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Abstract

Many topics that mathematicians study at times seem so unrelated such as

Geometry and Abstract Algebra. These two branches of math would seem unrelated

at first glance. I will try to bridge Geometry and Abstract Algebra just a bit with

the following topics. We can be sure that after we construct our basic parallel and

perpendicular lines, bisected angles, regular polygons, and other basic geometric figures,

we are actually constructing what in geometry is simply stated and accepted, because

it will be proven using abstract algebra. Also we will look at many classic problems in

Geometry that are not possible with only straightedge and compass but need a marked

ruler.
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Chapter 1

Introduction

Around Plato’s period, geometric constructions were what we would consider

now tedious and lengthy. He did not use a compass such as the one we use in modern

times. His collapsible compass, did just that with every use, collapsed. Throughout my

research I decided to focus on the geometric constructions with non-collapsible compasses

because they do the exact constructions without the many steps necessary with collapsi-

ble compasses. Since my focus is to show how we can shorten our proofs of geometric

constructions by using Abstract Algebra instead of actually constructing, we will assume

that when I use a compass it is non-collapsible. Euclid did extensive constructions of the

triangle, square, and pentagon. In 1800, Erchinger constructed a regular heptadecagon

(17-gon), and in 1832 the construction of a regular 257-gon was done by Richelot and

Schwendenwein. Other geometers have constructed regular polygons with even more

sides. Although many Greek mathematicians spent years on the construction of regular

polygons with many sides, Gauss was the first to prove mathematically which regular

polygons were actually constructible. I will show some “simple” constructions and later

relate them to abstract algebra.
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Chapter 2

Basic Constructions

Let us now begin with some examples of geometric constructions that are very

basic. We are only allowed to use straightedge and compass.

Example 1. Midpoint Construction Given AB, we can construct its midpoint C.

Figure 2.1: Construction of a Midpoint

First construct AB. Now construct a circle with center A and radius AB and circle with

center B with radius AB. The two circles will intersect at two points, label them Q and

P . Draw QP with straight edge. QP ∩ AB = C which is the midpoint of AB.

Proof. 4APQ ∼= 4BPQ since AP = PB = BQ = AQ because they are all radii in

congruent circles. ∠APQ ∼= ∠BPQ because they are corresponding parts of congruent

triangles ⇒ 4APC ∼= 4BPC by the side-angle-side postulate ⇒ AC = CB ⇒ C is the

midpoint of AB.
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Example 2. Bisecting an Angle Draw ∠A. Construct a circle with center A that

Figure 2.2: Construction of an Angle Bisector

intersects both sides of ∠A. Label the intersections X and Y . Construct circle with center

X radius AX. Construct circle with center Y and radius AY . Mark the intersection of

circle X and circle Y , point B. Draw AB which is the bisector of ∠XAY .

Proof. AX=XB=BY=AY are all congruent because they are radii of congruent circles.

⇒ 4AXB ∼= 4AY B ⇒ ∠XAB ∼= ∠Y AB ⇒ AB is the bisector of ∠XAY .

We can construct many other figures using a compass and straightedge. To construct the

figures there are basic steps that are defined as axiomatic basic constructions.

Definition 3. Basic operations in the plane used in straightedge and compass construc-

tions:

1. Draw a line through two given points.

2. Draw a circle with a given center and radius equal to the distance between two other

given points.

3. Mark the point of the intersection of two straight lines, a line and a circle, and two

circles.
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Every construction begins with given points, lines and circles and will be completed with

a sequence of the above steps.

Now we begin to relate the construction of real numbers to algebra so we begin by

constructing our unit measurement OX which has length 1. Although we are restricted

to those simple 5 constructions, as we combine them in finite steps we will show that we

are able to construct the rationals and also many of the irrational numbers. Also we can

construct many of the geometric figures we all know well. We can construct angles of

certain magnitudes and many regular polygons.

Definition 4. A real number α is constructible by straightedge and compass if a segment

of length | α | can be obtained starting with our unit segment by a straightedge and compass

construction.

Definition 5. A set X has closure under an operation if performance of that operation

on members of the set always produces a member of the same set; in this case we say the

set is closed under this operation.

Definition 6. A nonempty set F is a field if it has the following properties: If a, b, and

c ∈ F then

1. a+b ∈ F

2. a+b=b+a

3. (a+b)+c=a+(b+c)

4. There is an element 0 ∈ F such that a+0=a ∀ a ∈ F

5. There exist an element -a ∈ F such that a + (-a)=0

6. a·b ∈ F

7. a·b=b·a

8. (a·b)·c = a·(b·c)

9. a·(b+c) = a·b+a·c and (b+c)·a = b·a+c·a

10. There is a unit element 1 ∈ F such that a·1=1·a=a
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11. There exist a and b, b6=0,such that, a· 1
b=1

Let C be the set of constructible real numbers. We now show that C is closed

under the field operations of R. This helps us make the connection between geometric

constructions and Field Theory.

Proposition 7. C is closed under addition and subtraction. If γ and δ are constructible

real numbers with 0 ≤ δ ≤ γ, then so are γ+δ and γ-δ.

Proof. We construct a circle with radius γ and label a radius AB. Then construct a circle

with center B and radius δ. The intersection of circle B and circle A give us the desired

lengths AD=γ+δ and AC=γ-δ see Figure 3.C is closed under addition and subtraction.

Figure 2.3: Addition and Subtraction Closure

Corollary 7.1. Let C be the set of constructible real numbers. Then Z ⊆ C.

Proof. Since 1 ∈ C then, Z ∈ C therefore, Z ⊆ C.

Proposition 8. C is closed under multiplication and division.

If α and β are constructible real numbers, then so is α · β and α
β .

Proof. Construct a segment PC and a line perpendicular to PC at P. Construct a circle

with center P and radius α that intersects the perpendicular line at D. Construct another

circle with center P and radius δ > α that intersects the perpendicular line at Z. Draw
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Figure 2.4: Multiplication Closure

DC. Construct a line parallel to DC through point Z and label the intersection with PC

, point H. By the Angle Angle postulate of Similar Triangles we have that 4PDC is

similar to 4PZH. Corresponding sides of similar triangles are proportional therefore DP
ZP

= PC
PH . Let PC = 1, PH=β ⇒ α

δ = 1
β . So we have δ = α · β. This proves that the product

of two constructible numbers is constructible. Closure of division is similarly proven.

Definition 9. Let F be a field. The polynomial ring, F[X], in x over the field F is defined

as the set of expressions, called polynomials in x, of the form

p = p0 + p1x + p2 x
2 + · · · + pm−1 x

m−1 + pm xm, where p0, p1,, pm, the

coefficients of p, are elements of F .

Definition 10. Let F be a field, Let F (α) = {p(α) | p(x) ∈ F [x]}. If α /∈ F , then F is a

proper subset of F (α).

Proposition 11. The set C of constructible real numbers is a field.

Proof. Let C be the set of constructible numbers and let α, β, λ ∈ C.

1. Previously we showed that if α and β ∈ C, then α +β,α-β, also α · β, and α
β , β

6=0, ∈ C.

2. (α+β)+λ=α+(β+λ).

3. 0 ∈ C, α+0=α ∀ α ∈ C.
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4. -α ∈ C, α + (-α)=0.

5. (α · β)· λ = α ·(β · λ).

6. 1 ∈ C such that α ·1=1· α=α.

7. There exist a and b, b6=0,such that, a· 1
b=1 .

Therefore C is a field.

Figure 2.5: Square Root Construction

Proposition 12. Let α be a constructible real number, α ≥ 0, the
√
α is constructible.

Proof. Construct AB = AP + PB, let AP =α and PB = 1. Construct circle X with

diameter AB. Construct CP ⊥ AB with C on circle X.

Let CP = γ ⇒ γ is constructible. 4APC is similar to 4CPB ⇒ PC
PB = PA

PC ⇒ γ2 = α

⇒ γ =
√
α ⇒

√
α is constructible.

2.1 Examples of Constructible Real Numbers

The set of natural numbers are easily shown to be constructible numbers with

our unit segment but the following examples are not so obvious. Properties of C help us

show that the following numbers are indeed constructible.
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Example 13. Fourth Root of Three

Construct circle P with diameter AB=4.

Construct the perpendicular bisector to the radius AP .

Label the midpoint M . Label the intersection of circle P and the perpendicular bisector of

the radius, point C.

We know that any triangle inscribed in a semi-circle is a right triangle therefore 4ABC
is a right triangle with CM an altitude from point C. This makes CM the geometric

mean between AM and MB. The radius of Circle P is 2 therefore AM=1 and BM=3.

Since CM is the geometric mean between 1 and 3, then CM =
√

3. Now we construct

segment ST=1+
√

3.

We construct circle Q with diameter CM=ST=1+
√

3 . Draw point R on radius SQ so

that SR=1 which leaves RT=CM=
√

3. Draw the perpendicular line through R to ST and

we have the same properties as the first right triangle inscribed in circle P.⇒ The altitude

from the right angle is the geometric mean in the right triangle of circle Q and therefore

is the 4
√

3.

Generalizing this construction above we can repeat the process and construct

any root of the form 2n.

Example 14. Is
√

3 + 4
√

5 constructible?

The 4
√

5 is constructible by repeating the process of the square root twice. This makes 3

+ 4
√

5 the sum of constructible numbers therefore constructible. The square root of any

constructible number is constructible therefore
√

3 + 4
√

5 is constructible.

Example 15. Are 3 -
2
8
√

5
and

3

1 + 8
√

5
constructible?

They are both constructible because they are sums, differences, and quotients of con-

structible numbers which are all closed operations under C.

Example 16. Is (
√

2+3
√

3) constructible?

Clearly we can construct the
√

2 and 3
√

3 and the sum of constructible numbers are

constructible.

2.2 Constructible Angles

Trigonometric Identities are very useful in relating our geometric constructions

to algebra. The following identities are true for every angle α, β:
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Pythagorean Identity

sin2 α+cos2 α=1

Sum of Angles Identity

sin(α± β)=sinα cosβ ± sinβ cosα

cos(α± β)=cosα cosβ ∓ sinα sinβ

Double Angle Identities

cos 2α =cos2 α-sin2 α

sin 2α =2sinα cosα

Half Angle Identity

cos(α2 )=
√

1+cosα
2

sin(α2 )=
√

1−cosα
2

Example 17. For any angle φ, the real number cosφ is constructible if and only if the

real number sinφ is constructible.

Proof. (⇒) Let φ be any angle and the cosφ be a constructible real number.

By the Trigonometric Pythagorean Identity:

sin2 φ + cos2 φ=1

sin2 φ=1-cos2 φ

sinφ=
√

1− cos2 φ.

As previously mentioned
√

1− cos2 φ is a constructible number therefore sinφ is con-

structible.

(⇐) Similarly using the same identity and solving for cosφ, we get that

cosφ=
√

1− sin2 φ is a constructible number.

Example 18. As we constructed the midpoint of a segment in a previous example(1), we

can also construct an equilateral triangle with the radii of our congruent circles. 4PAB
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is equilateral therefore we can construct an angle of magnitude 60◦.

Also, we can construct a right angle with the construction of the perpendicular lines.

Example 19. Since we constructed both 60◦ and 90◦ we can bisect these angles like in

example 2 and construct 30◦ and 45◦.
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Chapter 3

Algebraic Description of the Field

of Constructible Real Numbers C

We will describe our field C of constructible real numbers by using some field

theory.

Choosing our origin O =(0, 0) and our unit segment point X = (1, 0) on the x− axis we

have the following:

Definition 20. Square Root Tower

Let F be a subfield of R. Then a square root tower over F is a sequence of

fields K0,K1, ... ,Kn such that F = K0 ⊆ K1 ⊆ ... ⊆ Kn ⊆ R and Ki+1 = Ki(
√
ρ) for

some ρ ∈ Ki with
√
ρ /∈ Ki ∀ j satisfying 1 ≤ j ≤ i. Kn is the top of the tower.

Definition 21. The Polynomial Ring Extension

For every ring R, the polynomial ring R[x]is a ring extension of R. If S is a ring extension

of R, and a is an element in S, the set R[a] equals all f(a) such that f(x) is in R[x], is

the smallest subring of S containing R and a, and is a ring extension of R.

Proposition 22. Let F be a subfield of R and let f(x) = x2 + ax+b ∈ F[x] be a quadratic

polynomial with coefficients in F. If f(x) has a zero in R, then both zeros α1 and α2 belong

to R and either α1, α2 ∈ F or α1, α2 ∈ F (
√
γ) ⊆ R.

Proof. Using the quadratic formula to find the zeros of f(x), α1=
−a+

√
a2−4b
2 and α2=

−a−
√
a2−4b
2

Let γ =a2-4b ≥ 0 then α1=
−a+√γ

2 and α2=
−a−√γ

2 are real and belong to F [
√
γ].
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Theorem 23. The Rational Root Theorem states a constraint on rational solutions (or

roots) of a polynomial equation.

If we have an equation an x
n+an−1 x

n−1+· · ·+a0 = 0 with integer coefficients then ra-

tional solution x, when written as a fraction x = p
q in lowest terms (i.e., the greatest

common divisor of p and q is 1), satisfies p is an integer factor of the constant term a0,

and q is an integer factor of the leading coefficient an.

Theorem 24. Let α be a real number. Then α is constructible if and only if α belongs

to the top of some square root tower over Q.

Proof. (⇐)Let C be the set of constructible real numbers. C is an extension field of Q.

C is a subfield of R because we have shown earlier that the constructible set C is closed

under addition, subtraction, multiplication, and division.

Let F = K0 ⊆ K1 ⊆ ... ⊆ Kn ⊆ R be a square root tower, and let α be in the top of the

square root tower. We show how α is constructible by inducting on the size of the tower.

If n = 0 then K0= Q ⇒ α is rational.

Since we proved earlier that addition, subtraction, multiplication, and division of integers

are constructible ⇒ Any rational number is constructible.

Now we assume Ki ⊆ C. By definition of a square root tower,

Ki+1 = Ki(
√
ρ) for some ρ ∈ Ki with

√
ρ /∈ Ki ∀ j satisfying 1 ≤ j ≤ i.

⇒ √ρ ∈ C since we can construct
√
ρ by proposition 12.

With
√
ρ ∈ C ⇒ Ki(

√
ρ) ∈ C because C is closed under addition and multiplication.

⇒ Kn is constructible by induction. ⇒ α is constructible.

(⇒) Let α ∈ C, beginning with O at the origin and marking X on the x− axis
to be our unit segment we can construct a line segment of length |α| from the origin. We

now need to show that α belongs to the top of the square root tower. In fact we can show

through any straight edge and compass construction starting from our unit segment there

is a square root tower over Q in which in the course of the construction the following

belong to the top of the tower:

1. The coordinate (x, y) of any point marked.

2. The coefficients m,b of the equation of any line drawn y = mx+ b.

3. The coefficients κ, λ,µ of the equation of any circle drawn x2 + κ x + y2 + λ y+µ

= 0.
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The basic operations we defined as our possible constructions drawn with a

compass and straight edge previously will be our 5 cases; that is:

1. Draw a line through 2 given points.

2. Draw a circle with center at a given point and radius equal to the distance between

2 other given points.

3. Mark the points of intersection of a straight line and a circle.

4. Mark the point of intersection of two straight lines.

5. Mark the intersection of 2 circles.

We begin with the trivial case (1) of two points with distance between them

equal to 1 unit, (our unit segment) so the origin (0,0) and (0,1) which belong to the top

of the trivial tower Q = K0 ⊆ R. Suppose we perform m operations and that all the

coordinates and coefficients above belong to the top of some tower K0 ⊆ K1 ⊆ · · · ⊆ Kn

and perform one more operation considering all basic operations we have the following

cases:

(Case 1)

The line through (x1,y1) and (x2,y2) which we already marked.

Therefore x1,y1, x2,y2 ∈ Kn.

If we pick any point (x,y) on our line we can compute the slope between (x,y), and the

two marked points (x1,y1) and (x2,y2) and the slopes must be equal. We get the following

equations:
y − y1
x− x1

=
y2 − y1
x2 − x1

⇒ (y-y1)(x2-x1)=(y2-y1)(x-x1)

y(x2-x1)-y1(x2-x1)= x(y2-y1)-x1(y2-y1)

y=
x(y2 − y1)
x2 − x1

-
x1(y2 − y1)

x2
-x1+

y1(x2 − x1)
x2 − x1

Since Kn is closed under addition, subtraction, multiplication, and division we rewrite

our equation as y = mx+ b

where m=
(y2 − y1)
x2 − x1

,

b=
x1(y2 − y1)
x2 − x1

+y1(x2−x1)
x2−x1 where b, m ∈ Kn.
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(Case 2)

For the next construction we want to draw a circle with center (x0,y0) that is already

marked and its radius is equal to the distance between two other points that are also

already marked (x1,y1) and (x2,y2). All xi, yi ∈ Kn , 0≤i≤2 (top of the tower).

Taking any point on the circle (x,y) we find the distance (length of radius) be-

tween the center and this point and it is equal to the distance between (x1,y1) and (x2,y2)

We now have the equation:

√
(x− x0)2 + (y − y0)2 =

√
(x2 − x1)2 + (y2 − y1)2

(x− x0)2+(y − y0)2=(x2 − x1)2+(y2 − y1)2

x2-2x0x+y2-2y0y+(x0)
2+(y0)

2-(x2 − x1)2-(y2 − y1)2=0.

We can set κ=−2x0 , λ=−2y0, and

µ=(x0)
2+(y0)

2-(x2 − x1)2-(y2 − y1)2

and now we have the equation of a circle

x2+κx+y2+λy+µ with all its coefficients in Kn.

(Case 3)

For this case where two lines intersect, we have lines y=m1x+b1and y=m2x+b2 that have

already been marked, m1, m2, b1, b2 ∈ Kn.

We now solve the system of equations:

y=m1x+b1

y=m2x+b2

and the solution to this system is the point of intersection.

Setting both equations equal to each other we have the following equation

m1x+b1=m2x+b2.

We now solve for x:

m1x-m2x=b2-b1
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x=
b2 − b1
m1 −m2

∈ Kn.

Substituting x into the original system we can solve for y and we have that

y=
b2 − b1
m1 −m2

· m1+b1 ∈ Kn.

(Case 4)

Now we look at the intersection between a circle and a line.

We begin with the line y = mx+ b and the circle x2+κx+y2+λy+µ=0 already marked.

To solve this system of equations

y = mx+ b

x2+κx+y2+λy+µ=0

we substitute y = mx+ b and get

x2+κx+(mx+ b)2+λ(mx+b)+µ=0

(1+m2)x2+(κ+2mb+λm)x+b2+λb+µ=0

using the quadratic formula we have

x=
−(κ+ 2mb+ λm)±

√
(κ+ 2mb+ λm)2 − 4(1 +m2)(b2 + λb+ µ)

2(1 +m2)

let ρ=(κ+ 2mb+ λm)2-4(1+m2)(b2+λb+µ)

and β=(κ+2mb+λ m)

and are contained in Kn,

then, x=-β ± √ρ.

We have the case where either the circle intersects at one point or two points.

Either way, x ∈ Kn(
√
ρ) and y = mx+ b ∈ Kn(

√
ρ).

So now Kn+1 becomes the new top of our square root tower, where Kn+1=Kn(
√
ρ).

(Case 5)

Finally for the case of two intersecting circles we have
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x2+κ1x+y2+λ1y+µ1=0

x2+κ2x+y2+λ2y+µ2=0

setting both equations equal to each other we get:

x2+κ1x+4y2+λ1y+µ1=x
2+κ24x+y2+λ2y+µ2

κ1x+λ1 y+µ1=κ2x+λ24y+µ2

(κ1-κ2)x+(λ1-λ2)y=µ2-µ1

y=
(κ1 − κ2)x
λ1 − λ2

+
µ2 − µ1
λ1 − λ2

Let γ=
κ1 − κ2
λ1 − λ2

and

δ=
µ2 − µ1
λ1 − λ2

y=γx+δ which reduces to the previous case.

The following definitions partnered with the previous theorem will help show

which regular polygons are constructible and which need more than a compass and

straightedge.

Definition 25. A number is said to be algebraic if it is a root of a finite , non-zero

polynomial in one variable with rational coefficients.

Definition 26. A number is said to be transcendental if it is not a root of a non-zero

polynomial equation with rational coefficients.

Corollary 26.1. Let α be a real number. If α is constructible, then [Q(α):Q] is a power

of 2.

Proof. Let α be a real constructible number. We know α ∈ Kn which is the top of a

square root tower and Ki+1=Ki(
√
α) for some ρ ∈ Ki.

⇒ [Ki+1: Ki]=2, [Kn:Q(α)][Q(α):Q]=[Kn:Q]=[Kn:Kn−1]· · · [K2:K1][K1:Q]=2n

⇒ [Q(α):Q]=2m for some m ≤ n
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Exercise 27. Is 3+ 6
√

5 constructible?

P (x)=x6-18x5+135x4-540x3+1215x2-1458x+724 is irreducible over Q by The Rational

Root Theorem because ±1, ±2, ±4,±181,±362,±724 are not zeros and are the only pos-

sible rational zeros of p(x). Let α=3+ 6
√

5. ⇒ α is a zero of p(x), [Q((3 + 6
√

5) : Q]=6,

not a power of 2 therefore α is not constructible by Corollary 25.1.

Corollary 27.1. Transcendental real numbers are not constructible.

Proof. If α is constructible then Q(α) is of finite degree over Q and hence algebraic over

Q, and is not transcendental.

3.1 Construction of Regular Polygons

Proposition 28. An angle of magnitude φ can be constructed with compass and straight-

edge if and only if sinφ and cosφ are constructible real numbers.

Proof. (⇒) Let sinφ and cosφ be constructible real numbers. Then there exist an angle

φ such that in a right triangle the ratio of the side opposite of φ and the hypotenuse is

equal to sinφ.

(⇐) Let ∠ABC=φ be constructible. Construct a perpendicular line from point

A to the side BC of ∠ABC, name the point of intersection D. AD, AB, and BD are all

constructible. ⇒ sinφ = AD
AB and cosφ = BD

AB which are both constructible.

Figure 3.1: Construction of Sine and Cosine
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Proposition 29. A regular n-gon for n≥3 is constructible using only compass and

straightedge if and only if cos 360
n is a constructible real number.

Proof. (⇒) In any regular polygon, the measure of one exterior angle is 360
n and the

interior angle of the regular polygon is supplementary to the exterior angle so its measure

is 180-360n . If these angles are constructible then so is cos(180 − 360
n ) = -cos 360

n by

Proposition 27.

(⇐) Starting with a unit segment OX, we draw a circle O with radius 1. Since

cos 360
n is constructible, then the angle of magnitude 360

n is constructible too. If an angle

of magnitude φ=360
n is constructible then such an angle ∠ PXQ can be constructed having

X as its vertex and the extension of OX as a side. Let XP intersect the unit circle at A.

Then XA is one side of the required n-gon. Repeat the process with OA in place of OX

to construct the next side and continue this process until the entire n-gon is constructed.

Below are more examples of constructible angles and the algebraic reasons of

their constructibility. Also with constructible angles we can use Algebra to show the

regular polygons that are constructible.

Example 30. Equilateral Triangle

We constructed an equilateral triangle ealier with compass and straightedge in figure 2.1

but we can also use the fact that cos60=1
2 . Since it is equal to a real constructible

number,12 , then 60 degrees is constructible and we can say a regular 3-gon, triangle can

be constructed by applying proposition 29.

Example 31. The sin90 = 1, so of course its constructible, therefore 90◦ is constructible

and a regular quadrilateral (Square) is constructible.

Next we use Algebra to prove the following polygons are not constructible.

Definition 32. An nth root of unity, where n is a positive integer, is a number z=cosα+isinα

satisfying the equation zn = 1.

As we transition from the geometric aspect of constructibility and focus more

on the Abstract Algebra, we need to relate degrees to radian measure.

Definition 33. One radian is a unit angle equal to an angle at the center of a circle

whose arc is equal in length to the radius.
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An angle can be measured in degrees as well as radians. When we measure an

angle with radian measure, we are actually measuring the distance traveled on the circle’s

circumference (the arc). So an angle θ measured in radians is the arc length divided by

the radius. A circle has 360◦ or 2πr
r radians which is simply 2π radians. Thus far, all of

the measures of angles have been in degrees but we need to use radian measure to discuss

the angles that are not constructible.

Proposition 34. (De Moivre’s Formula)

(cosx+ i sinx)n = cosnx+ i sinnx, for all real x and integers n.

Setting x = 2π
n gives a primitive nth root of unity:

(cos 2π
n + i sin 2π

n )n = cos 2π + i sin 2π = 1,

but for k = 1, 2,. . ., n− 1,

(cos 2π
n + i sin 2π

n )k= cos 2k
πn + isin 2k

πn 6= 1

Theorem 35. The real number cos2π5 is constructible therefore a regular pentagon is

constructible.

Proof. cos 2π
5 +isin 2π

5 is a fifth root of unity hence a root of the equation x5=1.

We can factor this equation:

x5-1=(x− 1)(x4 + x3 + x2 + x+ 1).

Clearly cos 2π
5 +isin 2π

5 6= 1 so it is not a root of (x−1) so it must be a root of x4+x3+x2+x+1.

We have that (cos 2π
5 + i sin 2π

5 )4= cos 2π
5 - i sin 2π

5

Let z=cos 2π
5 +i sin 2π

5 .

(cos 2π
5 + i sin 2π

5 )4+cos 2π
5 +i sin 2π

5 =2cos 2π
5

Substituting we have:
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z+z4=2cos 2π
5

Let α=2cos 2π
5

⇒ α2=(z + z4)2

⇒ α2+α=(z + z4)2+z+z4

⇒ α2+α=z4+z3+z2+z+2=1

⇒ α2+α=1

⇒ α2+α-1 =0

Now we have that α is a zero of the quadratic x2+x-1=0 and when we solve it using the

quadratic formula we get

x=−1+
√
5

2 and x=−1−
√
5

2

α > 0 therefore α=2cos 2π
5 =−1+

√
5

2

⇒ cos 2π
5 =−1+

√
5

4

⇒ cos2π5 is constructible. ⇒ A regular pentagon is constructible by proposition 28.

Euclid discovered that a polygon of n sides can only be constructed with compass

and straight edge if n=2k , 2k ·3, 2k ·5, or 2k ·3 · 5. Two thousand years later, C.F.Gauss

proved that a 17-gon was also constructible with compass and straightedge. So then, the

real question arises, exactly which polygons are constructible? This is later answered by

Galois theory which is out of the realm of this research paper.

Example 36. Show algebraically that an angle of magnitude φ is constructible if and

only if an angle of magnitude
φ

2
is constructible.

Proof. (⇒)Let an angle of magnitude
φ

2
be constructible. If φ

2 is constructible then the

sin φ
2 is constructible. By the half angle formula sin φ

2=±
√

1−cosφ
2 ⇒ cosφ is constructible

⇒ an angle of magnitude φ is constructible.

(⇐)If an angle of magnitude φ is constructible then cosφ constructible.
√

1+cosφ
2

is constructible. But
√

1+cosφ
2 =cos φ2 ⇒ cos φ2 is constructible. ⇒ φ

2 is constructible.

In the following examples, we determine in which case an angle of the indicated

magnitude is constructible.
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Example 37. Let θ=40◦, θ is not constructible.

Proof. From trigonometric identities we have cos3θ=4cos3 θ-3cos θ. Since cos120=-12 the

number α=cos40 satisfies the equation 4α3-3α=-12 hence is a zero of polynomial p(x)=8x3-

6x+1 which is irreducible over Q by the rational root theorem since ± 1
8 , ± 1

4 , ± 1
2 , ±1

are not zeros of p(x) and are the only possible rational zeros.

⇒ [Q(α) : Q]=3, not a power of 2. α is not constructible by corollary 26.1.

⇒ 40◦ is not constructible.

Example 38. Is 30◦ constructible? The sin30=1
2 therefore 30◦ is constructible by corol-

lary 25.1.

Example 39. sin 90=1 therefore 90◦ is constructible.⇒ 90
2 = 45◦ is constructible.

Example 40. Is 42◦ constructible?

By Theorem 35 cos(2π5 ) is constructible. We know that 2π=360◦ therefore 2π
5 =72◦ is

constructible by proposition 29. Also 30◦ is constructible therefore we have that

72◦ − 30◦ = 42◦ is constructible.

Example 41. Let θ=10◦. Is θ constructible? From trigonometric identities we have

sin 3θ=−4 sin3 θ+3sin θ. Since sin 30=1
2 the number α=sin10 satisfies the equation

-4α3+3α=1
2 hence is a zero of polynomial p(x)=8x3-6x+1 which is irreducible over Q by

the rational root theorem because ± 1
8 , ± 1

4 , ± 1
2 , ±1 are not zeros of p(x) and are the

only possible rational zeros.

⇒ [Q(α) : Q]=3, which is not a power of 2. α is not constructible by corollary 25.1

⇒ 10◦ is not constructible by proposition 29.

Example 42. The angle of magnitude 72◦ is constructible. If we bisect 72◦ we have an

angle of magnitude 36◦. If we bisect an angle of 36◦ we have an angle of 18◦. An angle

of measure 18◦ is constructible.

In the following exercises we will determine if the regular polygon with n sides

is constructible.

Example 43. An octagon has 8 sides. So for n=8 the cos(3608 )=cos45=
√
2
2 therefore by

proposition 29 a regular polygon with 8 sides is constructible.
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Example 44. A polygon with 9 sides is not constructible.

The cos(3609 ) is not a real constructible number because in example 37 we proved that 40◦

is not constructible and by proposition 29 cos 40 is not constructible.

Example 45. A regular decagon has 10 sides. cos(36010 )=cos36. The angle of magnitude

36◦ is constructible because 72◦ by example 36. Now we can say cos36 is constructible by

propostion 29.

Example 46. A regular polygon with 20 sides is constructible because cos18 is con-

structible since the angle of magnitude 18◦ is constructible by example 42.

Example 47. A regular polygon with 30 sides is constructible. cos 360
30 =cos12. We know

72◦ and 60◦ are magnitudes of constructible angles. Their difference is constructible ⇒
12◦ is constructible ⇒ cos12 is constructible ⇒ a polygon with 30 sides is constructible

by proposition 29.

Example 48. Show that in a regular 5-gon with sides of length 1 any diagonal has length

α=1+
√
5

2 .

Figure 3.2: Construction of 5-gon Side 1

Proof. By the law of sines we have:

sin 36
1 = sin 72

d where d is the diagonal of a regular pentagon.

d= sin72
sin 36

d=1
2(1+

√
5)

Example 49. In this example we show that 2cos(2π7 ) is a zero of x3+x2-2x-1. We know

that if cos 2π
7 is not a constructible real number then by proposition 29 a heptagon is not
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constructible.

Let α=2cos(2π7 )

Let x3+x2-2x-1=(x-α)(ax2+bx+c)

Distributing the right side we have: ax3+(b-aα)x2+(c-bα)x-cα

⇒ a=1 b-α=1 c-bα=-2 -cα=-1

⇒ b=α+1 c= 1
α

Therefore

x3+x2-2x-1 =(x-2cos 2π
7 )(x2+(2cos 2π

7 +1) x+ 1
2 cos 2π

7

and 2cos(2π7 ) is a zero of

p(x)=x3+x2-2x-1. [Q(α) : Q]=3 because p(x) is irreducible over Q by the rational root

theorem, and α is not constructible. We recall that 2π
7 in radians is the same as 360

7

degrees. By corollary 25.1, 360
7 is not constructible. By proposition 29 a heptagon is not

constructible.

3.2 Classical Problems

There are many constructible geometric figures that cannot be done with only

straightedge and compass. We encounter a few below that are considered classical prob-

lems. The Greeks made many attempts at three specific problems, the ‘‘squaring of the

circle ”, ‘‘doubling of the cube”, and the ‘‘trisection of an arbitrary angle”.

The Babylonians and Egyptians tried to approximate the area of a given circle

with a square as well as the Russians and Indians. They all figured it boiled down to

the approximation of the number π. Archimedes showed that the value of π was between

31
7 and 310

71 . Anaxagoras worked on the problem in prison. He was probably the first

to think of the polygons with a large number of sides inscribed in the circle would work

to square the circle. Later Antiphon the Sophist wrote if he inscribed regular polygons

inside a circle and kept doubling the number of sides he would eventually cover the whole

circle area but Eudemus argued that the lengths of sides could not be divided in halves

without limits. Finally, in 1882, Ferdinand von Linderman proved its impossibility.
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3.2.1 Squaring the Circle

Given a circle in the plane, construct a square of the same area.

This cannot be done with only a compass and straightedge.

Proof. The area of a circle is πr2. The area of a square with side s is s2. Setting these

two areas equal to each other we have πr2=s2. If we divide both sides by r2 we have that

π=( sr )2. This would imply that
√
π = s

r . If s
r is constructible then

√
π is constructible.

This is a contradiction because π is not constructible.

3.2.2 Duplicating the Cube

The doubling of the cube is also known as the Delian problem. The people of

Delos were plagued by Apollo and so asked an oracle to help them get rid of the plague.

The oracle advised them to double the size of the altar to Apollo which was a cube. The

Delians asked Plato for help and he told them they needed to study geometry. Plato

asked Eudoxus, Menaechmus and Archytas to solve this problem but they did not get

Plato’s approval for their solutions were wrong. This problem was also worked on by

many others, the Egyptians, the Indians, and the Greeks to no avail. In 1837 Pierre

Wantzel proved it impossible to solve with constructions that only use straight edge and

compass. He found that the problem required the construction of the cube root of two

which is impossible to construct with only compass and straight edge.[Bog15]

3.2.3 Eisenstein’s Criterion

Eisenstein’s Criterion gives a sufficient condition for a polynomial with integer

coefficients to be irreducible over the rationals. Meaning the polynomial will be unfac-

torable into the product of nonconstant polynomials with rational coefficients. Given

the polynomial f(x)=anx
n + an−1x

n−1+· · ·+a1x+a0, where all ai are integers, for all i

between 0 and n and there exist a prime p such that the if following hold:

1. p divides all ai, i ≤ n

2. p2 does not divide a0

then f(x) is irreducible.

Example 50. Given a cube with side s, construct a second cube with double the volume.
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Proof. If the given cube has side s, then the volume of the cube is s3. The cube with

double the volume would have volume 2s3. The edge of the duplicated cube would

be 3
√

2a. Taking the side of the given cube as our unit, we would have to construct a

segment of length 3
√

2. But 3
√

2 is a zero of x3-2 which is irreducible over Q by Eisenstein’s

Criterion with p=2 and therefore [Q( 3
√

2) : Q]=3, not a power of 2. Therefore 3
√

2 is not

constructible with only compass and straight edge.

3.2.4 The Problem of Trisecting an Angle

The two classical problems above are by far much more popular in the math

world. Trisecting an arbitrary angle is the least studied. Perhaps because there is no

interesting story about the gods asking for a solution. So the problem arises plainly.

Another reason might be because of how different it is from the other two problems. We

cannot square a circle or double a cube, but there are specific angles that can be trisected.

For instance we can trisect 90◦, but the problem is that of trisecting an arbitrary angle.

There is no general sequence of steps that would always end with trisecting an arbitrary

angle.

Example 51. Let us look at the angle 60◦, it cannot be trisected.

Proof. We can construct an angle of 60◦.

Now we use trigonometric identity of the sum angle formula.

cos3θ=4cos3 θ − 3cos θ

cos60=1
2

Let α=cos20

4cos320 − 3cos20=1
2

4α3-3α=1
2 so now we have that α is a zero of p(x)=8x3-6x-1. p(x) is irreducible over

the rationals by the Rational Root Theorem because ± 1
8 ,± 1

4 ,± 1
2 , ±1 are not zeros of

p(x) therefore [Q(α):Q]=3, not a power of 2. α is not constructible therefore 20◦ is not

constructible by Corollary 25.1.
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Chapter 4

Constructions with Marked Ruler

and Compass

The ancient civilizations firmly believed in the gods and their demands. The

gods demanded precise solutions of mathematical problems. The ancient mathematicians

insisted on doing mathematics with precision so that the problems of their world would

be vanished by the gods. The people believed that the god Apollo was cruel for giving

them the impossible problem of doubling the cube.[Bog15]

With a marked ruler and compass the constructions are not impossible. As we see in

the following examples we can construct figures and solve problems that were impossible

without the ruler.

Definition 52. A construction with a marked ruler and compass allows (in addition to

the operations defined in Definition 11.1.8) the following operation: (6)Given two points

A and B, lines L and M, and a point P, to construct points C on line L and point D on

line M such that point P lies on the line through point C and point D and the length of

CD equals the length of AB.

A real number α is constructible using a marked ruler and compass if a segment

|α| is constructible.

Lemma 53. Let C be a point outside of a circle. If we draw two secant line segments

from E then the following products are equal EC·BC =CF·DC
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Figure 4.1: Construction with a Marked Ruler

Proof.

Figure 4.2: Secants from a Common Point

We draw the triangles BFC and DEC. By the Angle-Angle theorem of similar

triangles 4BCF ∼ 4DCE. Therefore BC
DC = CF

EC ⇒ (BC)(EC)=(DC)(CF)

Theorem 54. (Menelaus’ Theorem) Given any line that intersects the three sides of a

triangle (one side extended), six segments are cut off on the sides. The product of three

non-adjacent segments is equal to the product of the other three.

Let AFC be any triangle and let a line L cut the sides of their extensions at

points D,B,E then AD
AB ·

BF
EF ·

EC
DC=1.

Similar to the construction of square roots or roots of the form 2n, the con-

struction of the cube root of a constructible number helps us construct roots of the for

3n.
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theorem.png

Figure 4.3: Menelaus Theorem

Proposition 55. Let α be a real number that is constructible with a compass and marked

ruler, then the real number 3
√
α is constructible with the marked ruler and compass.

This propositon also helps solve the problem of duplicating the cube.

Figure 4.4: Construction of Cube Root

Proof. Let AB = CD = 1 ∠ABC = 90◦ and ∠CBD = 30◦ AC=x BC=
√
x2 − 1 AD= x

+ 1. Using Law of Sines and substituting all the given information we can say:

sin∠BDC
BC = sin∠CBD

CD
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sin∠BDC√
x2−1 = sin 30

1

sin∠ADB
AB = sin∠ABD

AD

sin∠ADB
1 = sin 120

x+1

∠ADB and ∠BDC are the same angle so we can set the two equations equal to each other.

sinBDC=
√
x2−1
2

sinADB=
√
3

2(x+1)

√
x2−1
2 =

√
3

2(x+1)

4(x2 + 2x+ 1)(x2 − 1)=12

4x4 + 8x3 − 8x− 16=0

x4 + 2x3 − 2x− 4=0

(x3 − 2)(x+ 2)=0

x= 3
√

2 and x=-2 but we let x=AC so it must be 3
√

2.

Corollary 55.1. The problem of the duplication of the cube can be solved using the

marked ruler and compass.

Proof. This problem amounts to the construction of 3
√
α which can be done with a marked

ruler and compass by proposition 55.

Example 56. Show that 2 cos( θ3) is a zero of y3 − 3y − 2 cos θ

Proof. Let h(y)=y3 − 3y − 2 cos θ Substituting 2 cos( θ3) into our function h(y) we have

h(2 cos( θ3)) = (2 cos( θ3)3 − 3(2 cos( θ3)− 2 cos(θ).

After simplifying the right hand side of the equation we have 8cos3( θ3) - 6cos( θ3) - 2cos θ.

2 cos( θ3) is a zero of y3 − 3y − 2 cos θ

Example 57. Another example of how to construct 3
√

2 as the intersection of a parabola

with the hyperbola xy=1.

Proof. We can use the hyperbola xy=1 and the parabola y=1
2x

2 to construct 3
√

2.
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Figure 4.5: Cube Root of Two

If we solve the system:

y= 1
x

y=1
2x

2

Substituting y= 1
x into y=1

2x
2

we have the equation:

1
x=1

2x
2

Solving for x we get

1=1
2x

2· x
2=x3

x= 3
√

2

The intersection of the parabola with the hyperbola is the point ( 3
√

2, 1
3√2

) and we have

line segment CE is the length 3
√

2.

Proposition 58. The general problem of the trisection of an angle can be solved using a
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compass and a ruler.

Proof. Archimedes’ Trisection

Draw the unit circle with central ∠DOC=θ and radius OD and OC. Extend OC and

with the distance of 1 marked on a ruler, keeping it in contact with D, slide it until it

reaches a position where if B and A are the points of intersection with the circle and the

extension of OC, respectively, then AB=1. Let ∠OAB=α. Show that α= θ
3 .

Figure 4.6: Archimedes Trisection of an Angle

4 BOD and 4 ABO are both isosceles triangle with base angles equal to 2α

and α, respectively.

Using the sum of interior angles of a triangle and angle addition postulate we have the

following equation:

180− 4α=180− α− θ. Subtracting 180 from both sides of the equation we have:

−4α=−α− θ. Combining like terms we have the equation:

−3α=−θ. Finally, dividing by 3 on both sides of the equation we have the desired result:

α= θ
3 , the angle α is one third of angle θ.
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Chapter 5

Conclusion

As the ancient civilizations discovered some impossible problems, we then extend

our construction with the compass and straight edge to include a marked ruler. We begin

with our marked points, lines, circles, and construct most of the basic geometric figures.

We can now construct segments of lengths with cube roots if we use a marked ruler.

Similar to the constructions of roots of the form 2k we can repeat cube root construction

and construct roots of the form 3k. The problems of doubling the cube and trisecting

an angle were both solved by using a marked ruler. The impossibility of solving these

two problems was proven by using algebra thousands of years after they were posed.

Lindemann proved the impossibility of squaring the circle. He also went so far as to show

that π is transcendental. One problem that is still unsolved is the construction of regular

n-gons. Sure, Gauss showed that a regular 17-gon is constructible. He also went on to

show that a regular polygon with n sides is constructible if and only if n=2m ·p1 ·p2 · · · pk
where pi are Fermat’s Primes. This is just a partial answer to the question of constructible

regular polygons. Also, can we construct other roots of numbers that are not in the form

2k or 3j? This question can also be answered by further research in Galios Theory and

Field Theory
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