77\

CALIFORNIA STATE UNIVERSITY California State University, San Bernardino
SAN BERNARDINO
CSUSB ScholarWorks
Electronic Theses, Projects, and Dissertations Office of Graduate Studies
6-2015

CALIFORNIA STATE UNIVERSITY SAN BERNARDINO WiN GPS

Francisco A. Ron

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

b Part of the Software Engineering Commons

Recommended Citation

Ron, Francisco A., "CALIFORNIA STATE UNIVERSITY SAN BERNARDINO WiN GPS" (2015). Electronic
Theses, Projects, and Dissertations. 261.

https://scholarworks.lib.csusb.edu/etd/261

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks.
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/261?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

CALIFORNIA STATE UNIVERSITY

WIN GPS

A Project
Presented to the
Faculty of
California State University,

San Bernardino

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
in

Computer Science

by
Francisco Anibal Ron

December 2015

CALIFORNIA STATE UNIVERSITY

WIN GPS

A Project
Presented to the
Faculty of
California State University,

San Bernardino

by
Francisco Anibal Ron
December 2015

Approved by:

David Turner, Advisor, Computer Science Date

Kerstin Voigt

Ernesto Gomez

(© 2015 Francisco Anibal Ron

ABSTRACT

The objective of this masters project is to develop a working application for Android
devices. This is an application intended to be used by CSUSB. It has its own database,
which has information about most of the facilities on campus. There are many GPS
applications on the market, however I chose to design and implement WiN GPS, short
for Walking GPS, because it will allow the possibility of a personalized GPS for the
school and for users should they choose to do so.

In order to develop WiN GPS it was necessary to research the available tools, and
to become familiar with the ones that were selected. These tools such as map appli-
cation providers, i.e. Google-maps, integrated development environments, database
managers, software development kits, and mobile device emulators were analyzed and
compared.

Once the tools were selected, it was necessary to study, to become familiar with,
and to learn how to use them. Finally an app is developed and its main functions/code
will be explained. This masters project will allow potentially Android developers to
evaluate possible barriers, such as price and limitations of map application providers,
so they can make an informed decision.

Keywords: GoogleMaps, Android, app, SQLite3, Eclipse, Java, Database, GPS,

mobile development

1l

ACKNOWLEDGEMENTS

Upon reflecting on the journey traveled to put this masters project together, I have
come to realize that without the assistance of the following persons there would not
be such a project.

My committee members Dr. Turner, Dr. Voigt, and Dr. Gomez. I want to thank
especially Dr. David Turner, my project advisor: he has been very helpful, not only
through the development of this project, but also on every class I took with him.
His knowledge in up-to-date technologies has been helpful. I also want to thank Dr.
Schubert. It was an honor to be one of his students. Finally, it’s my pleasure to

mention Mrs. Monica Latimer always committed to help students.

v

TABLE OF CONTENTS

Abstract e iii
Acknowledgements iv
List of Figures vii
1. PROJECT SUMMARY e e e 1
1.1 Purpose 1
1.2 Scope 2
1.3 Development Tools 2
1.4 Definitions, Acronyms, and Abbreviations 2
2. OVERVIEW OF DEVELOPMENT TOOLS 4
2.1 Maps 4
22 IDE . . 7
23 Java ..o e 11
2.4 SDK and Google Packages 12
25 ADB . . 13
26 Emulators oo 13
2.7 Database 13
3. WIN-GPS MECHANICS e 15
3.1 Summary ... 15

3.2 SCTeenso 15

3.3 Walking Navigation 16
4. SOFTWARE ARCHITECTURE AND DESIGN 32
4.1 Main Activity Class 32
4.2 DBmanager Class 36
4.3 DisplayTrackingMap Class 42
4.4 New Location Class, 50
4.5 Edit Location Class 53
4.6 Get Coordinates Class 55
4.7 Show Location Info Class 58
4.8 Changing Font for the Entire Application 61
5. CONCLUSION AND FUTURE DIRECTION 63
5.1 Conclusion 63
5.2 Future Direction 63
References 64

vi

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

LIST OF FIGURES

Project Defined in Google Console)
Credentials for the Project 6
API Key in the Manifest 7
Eclipse Features I 8
Eclipse Features IT 9
Values Definition oL 10
Android Application Life Cycle[8] 12
Screen Flow Diagram L. 16
Initial Screen 17
Walking GPS Global Screen 18
Walking GPS Initial Screen L. 19
Walking GPST 20
Walking GPSIT 21
Info Screen 22
Walking GPSIIT 23
Initial Screen oL 24
Add a New Location Screen 25
Add a New Location Partially Filled Screen 26
Get Coordinates Screen 27
Select a Location from Screen 28
Save a New Location Screen 29

vil

3.15
3.16

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

Initial Screen 30

Edit Location Screen 31
UML Package Application 33
UML Diagram of DBmanager and MainActivity Relationship 34
Main Activity Code (Database Opening) 34
Populating the List oo 35
When a Location is Clicked 35
Calling the Methods to ”Add” a New Location. 36
On Long Click: Edit a Location 36
Table Android Meta-Data: Structure 37
Table Locations: Structure 37
UML DBmanager Class 38
UML DBmanager Instantiations 39
Database Definitiono 39
Edit Location, Code 40
Deleting a Location 41
Get Info For a Location 41
Creating a New Location. 42
UML Instantiation of Fragment Activity 43
Fragment Definition in Map Layout 44
Map Fragment Instantiation in DisplayTrackingMap 45
Initializing the Map oo 46
Importing ConnectionCallbacks 47
Request: Parameters for Callback A7
OnConnected Definition 47
Updating User’s Movement 49
New Location Graphic Layout in Eclipse 50

viil

4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42

New Location Layout Code 51

New Location Declaring Layout 51
Saving a New Location on Locations Table 52
Looking for Coordinates 52
Look Up for Location Information 53
Update a Location Information 54
Deleting a Location L 55
Defining Callback Parameters 56
Connecting Map Layout to Activity (Class) 56
On Long Click Select Lat. and Long 57
onConnected Method requestLocationUpdate 57
Return Latitude and Longitude 58
Location Info Layout 59
Displaying Location Information 60
Returning to Caller 61
Font Imported Into Project Assets 61
Font Defined to be Used in a Button 62

1X

1. PROJECT SUMMARY

Mobile applications are quite popular nowadays. It’s possible to find apps pretty
much for anything, and yet, there is still so much to be done. One particular area of
mobile apps deals with maps and their management. Multiple applications have been
designed using maps, such as GPS, transit information, bike routes, and so onl[3].
This masters project’s purpose is to create a walking navigation GPS app for the
CSUSB campus.

It must be noted also that mobile devices come in different shapes, brands, and
operating systems. This particular project will focus on mobile devices using the

Android Operating System.

1.1 Purpose

This is a masters degree project, therefore the main purpose is to deliver an applica-
tion according to the masters program level of knowledge. The application might be
used by CSUSB visitors unfamiliar with the facilities, or students that are familiar
with them, but they want to point out their ’preferred’ places on a map. Another
purpose, not less important, is to provide a document that might be useful to students

interested in Android applications.

1.2 Scope

The scope of this project is limited to maps on Android devices. Several tools are
available toward this kind of development, therefore I’ll mention the most popular
and I'll explain the reasons I chose, or not, to use some of them.

Subjects such as publication, usage, distribution, or modifications of this app are

out of scope of this report. Also out of the scope is image designing.

1.3 Development Tools

This project deals with several tools:
e Programming language: Java version 1 (1.7.0 51) for Android
e Programming tools: Java JDK, Java SDK, Android Debug Bridge
e Database: Sqlite3
e IDE: Eclipse
e Maps: Google maps, Google play services, Google API client

e Graphic design: Photoshop CS4

1.4 Definitions, Acronyms, and Abbreviations

e ANDROID: Operating System. Open-source operating system for mobile devices

such as cell phones, and tablets. Android is Linux based.

e API: It stands for Application Programming Interface. This is a particular set
of previously written classes and interfaces for the developer to use. Example: a

calendar, Google Maps, etc.

e WiN-GPS: The CSUSB walking navigation application (deliverable from this

project).

e IDE: It stands for Integrated Development Environment. It is a software applica-
tion that provides the appropriate environment to develop a software application

i.e. Eclipse for Android, JavaBeans for java, etc.

e MOBILE APPLICATION: It refers to any software or application that runs on

current mobile phone and/or smart technology such as tablets.

e SDK: It stands for Software Development Kit. A library of previously written

functions that aids a programmer to re-use code|3].

e TAP/TAPPING/PRESSING/CLICK/DOUBLE-CLICK/LONG-CLICK: Ways
of input used on a mobile device through a touch screen interface. Tapping is

quite equivalent to a click on a standard desktop computer.

e ADB: Android Debug Bridge is a tool that allows commands to be sent from a
terminal to an Android device Zigurd, Laird (2010)[3].

e GEO CODING: worldwide location translator.
e WALKING: A path from point A to point B with everything in between.
e POI: points of interest.

e PHOTOSHOP: An image editing software developed by Adobe Corporation.

2. OVERVIEW OF DEVELOPMENT TOOLS

2.1 Maps

It’s long gone the time when static GPS devices were the only way to manage maps.
Most map software based applications have been moved to smart devices. This project
deals with Android devices, so I’ll mention some of the main map applications avail-
able for them.

Map Quest: It has been in the industry for a while now. They have the background
expertise working with map software development. I personally used it on the web
even before I knew about the existence of Google maps. Map Quest offers a developer
account for free. The only prerequisite is to create an account with them. The basic
services are offered for free for the first 15,000 transactions per month. Technical
support is restricted to paid accounts, and developer forums are not quite common
on the Internet. All in all, Map Quest is definitely a good choice to be considered
when it comes to map development|[7].

Yahoo Boss Geo Services: It offers location and search services worldwide. It is
a paid service, which begins at six dollars for up to 10,000 queries per day. In the
present case a paid service is a limitation[9].

Google Maps: This is nowadays the most known web mapping service for develop-
ers. Among other benefits, it offers unlimited free usage of maps through the Android
APIs[6]. There’s plenty of technical information on the Internet, plus there are lots
of independent developers sharing their experiences on websites such as Stack Over-

flow; where I happened to post most of my novice questions at the beginning of this

development|[2].

This development does not contemplate a budget for using a mapping service,
therefore Yahoo maps in not an option. On the other hand, Map Quest has lim-
ited technical service, so in conclusion Google Maps is the adequate choice for this
particular project.

In order to develop a google map based app, we must acquire a Google Maps
API key. For that purpose it is necessary to have a google account. A shortened
description on how to generate an API key is as follows. Sign in with your account
and create a project in the google console developers. Figure 2.1 shows the website

address as well as the project created for WiN GPS[6].

= C & https://console.developers.google.com/project?pli=1

i5: Apps W Bookmarks @ Getting Started |3 Imported From Firef...

{) Google Developers Console Select a project ~

Columns = Q@ Labels

Project Name Project 1D Reguests Errors Charges

APl Project api-project-140730792911 i i = ’

API Project csusbCampusTrackingData api-project-292712325296 i 0 = Vs

Projects shut down and pending deletion

Fig. 2.1: Project Defined in Google Console

Select the project; on the next screen select "use Google API”[6]. See Figure 2.2:

| e Appsl ¥ Bookmiarks ‘ Getting Started Ea Imported From Firef...

€ — C' [htips://console.developers.google.com/project/292712325296/apiui/apis/library

Home
Permissions
APls & auth
APls
Credentials
Monitoring
Source Code
Cloud Launcher
Deployments
Compute
Metwaorking
Storage
Big Data

O Google Developers Console

API Project csusbCampusTrackingData ~

Google APls Enabled APIs (1)

Popular APls

O

Google Cloud APls

Compute Engine APl

BigQuery API

Cloud Storage Service

Cloud Datastore API

Cloud Deployment Manager API
Cloud DNS API

More

Mabile APls

Cloud Messaging for Android
Google Play Game Services
Google Play Developer API
Google Places API for Android

Advertising APls

AdSense Management AP|

DCM/DFA Reporting And Trafficking API
Ad Exchange Seller API

Ad Exchange Buyer API

DoubleClick Search APl

Analytics AP

DoubleClick Bid Manager API

Google Maps APls
Google Maps Android AP

Google Maps SDK for i0S
Google Maps JavaScript APl
Google Places API for Android
Google Places AP for i0S
Google Maps Roads APl

More

Social APls
Googlet API
Blogger API
Google+ Pages API

Google+ Domains API

Other popular APls
Translate API

Custom Search AFI
URL Shortener AP
PageSpeed Insights AP|
Fusion Tables AP|

Web Fonts Developer API

Fig. 2.2: Credentials for the Project

Follow the instructions and an API key will be generated. This API key must be

part of the AndroidManifest.xml file of the project or it won’t even start. This is part

of the AndroidManifest. xml where the APT key is present[4]. See Figure 2.3

4 -‘Lg csushbCampusTracking
> B Android 4.2.2
» = Android Private Libraries
5 G5 sic
> B8 gen [Generated Java Files]
=) Android Dependencies
> =), Referenced Libraries
3 G@ assets
> &= bin
& libs
a G_D—} res
|» (= drawable-hdpi
(= drawable-Idpi
> &= drawable-mdpi
- (2= drawable-xhdpi
> (= drawable-xchdpi
i & layout
b 52 layout-land
a = values
4] colorsxml
| dimensxml
) stringsxml
i) stylesxml
> (& values-swB00dp
= &= values-swi20dp-land
I B values-vll
=2 walues-vld
5 Androdbantestr
|8 ic_launcher-web.png

2
2
2
3
3
3
&

PECRagE= oM. CoUSDLOMpUS TTOCR NG
android:versionCode="8"
android:versionName="2.17.8" >
<uses-sdk
android:minsdkversion="g9"
android:targetSdkVersion="18"/>
<uses-permission android:name="andraid.permission.ACCESS _NETWORK STATE"/>
<uses-permission android:name="android.permission.INTERNET"/>
<!-- External storage for caching. --»
ission android:name="gndroid.permission. WRITE EXTERNAL STORAGE"/>
tion -->

<uses-permission android:name="android.permission.ACCESS FINE LOCATION™/>
<uses-permission android:name="android.permission.ACCESS FINE LOCATION"/>

<!-- Maps API needs OpenGL ES 2.8. --»

<uses-feature
android:glEsVersicn="6x00020600"
android:required="true"/>

<application
android:icon="ffdrawable/csush”
android:label="@string/app_name"
android: hardwareAccelerated="true">

«<meta-data
android:name="com.google.android.maps.v2.API_KEY"
android:value="AIzaSyCiq KhneXA7esBkIhd-LL1A4GZIFCFEILE" />

<meta-data
android:name="com.google. android. gms. version”
android:value="@integer/google play services version” />

j android:name=".MainActivity”
ani d:label="@string/app_name"
android:noHistory="true">>

More detailed instructions on how to generate an API key can be found at the fol-

lowing site: https://developers.google.com/maps/documentation/android-api/config

By the time this project started two IDE were available for Android development:
Eclipse and Android Studio. Eclipse was released in the industry before Android
Studio. I have used Eclipse for a couple of projects so I gained some expertise on it.
That is the only reason I chose Eclipse over Android Studio on this particular task[4].

ECLIPSE the IDE of choice for this task may be used for different kinds of de-

velopment i.e. Java, or Android Development. Using the figures 2.4 and 2.5, I will

Fig. 2.3: API Key in the Manifest

2.2 IDE

explain the components for an Android development|3].

mmmmmm'mm'wuq

e T

T Trackinaforch

B

=y

ing Dbmanager |

- Eclipse =

= ik a

O e AL TAEA - I NSO - Q- F @@ P vl v v
{2 Paciage Explorer 11| BE% =0 [DBmnagerjoa i
= 2% * This progrsa ssnages the Dats Base -
18 package cos.csusbCaspusTracikingp
e 11
124 import java.lo.FiledutputStreas;
25
26 public class DBesaager extends SQLiteDpenMelper{
27 string DE_PATH =null;
28
28 private static String DB _NAME = “csushbDB®;
kh] private SQLiteCatabase myDataBase;
31 private final Context wyContext;
LF]
1%+ public DBmsnager(Context context) {
it super{context, 08 M, oull, 1);
i1} this.myContext = context;
L1 #F retrieves DB path
& » DB_PaTH="/data/data/ "+context.getPackagetiome() +" /"4 "databazes/";
i1 }
L]
”_ Ifllllli"'lllIillllilllliillllillllilll
4 =
42 ® If DB dopsn't exlst, the first
43 * |3 installed on the phene @
44 * will be ¢reated,
45 * For subiequent app dewmlosds
26 * phone will remaln Intact
47 "
48 * This is specially wseful to
5 * spplication which is developed
[31) = gnd installed phone
51 sesssmensrrenes PP —,
& 1 52— w {mmmm"ﬂ} TR TR
. 53 dbExist = checkDataBaze|)y
@. Andratblandest ot 54 1€ (dbexist) {
| jarkt.cache 11 fide mothing - detabase slresdy exist
{0 Rt 56 }
@ Eibs 57 else {
| wndnsd. uppon- 58 this.getResdsbleDatabase()s // an espty datsbase will be created
T *" 9 try {copbatatase()s)
68 catch (DOException e)
* @ drawable-hdpi 61 throw new Error(“Error copying database®);
= drawable-idpi 62 }
» 2 drawable-mdes 63 } £F end else
S cwred b s
- “M (12 lfiillliillll-i'IIliiiIlr.-illi-illiiillliiilliiilli
_S g et . i .
i I 1 I i
Fig. 2.4: Eclipse Features I
As follows:

name of the project
Java code source

libraries imported for this project

database, database backups, and imported font

|
dap

[# Package Explorer 57 T DBmanager.java &2
g & expl ger)

- 2& * This program manages the Data Base *]
18 package com.csusbCampusTracking;
11
12& import java.io.FileOutputStream;[]
25
1 26 public class DBmanager extends SQLiteOpenHelper{
27 String DB_PATH =null;
28

29 private static String DB NAME = "csusbDB";
: i EL private SQLiteDatabase myDataBase;

el et i e 31 private final Context myContext;
= drawable-ldpi 32

I+ [drawable-mdpi 33= public DBmanager(Context context) {
b @ drawable-xhdpi 34 s:per(context, DB_NAME, null, 1);
2 35 this.myContext = context;
s ravshleahdpy 36 {/ retrieves DB path
& 37 DB_PATH="/data/data/"+context.getPackageName()+"/"+"databases/";
38}
38
4es /
Tl 41 * *
42 * If DB doesn't exist, the first time the gpp *
43 * is installed on the phone a copy of it *
44 * will be created. i
45 * For subsequent gpp downloads the DB on the *
46 * phone will remain intact i
47 * *
43 * This is specially useful to test the i
49 * application which is developed in a laptop *
58 * and installed in a phone ad
E 51 /
52= public void createDataBase() throws IOException{
m——— 53 boolean dbExist = checkDataBase();
54 if (dbExist) {
@ colorsxml 55 //do nothing - database already exist
@ dimensxml 56 }
[Cj strings.xml 57 else {
| stylesxml 58 this.getReadableDatabase(); // an empty database will be created
59 t copyDataBase();
bl altie s 0cp 3 68 cgcé (%Exceptior?e:)} {
b (= values-swi20dp-land i 61 throw new Error("Error copying database");
I (& values-vll 62 T
b = values-vid 53 } // end else
4 64 }
65

|®| 1C_launcher-web.png

Fig. 2.5: Eclipse Features 11

Following;:
On 1: images used for the project. PNG format keeps the accuracy of images in the
smaller size if they don’t have motion incorporated, which is the case for the present
project. All the images for this project were manipulated with Photo-shop. For an
Android project it is possible to use high, low, middle, extra high, and extra extra
high density files. There is a tab for each of them so the operating system might
automatically find them.

On 2: Layouts, a layout is nothing but a screen that a program will use to interact
with the user. It is possible, sometimes it becomes mandatory though, to have more

than one layout for the same program. When the user shifts a device from vertical to

horizontal the operating system will handle to shift the information from a vertical
layout to an horizontal one. If there’s a XML file in the layout-land it will use it,
if not it will just crop some items so they fit in the current screen position: either
vertical or landscape. A layout that is used by the same program must have the same
name either vertical or landscape.

On 3: Values. All the system values to be used.

On 4: the package’s definition file. This is the first file the application will look
for before anything else.

Values, in light blue, might be defined globally, or they can be determined every
time they are gonna be used in a program. For example, instead of typing an hex-
adecimal number every time we need an item to be black, we can simply define it as
a value and use it by its name when necessary. The following figure 2.6 depicts this

process:

<?uml version="1.8" encoding="UTF-8"1>

<color name = “acid green":#BBBF1A<{/color>
<color name = “"bitter lemon":#CAE®@D</color:
<color name = “bitter lime“>#BFFF@8</color:
<color name = “gainsboro":#DCDCDC</color:
<color name = "block”-#088000</color>
<color name = “"white">#FFFFFF</color>
<color name = "olive":#949337</color:
<color name = “grey">#272727</color>

<color name = “cream">#cbcbob</color:
<color name = “light blue“>#203981</color>
<color name = “movy blue":#193848</color:

<f’e5cu*ce54

Fig. 2.6: Values Definition

10

2.3 Java

Java is a programming language, its virtues and capacities are beyond the study of
this project. Eclipse, the IDE used for this project is Java based. The supporting li-
braries for eclipse are Java based as well. Naturally Java is the programming language
of choice for this project. Java and Java for Android have quite similar capabilities,
however there are some dissimilarities basically due to the devices that will host the
applications[3]. A desktop, for instance, won’t have some of the problems a mobile
device might have, such as: a discharged battery , an incoming call interrupting a
process, etc. Besides, the hardware capabilities a desktop has are quite different from
the ones of a mobile device. For instance: memory restrictions plays an important
role in mobile development. Due to these differences a Java program for Android
has a different life cycle than a Java source for a desktop has. The following graphic
was presented in the course: ”Programming Mobile Services for Android Handheld

Systems”. It is a self explanatory Android application life cycle. [§]

11

Activity

launched
onCreata()
onStart() - ; onRestart()
v r
User navigates
t -—
to the activity onResume()
| Appprocess |
\ killed J
o ———— =
4
Anoiher astivity comeas
nto the foreground
- User returmns
+ Io the act 'n"ll'y
Apps with higher priority)
need memory onFause()
i
The activity is
no longer visible
;i User navigates
v 1o the activity
J

onStop()

|
The activity is linishing or
being destroyad by the sysiem

'

onDestroy()

v
(Activity
. shutdown

Fig. 2.7: Android Application Life Cycle][8]

2.4 SDK and Google Packages

The Software Development Kit has to be installed along with the IDE

Play Services. These packages can be obtained free of charge from the

These are typical installations that won’t present a problem if the

12

. However, there

are some additional packages that must be installed, such as Google APIs, and Google

Google develop-

ers website: https://developers.google.com/maps/documentation/android-api/config

mstructions are

followed properly|6].

2.5 ADB

Android Debug Bridge is the terminal for android. It becomes handy when a malfunc-
tion occurs with the project. It happens sometimes that a session ends abnormally for
any reason. For instance, if things are not working properly on the next connection,

the command ’adb kill-server’ from a terminal will fix the issue[3].

2.6 FEmulators

An emulator is a piece of software that allows us to test an app if we don’t have
an actual device or several devices for that mater. It is also useful to emulate the
actual device behavior, such as a low battery[8]. Eclipse comes with its own emulator
system, however it takes quite a while to load an app. This makes it cumbersome to
test an application in the process of development. In order to overcome this problem,
Blue Stacks is a solution.

Blue Stacks Is an Android emulator service. It’s fast and reliable. Once it’s
installed it’s just a matter to locate the file applicationName.apk double click on it
and the emulator will open it[5]. Blue stacks will open the application in a matter of
seconds compared to minutes that the Android emulator takes.

Other than emulators, it is always safe to test an application over the actual device
it’s supposed to work on. For this project I used Blue Stacks to test the app on a
emulated tablet. I also tested the app on a phone LG Stylus with OS Android 5.1.1

2.7 Database

The native database for Android applications is SQLITE3. It is possible to work with

other databases, however, according to its specifications a SQLITE3 database would

13

easily manage up to 10,000 records. This application is intended to manage no more
than 500 locations at a time, and that’s quite optimistic, so SQLITE3 will handle
with no problem WiN GPS database[8].

14

3. WIN-GPS MECHANICS

3.1 Summary

WiN-GPS is a personalized GPS Google maps based application. It comes with an
installed database, in other words: it’s a Google map with an address book incorpo-
rated that will help you to get to that place you still don’t know the address to, or

the location of it is not in a regular map.

3.2 Screens

WiN-GPS uses touch screen inputs, and GUI buttons to navigate between the differ-

ent app screens. This is shown in the next figure 3.1:

15

Select

screen

AT G\Uha,\ﬂ:ﬂap Destination info.
>l location e «— — — if requested
- user location
-
-
-
- é
Map to get
destination
ROl A sactional map - Destination info.
indluding [= i requested
user locatien and
o target location
~
S~
54 ~ Modify an
al existing
location
WiN-GPS
Walking GPS — Destination info.
asuserswalks € if requested
toward final address

Fig. 3.1: Screen Flow Diagram

3.3 Walking Navigation

The initial screen lists all predetermined locations. The list consists of location code

and description. From this screen the user might start a walking GPS, add a new

location, or modify a location. See Figure 3.2.

16

o % .1l §10:34 AM

CSUSB Navigation

AD Administration

AF Auto Fleet Services

AH Animal House Vivarium
AS Administrative Services

AV Arrowhead Village Housing
Bl Biological Sciences

BK Coyote Bookstore

CC Childrens Center

< O l

Fig. 3.2: Initial Screen

By tapping on a location: the walking GPS will start. The following screen will
show a map on a global scale with both user’s current location and target destination.
On this screen the distance between user location and target destination is shown in
meters. However, it is necessary to zoom on the map in order to get a close up of the

area. Figure 3.3 shows the global view of the map.

17

9 v % ull m10:56 AM

CSUSB Navigation

North
Atlantic
; Ocean
Mexico
) V;engzueia
o _,;‘; A Brazil
‘gloliviij
South A
LU Distance curr target ==>135.41483 Mts
Ocean
) Agentina

3
s
)

Fig. 3.3: Walking GPS Global Screen

Now, this figure shows a street level map where user will clearly see their starting
location (’you started here mark’). A blue dot will show the user’s current position.
A red line will show their walking along the campus. Finally a red arrow indicates
the selected destination. All the tools that are necessary to help the user to get to

their destination are available on this screen. See Figure 3.4.

18

L ir % il @8:37 PM

CSUSB Navigation

®

Fernwood Ln

YOU
START
HERE

Fig. 3.4: Walking GPS Initial Screen

The following figures show a complete walking GPS, from the user’s starting point
to their target destination. This print screens were generated while walking from

point A to point B in a test. See Figures 3.5 and 3.6.

19

¢ @ O % 4l m8:37 PM 9 O % .l m8:39PM

CSUSB Navigation CSUSB Navigation

Fernwood Ln

W
T 1 :
Distance curr t. 3367 Mts 5 Distance curr target ===80.695564 Mts
3 ".\{\ - *f/] '?}__':' : _~.\;.J, /
N -8 4

& . o
e LA 4 —‘Q'l?

Fig. 3.5: Walking GPS I

20

™~ 9 %l MB39PM | 9 O o W40 PN

CSUSB Navigation

CSUSB Navigation

®

Fernwood Ln

-

i
A

&

b

o 4\»\
& Distance curr target ==>71.763405 Mts) Distance curr target ==>48.90357 Mts
i:’.:, : S‘Ifl {2‘ 'f(::_ d %;5;, Q

Fig. 3.6: Walking GPS II
While using the map, the user can at any point, press the "Info” button. This

will display some information like the telephone of the selected destination. Figure

3.7 shows is the information screen:

21

™ # .l W8:41 PM

CSUSB Navigation

Location Info

Description Administration

9512245284

Fig. 3.7: Info Screen

Finally the user arrives to their destination. The user will visually see the complete

path. Figure 3.8 shows an entire walking GPS from point A to point B.

22

™ 9 ®.ll m8:41PM

CSUSB Navigation

®

Fernwood Ln

A\ 2N

%
(9)
%

,
(18]

Fig. 3.8: Walking GPS III

Once the walking GPS has been reviewed, let’s remember that in the initial screen,

the user can also create a new location by pressing the ” Add” button. See Figure 3.9.

23

o % .1l §10:34 AM

CSUSB Navigation

AD Administration

AF Auto Fleet Services

AH Animal House Vivarium
AS Administrative Services
AV Arrowhead Village Housing
Bl Biological Sciences

BK Coyote Bookstore

CC Childrens Center

< O l

Fig. 3.9: Initial Screen

The add button will display a form in a new screen. Here the user can create the

information about a preferred location, or a favorite spot. See Figure 3.10.

24

.l W8:56 AM

CSUSB Navigation

Add New Location

Fig. 3.10: Add a New Location Screen

Most of these attributes are pretty straight forward and the keyboard is part of

the Android system. Most of the information to be entered here is pretty straight

forward. See Figure 3.11.

25

% il M8:59 AM
CSUSB Navigation

Add New Location
PH

Pizza hut

0512245283

Opens at 10

100th 10 10th

Fig. 3.11: Add a New Location Partially Filled Screen

However, attributes Latitude and Longitude are values not easy to remember,
neither they are handy without help. So, the application offers the possibility of
selecting the location directly from a map. That’s what the ”Get Coordinates” button

is for. See Figure 3.12.

26

(] t & il B9:49 AM

CSUSB Navigation

Add New Location
PH

Pizza hut
0512245283

Opens at 10

Fig. 3.12: Get Coordinates Screen

After pressing the ”Get Coordinates” button, a screen with a map will be shown.
A blue marker indicates the current user’s location. In this street level map the
user can select a destination by making a ”"Long Click” over the map. A red arrow
will appear showing a location has been selected. By pressing ”Save”, latitude and
longitude values are sent to the ” Add location” or ”Edit location” screens, depending

on which one did the call. Figure 3.13 shows this:

27

™ v & Q 2. B9:42 AM

CSUSB Navigation

Fernwood Ln

Fig. 3.13: Select a Location from Screen

In this case the ”New location” class called the ”Get Coordinates”. This is how

the add a location screen will look like. Here the user may save a new location or

discard the process. See Figure 3.14.

28

[ad] ? & . B9:49 AM
CSUSB Navigation

Add New Location
PH

Pizza hut
0512245283

Opens at 10

34.02223299652643

-117.61312287300825

Fig. 3.14: Save a New Location Screen

Let’s remember that in the initial screen the user can also make a "long click” in

order to modify an existing location. See Figure 3.15.

29

o % .1l §10:34 AM

CSUSB Navigation

AD Administration

AF Auto Fleet Services

AH Animal House Vivarium
AS Administrative Services

AV Arrowhead Village Housing
Bl Biological Sciences

BK Coyote Bookstore

CC Childrens Center

< O l

Fig. 3.15: Initial Screen

We have just reviewed the walking GPS functionality of the app, and the ” Add”

button. Now, let’s check the modification of a specific location. By making a long

click over an specific location in the list the process will start. See Figure 3.16.

30

t & % il @9:56 AM
CSUSB Navigation

Edit Location

Administration

9512245284
Comment 1
34.02223633113117

-117.61312320828436

Fig. 3.16: Edit Location Screen

The application shows in a screen the current information of a location. The
user may edit any attribute on this screen. The functioning of the button ”Get
Coordinates” is just as it was described above. Something important to point out is

the button ”"Delete”. By pressing this button, that specific location will be deleted.

31

4. SOFTWARE ARCHITECTURE AND DESIGN

4.1 Main Activity Class

The entire app can be accessed from the main activity class. From this class the user
can add, modify, or delete a location. The user also may use the walking GPS to
navigate in the campus. The following UML package graphic explains it visually[1].

See Figure 4.1.

32

MainActivity

DBmanager

+checkDataBase ()
+openDataBasze ()
+copvDataBasze ()
+query()
+insertLocation ()
+updateLocation ()
+deletelocation ()
+=zelectLocation ()

DisplayTrackingMap

<< (ick button= = +SetUpMap ()
+5etlUpGooglefnpiClient ()

L - -[;? +5howMyLocation ()
+AddMarkers ()
+OnlocationChanged ()
+pdateCurrentLocation()

<< Add button>> | - = - AddLocation

+hddLocation()

Editl_ocation

<< Long click button>> |
= — —>+TpdateLocation ()

+Deletelocation ()

Fig. 4.1: UML Package Application

This UML graphic expresses the relationship between the classes DBmanager and
MainActivity. See Figure 4.2.

33

{ instantiates }
DBmanager |~ — T '[} MainActivity

Fig. 4.2: UML Diagram of DBmanager and MainActivity Relationship

MainActivity class instantiates the DBmanager class. The MainActivity class
checks the existence of a database and opens it. This piece of code shows it. See

Figure 4.3.

final DBmanager myDbManager = new DBmanager(MainActivity.this); // Copy/create DB
try {
myDbManager. createDataBase();
1
]
catch (IOException ioce) {
throw new Error("Unable to instantiate database");

}

try {
myDbManager.openDataBase();
h

catch(SQLException sqle){
throw sqle;
b

Fig. 4.3: Main Activity Code (Database Opening)

A cursor is defined as ”¢”. The results of a locations query are assigned to this
cursor. The content of the cursor is assigned to a list. Finally the list is displayed|[2].

Figure 4.4 depicts this process.

34

do {

List.add(c.getString(1) + " " + c.getString(2) + ™ "); // loading the array with Location Code and Des
} while (c.moweToNext(});
lv = (ListView)findviewById(R.id.listViewl); // find listViewl in activity main.xml

arrayAdapter = new ArrayAdapter<Stringx{this, R.layout.row, List); // row contains format for locations
lv.setAdapter(arrayAdapter); // display list

lv.setonItemClickListener(new OnItemClickListener() {

Fig. 4.4: Populating the List

The application is listening to any input; When the user taps on a location, method
OnltemClick activates. It will recover the string clicked and its position. The location
code is recovered from the string. A query for that location is submitted in order to

recover its info. With all that information a walking GPS is started. See Figure 4.5.

public void onItemClick(AdapterView<?>» parent, View wview,int pos_clicked, long row clicked) {

String val =(String) parent.getItemAtPosition(pos_clicked); // get the whole text selected
String s[] = val.split("™ "); // getting locCode

HashMap<String, String> locationMap = new HashMap<String, String>();

locationMap = myDbManager.getlocationInfo(s[@]);

if({locationMap != null) {

Intent theIntent = new Intent(getApplication(), DisplayTrackingMap.class);

double latitude = Double.parseDouble(locationMap.get(“"loclat”)); // latitude
double longitude = Double.parseDouble(locationMap.get(“loclong”)); // longitude

theIntent.putExtra(”_Id", locationMap.get(” Id")); { autec generated Id
theIntent.putExtra("locCode”, locationMap.get("locCode™)); / location code "AD"
theIntent.putExtra("locDesc”, locationMap.get("locDesc")); '/ location description
theIntent.putExtra("leclat", latitude); / destination latitude
theIntent.putExtra("leclong”, longitude); // destination longitude
theIntent.putExtra("locTelephone”, locationMap.get("locTelephone™)); // telephone
theIntent.putExtra("locComments™, locationMap.get("locComments™)); // comments

startActivity(theIntent); // display map with user location and destination for tracking

Fig. 4.5: When a Location is Clicked

Should the user tap on the ”Add” button, MainActivity will start the new location

feature of the app. This method doesn’t need any parameters since we are creating a

location from scratch. See Figure 4.6.

35

public class DBmanager extends SQLiteOpenHelper{
String DB _PATH =null;

private static String DB NAME = “csushDB™;
private SQLiteDatabase myDataBase;
private final Context myContext;

public DBmanager(Context context) {
super({context, DB NAME, null, 1);
this.myContext = context;
/! retrieves DB path
DE_PATH="/data/data/"+context.getPackageName()+"/"+"databases/";

¥

Fig. 4.6: Calling the Methods to ” Add” a New Location

If the user "long clicked” on a location from the list, the class EditLocation, will
be executed. The only parameter sent to the called activity is the location code. See

Figure 4.7.

Iv.setOnItemLongClickListener(new AdapterView.OnItemLongClickListener() {

// ON LONG CLICK allow user to modify a location

public boolean onItemLongClick(AdapterView<?> parent, View wview,int pos_clicked, long row_clicked) {
string val =(String) parent.getItemAtPosition(pos clicked); // get the whole text selected
String s[] = val.split("™ ");
Intent editIntent = new Intent(getApplication(),EditLocation.class);
editIntent.putExtra("locCode”, s[8]}); // location code
startActivity(editIntent); // display map with coordinates
return true;

Fig. 4.7: On Long Click: Edit a Location

Those are the main functions on the MainActivity class.

4.2 DBmanager Class

WiN GPS has a database incorporated. It is handled with SQLITE3. The database

name is csusbDB and it has two tables: android meta-data and locations. Table

36

android meta-data is a system required table, which holds information used by An-
droid. It has one record indicating language and country i.e. en-US. The process to
design this database was quite straight forward since there are no relationship among
tables involved. There was no need to normalize the database. Figure 4.8 shows table

meta-data structure:

and r-n-id=m etadata

*locale text

Fig. 4.8: Table Android Meta-Data: Structure

There’s just one main table used by the entire application, which is Location. This

is its structure. See Figure 4.9.

locations

+_id int

*1ocCode text
*locDesc Cext
“locLat float
*1ocLong float
“locTelephone text
“locComments LTexXt

Fig. 4.9: Table Locations: Structure

Class DBmanager handles all the methods involving the locations information. Its
tasks are to create a new location, to locate information related to them, to edit, or
to delete a specific location. The following UML diagram of the DBmanager class
reflects that[1]. See Figure 4.10.

37

DBmanager

-DE NAME: S5tring = csusbDE
-myDataBase: S5QLiteDatabase
-myContext: Context

+DEmanager (context :Context)
+createDatabas=se () : void
+openDatabase () @ void
+Cursor (table:5String|] column=, ,Selection:String,
selectionArgs:5tring|] ., groupBy::5tring,
HJpnaving:5cring, orderBy:String) : query
+insertLocation (queryvalues :HashMap<String,
String>) :
+updatelLocation (queryvValues : HashMap<5tring,
String?>) : int
+deletelocation(id:S5tring): void
+getLocation(id:5tring) : HashMap<String,

String-
—checkDataBase () : boolean
—copyDataBase () : vold

Fig. 4.10: UML DBmanager Class

Dbmanager instantiates MainActivity, NewLocation, and EditLocation classes.
These classes control all the information related to locations. The following UML

graphic depicts that. See Figure 4.11.

38

¥ instantiates }
DBmanager | - - - - -~ T T °~° -[::"' MainActivi

{ instantiates }

DTSN [T e -[::- NewlLocation

{ instantiates
PR L T | ki ki i i ki -[::-‘" EditLocation

Fig. 4.11: UML DBmanager Instantiations

DBmanager inherits SQLiteOpenHelper, which is part of SQLite3. The database’s

name is defined and its path retrieved from the project assets as shown in Figure 4.12.

public class DBmanager extends SQLiteOpenHelper{
String DB _PATH =null;

private static String OB NAME = "csusbDB"j;
private SQLiteDatabase myDataBase;
private final Context myContext;

public DBmanager(Context context) {
super(context, DB NAME, null, 1);
this.myContext = context;
/i retrieves DB path
DB_PATH="/data/data/"+context.getPackageName()+"/"+"databases/";

Fig. 4.12: Database Definition

39

DBmanager has several methods that will be instantiated by MainActivity, Edit-
Location, and NewLocation: checkDataBase, openDataBase, Cursor, insertLocation,
updateLocation, delete location, and getLocation among the most important.

For instance, the method update location will receive values for the attributes
modified and it will update the locations table using a SQL sentence pretty straight

forward as figure 4.3 depicts.

update a location

public int updatelocation(HashMap<String, String:> queryValues){

SQLiteDatabase database = this.getWritableDatabase();
ContentWalues values = new ContentValues();

values.put(”locCode™, queryValues.get({"locCode"));
values.put("locDesc”, queryValues.get("locDesc"));
values.put("locComments”, queryValues.get("locComments™));
values.put({"locTelephone™, gqueryValues.get("locTelephone™));
values.put("locLat"”, queryValues.get("locLat™)};
values.put({"loclong”, queryValues.get("locLong”}};

return database.update("locations", values,
"locCode” + ™ = 2", new String[] {queryValues.get("locCode™) }};

}

Fig. 4.13: Edit Location, Code

Method deleteLocation receives location code as a parameter. That location is

deleted from table locations using the method deleteLocation from the DBmanager

class. See Figure 4.14.

40

public woid deletelLocation(String _id){
SQLiteDatabase database = this.getWritableDatabase();
String deleteQuery = "DELETE FROM locations WHERE locCode =
database.execSQL(deleteQuery);

¥

(Rl W

+ _id + =

Fig. 4.14: Deleting a Location

Another functionality from the DBmanager class is the getLocationlnfoMethod.
This method receives as a parameter the location code. It uses a hashmap that will

be populated with a query for that specific location. See Figure 4.15.

get a specific location info

public HashMap<String, String:> getlocationInfo(String id){

HashMap<5tring, String> locationMap = new HashMap<String, String:();
SQLiteDatabase database = this.getReadableDatabase();

Sstring selectQuery = “SELECT * FROM locations WHERE locCode ="" + id + "'";
Cursor cursor = database.rawQuery(selectQuery, null);

if{cursor.moveToFirst()){

do{
locationMap.put(” Id", cursor.getString(e));
locationMap.put(”locCode”, cursor.getString(l));
locationMap.put(“locDesc”, cursor.getString(2));
locationMap.put("loclat™, cursor.getString(3));
locationMap.put(“loclong”, cursor.getString(4));
locationMap.put(”locTelephone”, cursor.getString(5));
locationMap.put(”locComments”, cursor.getString(6));

} while(cursor.moveToNext());

return locationMap;

}

Fig. 4.15: Get Info For a Location

41

The last method to mention from DBmanager class is the insertLocation method.
It receives as a parameter a string with the values for the new location. These
individual values are recovered from the string and then used in an insert query

command. See Figure 4.16.

public wvoid insertlocation(HashMap<String, String: queryValues){

SQLiteDatabase database = this.getWritableDatabase();
ContentValues values = new ContentValues();
values.put("locCode™, queryValues.get("locCode"));
values.put("locDesc”, queryValues.get({"locDesc")});
values.put("locTelephone™, queryValues.get("locTelephone™));
values.put("locComments"”, queryValues.get("locComments"));
values.put("locLat", queryValues.get("locLat"));
values.put({"loclong”, queryValues.get("loclong"));

database.insert{"locations™, null, values);
database.close();

Fig. 4.16: Creating a New Location.

4.3 DisplayTrackingMap Class

This class handles a street level map with the user’s location, destination, and walking
GPS. It is not possible to instantiate a Google Map object directly into the app. The
way to do it is by adding a MapFragment and then instantiating the FragmentActivity
object, which is part of the Google Play Services library I mentioned before. Figure
4.17 shows the UML instantiation|[1]:

42

{ instantiates }
<<DisplayTrackingMap=> | ... oo Dhaaia _[:} << FragmentActivity > >

Fig. 4.17: UML Instantiation of Fragment Activity

There’s more than one way to instantiate a map fragment in an Android app. It
could be done directly in the activity or in the activity’s layout[2]. The approach I

used is the second one. The following code shows the fragment definition in the Map

layout. See Figure 4.18.

43

<Framelayout
android: layout_width="mgtch_parent”
android:layout height="motch parent":
<Linearlayout
android: layout width="wrap content”
android: layout height="wrap comtent"
android:layout gravity="hottom[right"
android: background="#Das8"
android:orientation="vertical”
android:padding="5dp">
<fragment
android: id="+1id map"
android: layout width="motch parent"
android:layout height="match parent”
class="com.google.android. gms. maps . SupporttopFragment”
</LinearlLayout:

<Button
android: id="jg+id/buttonl”
android: layout width="wrap content"”
android: layout height="wrap content”
android:background="@color/grey"”
android:minHeight="52dip"
android:minWidth="68dip"
android:onClick="Showlocation”
android: text="@string/info_button"”
android: textColor="@color/Light blue"
android:textColorLink="@color/Light_ blue”
android:textAllCaps="folse"
android: textSize="@gdimen/textTitlesize"” />

</Framelayout?>

#

Fig. 4.18: Fragment Definition in Map Layout

This is instantiated in DisplayTrackingMap class. See Figure 4.19.

44

public class DisplayTrackingMap extends Fragmentfctivity implements
OnMarkerClickListener,

ConnectionCallbacks,

OnConnectionFailedListener,
LocationListener,
OnInfoWindowClickListener

{
public double ilatitude; // initial user's coordinates
public double ilongitude;
public Location lastloc = null;
public boolean flagorigin = false;
public LatLng ORIGIN;
public Latlng DESTINY;
private Marker mlestiny;
private Marker mlrigin;
private Marker mLastSelectedMarker; // keeps track of last selected marker
public Location mlastLocation;
public Location mCurrentlocation;
public double targetlat; // target coordinates
public double targetlong;
ProgressDialog dialog; // "Waiting for location™ window
private GoogleMap mMap;

private GoogleApiClient mOcoglefApiClient;

Fig. 4.19: Map Fragment Instantiation in DisplayTrackingMap

It also inherits methods:

e OnMarkerClickListener,

ConnectionCallbacks,

OnConnectionFailedListener,

LocationListener,

OnlnfoWindowClickListener

By using a map fragment Google maps will display the map, it will connect the
activity to the API services, and it will manage the basic controls of the map such as
zooming.

Activity DisplayTrackingMap on its create method defines the connection between
the activity and its layout. It gets target latitude and longitude from table locations.
It will set markers on user and target locations. Besides, it will turn off the control

zoom and it will set up the camera[2]. See Figure 4.20.

45

@override
public wvoid onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.map);
if (mLastSelectedMarker != null && mlastSelectedMarker.isInfoWindowShown()) {
// Refresh the info window when the info window's content has changed.
mLastSelectedMarker. showInfoWindow();

b

targetlat = getlat(};
targetlong = getLong();
setUpMapIfieeded();

Set up map :

private wvoid setUpMap() {
ORIGIN = new LatLng(ilatitude, ilongitude);
DESTINY = new Latlng(targetlat, targetlong);
// Hide the zoom controls as the button panel will cover it.
mMap.getUiSettings().setZoomControlsEnabled(false);

if (flagOrigin) addMarkersToMap();

J// customizing the info window.
mMap. setInfolindowAdapter(new CustomInfolindowAdapter());
// Set listeners for marker events
mMap.setOnMarkerClickListener(this); // to display info window
mMap.setOnInfolindowClickListener(this); // to display extra infe
// Cannot zoom to bounds until the map has a size.
final view mapView = getSupportFragmentManager().findFragmentById(R.id.map).getView();
if (mapView.getViewTreeObserver().isAlive()) {
mapView.getViewTreeObserver().addOnGloballayoutListener(new OnGloballayoutiistener() {
@0verride
public void onGloballLayout() {
LatLngBounds bounds = new LatLngBounds.Builder() // includes user position on the map (you are here)
.include (DESTINY)

.include(ORIGIN)
Jbuild();
mMap.movelamera (CameraUpdateFactory. newlatingBounds (bounds, 58));
}
P

Y} // end setUpMap

Fig. 4.20: Initializing the Map

Once the map is settled, it is necessary to track the user’s movements across the
map. For this is necessary to import the library for the function callbacks. See Figure

4.21.

46

import com.google.android.gms.common.ConnectionResult;

import com.google.android.gms.common.api.GoogleApiClient;

import com.google.android.gms.common.api.GoogleApiClient.ConnectionCallbacks;
import com.google.android.gms.common.api.GooglefpiClient.OnConnectionFailedListener;

Ll L
ol R

un

Fig. 4.21: Importing ConnectionCallbacks

This library allows callbacks. A function to be called when the user connects or
disconnects. In WiN GPS I implemented method onConnected to make requests
about the user’s location changes. First I define the REQUEST parameters that will
be used by the callback[3]|. See Figure 4.22.

f Settings for the CALL BACK

private static final LocationRequest REQUEST = LocationRequest.create()
.setInterval(3e68) // rate to receive location updates from SAT
.setFastestInterval(3ee8) // 3 seconds (speed app handles location updates)
.setPriority(LocationRequest.PRIORITY HIGH ACCURACY); // for an accurate location

Fig. 4.22: Request: Parameters for Callback

This request is used on method OnConnected. The requestLocationUpdates relates
the callback with method onLocationChanged, which will be executed every time the

user’s location has changed[8]. See Figure 4.23.

@override

public void onConnected(Bundle connectionHint) {
LocationServices. Fusedlocotiondpi.requestlocationUpdates(
maoogleApiClient, REQUEST, this); // LocationListener

z

Fig. 4.23: OnConnected Definition

47

Method onLocationChanged will update continually the user’s location. It will
also calculate the distance between the current location of user and the selected
destination. Method showMyLocation draws the user’s path one line at a time. Figure

4.24 depicts that.

48

when user moves
this will update the map

public void onLocationChanged(Location location) {
showtyLocation();
mCurrentlocation = location;
updateCurrentLocation();

}
private void updateCurrentLocation() {

double mLatitude = mCurrentLocation.getLatitude();
double mLongitude = mCurrentlocaticn.getLongitude();

if (mCurrentLocation != null) {
// calculate the distance between current location and target
float[] results = new float[3];
Location.distanceBetween(mLatitude, mlLongitude, targetlat, targetlong, results);
BigDecimal bd = new BigDecimal(results[@]};// results in meters
BigDecimal rounded = bd.setScale(2, RoundingMode.HALF UP);
rounded.doubleValue();
String msg = "Distance curr target ==3»";
Toast.makeText(getApplicationContext(), msg + results[@] + " Mts", Toast.LENGTH LONG).show();

else {
String msgl = "last lccation null *;
Toast.makeText(getApplicationContext(), msgl, Toast.LENGTH LONG).show();
}
}

this w draw user path
path be updated according to
REQUEST

public void showMyLeocation() {
if (mGoogleApiClient != null &% mGoogleApiClient.isConnected()) {
'/ current location to draw a line to
if (lastloc != null} { // first time it will be null
map.addPolyline(new PolylineOptions()
.add({new LatLng(lastlLoc.getlatitude(), lastloc.getlongitude()), new LatLng(mCurrentLocation.getlatitude(
Swidth(5)
.color(Color.RED));
h
/f{ this condition will be met only the first time
if (lastloc == null && !flagOrigin) {
dialog.dismiss(}; // dismiss "Waiting for location...™ message
string msg = "Connection acquired, “r\n ‘“r\n Please hit the zoom button
Toast.makeText(getApplicationContext(), msg, Toast.LENGTH LONG).show();
Location mCurrentLocation = LocationServices.Fusedlocationdpi.getlastLocation(mGoogleApiClient);
ilatitude = mCurrentLocation.getlatitude();
ilongitude = mCurrentlocation.getlongitude();
ORIGIN = new LatLng(ilatitude, ilongitude);
flagOrigin = true;
addMarkersToMap();

:

lastloc = mCurrentlocation;

"

h
h

Fig. 4.24: Updating User’s Movement

49

This is a recursive process that will take while the user walks to the selected
location.

4.4 New Location Class

NewLocation class is to create a new location in table locations. It uses a layout to

input data. Eclipse allows to manage layouts graphically. This is a print screen of
the New Location layout. See Figure 4.25.

[J] NewLocation java
'?.g:p Palette

| new_location.xml 2

< || @ v| () Mexus One v| v| ¥r Holo = | (@ newlocation v| ® v| Tl

EE 8

| 2 Form Widgets

RAAQRQ|Qa

;[:ITextFiellls

Fig. 4.25: New Location Graphic Layout in Eclipse

Internally this layout is constructed by one row tables of text views and edit fields
as follows. See Figure 4.26.

20

<TableRow

android:id="{f+id/tableRow3"

android: layout_width="match parent”

android:layout_height="wragp content” >

<TextView
android:id="@+id/LocDescVien"
android:layout_width="wrap content”
android:layout_height="wrap content”
android:layout_weight="1"
android:textfippearance="2android: attr/textAppearanceMedium™
android:text="@string/loc_desc”
'd

<EditText
android:id="@+1id/locDesc”
android:layout_width="wrap content"
android:layout_height="wrap content”
android:layout_weight="1"
android:ems="18"
android:inputType="textCaphords" >

</EditText>
</TableRow>

<TableRow

Fig. 4.26: New Location Layout Code

This is how a Java Android class relates to its layout, in this case NewLocation to

layout new-location. See Figure 4.27.

Pt *
iverride

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.new Llocation);

Fig. 4.27: New Location Declaring Layout
The user inputs the location information and press the Save button, the method

addNewLocation calls the corresponding method on the DBmanager class that will

insert a new location in table. See Figure 4.28.

o1

/ ON CLICK for button "Sawve”

public void addNewLocation(View wiew) {
HashMap<String, String: gqueryValuesMap = new HashMap<String, String:();
queryValuesMap.put(“locCode”, locCode.getText().toString());
queryValuesMap.put("locDesc”, locDesc.getText().toString());
queryValuesMap.put(”locTelephone”, locTelephone.getText().toString());
queryValuesMap.put("locComments”, locComments.getText().toString());
queryValuesMap.put(”locLat"”, loclLat.getText().toString());
queryValuesMap.put("locleng”, loclong.getText().toString());

final DBmanager myDbManager = new DBmanager(NewlLocation.this);

try {
myDbManager.insertLocation({queryValuesMap);

¥
catch(SQLException sgle){
throw sqle;

this.callMainActivity(view);
finish();

Fig. 4.28: Saving a New Location on Locations Table

In case the user don’t remember latitude and longitude of a location, then class
Get Coordinates will solve this. If everything is correct, latitude and longitude will

be retrieved. The following code shows that portion of the program. See Figure 4.29.
[

ff ON CLICK for "Get Coordinates™ button

Iy

// displays a map with user's current location

public void getCoordinates(View wiew) {

Intent theIntent = new Intent(NewLocation.this, GetCoordinatesFromMap.class);
startActivityForResult(theIntent, 2);

}

'/ If everything OK, it receives latitude and longitude selected on MapForCoordinates
@wverride
protected wvoid onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult (requestCode, resultCode, data);
if{resultCode == RESULT_OK) {
String locLatS = data.getExtras().getString("locLat”);
String loclLongS = data.getExtras().getString("locleng”);
loclat.setText(locLatsS);
locLong.setText(locLongs);

1
}

Fig. 4.29: Looking for Coordinates

That wraps up New Location class.

52

4.5 Edit Location Class

EditLocation class is to modify a specific location’s data. It receives location ID as a
parameter and looks up its information into table locations; then it uses a hashmap

as a parameter for class DBmanager to get the location info. See Figure 4.30.

public woid onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setfontentView(R.layout.edit Llocation);
final DBmanager myDbManager = new DBmanager(EditlLocation.this); // Copy/create DB
locCode = (EditText) findViewById(R.id.locCode);
locDesc (EditText) findViewById(R.id.locDesc);
locTelephone = (EditText) findViewById(R.id.locTelephone);
locComments = (EditText) findViewById(R.id.locComments);
)
)

loclLat = (EditText) findViewById(R.id.loclat);
locLeng = (EditText) findWiewById(R.id.loclong);
Intent i = getIntent();

String _id = i.getStringExtraf"locCode”};

try {

HashMap<String, String» locationInfe = myDbManager.getlLocationInfo(_id);

// Loading location info

if(locationInfo.size() != 8){
locCode.setText(locationInfo.get("locCode™));
locDesc.setText{locationInfo.get("locDesc"}};
loclLat.setText(locationInfo.get("locLat™));
loclong.setText(locationInfo.get("loclong™));
locComments.setText(locationInfo.get("locComments™));
locTelephone.setText{locationInfo.get("locTelephone™));

Fig. 4.30: Look Up for Location Information

Any modified information will be saved by pressing the button ”Save”. All location

information is handled to DBmanager; it will update location info. See Figure 4.31.

93

public void editlocation(View view){

HashMap<String, String» queryValuesMap = new HashMap<String, String>();
locCode = (EditText) findviewById(R.id.locCode);

locDesc = (EditText) findViewById(R.id.locDesc);

locTelephone = (EditText) findViewById(R.id.locTelephone);

locComments = (EditText) findViewById(R.id.LlocComments});

loclat = (EditText) findViewById(R.id.loclat};

locLlong = (EditText) findvViewById(R.id.loclong);

queryValuesMap.put(”"locCode”, locCode.getText().toString()};
queryValuesMap.put("locDesc”, locDesc.getText().toString()};
queryValuesMap.put(“locLat”, loclat.getText()}.toString());
queryvValuesMap.put(“loclong”, locLong.getText().toString());
queryvValuesMap.put(“locTelephone”, locTelephone.getText().toString());

queryValuesMap.put(”locComments”, locComments.getText().toString())};

final DBmanager myDbManager = new DBmanager(Editlocation.this}); // update location

try {
myDbManager.updatelocation(queryValuesMap);

¥

catch(SQLException sqle){
throw sqle;

¥

this.callMainActivity(view);
finish();

Fig. 4.31: Update a Location Information

It is also possible to eliminate a location. If the user decides to do this, button

"Delete” should be pressed. The following code will delete selected location. See

Figure 4.32.

o4

'/ ON CLICK “Delste™ button
public wvoid removelocation(View view){
Intent 1 = getIntent();
String id = i.getStringExtra("locCode™);
final DBmanager myDbManager = new DBmanager(EditlLocation.this);
ey 4
myDbManager.deletelocation(id);
¥
catch(SQLException sqle){
throw sqle;

this.callMainActivity(view);
finish();

Fig. 4.32: Deleting a Location

That is in general the structure of the Edit Location class.

4.6 Get Coordinates Class

Get Coordinates class is used by the NewLocation and the EditLocation classes.

Attributes Latitude and Longitude are decimal numbers with several digits, therefore

it might be quite possible that user needs some help with them. Both, edit and insert

location layouts, have a Get Coordinates button. By pressing this button a map will

be displayed. From this map, the user can select a location by making a long click on

the map. Coordinates latitude and longitude will be returned to the caller routine.

This class has a similar structure than the DisplayTrackingMap class. It defines a

fragment that will hold a map. A request for the callback is defined as well. The

values for this request might be different though, since it’s not necessary to check

a location status changed frequently. It’s just necessary to detect a long click and

transform it into latitude and longitude values. These values will be returned them

to the caller routine. See Figure 4.33.

95

/! Settings for the call back

private static final LocationRequest REQUEST = LocationRequest.create()
.setInterval (2608) // user position updated every 2 seconds to view
.setFastestInterval(le) // 1ems = eBfps
.setPriority(LocationRequest.PRIORITY HIGH ACCURACY); // for an accurate location

Fig. 4.33: Defining Callback Parameters

The parameters request for the callback function. Intervals to determine the fre-
quency of time to check for any possible variation on the map, such as a long click
over the map. A high priority request means that the most precise tool for locating a

coordinate must be used. This accuracy is controlled by Google Maps[2]. See Figure

4.34.

'/ to confirm that the map is not instantiated yet

o

if (mMap == null) { /
m{ap = ((SupportMapFragment) getSupportFragmentManager().findFragmentById(R.id.map))

.getMap();

// notify the user while waiting for location
// this is necessary only for slow signal phones
dialog = new ProgressDialog(this);
dialog.setMessage("Waiting for location..."};
dialog.show();
if (mMap !'= null) { // Check if the map was successfully obtained.
mMap.setMylLocationEnabled(false);
setUpGoogleApiClientIfNeeded();
m@oogleApiClient.connect();
showMyLocation();
setUpMap();

Fig. 4.34: Connecting Map Layout to Activity (Class)

This is how the class relates to its layout in order to use a fragment that will hold

the map, and it connects to Google-maps[2]. See Figure 4.35.

o6

@override

public void onMapLongClick(LatLng point) {
mbestiny = mMap.addMarker({new MarkerOptions()
.position(point)
.snippet("Destination selected")
.icon(BitmapDescriptorFactory.fromResource(R.drawable.destiny)});
loclat = Double.toString(point.latitude);
loclong = Double.toString(point.longitude};

}

Fig. 4.35: On Long Click Select Lat. and Long

When a long click over the map is detected a red arrow will be drawn on the map
to indicate that a location has been detected. A Google method: addMarker is used
for that. See Figure 4.36.

o ;
@override

public void onConnected(Bundle connectionHint) {
LocationServices. Fusedlocationdpi.requestlocationUpdates(
mooogleApiClient, REQUEST, this); // LocationListener

¥

Fig. 4.36: onConnected Method requestLocationUpdate

Method requestLocationUpdate is to connect the callback function with the on-

LocationChanged method. See Figure 4.37.

o7

Returns latitude and longitude
for the destination

public void sawvelocation(View view){
Intent intent = new Intent();
intent.putExtra("locLat”, loclat});
intent.putExtra("loclLong”, loclong);
setResult(RESULT 0K, intent);
finish()};

Fig. 4.37: Return Latitude and Longitude

4.7 Show Location Info Class

The locationInfo class is a window with an specific location information that can be
reached from classes newLocation and editLocation. Figure 4.38 shows its graphic

layout:

o8

FESCTIRLG

TElepharne

 ermmer]

Fig. 4.38: Location Info Layout

Class ShowLocationInfo define the layout used to display the info. See Figure 4.39.

29

FEE £ E b b e T

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R. layout.info_location);

locDesc = (EditText) fTindViewById(R.id.locDesc);
locTelephone = (EditText) findViewById(R.id.locTelephone);
locComment = (EditText) findViewById(R.id.locComment);

Intent i = getIntent();
locDesc.setText(i.getStringExtra(”lochesc™));
locTelephone. setText(i.getStringExtra("locTelephone™));
locComment.setText(i.getStringExtra (" locComments™)};

Fig. 4.39: Displaying Location Information

When the user is ready to leave the location information window the go back

button control will return control to the last active screen seen. See Figure 4.40.

60

@verride
public boolean onKeyDown(int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE BACK && event.getRepeatCount() == 8) {
Intent intent = new Intent();
setResult (RESULT 0K, intent); |
finish(};
h

return super.onKeyDown(keyCode, event);

}

public void callMainActivity(View view) {
Intent objIntent = new Intent(getApplication(), DisplayTrackingMap.class);
startActivity(objIntent);

¥
h

Fig. 4.40: Returning to Caller

4.8 Changing Font for the Entire Application

This should not be treated as a class itself, however I believe it is important to
be mentioned because of the particular process to change the font for an Android
application. This is the way to do it under Android development[2]. First, import

the font into the assets folder of the project, Lato-Light.ttf in this case. See Figure

4.41.
4 G@ assets
csusbDB
csusbDB0519
csusbDBold
v | Lato-Light.ttf

Fig. 4.41: Font Imported Into Project Assets

61

Then the font must be defined in the activity you need to use it. See Figure 4.42.

setContentView(R.layout.activity main);

/ Change the default font for buttonl
Button buttonl = (Button)findViewById(R.id.buttonl); 2y
buttonl.setTypeface(Typeface. createFromisset(getassets(), "Bl Light.ttf"));

Fig. 4.42: Font Defined to be Used in a Button

That wraps up the app software architecture.

62

5. CONCLUSION AND FUTURE DIRECTION

5.1 Conclusion

It has been very interesting to learn about Android development. I read the book
”Programming Android” by Zigurd Mednieks, and Laird Dornin[3]. I also took the on
line class: ”Programming Mobile Services for Android Handheld Systems” offered by
The University of Maryland USA in order to get acquainted with the environment of
Android, and specifically with Google maps|8]. In the end, one of the deliverables is
an app, which is developed and it’s ready to be deployed. Another deliverable is this
document, which explains the most relevant details of this specific development. The
application is fully functional on Android mobile devices and it can be implemented
if CSUSB chooses to. On a personal level I acquired some knowledge on a very
marketable field as Android development is. It’s a good starting point before entering

in the development of more challenging applications.

5.2 Future Direction

Android development and Google maps offer a lot of functionality that could be
additionally implemented on the application. The database can be manipulated as
well according to new requirements if needed. Of course, it can also be used as it is
right now.

Besides, it is also possible to standardize the application so it could be used in

places other than CSUSB. I, for instance, tested it on the community I live in.

63

REFERENCES

[1] B. Bernd and D. Allen. Object-Oriented Software Engineering. NJ Pearson., 2010.

2] Stack Overflow for Android Developers Web Page. (undated). [Online]. Viewed
2015 January 5. Available: http://stackoverflow.com/.

[3] D Laird M. Zigurd and M.Nakamura. Programming Android. O Reilly., 2011.

[4] Android Developers API Guides Web Page. (undated). [Online]. Viewed 2015

February. Available: http://developer.android.com/guide/index.html.

[5] Blue Stacks Home Page. (undated). [Online]. Viewed 2015 February. Available:

http://www.bluestacks.com/.

[6] Google Maps Api Developers Home Page. (undated). [Online]. Viewed 2015 Febru-

ary. Available: https://developers.google.com/maps/android/.

[7] Map Quest Web Page. (undated). [Online]. Viewed 2015 February. Available:

http://https://developer.mapquest.com/.

[8] Online Course by the University of Maryland Programming Mobile Services for
Android Handheld Systems: Concurrency. (undated). [Online]. Viewed 2015

February. Available: https://www.coursera.org/course/posaconcurrency.

[9] Yahoo Boss Geo Services web Page. (undated). [Online]. Viewed 2015 February.

Available: https://developer.yahoo.com/boss/geo/.

64

	CALIFORNIA STATE UNIVERSITY SAN BERNARDINO WiN GPS
	Recommended Citation

	tmp.1448526031.pdf.LnLrs

