1].

See Figure 4.1.

32

Fig. 4.1: UML Package Application

This UML graphic expresses the relationship between the classes DBmanager and

MainActivity. See Figure 4.2.

33

Fig. 4.2: UML Diagram of DBmanager and MainActivity Relationship

MainActivity class instantiates the DBmanager class. The MainActivity class

checks the existence of a database and opens it. This piece of code shows it. See

Figure 4.3.

Fig. 4.3: Main Activity Code (Database Opening)

A cursor is defined as ”c”. The results of a locations query are assigned to this

cursor. The content of the cursor is assigned to a list. Finally the list is displayed[2].

Figure 4.4 depicts this process.

34

Fig. 4.4: Populating the List

The application is listening to any input; When the user taps on a location, method

OnItemClick activates. It will recover the string clicked and its position. The location

code is recovered from the string. A query for that location is submitted in order to

recover its info. With all that information a walking GPS is started. See Figure 4.5.

Fig. 4.5: When a Location is Clicked

Should the user tap on the ”Add” button, MainActivity will start the new location

feature of the app. This method doesn’t need any parameters since we are creating a

location from scratch. See Figure 4.6.

35

Fig. 4.6: Calling the Methods to ”Add” a New Location

If the user ”long clicked” on a location from the list, the class EditLocation, will

be executed. The only parameter sent to the called activity is the location code. See

Figure 4.7.

Fig. 4.7: On Long Click: Edit a Location

Those are the main functions on the MainActivity class.

4.2 DBmanager Class

WiN GPS has a database incorporated. It is handled with SQLITE3. The database

name is csusbDB and it has two tables: android meta-data and locations. Table

36

android meta-data is a system required table, which holds information used by An-

droid. It has one record indicating language and country i.e. en-US. The process to

design this database was quite straight forward since there are no relationship among

tables involved. There was no need to normalize the database. Figure 4.8 shows table

meta-data structure:

Fig. 4.8: Table Android Meta-Data: Structure

There’s just one main table used by the entire application, which is Location. This

is its structure. See Figure 4.9.

Fig. 4.9: Table Locations: Structure

Class DBmanager handles all the methods involving the locations information. Its

tasks are to create a new location, to locate information related to them, to edit, or

to delete a specific location. The following UML diagram of the DBmanager class

reflects that[1]. See Figure 4.10.

37

Fig. 4.10: UML DBmanager Class

Dbmanager instantiates MainActivity, NewLocation, and EditLocation classes.

These classes control all the information related to locations. The following UML

graphic depicts that. See Figure 4.11.

38

Fig. 4.11: UML DBmanager Instantiations

DBmanager inherits SQLiteOpenHelper, which is part of SQLite3. The database’s

name is defined and its path retrieved from the project assets as shown in Figure 4.12.

Fig. 4.12: Database Definition

39

DBmanager has several methods that will be instantiated by MainActivity, Edit-

Location, and NewLocation: checkDataBase, openDataBase, Cursor, insertLocation,

updateLocation, delete location, and getLocation among the most important.

For instance, the method update location will receive values for the attributes

modified and it will update the locations table using a SQL sentence pretty straight

forward as figure 4.3 depicts.

Fig. 4.13: Edit Location, Code

Method deleteLocation receives location code as a parameter. That location is

deleted from table locations using the method deleteLocation from the DBmanager

class. See Figure 4.14.

40

Fig. 4.14: Deleting a Location

Another functionality from the DBmanager class is the getLocationInfoMethod.

This method receives as a parameter the location code. It uses a hashmap that will

be populated with a query for that specific location. See Figure 4.15.

Fig. 4.15: Get Info For a Location

41

The last method to mention from DBmanager class is the insertLocation method.

It receives as a parameter a string with the values for the new location. These

individual values are recovered from the string and then used in an insert query

command. See Figure 4.16.

Fig. 4.16: Creating a New Location.

4.3 DisplayTrackingMap Class

This class handles a street level map with the user’s location, destination, and walking

GPS. It is not possible to instantiate a Google Map object directly into the app. The

way to do it is by adding a MapFragment and then instantiating the FragmentActivity

object, which is part of the Google Play Services library I mentioned before. Figure

4.17 shows the UML instantiation[1]:

42

Fig. 4.17: UML Instantiation of Fragment Activity

There’s more than one way to instantiate a map fragment in an Android app. It

could be done directly in the activity or in the activity’s layout[2]. The approach I

used is the second one. The following code shows the fragment definition in the Map

layout. See Figure 4.18.

43

Fig. 4.18: Fragment Definition in Map Layout

This is instantiated in DisplayTrackingMap class. See Figure 4.19.

44

Fig. 4.19: Map Fragment Instantiation in DisplayTrackingMap

It also inherits methods:

• OnMarkerClickListener,

• ConnectionCallbacks,

• OnConnectionFailedListener,

• LocationListener,

• OnInfoWindowClickListener

By using a map fragment Google maps will display the map, it will connect the

activity to the API services, and it will manage the basic controls of the map such as

zooming.

Activity DisplayTrackingMap on its create method defines the connection between

the activity and its layout. It gets target latitude and longitude from table locations.

It will set markers on user and target locations. Besides, it will turn off the control

zoom and it will set up the camera[2]. See Figure 4.20.

45

Fig. 4.20: Initializing the Map

Once the map is settled, it is necessary to track the user’s movements across the

map. For this is necessary to import the library for the function callbacks. See Figure

4.21.

46

Fig. 4.21: Importing ConnectionCallbacks

This library allows callbacks. A function to be called when the user connects or

disconnects. In WiN GPS I implemented method onConnected to make requests

about the user’s location changes. First I define the REQUEST parameters that will

be used by the callback[3]. See Figure 4.22.

Fig. 4.22: Request: Parameters for Callback

This request is used on method OnConnected. The requestLocationUpdates relates

the callback with method onLocationChanged, which will be executed every time the

user’s location has changed[8]. See Figure 4.23.

Fig. 4.23: OnConnected Definition

47

Method onLocationChanged will update continually the user’s location. It will

also calculate the distance between the current location of user and the selected

destination. Method showMyLocation draws the user’s path one line at a time. Figure

4.24 depicts that.

48

Fig. 4.24: Updating User’s Movement

49

This is a recursive process that will take while the user walks to the selected

location.

4.4 New Location Class

NewLocation class is to create a new location in table locations. It uses a layout to

input data. Eclipse allows to manage layouts graphically. This is a print screen of

the New Location layout. See Figure 4.25.

Fig. 4.25: New Location Graphic Layout in Eclipse

Internally this layout is constructed by one row tables of text views and edit fields

as follows. See Figure 4.26.

50

Fig. 4.26: New Location Layout Code

This is how a Java Android class relates to its layout, in this case NewLocation to

layout new-location. See Figure 4.27.

Fig. 4.27: New Location Declaring Layout

The user inputs the location information and press the Save button, the method

addNewLocation calls the corresponding method on the DBmanager class that will

insert a new location in table. See Figure 4.28.

51

Fig. 4.28: Saving a New Location on Locations Table

In case the user don’t remember latitude and longitude of a location, then class

Get Coordinates will solve this. If everything is correct, latitude and longitude will

be retrieved. The following code shows that portion of the program. See Figure 4.29.

Fig. 4.29: Looking for Coordinates

That wraps up New Location class.

52

4.5 Edit Location Class

EditLocation class is to modify a specific location’s data. It receives location ID as a

parameter and looks up its information into table locations; then it uses a hashmap

as a parameter for class DBmanager to get the location info. See Figure 4.30.

Fig. 4.30: Look Up for Location Information

Any modified information will be saved by pressing the button ”Save”. All location

information is handled to DBmanager; it will update location info. See Figure 4.31.

53

Fig. 4.31: Update a Location Information

It is also possible to eliminate a location. If the user decides to do this, button

”Delete” should be pressed. The following code will delete selected location. See

Figure 4.32.

54

Fig. 4.32: Deleting a Location

That is in general the structure of the Edit Location class.

4.6 Get Coordinates Class

Get Coordinates class is used by the NewLocation and the EditLocation classes.

Attributes Latitude and Longitude are decimal numbers with several digits, therefore

it might be quite possible that user needs some help with them. Both, edit and insert

location layouts, have a Get Coordinates button. By pressing this button a map will

be displayed. From this map, the user can select a location by making a long click on

the map. Coordinates latitude and longitude will be returned to the caller routine.

This class has a similar structure than the DisplayTrackingMap class. It defines a

fragment that will hold a map. A request for the callback is defined as well. The

values for this request might be different though, since it’s not necessary to check

a location status changed frequently. It’s just necessary to detect a long click and

transform it into latitude and longitude values. These values will be returned them

to the caller routine. See Figure 4.33.

55

Fig. 4.33: Defining Callback Parameters

The parameters request for the callback function. Intervals to determine the fre-

quency of time to check for any possible variation on the map, such as a long click

over the map. A high priority request means that the most precise tool for locating a

coordinate must be used. This accuracy is controlled by Google Maps[2]. See Figure

4.34.

Fig. 4.34: Connecting Map Layout to Activity (Class)

This is how the class relates to its layout in order to use a fragment that will hold

the map, and it connects to Google-maps[2]. See Figure 4.35.

56

Fig. 4.35: On Long Click Select Lat. and Long

When a long click over the map is detected a red arrow will be drawn on the map

to indicate that a location has been detected. A Google method: addMarker is used

for that. See Figure 4.36.

Fig. 4.36: onConnected Method requestLocationUpdate

Method requestLocationUpdate is to connect the callback function with the on-

LocationChanged method. See Figure 4.37.

57

Fig. 4.37: Return Latitude and Longitude

4.7 Show Location Info Class

The locationInfo class is a window with an specific location information that can be

reached from classes newLocation and editLocation. Figure 4.38 shows its graphic

layout:

58

Fig. 4.38: Location Info Layout

Class ShowLocationInfo define the layout used to display the info. See Figure 4.39.

59

Fig. 4.39: Displaying Location Information

When the user is ready to leave the location information window the go back

button control will return control to the last active screen seen. See Figure 4.40.

60

Fig. 4.40: Returning to Caller

4.8 Changing Font for the Entire Application

This should not be treated as a class itself, however I believe it is important to

be mentioned because of the particular process to change the font for an Android

application. This is the way to do it under Android development[2]. First, import

the font into the assets folder of the project, Lato-Light.ttf in this case. See Figure

4.41.

Fig. 4.41: Font Imported Into Project Assets

61

Then the font must be defined in the activity you need to use it. See Figure 4.42.

Fig. 4.42: Font Defined to be Used in a Button

That wraps up the app software architecture.

62

5. CONCLUSION AND FUTURE DIRECTION

5.1 Conclusion

It has been very interesting to learn about Android development. I read the book

”Programming Android” by Zigurd Mednieks, and Laird Dornin[3]. I also took the on

line class: ”Programming Mobile Services for Android Handheld Systems” offered by

The University of Maryland USA in order to get acquainted with the environment of

Android, and specifically with Google maps[8]. In the end, one of the deliverables is

an app, which is developed and it’s ready to be deployed. Another deliverable is this

document, which explains the most relevant details of this specific development. The

application is fully functional on Android mobile devices and it can be implemented

if CSUSB chooses to. On a personal level I acquired some knowledge on a very

marketable field as Android development is. It’s a good starting point before entering

in the development of more challenging applications.

5.2 Future Direction

Android development and Google maps offer a lot of functionality that could be

additionally implemented on the application. The database can be manipulated as

well according to new requirements if needed. Of course, it can also be used as it is

right now.

Besides, it is also possible to standardize the application so it could be used in

places other than CSUSB. I, for instance, tested it on the community I live in.

63

REFERENCES

[1] B. Bernd and D. Allen. Object-Oriented Software Engineering. NJ Pearson., 2010.

[2] Stack Overflow for Android Developers Web Page. (undated). [Online]. Viewed

2015 January 5. Available: http://stackoverflow.com/.

[3] D Laird M. Zigurd and M.Nakamura. Programming Android. O Reilly., 2011.

[4] Android Developers API Guides Web Page. (undated). [Online]. Viewed 2015

February. Available: http://developer.android.com/guide/index.html.

[5] Blue Stacks Home Page. (undated). [Online]. Viewed 2015 February. Available:

http://www.bluestacks.com/.

[6] Google Maps Api Developers Home Page. (undated). [Online]. Viewed 2015 Febru-

ary. Available: https://developers.google.com/maps/android/.

[7] Map Quest Web Page. (undated). [Online]. Viewed 2015 February. Available:

http://https://developer.mapquest.com/.

[8] Online Course by the University of Maryland Programming Mobile Services for

Android Handheld Systems: Concurrency. (undated). [Online]. Viewed 2015

February. Available: https://www.coursera.org/course/posaconcurrency.

[9] Yahoo Boss Geo Services web Page. (undated). [Online]. Viewed 2015 February.

Available: https://developer.yahoo.com/boss/geo/.

64

	CALIFORNIA STATE UNIVERSITY SAN BERNARDINO WiN GPS
	Recommended Citation

	tmp.1448526031.pdf.LnLrs

