
Journal of International Information Management Journal of International Information Management

Volume 9 Issue 2 Article 2

2000

Use of replication technology in a global software development Use of replication technology in a global software development

environment environment

Bhushan L. Kapoor
California State University, Fullerton

Ram Singhania
California State University, Fullerton

Follow this and additional works at: https://scholarworks.lib.csusb.edu/jiim

 Part of the Management Information Systems Commons

Recommended Citation Recommended Citation
Kapoor, Bhushan L. and Singhania, Ram (2000) "Use of replication technology in a global software
development environment," Journal of International Information Management: Vol. 9 : Iss. 2 , Article 2.
Available at: https://scholarworks.lib.csusb.edu/jiim/vol9/iss2/2

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion
in Journal of International Information Management by an authorized editor of CSUSB ScholarWorks. For more
information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/jiim
https://scholarworks.lib.csusb.edu/jiim/vol9
https://scholarworks.lib.csusb.edu/jiim/vol9/iss2
https://scholarworks.lib.csusb.edu/jiim/vol9/iss2/2
https://scholarworks.lib.csusb.edu/jiim?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol9%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol9%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/jiim/vol9/iss2/2?utm_source=scholarworks.lib.csusb.edu%2Fjiim%2Fvol9%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

VseofRe^Ucation^c^^ Journal of International Information Management

Use of replication technology in a
global software development

environment
Bhushan L. Kapoor

Ram Singhania
California State University, Fullerton

ABSTRACT
In this article, we have proposed a new global software development support system.

Until now, the technological challenges in global software development support have been
addressed on a semi-automatic ad hoc basis by Groupware technologies such aS electronic
mail, teleconferencing, electronic meetings, calendaring and scheduling, and workflow. These
methods are usefid but do not address the issues of site autonomy, and transactional consis­
tency. Our proposed software development support system is based on replication technology.
In our system, each software development center has the ability to make additions and modifi­
cations. Further, the system also maintains transactional consistency so all sites have the iden­
tical copy of documents in near real-time.

INTRODUCTION
Large global distributive software development is a complex and cooperative process. The

development work could be done at several locations, and is highly inter-dependent. The loca­
tions have a logic:il partitioning of program components and their ownership. Each location has
a primary responsibility for a set of programs, system components, and the related material and
is labeled as the owner of these documents. However, the programs may be developed and main­
tained across the lenterprise. So, it is important that each location also has (not limited to read­
only) access to the programs owned by other locations. Further, at a single point in time (when the
additions and modifications are taking place) the documents at all sites may not be consistent,
however, all sites should be guaranteed to have the same documents in near real-time. Existing
systems are ad-hoc and deficient in achieving this objective.

Replication technology provides a quick, systematic, and reliable way to disseminate infor­
mation to multiple locations in a distributed environment. Replication has been frequently used
for distributing data across an enterprise. We are proposing a new global software development
support system based on replication technology. The system provides desired level of logical
partitioning, site autonomy, and transactional consistency in a distributed environment, wherein
all sites can work independently and yet are guaranteed to have the same documents eventually.

17

1

Kapoor and Singhania: Use of replication technology in a global software development en

Published by CSUSB ScholarWorks, 2000

Journal of International Information Management Volume 9, Number 2

GLOBAL SOFTWARE DEVELOPMENT

Traditionally, software development was done by in-house and co-located teams. Until
1989, world's most software (at least 60 percent) was produced by the software professionals
who worked and lived in USA. However, in the last decade, there has been a proliferation of
microcomputers, servers, network, and telecommunications equipment. The demand for software
products and software services has increased at a very fast pace. This has been further com­
pounded by the fact that today's computer hardware and software are more powerful and contain
many more features and funcitons at substantially lower prices. Thus, the need for software
professionals in the U. S. has increased far beyond the supply of qualified personnel. Available
supply has simply not met the demand for software professionals despite the escalating labor
costs.

To keep up with the demand for software professionals at a reasonable cost, the companies
have started looking for the qualified resources outside the company and outside the USA. A
recent Information Technology Association of America study (ITAA, 1998) found shortage of
346,000 programmers, system analysts and computer scientists. The report indicates that 40% of
the US software companies are hiring immigrants and 16% are outsourcing abroad. Today, more
and more software companies are finding it productive to invest in software development in
countries, such as India and Israel where qualified well-trained professionals are available at
much lower costs. In fact, six of the world's top 12 software development centers are now located
in India, according to a ranking by the US Carnegie Mellon Software Engineering Institute (1999).
Exports of software services from Israel have grown from $500 million in 1997 to $I billion in
1998, and to 1.5 billion in 1999 (Israel Software Export, 1999). The growth of exports of soft­
ware services from India is even more spectacular; from SI billion in 1997 to $2.7 billion in
1998, and to $3.9 billion in 1999 (Karp, 1999). These numbers are expected to grow exponen­
tially (at least 50% per year) in the next decade. According to industry projections, software
exports from India and Israel will reach 112.5 and 45.2 billions of dollars respectivelv in the vear
2010 (Table 1). f j

Table 1. Software Exports from India and Isreal
(in billions of dollars)

Year India
1.2
2.7
3.9

33.5
II2.5

Israel
1997*
1998*
1999
2007*
2010**

0.5
1.0
1.5

15.4
45.2

* Sources: Israel Software Exports (1999) and Karp (1999)
According to industry projections

18

2

Journal of International Information Management, Vol. 9 [2000], Iss. 2, Art. 2

https://scholarworks.lib.csusb.edu/jiim/vol9/iss2/2

Use of Replication Technology Journa^^^lnternationalJn^orT^^

The fact is that software development has gone global. There are many other factors that
are enhancing this trend; one of these is that in today's global economy, the market for the soft­
ware has also turned global. In recent years, Microsoft and other major software vendors have
derived bulk (more than 50%) of their revenue from outside the USA (Miller, 1994; Malhotra,
1994). Further, because personal computers, servers, and other network components are increas­
ingly cheaper and. have more power, they are becoming more readily available even in the third
world countries. In fact, the market for software products is increasing faster outside the USA
than within the USA. To gain market access, software companies will rely more heavily on
strategic partnerships to develop and sell their software products and services. The trend is that
large companies are doing business on a global scale. Table 2 describes the characteristics of
software development teams of yesterday (traditional) and today (global (Grenier, 1995). Today's
software development team could be from many divisions (or even many companies) in geo­
graphically dispersed (including overseas) locations.

*Source; Adapted from Grenier, R. and Metes, G., Moving Your Organization into 21st Century,' Prentice Hall,

While software companies are reaping the benefits of global software development (at
significantly lower costs) it has also created some challenges (Thomas, 1997). These challenges
include cultural, infrastructure, technological and management issues. Technological issues in­
clude primarily tlie need for increased communications and interoperability, transactional consis­
tency and site autonomy. Until now, some of the technological challenges have been addressed by
the existing Groupware technology. Groupware technology builds on five fundamental technolo­
gies; electronic mail, teleconferencing, electronic meetings, calendaring and scheduling, and
workflow (Goldman, 1999). Groupware technologies do allow the employees to obtain timely
information and increase their communication and collaboration efforts with others to some ex­
tent. However, they only provide a semi-automatic solution and do not solve the problem of each

Table 2. Characteristics of Traditional and Global Teams*

Traditional

Co-located Members
Verbal Communication
Same Organization
Information Distribution (Push)
Paper Media
Hierarchical Man agement
Uni-direction Flow
Access through Value Added Networks

Global

Distributed Members
Electronic (digital) Communication
Different Organizations
Information Access (Pull & Push)
Electronic Media
Networked Management
Bi-direction Flow of Information
Access through the Internet

1995.

19

3

Kapoor and Singhania: Use of replication technology in a global software development en

Published by CSUSB ScholarWorks, 2000

Journal of International Information Management Volume 9, Number 2

dispersed location to have a near real-time and automatic (without human intervention) access to
the latest versions of all programs, procedures, re-engineering specifications, test data, test re­
sults, on-line help, and other supporting material. Nor do they address the issues of site autonomy
and transactional consistency.

Site autonomy is the ability of each site to do its work independently of others and the effect
it has on the operations of other sites. Transactional consistency is that after the data has been
replicated, the data at all sites in the application will appear as if the transactions had actually
occurred at that particular location.

In summary, the desired characteristics of a distributed global software support system
which have not been addressed by the existing system include:

1. Each software development center must have the ability to make additions and modifica­
tions. This is an essential requirement.

2. System must maintain transactional consistency; that is, all development centers eventually
will have the identical copy of documents. This is also an essential requirement.

3. Transactional consistency should be real time.

4. Each development center should be autonomous; that is, each development center is able to
work independently of others.

We are proposing a new global software development support system based on replication
technology. Replication can be most simply defined as providing copies of documents (related to
a specific software project) to different locations and then automatically synchronizing so that all
sites eventually have the same information. Replication technology has matured in recent years to
provide a quick and reliable way to disseminate data, procedures and text to multiple locations in
a distributed business environment. Major DBMS software vendors, such as Oracle, Sybase and
Microsoft are packaging this powerful technology in their DBMS products. The following sec­
tion explains how replication technology can alleviate the problems in the distributed environ­
ment of global software development to provide superior communications and operability than
supported by the existing systems.

REPLICATION TECHNOLOGY

Our replication scheme is based on Microsoft SQL Server 7.0 replication model. The main
components in a replication scheme consist of a publisher, several subscribers, distributors, pub­
lications and push and pull subscriptions. The publisher is a server that makes publications
available for replication to other servers. The publisher specifies which documents are to be
replicated and flags those changed since the last synchronization process occurred. Subscribers
are servers that store replicas and receive updates. Previously, updates could only be performed
at the publisher providing read-only access to the subscribers. Now, in a variation with the 'Im­
mediate Updating Subscribers' Option,' the subscribers are also allowed to update and send docu­
ments to the publisher. This information (new or changes) sent from subscribers to the publisher

20

4

Journal of International Information Management, Vol. 9 [2000], Iss. 2, Art. 2

https://scholarworks.lib.csusb.edu/jiim/vol9/iss2/2

Use of Replication Technology Jounia^£fJnternationalJn^nnatio^^

is eventually distributed to other sites. TTiis option will be further explained in a subsequent
section. The publication is simply a collection of documents to be replicated. The distributor is a
server that contains the distribution information. The exact role of distributor can change in each
type of replication.

There are two basic types of subsccriptions: Push and Pull subscriptions. In Push subscrip­
tion the publisher propagates (or pushes) the changes to a subscriber without a specific request
from the subscriber. Push subscriptions are good for applications where you need to send changes
to subscribers as soon as they occur, or for applications where publications are scheduled for
publications on a periodic basis. Push subscriptions require that there are reliable links between
subscribers and the publisher. In Pull subscriptions, the subscriber requests changes from the
publisher. Pull subscriptions are good for loose and unreliable links. A single system can support
a mixture of both push and pull subscriptions.

MS SQL Server provides three major types of replication to use: Snapshot, Transactional
and Merge replications. Further, the 'Immediate Updating Subscribers' option is available with
Transactional repl ication, and the 'logical partitioning' is available with Merge replication. Each
of these has different benefits and capabilities to satisfy the application requirements, such as
transactional consistency and site autonomy. However, these replication types are not mutually
exclusive and it is not uncommon for the same application to use multiple replication types (as is
recommended in the present case study of global software development).

SNAPSHOT REPLICATION
The snapshot replication is the simplest type of replication. It takes a snapshot or a total

refresh of the published documents in the database at one point in time. The snapshot replication
then sends a complete set of documents to all participating sites instead of sending the changes
only. If the article is large, it can require substantial network resources to transmit. Further, if the
subscribers are al so permitted to make modifications, snapshot replication provides low site
autonomy limiting its usefulness in a disconnected environment.

Snapshot replication is appropriate in application scenarios such as look-up tables, or in
decision support systems in which data latency requirements are not strict, data volumes are not
excessive, and subscribers do not need update access from the publisher. The snapshot replica­
tion is not suitable in cases such as distributed software development where program components
need to be created and modified at each development site.

TRANSACTIONAL REPLICATION
The second mode of replication is called transactional replication. Transactional replica­

tion monitors changes to the documents in the transaction log of the publisher server. Any modi­
fications are then distributed to the subscribing servers, continuously or at scheduled times. The
changes are first sent to the distribution database, which holds them until they can be distributed
to the subscribers. This process is depicted in Figure 1.

21

5

Kapoor and Singhania: Use of replication technology in a global software development en

Published by CSUSB ScholarWorks, 2000

Journal of International Information Management Volume 9. Number 2

Figure 1. Transactional Replication Process
(with Read-only Subscribers)

Subscribers
(Read only)

Ultimately, all the subscribing sites will achieve the same values as those at the publisher. If
subscribers need near-real-time propagation of changes, they will need reliable links to the pub­
lisher. Transactional replication in a well-networked environment can provide low latency (near
real-time) to subscribers. Push subscribers would often receive changes soon after they occur at
the publisher, provided the network link is fast and reliable. Pull subscribers will receive changes
as and when requested (Microsoft, 1998).

Immediate Updating Subscribers Option

In their simplest form, transactional replication is based on a model of one-way replication,
in which data is modified only at the publisher and flows downstream to a subscriber. However,
some applications, such as distributed software development, require the ability to update docu­
ments at subscribing servers and have those changes flow to other sites. The 'Immediate Updating
Subscribers' option, available with transactional replication, allows data to be updated at sub­
scribing sites. This option allows a subscriber to update the copy of its local data, as long as that
update can be immediately reflected to the publisher with the partial two-phase commit protocol.
A partial two-phase commit is a procedure that ensures transactions when applied to an immedi­
ate updating subscriber, also applies to the publisher immediately. The partial two-phase commit
is automatic and, if it is successful, the subscriber can work with the changed values immediately.
However, if the publisher is not available, then documents cannot be updated on the subscriber.
The subscriber also does not need a distributor, since the publisher, through its distribution server,
will handle the task of propagating the modifications to other subscribers. The partial two-phase

22

6

Journal of International Information Management, Vol. 9 [2000], Iss. 2, Art. 2

https://scholarworks.lib.csusb.edu/jiim/vol9/iss2/2

UseofRe^licationJec^^ Joumal^^^jnternational^^^

commit ensures tiansactional consistency because the documents are updated as though they
were on the publisher. This process is depicted in Figure 2.

Figure 2. Transactional Replication Process
(with Immediate Updating Subscribers)

Immediate
Updating

Subscribers

This approach does not have the availability constraint of doing full two-phase commit to
all participating sites because partial two-phase commit only requires that the publisher is avail­
able. In full two-phase commit, changes have to be made on all servers simultaneously (or on
none of the servers). This requires that all the servers and links to them must be available before
any changes can be made on any server.

Full Two-Phase Commit
A full two-phase commit is a process of commitment among replication servers in which

the servers first vote on whether or not they can commit a transaction. If all the replication servers
vote yes, the transaction is committed at each server. If any server votes no, the transaction is
aborted. The two-phase commit protocol is used to synchronize updates on replication servers, so
that they either all succeed or all fail.

23

7

Kapoor and Singhania: Use of replication technology in a global software development en

Published by CSUSB ScholarWorks, 2000

Journal of International Information Management Volume 9. Number 2

With full two-phase couimit, there is no need of a distribution server, because each transac­
tion is applied at every other server directly and immediately. However, the site autonomy is
extremely low, because every site must be available for any site to make any modifications. In a
case such as distributed software development (with slow and unreliable links), full two-phase
commit protocol would not be a feasible solution.

MERGE REPLICATION

Merge replication also allows the subscribers to update documents. In this replication,
publishers and subscribers can work independently and connect periodically to synchronize their
changes. Two or more sites may add or update the same document, resulting in a conflict during
Merge replication. When conflicts occur, merge replication provides automatic conflict resolu­
tion. The conflict can be resolved automatically based on factors such as ownership, assigned
priorities, who first submitted the change, and/or a combination of multiple factors. Documents
are replicated and changes are applied to other sites only when the reconciliation process occurs.

Although conflicts can be resolved automatically, but they could result in loss of the trans­
actional consistency. In order to resolve conflicts, modifications may have to be rolled back or
discarded.

Merge Replication with Logical Partitioning

In merge replication with logical partitioning, each site is responsible for program compo­
nents that are different from other sites. This will avoid conflicts and therefore is a useful strategy
for maintaining transactional consistency. Merge replication with logical partitioning provides
transactional consistency and the highest level of autonomy for any replication solution. These
characteristics make merge replication an ideal solution for distributed software development, in
which users need full read/write access to local replicas of documents in a disconnected environ­
ment.

COMPARISON OF REPLICATION TYPES

We have considered the following replication types: snapshot replication, transactional rep­
lication with immediate updating subscribers, merge replication with logical partitioning, and
full two-phase commit. We have also discussed the desired characteristics of the distributed
global software development support system. Table 3 summarizes the essential and desired char­
acteristics for each replication type.

From Table 3 we conclude that snapshot replication does not satisfy an essential require­
ment, that the subscribers must be able to update. Hence, snapshot replication is not a suitable
candidate for our system. Further, the full two-phase commit has a vary low level of site au­
tonomy. When the network contains slow and unreliable links (a global network will typically

24

8

Journal of International Information Management, Vol. 9 [2000], Iss. 2, Art. 2

https://scholarworks.lib.csusb.edu/jiim/vol9/iss2/2

Use of Replication Technology Journal of International In formation Management

Table 3. A Comparison of Replication Types in Distributed
Glocal Software Development Support Systems

Replication Type Subscribers' Site Latent Real-Time
Update Autonomy Transaction Transactional

Capability Consistency Consistency

Snapshot No Low Yes No

Transactional (with Yes High Yes Near-Real Time
immediate updating
subscribers)

Merge (with logical Yes High Yes Delayed
partitioning)

Full Tow-Phase Commit Yes Low Yes Yes

have slow and unreliable links) full two-phase commit is not a feasible option either. Transaction
replication with immediate updating subscribers maintains a high level of site autonomy as long
as there is a fast and reliable link between updating subscribers and the publisher. System also
maintains latent transactional consistency. Subscriber updates are replicated throughout the sys­
tem in near real-time. Finally, merge replication with logical partitioning maintains a high level of
site autonomy even in the slow networks. This replication type also maintains transactional con­
sistency. The transactional consistency may be delayed for a few minutes (or even hours depend­
ing upon requirements) but may not be a problem for some environments.

CASE STUDY: A Hypothetical But Realistic Example

A typical global software development communication infrastructure has a combination of
fast and reliable links as well as relatively slow and unreliable links. In our example, we have
sites in three countries located in two different continents. Sites USAP, USASl, USAS2, USAS3,
USAS4, and US/iD are in the USA and are connected to one another by fast and reliable links.
Similarly, sites INDIAPS, INDIASl, INDIAS2, and INDIAD are located in India and have fast
and reliable links. On the other hand, sites USAP, INDIAP, and ISRAELS are connected by slow
and unreliable links (Figure 3). Because of this diversity in the quality of communication infra­
structure in our case study, it is important that we select the appropriate replication types mix
suitable for the link qualities.

When we need tight consistency between sites, the transactional replication is most appro­
priate. However, the transactional replication also requires fast and reliable communication net­
works. The transactional replication is based on monitored changes in the transaction log of the
source server. Any modifications are then distributed to destination servers.

25

9

Kapoor and Singhania: Use of replication technology in a global software development en

Published by CSUSB ScholarWorks, 2000

Journal of International Information Management Volume 9. Number 2

Figure 3. Building the Communication Infra-Structure Design

SLOW LINK

FAST LINK

In our case study, we have implemented transacitonal replicaiton on USAP, US AS 1, USAS2,
USAS3, and USAS4 servers. USAP is the publisher and all other servers are subscribers. In our
transactional replication design (Figure A), these subscribers are configured with 'Immediate
Updating Subscribers' option and therefore are allowed to update information as long as the
update can be immediaely applied at the publisher using the two-phase commit protocol. Each
subscriber is allowed to make updates and these updates are replicated to the publisher immedi­
ately first and subsequently to other subscribers in the near real-time. USAD is the distribution
server that stores all changes that need to be distributed to subscribers. Some of these changes,
such as project standards and policies, and re-engineering policies originate at the publisher,
USAP and others may start from the publisher or any subscriber. The distributor USAD and the
publisher, USAP may be located on the same machine or connected by a fast and reliable link.

26

10

Journal of International Information Management, Vol. 9 [2000], Iss. 2, Art. 2

https://scholarworks.lib.csusb.edu/jiim/vol9/iss2/2

Use of Replication Technoloff) JournaI_o^Jntent^ional^Jn^bm

Figure 4. Building the Transactional Replication Design
(with Push Subscriptions

SLOW LINK

FASTUNK

An identical transactional replication scheme has also been implemented on INDIAPS,
INDIASl, INDI/iS2, and INDIAD servers. INDIAPS is a Publication server, INDIASl and
INDIAS2 are subscribers and INDIAD is a Distribution server. INDIAS1 and INDIAS2 are also
'Immediate Updating Subscribers', and therefore each subscriber is allowed to make updates and
these updates are replicated to the publisher immediately and eventually to the other subscriber as
well (Figure 4).

In transactional replications, a log reader agent monitors the transaction lob of each data­
base participating in replication. When the log reader agent finds replication transactions, it
hands them off to the distribution database, which holds them until they can be distributed to the
subscribing servers. Users are permitted to access the destination documents while they are being
updated.

27

11

Kapoor and Singhania: Use of replication technology in a global software development en

Published by CSUSB ScholarWorks, 2000

Journal of International Information Management Volume 9, Number 2

The push, rather than the pull, subscriptions are appropriate for transactional replications
of this case study. Push subscriptions are good for applications where you need to distribute
changes to subscribers whenever and as soon as they occur. Push subscriptions are also suitable
for reliable, well-connected fast links between the publisher and subscribers.

The publication database's transaction log holds the transaction marked for replication
until the log reader moves them into the distribution database. Then the log reader agent truncates
the transaction log of the distribution database. Once this occurs, the transaction log of the pub­
lication database can also be safely truncated, which purges only transactions not marked for
replication.

Merge replication allows data to be updated independently at multiple sites. The sites then
syncbjonize with each other later at prescheduled times or manually any time on demand. Merge
replication works will in a situation that has: (1) loose and slow connections. (2) logical partition­
ing of data, and (3) updates performed at different sites do not conflict with each other.

The pull subscriptions are a good choice for the merge replication of this case study. With
a pull subscription, the subscriber asks for periodic updates of all changes to the publisher. Pull
subscriptions are appropriate for slow and unconnected links between the publisher and sub­
scribers. Pull subscriptions to merge publications have a Merge Agent that runs on each sub­
scriber, rather than the publisher. This offloads some processing work from the publisher to
subscribers.

The servers located at USAP, INDIAPS and ISRAELS sites are connected with merge
replication (Figure 5). They are scheduled to merge their changes just once a day sometimes after
or before their normal working hours. This not only will save transmission time and cost, but also
each site, USAP, INDIPS and ISRAELS would receive new information and changes, right
before their normal work starts in the morning. Because of some 12-hour difference in time zones
between sites in USA and INDIA and some lO-hour difference in time zones between sites in
USA and ISRAEL, there is no overlap in their normal working hours.

SUMMARY AND CONCLUSION

Large global distributive software development is a complex and cooperative process. The
global software development is also substantial and growing at a very rapid pace. Some newly
emerging and developing nations, particularly India and Israel, are very attractive centers for
software development. Until now, the technological challenges in global software development
support have been addressed on a semi-automatic ad hoc basis by Groupware technologies, such
as electronic mail, teleconferencing, electronic meetings, calendaring and scheduling, and workflow.
These technologies are useful but do not address the issues of site autonomy, and transactional
consistency. In this article, we have proposed a new software development support system that is
based on replication technology. The replication technology is available from major software
vendors such as Oracle, Sybase, and Microsoft.

28

12

Journal of International Information Management, Vol. 9 [2000], Iss. 2, Art. 2

https://scholarworks.lib.csusb.edu/jiim/vol9/iss2/2

Vse^£fRe^licatioi^ectu^^ Journal of International Information Management

Figure 5. Building the Merge Replicaiton Design
(with Pull Subscriptions)

In our proposed system, each software development center has the ability to make additions
and modifications. Further, the system maintains transactional consistency so all sites have the
identical copy of documents in near real-time. Each development center is also able to maintain
autonomy - that is, each development center is able to work independently of others.

We considered four major replication types: snapshot, transactional replication with imme­
diate updating subscribers, merge replication with logical partitioning, and full two-phase com­
mit. We discussed the essential and desired characteristics of each replication type and concluded
that transactional replication with immediate updating subscribers and merge replication with
logical partitioning are the best replication types for our system. At the end, we have applied our
conclusion to a hypothetical but realistic case study.

29

13

Kapoor and Singhania: Use of replication technology in a global software development en

Published by CSUSB ScholarWorks, 2000

Journal of Internationa! Information Management Volume 9. Number 2

REFERENCES

Carmel, E. (1999). Global software teams. Prentice-Hall.

Carmel, E. & Sawyer, S. (1998). Packaged software development teams: What makes them
different? Information Technology & People, 77(1).

Carmel, E. & Bird, B. (1997). Small is beautiful: A study of packaged software development
teams,. Journal of High Technology Management Research, S(l), 129-148.

Grenier, R. & Metes, G. (1995). Moving your organization into the list century. Prentice-Hall.

Grinter, R. E. (1997, September). Doing software development: Occasions for Automation and
formalization. European Conference on Computer Supported Cooperative Work, pp.
7-11. Lancaster, UK.

Goldman, J. E., Rawles, P. T., & Mariga, J. R. (1999).

Israel Software Exports. (1999). Available from library®export.gov.is\ Israel Holland Trade;
Israel Association of Software Houses at software @industrv.org.i 1.

Information Technology Association of America. (1998). Report on software labor shortage.
http://www.itaa.org/

Jarvenappa, S. & Tractinsky, N. (1995). Information systems design decisions in global versus
domestic context. Management Information Systems Quarterly, 79(4), 507-534.

Karp, J. (1999, September). New corporate gurus tap India's brainpower to galvanize economy.
Wall Street Journal, A24.

Leonard, D. A., Brands, P., Edmonson, A., & Fenwick, J. (1997). Virtual teams: Using commu­
nication technology to manage geographically dispersed development groups. In Sense
and Respond: Capturing Value in Network Era. Cambridge, MA: Harvard Business
School Press.

Malhotra, Y. (1994). Controlling copyright infringements of intellectual property: The case of
computer software. J. Systems Management, 45(6), 32.

Meadows, D. J. (1996). Globalizing software development. Journal of Global Information Man­
agement, 4(1), 5-15.

Microsoft (1998). Microsoft SQL server - replication for Microsoft SQL server 7.0 Microsoft
Part Number: 098-80829.

Miller, C. L. (1994). Transborber tips and traps. Byte, 79(6), 93.

Rothman, J. (1998, August). Managing global teams. Software Development, 36-40.

Thomas, S. L. (1997). Collaboration may bring headaches to IS managers. IJLN Times, 14(25).

Vitalari, N. & Wetherbe, J. C. (1996). Emerging best practices in global systems development. In
Global Information Technology and systems Management: Key Issues and Trends.
Nashua, NH: Ivy League Publishing.

30

14

Journal of International Information Management, Vol. 9 [2000], Iss. 2, Art. 2

https://scholarworks.lib.csusb.edu/jiim/vol9/iss2/2

	Use of replication technology in a global software development environment
	Recommended Citation

	Use of replication technology in a global software development environment

