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Abstract

We will explore progenitors extensively throughout this project. The progen-

itor, developed by Robert T Curtis, is a special type of infinite group formed by a

semidirect product of a free group m∗n and a transitive permutation group of degree n.

Since progenitors are infinite, we add necessary relations to produce finite homomorphic

images. Curtis proved that any non-abelian simple group is a homomorphic image of

a progenitor of the form 2∗n : N . In particular, we will investigate progenitors that

generate two of the Mathieu sporadic groups, M11 and M22, as well as some classical

groups. We will prove their existences a variety of different ways, including the process

of double coset enumeration, Iwasawa’s Lemma, and linear fractional mappings. We will

also investigate the various techniques of finding finite images and their corresponding

isomorphism types.
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Introduction

Group theory is a study of symmetry of objects and can some times be very

complex. There are many different representations of these structures, or as we refer

to them, groups. We will focus on permutation groups and symmetric groups. We use

progenitors to create new and original presentations of finite groups. We then prove

their existence and observe the various properties these groups have.

Though some of the techniques we cover may seem elementary, we use these

methods in a way that yields very interesting results. This thesis focuses on groups

that have been found using progenitors most of which have been new discoveries. We

use double coset enumeration to verify the order of a group, as well as determining if a

group is faithful and primitive. If we have a group that is faithful, primitive, perfect,

and has a normal abelian subgroup in which the conjugates of itself with G generate G,

we have proven that group’s simplicity by a 70 year old lemma.

In Chapter 1 we give definitions, lemmas, and theorems that will be used

throughout this project. In Chapter 2 we introduce a few finite progenitors and prove

their existences primarily using double coset enumeration and manipulation of relations.

We will solve a basic example then give two examples of linear groups, as well as the

verification proofs of each group. In Chapter 3 we investigate the Mathieu sporadic

groups M11 and M22. A formal existence proof of M11 is given utilizing Iwasawa’s

Lemma. A partial existence proof for M22 over a maximal subgroup M . In Chapter

4 we use knowledge of extensions to determine isomorphism types of a few progenitors

found. In Chapter 5 we discuss the various ways to find progenitors. We find pro-

genitors can be formed very easily using MAGMA, a computational algebra system.

However, we can find ways to narrow down which progenitors are worth investigating.

In Chapter 6 we list some interesting groups found throughout this project.
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Chapter 1

Group Theory Preliminaries

1.1 Some Definitions

Definition 1.1. [Rot95] A group G (G, ∗) is a nonempty collection of elements with

an associative operation ∗, such that:

• there exists an identity element, e ∈ G such that e ∗ a = a ∗ e for all a ∈ G;

• for every a ∈ G, there exists an element b ∈ G such that a ∗ b = e = b ∗ a.

Definition 1.2. [Rot95] For group G, a subgroup S of G is a nonempty subset where

s ∈ G implies s−1 ∈ G and s, t ∈ G imply st ∈ G. We denote subgroup S of G as

S ≤ G.

Definition 1.3. [Rot95] Let H be a subgroup of group G. H is a proper subgroup of

G if H 6= G. We denote this as H < G.

Definition 1.4. [Rot95] Let G be a group and H ≤ G. H is a maximal subgroup of

G if there is no normal subgroup N ≤ G such that H < N < G.

Definition 1.5. [Rot95] A symmetric group, SX , is the group of all permutations of

X, where X ∈ N. SX is a group under compositions.

Definition 1.6. [Rot95] If X is a nonempty set, a permutation of X is a bijection

φ : X −→ X.
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Definition 1.7. [Rot95] If x ∈ X and φ ∈ SX , then φ fixes x if φ(x) = x and φ moves

x if φ(x) 6= x.

Definition 1.8. [Rot95] For permutations α, β ∈ SX , α and β are disjoint if every

element moved by one permutation is fixed by the other. Precisely,

if α(x) 6= x, then β(a) = a and if α(y) = y, then β(y) 6= y.

Definition 1.9. [Rot95] A permutation which interchanges a pair of elements is a

transposition.

Definition 1.10. [Rot95] In group G, if a,b ∈ G, a and b commute if a ∗ b = b ∗ a.

Definition 1.11. [Rot95] A group G is abelian if every pair of elements in G commutes

with one another.

Definition 1.12. [Rot95] Let G be a group. The order of G is the number of elements

contained in G. We denote the order of G by |G|.

Definition 1.13. [Rot95] Let G be a group. G is simple if the only normal subgroups

of G are 1 and G.

Definition 1.14. [Rot95] Let p be prime. If G ∼= Zp × Zp × · · · × Zp, then we say G is

elementary abelian.

Definition 1.15. [Rot95] Let (G, ∗) and (H, ◦) be groups. The function φ : G→ H is

a homomorphism if φ(a ∗ b) = φ(a) ◦ φ(b), for all a,b ∈ G. An isomorphism is a

bijective homomorphism. We say G is isomorphic to H, G ∼= H, if there is exists an

isomorphism f : G→ H.

Definition 1.16. [Rot95] Let f : G → H be a homomorphism. The kernel of a

homomorphism is the set {x ∈ G|f(x) = 1}, where 1 is the identity in H. We denote

the kernel of f as ker f .

Definition 1.17. [Rot95] Let X be a nonempty subset of a group G. Let w ∈ G where

w = xe11 x
e2
2 . . . xenn , with xi ∈ X and ei = ±1. We say that w is a word on X.

Definition 1.18. [Rot95] Let G be a group such that K ≤ G. K is normal in G if

gKg−1 = K, for every g ∈ G. We will use K CG to denote K as being normal in G.
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Definition 1.19. [Rot95] Let G be a group. We say G is a direct product of two

subgroups H and K if:

1. H E G, K E G;

2. G = HK;

3. H ∩K = 1,

Definition 1.20. [Rot95] G is a semi-direct product of two subgroups H and K if:

1. K E G, Q ≤ G;

2. G = KQ;

3. K ∩Q = 1.

Definition 1.21. [Rot95] Let a, b ∈ G. We denote the commutator of a and b by

[a, b], where [a, b] = aba−1b−1.

Definition 1.22. [Rot95] Let G be a group. The Derived Group of G, denoted G′,

is the subgroup of G formed by all the commutators of G.

Definition 1.23. [Rot95] Let G be a group and S ⊆ G. For t ∈ G, a right coset of S

in G is the subset of G such that St = {st : s ∈ G}. We say t is a representative of

the coset St.

Definition 1.24. [Rot95] Let G be a group. The index of H ≤ G, denoted [G : H], is

the number of right cosets of H in G.

Definition 1.25. [Rot95] Let G be a group and H and K be subgroups of G. A double

coset of H and K of the form HgK = {HgK|k ∈ K} is determined by g ∈ G.

Definition 1.26. [Rot95] Let N be a group. The point stabiliser of w in N is given

by:

Nw = {n ∈ N |wn = w}, where w is a word in the ti’s.

Definition 1.27. [Rot95] Let N be a group. The coset stabiliser of Nw in N is given

by:
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N (w) = {n ∈ N |Nwn = Nw}, where w is a word of the ti’s.

Definition 1.28. [Rot95] Let X be a set and G be a group. We say X is a G-set if

there exists a function φ : G×X → X (which we call an action) and the following hold

for φ:

• 1x = x, for all x ∈ X.

• g(hx) = (gh)x, for g,h ∈ G and x ∈ X.

Definition 1.29. [Rot95] Let G be a group. The center of G, Z(G), is the set of all

elements in G that commute with all elements of G.

Definition 1.30. [Rot95] Let G be a group and H, N ≤ G such that |G| = |N ||H|. G
is a central extension by H if N is the center of G. We denote this by G ∼= N•H.

Definition 1.31. [Rot95] Let G be a group and H, N ≤ G such that |G| = |N ||H|.
G is a mixed extension by H if it is a combination of both central extensions and

semi-direct products, where N is the normal subgroup of G but not central. We denote

this by G ∼= N• : H.

Definition 1.32. [Rot95] Let G be a group. If H ≤ G, the normalizer of H in G is

defined by NG(H) = {a ∈ G|aHa−1 = H}

Definition 1.33. [Rot95] Let G be a group. If H ≤ G, the centralizer of H in G is:

CG(H) = {x ∈ G : [x, h] = 1 for all h ∈ H}.

Definition 1.34. [Rot95] Let a ∈ G, where G is a group. The conjugacy class of a

is given by aG = {ag|g ∈ G} = {g−1ag|g ∈ G}

Definition 1.35. [Rot95] Let G be a group and X be a G-set. For x ∈ X, the set

xG = {xg|g ∈ G} is a G-Orbit.

Definition 1.36. [Rot95] Let X be a G-set. Let α be an action of G on X. If α̃ : G→
SX is injective, we say X is faithful.

Definition 1.37. [Rot95] Let G be a group and X be a G-set. X is transitive if for

all x,y ∈ X there exists a g ∈ G such that y = gx.
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Definition 1.38. [Rot95] Let G be a group. A normal series G is a sequence of

subgroups

G = G0 ≥ G1 ≥ · · · ≥ Gn = 1

with Gi+1 C Gi. Furthermore, the factors groups of G are given by Gi/Gi+1 for

i = 0, 1, . . . , n− 1.

Definition 1.39. [Rot95] Let G be a group. A composition series of G given by:

G = G0 ≥ G1 ≥ · · · ≥ Gn = 1

is a normal series where, for all i, either Gi+1 is a maximal normal subgroup of Gi or

Gi+1 = Gi.

Definition 1.40. [Rot95] If group G has a composition series, the factor groups of its

series are the composition factors of G.

Definition 1.41. [Rot95] Let X be a set and ∆ by a family of words on X. A group

G has generators X and relations ∆ if G ∼= F/R, where F is a free group with

basis X and R is the normal subgroup of F generated by ∆. We say < X|∆ > is a

presentation of G.

Definition 1.42. [Rot95] The Dihedral Group Dn, n even and greater than 2, groups

are formed by two elements, one of order n
2 and one of order 2. A presentation for a

Dihedral Group is given by < a, b|a
n
2 , b2, (ab)2 >.

Definition 1.43. [Rot95] A general linear group, GL(n,F) is the set of all n × n
matrices with nonzero determinant over field F.

Definition 1.44. [Rot95] A special linear group, SL(n,F) is the set of all n × n
matrices with determinant 1 over field F.

Definition 1.45. [Rot95] A projective special linear group, PSL(n,F) is the set

of all n× n matrices with determinant 1 over field F factored by its center:

PSL(n,F) = Ln(F) =
SL(n,F)

Z(SL(n,F)
.
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Definition 1.46. [Rot95] A projective general linear group, PGL(n,F) is the set

of all n× n matrices with nonzero determinant over field F factored by its center:

PGL(n,F) =
GL(n,F)

Z(GL(n,F)
.

Definition 1.47. [Rot95] Let X be a G-set. Then for B ⊆ X, B is a block if for every

g ∈ G, either gB = B or gB ∩B = ∅.

Definition 1.48. [Rot95] Let X and Y be G-sets. The function f : X → Y is a G-map

if f(gx) = gf(x), for all x ∈ X and g ∈ G.

Definition 1.49. [Rot95] Let X be a G-set. X is primitive if X has no nontrivial

blocks. If X is primitive, the only blocks of X are B = X and B = ∅.

1.2 Some Theorems

Many of these theorems can be found in an introductory level group theory

text, but for our research purposes we will use the theorems stated by Joseph Rotman

[Rot95] .

Theorem 1.50. [Rot95] Every permutation α ∈ Sn is either a cycle or a product of

disjoint cycles.

Theorem 1.51. [Rot95] Let f : (G, ∗) → (G′, ◦) be a homomorphism. The following

hold true:

• f(e) = e′, where e′ is the identity in G′,

• If a ∈ G, then f(a−1) = f(a)−1,

• If a ∈ G and n ∈ Z, then f(an) = f(a)n.

Theorem 1.52. [Rot95] The intersection of any family of subgroups of a group G is

again a subgroup of G.

Theorem 1.53. [Rot95] If S ≤ G, then any two right (or left) cosets of S in G are

either identical or disjoint.
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Theorem 1.54. [Rot95] If G is a finite group and H ≤ G, then |H| divides |G| and

[G : H] = |G|/|H|.

Theorem 1.55. [Rot95] If S and T are subgroups of a finite group G, then

|ST ||S ∩ T | = |S||T |.

Theorem 1.56. [Rot95] If N CG, then the cosets of N in G form a group, denoted by

G/N , of order [G : N ].

Theorem 1.57. [Rot95] The commutator subgroup G′ is a normal subgroup of G. More-

over, if H CG, then G/H is abelian if and only if G′ ≤ H.

Theorem 1.58. [Rot95] Let φ : G → H be a homomorphism with kernel K. Then K

is a normal subgroup of G and G/K ∼= imφ.

Theorem 1.59. [Rot95] Let N and T be subgroups of G with N normal. Then N ∩ T
is normal in T and T/(N ∩ T ) ∼= NT/N .

Theorem 1.60. [Rot95] Let G be a group with normal subgroups H and K. If HK = G

and H ∩K = 1, then G ∼= H ×K.

Theorem 1.61. [Rot95] If a ∈ G, the number of conjugates of a is equal to the index

of its centeralizer:

|aG| = [G : CG(a)],

and this number is a divisor of |G| when G is finite.

Theorem 1.62. [Rot95] If H ≤ G, then the number c of conjugates of H in G is equal

to the index of its normalizer: c = [G : NG(H)], and c divides |G| when G is finite.

Moreover, aHa−1 = bHb−1 if and only if b−1a ∈ NG(H).

Theorem 1.63. [Rot95] Every group G can be imbedded as a subgroup of SG. In

particular, if |G| = n, then G can be imbedded in Sn.

Theorem 1.64. [Rot95] If H ≤ G and [G : H] = n, then there is a homomorphism

ρ : G→ Sn with kerρ ≤ H. The homomorphism ρ is called the representation of G on

the cosets of H.
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Theorem 1.65. [Rot95] If X is a G-set with action α, then there is a homomorphism

α̃ : SX given by α̃ : x 7→ gx = α(g, x). Conversely, every homomorphism ϕ : G → SX

defines an action, namely, gx = ϕ(g)x, which makes X into a G-set.

Theorem 1.66. [Rot95] Every two composition series of a group G are equivalent.

We will refer to this Theorem as the Jordan-Hölder Theorem.

Theorem 1.67. [Rot95] Let X be a faithful primitive G-set of degree n ≥ 2. If H CG

and if H 6= 1, then X is a transitive H-set. Also, n divides |H|.

1.3 Some Lemmas

Of these lemmas, the first helps show blocks of imprivitity. The second lemma

is a powerful tool which we will use to prove the simplicity of groups. Most non-abelian

simple groups can be proved using what we will refer to as Iwasawa’s Lemma.

Lemma 1.68. [Rot95] Let X be a G-set, and let xy ∈ X.

• If H ≤ G, then Hx ∩Hy 6= ∅ implies Hx = Hy.

• If H CG, then the subsets Hx are blocks of X.

Lemma 1.69. [Rot95] G is simple if the following hold true:

1. G is faithful,

2. G is primitive,

3. G is perfect (G = G′),

4. There exists an x ∈ X and an abelian normal subgroup K CGx whose conjugates

{gKg−1 : g ∈ G} generate G.

We will refer to this lemma as Iwasawa’s Lemma.
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Chapter 2

Double Coset Enumeration

2.1 S4 over N = S3

2.1.1 Double Coset Enumeration of G

We factor the progenitor 2∗3 : S3 by the relation [xt]3, where x = (1, 2, 3) and

y = (1, 2). Letting t be represented by t3, we compute the relation:

(xt)3 = e

(xt3)
3 = e

x3[t3]
x2 [t3]

xt3 = e

x3t2t1t3 = e

t2 = t3t1.

Now, we are able to find {t2 = t3t1}N :

{t2 = t3t1}Id(N) {t2 = t3t1}(1,2) {t2 = t3t1}(2,3)

{t2 = t3t1}(1,3) {t2 = t3t1}(1,2,3) {t2 = t3t1}(1,3,2).
So we obtain all of the following relations:

t2 = t3t1 t1 = t3t2 t3 = t2t1

t2 = t1t3 t3 = t1t2 t1 = t2t3.

We let G be 2∗3 : S3/t2t1t3, where N =< (1, 2, 3), (1, 2) > and t ∼ t3. We
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will find our index of N in G by manual double coset enumeration of G over N . We

take G and express it as a union of double cosets NgN , where g is an element of G. So

G = NeN ∪Ng1N ∪Ng2N ∪ ..., where gi’s are words in the ti’s.

We will complete a double coset enumeration of G over N to find the index

of N in G. We must find all distinct double cosets [w], where [w] = {Nwn|nεN}, and

the number of single cosets contained in each double coset. Our manual double coset

enumeration is completed when all potentially new double cosets have previously been

accounted for and when the set of right cosets is closed under right-multiplication by ti’s.

We symbolize, for each [w], the double coset to which Nwti belongs for one symmetric

generator ti from each orbit of the coset stabilser N (w) = {n in N : Nwn = Nw}, where

w is a word of ti’s on {0, 1, 2, 3, 4, 5} = X.

We begin with the double coset NeN , which we denote [∗]. This double coset

consists of the single coset N . Allowing 3 to be 0, the single orbit of N on X is {0, 1, 2}.
We will choose t3 = t0 as our symmetric generator from the orbit {0, 1, 2} and find Nt0

belongs to Nt0N which is a new double coset. We denote Nt0N by [0].

To find out how many single cosets [0] contains, we find the set of coset stabi-

lizers of [0], denoted N (0). The number of single cosets in [0] is equal to |N |
|N(0)| . We have

the following:

|N (0)| ≥ | < Id(G), (2, 3) > |

≥ 2.

The number of single cosets in Nt0N = |N |
|N(0)| = 6

2 = 3. Our index is the sum

of distinct single cosets in each distinct double coset, such as [*] and [0]. As of now, we

have 1 + 3 = 4 single cosets. We note that the orbits of [0] are {0} and {1, 2}.
We will continue to the next level of potential double cosets by investigating

the orbits of N (0) on X. The orbits of N (0) on X are {0} and {1, 2} and we take t0

and t1 from each orbit respectively. From the orbit {0} we get Nt0t0, which belongs

to the double coset [∗]. From the orbit {1, 2} we find a potentially new double coset

Nt0t1, which we denote [01]. Since we already have accounted for the double coset [∗],
we should examine the potentially new double coset [01] and determine the number of

new, distinct single cosets contained inside of it.
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However, consider the relation t2 = t0t1. This implies that the coset Nt0t1

is equal to Nt2, which we have already accounted for in [0]. Therefore, if we right

multiplied by a representative from the orbit {1, 2}, we would return back at [0]. This

also implies that [01] is not a new double coset.

Since there are no potentially new double cosets that we can investigate, our

Cayley graph is closed under right multiplication and our double coset enumeration of

G over N is complete. The index of N in G is 4.

2.1.2 Proof of G ∼= S4

First let us show that G acts faithfully on X = {N,Nt0, Nt1, Nt2}. Since X

is a transitive G-set of degree 4, we have:

|G| = 4|G1|,

where G1 is the stabilizer of the single coset N . However, N is only stabilised

by elements from N . Therefore G1 = N and |G1| = |N | = 6. It is then evident that

|G| = 24. If |G| > 24, X would not be faithful.

Hence we see

Now we determine the action of φ on x, y, and t. We have the following

distinct single cosets: N , Nt0, Nt1, and Nt2. We label our distinct single cosets and

permute the ti’s by x to determine φ(x), permute the ti’s by y to determine φ(y), and

right multiply by t0 to determine where each would advance in terms of our labeling.

We will first determine φ(x):

(1) N [N ]x = N = (1)

(2) Nt0 [Nt0]
x = Nt1 = (3)

(3) Nt1 [Nt1]
x = Nt2 = (4)

(4) Nt2 [Nt2]
x = Nt0 = (2).

Starting with N , which we labeled (1), we see conjugating N by x remains N

since elements of N will fix the coset N . So we see that the permutation φ(x) should

send (1) to itself. We then obtain that φ(x) = (1)(2, 3, 4) = (2, 3, 4).

Continuing this pattern and expressing the actions of x, y, and t0 in a chart,

we obtain:
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Table 2.1: Single Coset Action of S4 Over S3

Label Single Cosets x y t0
1 N 1 N 1 N 2 Nt0
2 Nt0 3 Nt1 2 Nt0 1 N
3 Nt1 4 Nt2 4 Nt2 4 Nt2
4 Nt2 2 Nt0 3 Nt1 3 Nt1

Hence φ(x) = (1)(2, 3, 4) = (2, 3, 4), φ(y) = (1)(2)(3, 4) = (3, 4), and φ(t) =

(1, 2)(3, 4).

Now observe f(G) =< φ(x), φ(y), φ(t) >=< (2, 3, 4), (3, 4), (1, 2)(3, 4) >, where

f : G→ G/N and f is bijective.

Observe that φ(x) and φ(y) generate S3 on the letters 2, 3, and 4. But S3 is a

maximal subgroup of S4, therefore any element found outside of our S3 that is contained

in S4 and joined with φ(x) and φ(y) would give us S4. This is the case. < (1, 2)(3, 4) >

is a subgroup of S4 but is not contained in < (2, 3, 4), (3, 4) >. Therefore f(G) ∼= S4.

2.1.3 Alternative Proof of G ∼= S4

Since we have f(G) =< φ(x), φ(y), φ(t) >=< (2, 3, 4), (3, 4), (1, 2)(3, 4) >, one

can observe that |φ(y)| = 2, |φ(x)φ(y)φ(t)| = 4, and |φ(y)φ(x)φ(y)φ(t)| = 3. So G has

an element of order 2, y, and an element of order 4, xyt, such that the product of the

two elements is of order 3. This is an alternative proof that verifies that our G is indeed

S4.

2.2 PSL(2, 11)× 2 over N = D12 by Method of Factoring by

Center

2.2.1 Double Coset Enumeration of L(2, 11)× 2 over D12

We factor the progenitor 2∗6 : D12 by the two relations [xttx]3 and [xt]5, where

x = (1, 2, 3, 4, 5, 6) and y = (1, 5)(2, 4). Letting t be represented by t6, we compute the

two relations:
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(xttx)3 = e

(xt6t1)
3 = e

x3[t6t1]
x2 [t6t1]

xt6t1 = e

x3t2t3t1t2t6t1 = e

(1, 4)(2, 5)(3, 6)t2t3t1 = t1t6t2

and

(xt)5 = e

(xt6)
5 = e

x5tx
4

6 t
x3

6 t
x2

6 t
x
6t6 = e

x5t4t3t2t1t6 = e

(1, 6, 5, 4, 3, 2)t4t3t2 = t6t1.

Let G be 2∗5 : D12/(1, 4)(2, 5)(3, 6)t2t3t1t2t6t1, (1, 6, 5, 4, 3, 2)t4t3t2t1t6, where

N =< (1, 2, 3, 4, 5, 6), (1, 5)(2, 4) > and t ∼ t6.
We will find our index of N in G by manual double coset enumeration of G

over N . We take G and express it as a union of double cosets NgN , where g is an

element of G. So G = NeN ∪Ng1N ∪Ng2N ∪ ..., where gi’s are words in the ti’s.

We will complete a double coset enumeration of G over N to find the index

of N in G. We must find all distinct double cosets [w], where [w] = {Nwn|nεN}, and

the number of single cosets contained in each double coset. Our manual double coset

enumeration is completed when all potentially new double cosets have previously been

accounted for and when the set of right cosets is closed under right-multiplication by ti’s.

We symbolize, for each [w], the double coset to which Nwti belongs for one symmetric

generator ti from each orbit of the coset stabilser N (w) = {n in N : Nwn = Nw}, where

w is a word of ti’s on {0, 1, 2, 3, 4, 5} = X.

We begin with the double coset NeN , which we denote [∗]. This double coset
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consists of the single coset N . Allowing 6 to be 0, the single orbit of N on X is

{0, 1, 2, 3, 4, 5}. We will choose t6 = t0 as our symmetric generator from the orbit

{0, 1, 2, 3, 4, 5} and find Nt0 belongs to Nt0N which is a new double coset. We denote

Nt0N by [0].

To find out how many single cosets [0] contains, we find the set of coset sta-

bilizers of [0], denoted N (0). The number of single cosets in [0] is equal to |N |
|N(0)| . We

have:

|N (0)| ≥ | < Id(G), (1, 5)(2, 4) > |

≥ 2.

The number of single cosets in Nt0N = |N |
|N(0)| = 12

2 = 6. Our index is the sum

of distinct single cosets in each distinct double coset, such as [*] and [0]. As of now, we

have 1 + 6 = 7 single cosets. We note that the orbits of [0] are {0}, {1, 5}, {2, 4} and

{3}.
We will continue to the next level of potential double cosets by investigating

the orbits of N (0) on X. The orbits of N (0) on X are {0}, {1, 5}, {2, 4} and {3} and

we take t0, t1, t2, and t3 from each orbit respectively. From the orbit {0} we get Nt0t0,

which belongs to the double coset [∗]. From the orbit {1, 5} we find a potentially new

double coset Nt0t1, which we denote [01]. From the orbit {2, 4} we get Nt0t2 we find

a potentially new double coset Nt0t2, which we denote [02]. From the orbit {3} we get

another potentially new double coset Nt0t3, which we will denote [03]. We must now

find the number of distinct single cosets in [01], [02] and [03].

Computing N (01) in N , we obtain:

|N (01)| ≥ |N01|

≥ | < Id(G) > |

≥ 1.
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Computing N (02) in N , we obtain:

|N (02)| ≥ |N02|

≥ | < Id(G) > |

≥ 1.

Computing N (03) in N , we obtain:

|N (03)| ≥ |N03|

≥ | < Id(G), (1, 5)(2, 4) > |

≥ 2.

So the number of single cosets in Nt0t1N = |N |
|N(01)| = 12

1 = 12. The number

of single cosets in Nt0t2N = |N |
|N(02)| = 12

1 = 12. And the number of single cosets in

Nt0t3N = |N |
|N(03)| = 12

2 = 6.

Hence, our index is now 1 + 6 + 12 + 12 + 6 = 37.

We now explore the potentially new double cosets coming from representatives

from the orbits of N (01) on X. We find [01] has the orbits {0}, {1}, {2}, {3}, {4}
and {5}. The representative from the orbit {1} advances back to [0]. The other orbit

representatives bring the potentially new double cosets [012], [013], [014], [015], and

[010]. However, consider the following relation: t0t1t2 = (0, 5, 4, 3, 2, 1)[t0t1]
(0,4)(1,3)

Hence in [01], the representative {2} loops back to [01] and is already being

accounted for by the double coset [01]. So the only new double cosets coming from the

orbit representatives of N (01) on X are [013], [014], [015], and [010].

The orbits of N (02) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from the orbit {2} advances back to [0]. The other representatives bring the

potentially new double cosets [021], [023], [024], [025], and [020]. Consider the following

relations:

t0t2t4 = (0, 4, 2)(1, 5, 3)[t0t2]
(0,2)(5,3)

t0t2t0 = (0, 5, 4, 3, 2, 1)[t0t1t4]
(0,1,2,3,4,5).

Hence in [02], the representative {4} will loop back to [02] and the represen-

tative {0} advances to [014]. However, [021], [023], and [025] are new, distinct double
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cosets.

Now, the orbits of N (03) on X are {0}, {1, 5}, {2, 4}, and {3}. The represen-

tative from the orbit {3} advances back to [0]. We take t0, t1, and t2 from the other

three orbits of N (03) on X. These three orbit representatives advance to the potentially

new double cosets [030], [031], and [032]. Consider the following relations:

t0t3t1 = (0, 2, 4)(1, 3, 5)[t0t2t5]
(054321)

t0t3t2 = (0, 4, 2)(1, 3, 4)[t0t1t4]
(012345).

Hence the representatives from {1, 5} will actually advance to [025] and the

representatives from {2, 4} advance to [014]. The only new, distinct double coset coming

from the orbit representatives of N (03) on X is [030].

The double cosets we must now investigate are [013], [014], [015], [010], [021],

[023], [025] and [030].

Consider the relations:

t0t1t3 = t4t3t1, which implies [t0t1t3]
(1,3)(4,0) = t4t3t1 ⇒ [(1, 3)(4, 0)]εN013.

t0t1t5 = t5t4t0, which implies [t0t1t5]
(1,4)(2,3)(5,0) = t5t4t0

⇒ [(1, 4)(2, 3)(5, 0)]εN015.

t0t1t0 = t1t0t1, which implies [t0t1t0]
(1,0)(2,5)(3,4) = t1t0t1

⇒ [(1, 0)(2, 5)(3, 4)]εN010.

Computing N (013) in N , we obtain:

|N (013)| ≥ |N013|

≥ | < Id(G), (1, 3)(4, 0) > |

≥ 2.

Computing N (014) in N , we obtain:

|N (014)| ≥ |N014|

≥ | < Id(G) > |

≥ 1.
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Computing N (015) in N , we obtain:

|N (015)| ≥ |N015|

≥ | < Id(G), (1, 4)(2, 3)(5, 0) > |

≥ 2.

Computing N (010) in N , we obtain:

|N (010)| ≥ |N010|

≥ | < Id(G), (1, 0)(2, 5)(3, 4) > |

≥ 2.

The number of single cosets in Nt0t1t3N = |N |
|N(013)| = 12

2 = 6. The number

of single cosets in Nt0t1t4N = |N |
|N(014)| = 12

1 = 12. The number of single cosets in

Nt0t1t5N = |N |
|N(015)| = 12

2 = 6. And the number of single cosets in Nt0t1t0N = |N |
|N(010)| =

12
2 = 6.

Hence our index is increased to 37 + 6 + 12 + 6 + 6 = 67

Consider the relations:

t0t2t1 = t4t2t3, which implies [t0t2t1]
(1,3)(4,0) = t4t2t3 ⇒ [(1, 3)(4, 0)]εN021.

t0t2t3 = t3t1t0, which implies [t0t2t3]
(1,2)(3,0)(4,5) = t3t1t0

⇒ [(1, 2)(3, 0)(4, 5)]εN023.

Computing N (021) in N , we obtain:

|N (021)| ≥ |N021|

≥ | < Id(G), (1, 3)(4, 0) > |

≥ 2.

Computing N (023) in N , we obtain:

|N (023)| ≥ |N023|

≥ | < Id(G), (1, 2)(3, 0)(4, 5) > |

≥ 2.
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Computing N (025) in N , we obtain:

|N (025)| ≥ |N025|

≥ | < Id(G) > |

≥ 1.

The number of single cosets in Nt0t2t1N = |N |
|N(021)| = 12

2 = 6. The number

of single cosets in Nt0t2t3N = |N |
|N(023)| = 12

2 = 6. The number of single cosets in

Nt0t2t5N = |N |
|N(025)| = 12

1 = 12.

Hence our index is increased to 67 + 6 + 6 + 12 = 91.

Finally, consider the relations:

t0t3t0 = t5t2t5, which implies [t0t3t0]
(1,4)(2,3)(5,0) = t5t2t5

⇒ [(1, 4)(2, 3)(5, 0)]εN030.

t0t3t0 = t3t0t3, which implies [t0t3t0]
(1,4)(2,5)(3,0) = t3t1t0

⇒ [(1, 4)(2, 5)(3, 0)]εN030.

t0t3t0 = t1t4t1, which implies [t0t3t0]
(1,0)(2,5)(3,4) = t1t4t1

⇒ [(1, 0)(2, 5)(3, 4)]εN030.

Computing N (030) in N , we obtain:

|N (030)| ≥ |N030|

≥ | < Id(G), (1, 4)(2, 3)(5, 0), (1, 4)(2, 5)(3, 0), (1, 0)(2, 5)(3, 4) > |

≥ 12.

The number of single cosets in Nt0t3t0N = |N |
|N(030)| = 12

12 = 1.

Hence our index is increased to 91 + 1 = 92.

We must now find the new level of double cosets coming from each double

coset’s orbits respectively. The orbits of N (013) on X are {0}, {1}, {2}, {3}, {4}
and {5}. The representative from the orbit {3} advances back to [01]. The other

representatives bring the potentially new double cosets [0131], [0132], [0134], [0135],

and [0130]. Consider the following relations:

t0t1t3t1 = (0, 1, 2, 3, 4, 5)[t0t1]
(0,4)(1,3)

t0t1t3t2 = (0, 5, 4, 3, 2, 1)[t0t2t1]
(0,4)(1,3)
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t0t1t3t5 = (0, 4, 2)(1, 5, 3)[t0t1t3]
(0,4)(1,3).

Hence the representative from the {1} advances to [01], the representative from

{2} advances to [021], and the representative from {5} loops back to [013]. So [0134]

and [0130] are our only new, distinct double cosets.

However, consider the relation t0t1t3t0 = (0, 1, 2, 3, 4, 5)[t0t1t3t4]
(0,4)(1,3). Hence,

the double coset [0134] is actually [0130]. From the orbits of N (013) on X, the only new

distinct double coset is [0134].

The orbits of N (013) on X are {0}, {1}, {2}, {3}, {4} and {5}. The represen-

tative from the orbit {3} advances back to [01]. The other orbit representatives bring

the potentially new double cosets [0141], [0142], [0143], [0145], and [0140]. Consider the

following relations:

t0t1t4t1 = (0, 2, 4)(1, 3, 5)[t0t3]
(0,5,4,3,2,1)

t0t1t4t3 = (0, 2, 4)(1, 5, 3)[t0t1t4]
(1,5)(2,3)

t0t1t4t5 = (0, 1, 2, 3, 4, 5)[t0t2]
(0,5,4,3,2,1)

t0t1t4t0 = (e)[t0t2t1]
(0,2,4)(1,3,5).

Hence the representative from {1} advances to [03], the representative from {3}
loops back to [014], the representative from {5} advances to [02], and the representative

from {0} advances to [021]. So [0142] is our only potentially new double coset coming

from the orbits of N (014) on X.

The orbits of N (015) on X are {0}, {1}, {2}, {3}, {4} and {5}. The represen-

tative from the orbit {5} advances back to [01]. The other orbit representatives bring

the potentially new double cosets [0151], [0152], [0153], [0154], and [0150]. Consider the

following relations:

t0t1t5t1 = (0, 1, 2, 3, 4, 5)[t0t1t5]
(0,2)(5,3)

t0t1t5t2 = (0, 3)(1, 4)(5, 2)[t0t2t5]
(0,2,4)(1,3,5)

t0t1t5t3 = (e)[t0t2t5]
(0,3)(1,2)(5,4)

t0t1t5t4 = (0, 1, 2, 3, 4, 5)[t0t1t5]
(0,2)(5,3)

t0t1t5t0 = (0, 3)(1, 4)(5, 2)[t0t1]
(0,5)(1,4)(2,3).

Hence the representative from {1} loops back to [015], the representative from

{2} advances to [025], the representative from {3} advances to [025], the representative

from {4} loops back to [015], and the representative from {0} advances to [01]. There

are no potentially new double cosets coming from the orbits of N (015) on X.
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The orbits of N (010) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {0} advances back to [01]. The other orbit representatives bring the

potentially new double cosets [0101], [0102], [0103], [0104], and [0105]. Consider the

following relations:

t0t1t0t1 = (e)[t0t1]
(0,1)(5,2)

t0t1t0t2 = (0, 5, 4, 3, 2, 1)[t0t2t3]
(1,5)(2,4)

t0t1t0t4 = (e)[t0t1t0t3]
(0,1)(5,2)

t0t1t0t5 = (0, 1, 2, 3, 4, 5)[t0t2t3]
0,1,2,3,4,5).

Hence the representative from {1} advances to [01], the representative from {2}
advances to [023], the representative from {4} advances to [013], and the representative

from {5} advances to [023]. So [0103] is our only potentially new double coset coming

from the orbits of N (010) on X.

The orbits of N (021) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {1} advances back to [02]. The other orbit representatives bring the

potentially new double cosets [0212], [0213], [0214], [0215], and [0210]. Consider the

following relations:

t0t2t1t2 = (0, 5, 4, 3, 2, 1)[t0t1t3]
(0,4)(1,3)

t0t2t1t3 = (0, 3)(1, 4)(5, 2)[t0t2]
(0,4)(1,3)

t0t2t1t4 = (e)[t0t1t4]
(0,4,2)(1,5,3)

t0t2t1t5 = (0, 5, 4, 3, 2, 1)[t0t1t0t3]
(0,4,2)(1,5,3)

t0t2t1t0 = (0, 3)(1, 4)(5, 2)[t0t1t4]
(1,5)(2,4).

Hence the representative from {2} advances to [013], the representative from

{3} advances to [02], the representative from {4} advances to [014], the representative

from {5} advances to [0103], and the representative from {0} advances to [01]. There

are no potentially new double cosets coming from the orbits of N (021) on X.

The orbits of N (023) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {3} advances back to [02]. The other orbit representatives bring the

potentially new double cosets [0211], [0212], [0214], [0215], and [0210]. Consider the

following relations:

t0t2t3t1 = (0, 1, 2, 3, 4, 5)[t0t1t4t2]
(0,3)(1,4)(5,2)

t0t2t3t2 = (0, 1, 2, 3, 4, 5)[t0t1t4t2]
(0,2)(5,3)

t0t2t3t4 = (0, 5, 4, 3, 2, 1)[t0t1t0]
(0,5,4,3,2,1)
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t0t2t3t5 = (0, 2, 4)(1, 3, 5)[t0t1t0]
(0,3)(1,2)(5,4)

t0t2t3t0 = (0, 1, 2, 3, 4, 5)[t0t2]
(0,3)(1,4)(5,2).

Hence the representative from {1} advances to [0142], the representative from

{2} advances to [0142], the representative from {4} advances to [010], the representative

from {5} advances to [010], and the representative from {0} advances to [02]. There are

no potentially new double cosets coming from the orbits of N (023) on X.

The orbits of N (025) on X are {0}, {1}, {2}, {3}, {4} and {5}. The rep-

resentative from {5} advances back to [02]. The other representatives will bring the

potentially new double cosets [0251], [0252], [0253], [0254], and [0250]. Consider the

following relations:

t0t2t5t1 = (0, 1, 2, 3, 4, 5)[t0t1t3t4]
(0,3)(1,2)(5,4)

t0t2t5t2 = (0, 4, 2)(1, 5, 3)[t0t2]
(0,1,2,3,4,5)

t0t2t5t3 = (0, 5, 4, 3, 2, 1)[t0t2t5]
(1,5)(2,4)

t0t2t5t4 = (0, 5, 4, 3, 2, 1)[t0t1t0t3]
(0,2,4)(1,3,5)

t0t2t5t0 = (e)[t0t1t5]
(0,3)(1,4)(5,2).

Hence the representative from {1} advances to [0134], the representative from

{2} advances to [02], the representative from {3} will loop back to [025], the represen-

tative from {4} advances to [0103], and the representative from {0} advances to [015].

There are no potentially new double cosets coming from the orbits of N (025) on X.

The orbits of N (030) on X are {0}, {1, 5}, {2, 4}, and {3}. The representative

from {0} advances back to [03]. We will take t1, t2, and t3 from the other three orbits

of N (030) on X. These representatives bring the potentially new double cosets [0301],

[0302], and [0303]. Consider the following relations:

t0t3t0t1 = (0, 2, 4)(1, 3, 5)[t0t3]
(0,1,2,3,4,5)

t0t3t0t2 = (0, 4, 2)(1, 5, 3)[t0t3]
(0,2,4)(1,3,5)

t0t3t0t3 = (e)[t0t3]
(0,3)(1,4)(5,2).

Hence the representatives from {1, 5} advance to [03], the representatives from

{2, 4} advance to [03], and the representative from {3} advances to [03]. There are no

potentially new double cosets coming from the orbits of N (030) on X.

We now continue to the next level of double cosets. The only new, distinct

double cosets are [0134], [0142], and [0103].

Consider the relations:
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t0t1t3t4 = t3t2t0t5, which implies [t0t1t3t4]
(1,2)(3,0)(4,5) = t3t2t0t5

⇒ [(1, 2)(3, 0)(4, 5)]εN0134.

t0t1t4t2 = t1t0t3t5, which implies [t0t1t4t2]
(1,0)(2,5)(3,4) = t1t0t3t5

⇒ [(1, 0)(2, 5)(3, 4)]εN0142.

t0t1t0t3 = t2t1t2t5, which implies [t0t1t4t2]
(2,0)(3,5) = t2t1t2t5

⇒ [(2, 0)(3, 5)]εN0103.

Computing N (0134) in N :

|N (0134)| ≥ |N0134|

≥ | < Id(G), (1, 2)(3, 0)(4, 5) > |

≥ 2

Computing N (0142) in N , we obtain:

|N (0142)| ≥ |N0142|

≥ | < Id(G), (1, 0)(2, 5)(3, 4) > |

≥ 2.

Computing N (0103) in N , we obtain:

|N (0103)| ≥ |N0103|

≥ | < Id(G), (2, 0)(3, 5) > |

≥ 2.

The number of single cosets in Nt0t1t3t4N = |N |
|N(0134)| = 12

2 = 6. The number

of single cosets in Nt0t1t4t2N = |N |
|N(0142)| = 12

2 = 6. The number of single cosets in

Nt0t1t0t3N = |N |
|N(0103)| = 12

2 = 6.

Hence our index is increased to 92 + 6 + 6 + 6 = 110

The orbits of N (0134) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {4} advances back to [013]. The other orbit representatives bring the

potentially new double cosets [01341], [01342], [01343], [01345] and [01340]. Consider

the following relations:
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t0t1t3t4t1 = (0, 3)(1, 4)(5, 2)[t0t2t5]
(e)

t0t1t3t4t2 = (0, 1, 2, 3, 4, 5)[t0t2t5]
(0,3)(1,2)(5,4)

t0t1t3t4t3 = (0, 1, 2, 3, 4, 5)[t0t1t4t2]
(0,5,4,3,2,1)

t0t1t3t4t5 = (0, 4, 2)(1, 5, 3)[t0t1t3]
(0,3)(1,2)(5,4)

t0t1t3t4t0 = (e)[t0t1t4t2]
(0,3)(1,4)(5,2).

Hence the representatives from {1} advances to [025], the representative from

{2} will advance to [025], the representative from {3} advances to [0142], the represen-

tative from {5} advances to [013], and the representative from {0} advances to [0142].

There are no new double cosets coming from the orbits of N (0134) on X.

The orbits of N (0142) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {2} advance back to [014]. The other orbit representatives bring the

potentially new double cosets [01421], [01423], [01424], [01425] and [01420]. Consider

the following relations:

t0t1t4t2t1 = (0, 2, 4)(1, 3, 5)[t0t2t3]
(0,5,4,3,2,1)

t0t1t4t2t3 = (e)[t0t1t3t4]
(0,3)(1,4)(5,2)

t0t1t4t2t4 = (0, 5, 4, 3, 2, 1)[t0t1t3t4]
(0,1,2,3,4,5)

t0t1t4t2t5 = (0, 3)(1, 4)(5, 2)[t0t1t4]
0,1)(5,2)

t0t1t4t2t0 = (e)[t0t2t3]
(0,5,4,3,2,1).

Hence the representatives from {1} advances to [023], the representative from

{3} advances to [0134], the representative from {4} advances to [0134], the representative

from {5} advances to [014], and the representative from {0} advances to [023]. There

are no new double cosets coming from the orbits of N (0142) on X.

The orbits of N (0103) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {3} advances back to [010]. The other orbit representatives bring the

potentially new double cosets [01031], [01032], [01034], [01035] and [01030]. Consider

the following relations:

t0t1t0t3t1 = (0, 1, 2, 3, 4, 5)[t0t2t1]
(0,2,4)(1,3,5)

t0t1t0t3t2 = (0, 1, 2, 3, 4, 5)[t0t2t5]
(0,2,4)(1,5,3)

t0t1t0t3t4 = (0, 2, 4)(1, 3, 5)[t0t1t0t3]
(0,2)(5,3)

t0t1t0t3t5 = (0, 5, 4, 3, 2, 1)[t0t1t0]
(0,1,2,3,4,5)

t0t1t0t3t0 = (0, 4, 2)(1, 5, 3)[t0t2t5]
(0,4)(1,3).

Hence the representatives from {1} advances to [021], the representative from
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{2} advances to [025], the representative from {4} loops back to [0103], the represen-

tative from {5} advances to [010], and the representative from {0} advances to [025].

There are no new double cosets coming from the orbits of N (0103) on X.

Because there are no new words, we have completed our double coset enumer-

ation of G over N. Our group is closed under right multiplication of ti’s. The index of

N in G is 110. The Cayley graph of G is given below.

Figure 2.1: L(2, 11)× 2 Cayley Graph

2.2.2 Double Coset Enumeration of L(2, 11) over D12

We factor the progenitor 2∗6 : D12 by the three relations [xttx]3, [xt]5, and

(x3y)[ttx
3
t] where x = (0, 1, 2, 3, 4, 5) and y = (1, 5)(2, 4). Letting t be represented by

t0, we have the two relations from before as well as the third relation which we will

calculate:
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x3yttx
3
t = e

ttx
3
t = x3y

t0t3t0 = (1, 2)(3, 0)(4, 5)

t6t3t0t0 = (1, 2)(3, 0)(4, 5)t0

t0t3 = (1, 2)(3, 0)(4, 5)t0.

We let G be 2∗6 : D12/[(1, 4)(2, 5)(3, 0)t2t3t1t2t0t1, (0, 5, 4, 3, 2, 1)t4t3t2t1t0,

(1, 2)(3, 0)(4, 5)t0t3t0], where N =< (0, 1, 2, 3, 4, 5), (1, 5)(2, 4) >.

We will find the index of N in G by manual double coset enumeration of G over

N. We take G and express it as a union of double cosets NgN , where g is an element

of G. So G = NeN ∪Ng1N ∪Ng2N ∪ ..., where gi’s are words in the ti’s.

We will complete a double coset enumeration of G over N to find the index

of N in G. We must find all distinct double cosets [w], where [w] = {Nwn|nεN},
and how many single cosets are contained in each double coset. The manual double

coset enumeration is finished when all potentially new double cosets have already been

accounted for and when the set of right cosets we find is closed under right-multiplication

by ti’s. We symbolize, for each [w], the double coset to which Nwti belongs for one

symmetric generator ti from each orbit of the coset stabilser N (w) = {n in N : Nwn =

Nw}, where w is a word of ti’s on {0, 1, 2, 3, 4, 5} = X.

We begin with the double coset NeN , which we denote [∗]. This double coset

consists of the single coset N . For convenience, we will let 6 be 0. The single orbit of

N on X is {0, 1, 2, 3, 4, 5}. We will choose t6 = t0 as our symmetric generator from the

orbit {0, 1, 2, 3, 4, 5} and find Nt0 belongs to Nt0N which is a new double coset. We

denote Nt0N by [0].

To find the number of single cosets contained in [0] we must find the set of

coset stabilizers of 0, denoted N (0). This is relevant to us because the number of single
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cosets in [0] is equal to |N |
|N(0)| . We have:

|N (0)| ≥ | < Id(G), (1, 5)(2, 4) > |

≥ 2.

So the number of single cosets in Nt0N = |N |
|N(0)| = 12

2 = 6. When we permutate

t0 by the transversals of [0], we find 6 single cosets are distinct. Our index is the sum

of distinct single cosets in the distinct double cosets, such as [*] and [0̄]. As of now, we

have 1 + 6 = 7 single cosets since [0] has 6 distinct single cosets and [∗] has 1. We note

that the orbits of [0] are {0}, {1, 5}, {2, 4} and {3}.
We continue to the next level of potential double cosets by working with the

orbits of N (0) on X. The orbits of N (0) on X are {0}, {1, 5}, {2, 4} and {3} and we

take t0, t1, t2, and t3 from each orbit respectively. From the orbit {0} we get Nt0t0,

which belongs to the double coset [∗]. From the orbit {1, 5} we find a potentially new

double coset Nt0t1, which we will denote [01]. From the orbit {2, 4} we get Nt0t2 which

belongs to [02]. From the orbit {3} we get another potentially new double coset Nt0t3,

which we will denote [03].

Consider the double coset [03]. We have the relation: t0t3 = (1, 2)(3, 6)(4, 5)t0.

This implies that any representative from the orbit {3} will actually loop back to [0].

We will now determine how many distinct single cosets are contained in [01]

and [02].

Computing N (01) in N , we obtain:

|N (01)| ≥ |N01|

N (01) ≥ | < Id(G) > |

≥ 1.

And also N (02) in N , we obtain:

|N (02)| ≥ |N02|

≥ | < Id(G) > |

≥ 1.
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The number of single cosets in Nt0t1N = |N |
|N(01)| = 12

1 = 12. The number of

single cosets in Nt0t2N = |N |
|N(02)| = 12

1 = 12.

Hence, our index is increased to 1 + 6 + 12 + 12 = 31.

We now explore the potentially new double cosets coming from representatives

from the orbits of N (01) on X. We find [01] has the orbits {0}, {1}, {2}, {3}, {4}
and {5}. The representative from the orbit {1} will advance to [0]. The other orbit

representatives will bring the potentially new double cosets [012], [013], [014], [015], and

[010]. However, consider the following relations:

t0t1t2 = (0, 5, 4, 3, 2, 1)[t0t1]
(0,4)(1,3)

t0t1t4 = (0, 4, 2)(1, 5, 2)[t0t2]
(0,2)(5,3).

Hence in [01], the single representative {2} goes to [01] and the single repre-

sentative {4} goes to [02]. So the only new, distinct double cosets are [013], [015], and

[010].

The orbits of N (02) on X are {0}, {1}, {2}, {3}, {4} and {5}. The represen-

tative from the orbit {2} will advance to [0]. The other representatives will bring the

potentially new double cosets [021], [023], [024], [025], and [020]. Consider the following

relations:

t0t2t4 = (0, 4, 2)(1, 5, 3)[t0t2]
(0,2)(5,3)

t0t2t5 = (0, 1)(5, 2)[t0t1]
(0,5,4,3,2,1)

t0t2t0 = (0, 5, 4, 3, 2, 1)[t0t1t4]
(0,1,2,3,4,5).

Hence in [02], the representative {4} will go to [02], the representative {5} will

go to [01] and the representative {0} will go to [014]. We find that [021] and [023] are

the only new, distinct double cosets coming from the orbits of N (02) on X.

We must now investigate the double cosets: [013], [015], [010], [021] and [023].

Consider the following relations:

t0t1t3 = t4t3t1. Hence [t0t1t3]
(1,3)(4,0) = t4t3t1 ⇒ [(1, 3)(4, 0)]εN013.

t0t1t5 = t5t4t0 = t2t1t3 = t3t4t2, which implies the following three statements:

[t0t1t5]
(2,0)(3,5) = t2t1t3 ⇒ [(2, 0)(3, 5)]εN015

[t0t1t5]
(1,4)(2,3)(5,0) = t5t4t6 ⇒ [(1, 4)(2, 3)(5, 0)]εN015

[t0t1t5]
(1,4)(2,5)(3,0) = t3t4t2 ⇒ [(1, 4)(2, 5)(3, 0)]εN015.

t0t1t0 = t1t0t1, which implies [t0t1t0]
(1,0)(2,5)(3,4) = t1t0t1

⇒ [(1, 0)(2, 5)(3, 4)]εN010.
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t0t2t1 = t1t5t0 = t4t2t3 = t3t5t4, which implies the following three statements:

[t0t2t1]
(1,0)(2,5)(3,4) = t1t5t0 ⇒ [(1, 0)(2, 5)(3, 4)]εN021

[t0t2t1]
(0,4)(1,3) = t4t2t3 ⇒ [(1, 4)(2, 3)(5, 0)]εN021

[t0t2t1]
(1,4)(2,5)(3,0) = t3t5t4 ⇒ [(1, 4)(2, 5)(3, 0)]εN021.

t0t2t3 = t3t1t0, which implies [t0t2t3]
(1,2)(3,0)(4,5) = t4t3t1

⇒ [(1, 2)(3, 0)(4, 5)]εN023.

Computing N (013) in N , we obtain:

|N (013)| ≥ |N013|

≥ | < Id(G), (1, 3)(4, 0) > |

≥ 2.

Computing N (015) in N , we obtain:

|N (015)| ≥ |N015|

≥ | < Id(G), (2, 0)(3, 5), (1, 4)(2, 3)(5, 0), (1, 4)(2, 5)(3, 0) > |

≥ 4.

Computing N (010) in N , we obtain:

|N (010)| ≥ |N010|

≥ | < Id(G), (1, 0)(2, 5)(3, 4) > |

≥ 2.

Computing N (021) in N , we obtain:

|N (021)| ≥ |N021|

≥ | < Id(G), (1, 0)(2, 5)(3, 4), (1, 4)(2, 3)(5, 0), (1, 4)(2, 5)(3, 0) > |

≥ 4.
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Computing N (023) in N , we obtain:

|N (023)| ≥ |N023|

≥ | < Id(G), (1, 2)(3, 0)(4, 5) > |

≥ 2.

The number of single cosets in Nt0t1t3N = |N |
|N(013)| = 12

2 = 6. The number

of single cosets in Nt0t1t5N = |N |
|N(015)| = 12

4 = 3. The number of single cosets in

Nt0t1t0N = |N |
|N(010)| = 12

2 = 6. The number of single cosets in Nt0t2t1N = |N |
|N(021)| =

12
4 = 3. The number of single cosets in Nt0t2t3N = |N |

|N(023)| = 12
2 = 6.

Hence our index is increased to 31 + 6 + 3 + 6 + 3 + 6 = 55.

We now explore any potentially new double cosets coming from representatives

from the orbits of N (013) on X, N (015) on X, N (010) on X, N (021) on X, and N (023) on

X.

The orbits of N (013) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from the orbit {3} advances to [01]. The other representatives will be the

potentially new double cosets [0131], [0132], [0134], [0135], and [0130]. However, con-

sider the following relations:

t0t1t3t1 = (0, 1, 2, 3, 4, 5)[t0t1]
(0,4)(1,3)

t0t1t3t2 = (0, 5, 4, 3, 2, 1)[t0t2t1]
(0,4)(1,3)

t0t1t3t4 = (0, 4)(1, 3)[t0t1t0]
(0,1,2,3,4,5)

t0t1t3t5 = (0, 4, 2)(1, 5, 3)[t0t1t3]
(0,4)(1,3)

t0t1t3t0 = (0, 3)(1, 2)(5, 4)[t0t1t0]
(0,2,4)(1,3,5).

Hence the representative from the {1} will advance to [01], the representative

from {2} will advance to [021], the representative from {4} will advance to [010], the

representative from {5} will advance to [013], and the representative from {0} will

advance to [010]. So no new double cosets come from the orbits of N (013) on X.

The orbits of N (015) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from the orbit {3} will advance to [01]. The other representatives will bring

the potentially new double cosets [0141], [0142], [0143], [0145], and [0140]. Consider the

following relations:

t0t1t5t1 = (0, 1, 2, 3, 4, 5)[t0t1t5]
(0,2)(5,3)
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t0t1t5t2 = (0, 2)(5, 3)[t0t1]
(0,3)(1,4)(5,2)

t0t1t5t3 = (0, 5)(1, 4)(2, 3)[t0t1]
(0,2)(5,3)

t0t1t5t4 = (0, 1, 2, 3, 4, 5)[t0t1t5]
(0,2)(5,3)

t0t1t5t0 = (0, 3)(1, 4)(5, 2)[t0t1]
(0,5)(1,4)(2,3).

Hence the representative from {1} will advance to [015], the representative

from {2} will advance to [01], the representative from {3} will advance to [01], the

representative from {4} will advance to [015], and the representative from {0} will

advance to [01]. So no new double cosets come from the orbits of N (014) on X.

The orbits of N (010) on X are {0}, {1}, {2}, {3}, {4} and {5}. The represen-

tative from {0} will advance to [01]. The other representatives will bring the potentially

new double cosets [0101], [0102], [0103], [0104], and [0105]. Consider the following

relations:

t0t1t0t1 = (e)[t0t1]
(0,1)(5,2)

t0t1t0t2 = (0, 5, 4, 3, 2, 1)[t0t2t3]
(1,5)(2,4)

t0t1t0t3 = (0, 2)(5, 3)[t0t1t0t3]
(0,5,4,3,2,1)

t0t1t0t4 = (1, 5)(2, 4)[t0t1t0t3]
(0,2)(5,3)

t0t1t0t5 = (0, 1, 2, 3, 4, 5)[t0t2t3]
(0,1,2,3,4,5).

Hence the representative from {1} will advance to [01], the representative from

{2} will advance to [023], the representative from {3} will advance to [013], the repre-

sentative from {4} will advance to [013], and the representative from {5} will advance

to [023]. So no new double cosets come from the orbits of N (015) on X.

The orbits of N (021) on X are {0}, {1}, {2}, {3}, {4} and {5}. The represen-

tative from {1} will advance to [02]. The other representatives will bring the potentially

new double cosets [0212], [0213], [0214], [0215], and [0210]. Consider the following

relations:

t0t2t1t2 = (0, 5, 4, 3, 2, 1)[t0t1t3]
(0,4)(1,3)

t0t2t1t3 = (0, 3)(1, 4)(5, 2)[t0t2]
(0,4)(1,3)

t0t2t1t4 = (0, 1)(5, 2)[t0t2]
(0,3)(1,4)(5,2)

t0t2t1t5 = (1, 5)(2, 4)[t0t1t3]
(0,1)(5,3)

t0t2t1t0 = (0, 4)(1, 3)[t0t2]
(0,1)(5,2).

Hence the representative from {2} will advance to [013], the representative

from {3} will advance to [02], the representative from {4} will advance to [02], the
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representative from {5} will advance to [013], and the representative from {0} will

advance to [02]. So there are no potentially new double cosets coming from the orbits

of N (021) on X.

The orbits of N (023) on X are {0}, {1}, {2}, {3}, {4} and {5}. The represen-

tative from {3} will advance to [02]. The other representatives will bring the potentially

new double cosets [0231], [0232], [0234], [0235], and [0230]. Consider the following

relations:

t0t2t3t1 = (0, 1)(5, 2)[t0t2t3]
(e)

t0t2t3t2 = (0, 4)(1, 3)[t0t2t3]
(0,3)(1,2)(5,4)

t0t2t3t4 = (0, 5, 4, 3, 2, 1)[t0t1t0]
(0,5,4,3,2,1)

t0t2t3t5 = (0, 2, 4)(1, 3, 5)[t0t1t0]
(0,3)(1,4)(5,2)

t0t2t3t0 = (0, 1, 2, 3, 4, 5)[t0t2]
(0,3)(1,2)(5,4).

Hence the representative from {1} will advance to [023], the representative

from {2} will advance to [023], the representative from {4} will advance to [010], the

representative from {5} will advance to [010], and the representative from {0} will

advance to [02]. So there are no potentially new double cosets coming from the orbits

of N (023) on X.

Because there are no new words, we have completed our double coset enumer-

ation of G over N . Our group is closed under right multiplication of ti’s. The index of

N in G is 55. The Cayley graph of G is given below. Since we obtained this L(2, 11)

group by factoring by the center, the Cayley graph is very similar in structure to that

of our L(2, 11)× 2 Cayley graph we constructed previously.
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Figure 2.2: L(2, 11) Factored by Center Cayley Graph

2.2.3 Proof of G ∼= L(2, 11)

We let X = {Nω} be the set of single cosets of G over N . We will use

Iwasawa’s Lemma and the transitive action of G on X to prove G is a simple group. If

we can show that G is faithful, G acts primitively on X, G = G′, and that there exists

a normal, abelian subgroup of G such that < KG >= G, we will have shown that G is

a non-abelian simple group of order 660.

(i) G acts faithfully on X

Proof. Since X is a transitive G-set of degree 55, we have:

|G| = 55|G1|,

where G1 is the one point stabiliser of the single coset N . However, N is only

stabilised by elements of N . Therefore G1 = N and |G1| = |N | = 12. It is then

evident that |G| = 660. If |G| > 660, X would not be faithful.

(ii) The group G acts primitively on X
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Proof. Since G is transitive, we can assume N ∈ B. However, |B| must divide

|X| = 55 = 5× 11. The only possible nontrivial blocks must be of size 5 or 11. By

observation of our Cayley graph, there are no possibilities for a block of either of

these sizes. Thus G acts primitively on X.

(iii) The group G is perfect

Proof. Let us first begin by showing that G is generated by involutions. We have

G =< x, y, t0, t1, . . . , t5 >. However, consider the following relations:

t0t1t5t4 = (0, 1, 2, 3, 4, 5)t2t1t3

t0t1t5t4t3t1t2 = (0, 1, 2, 3, 4, 5)t2t1t3t3t1t2

t0t1t5t4t3t1t2 = (0, 1, 2, 3, 4, 5) = x

t0t1t0t4 = (1, 5)(2, 4)t2t1t5

t0t1t0t4t5t1t2 = (1, 5)(2, 4)t2t1t5t5t1t2

t0t1t0t4t5t1t2 = (1, 5)(2, 4) = y.

Since x and y are product of ti’s and G =< x, y, t0, t1, . . . , t5 >, we see G =<

t0, t1, . . . , t5 >.

Since G =< N, t >, where N = D12, we know (D12)
′ ≤ G′. Hence we have

(D12)
′ =< x2 >=< (0, 2, 4)(1, 3, 5) >=≤ G′.

Consider the following relation:
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t0t2t4 = (0, 4, 2)(1, 5, 3)t2t0

t0t2t4t0 = (0, 4, 2)(1, 5, 3)t2t0t0

t0t2t4t0 = (0, 4, 2)(1, 5, 3)t2

t0t2t4t0t2 = (0, 4, 2)(1, 5, 3)t2t2

t0t2t4t0t2 = (0, 4, 2)(1, 5, 3).

So we see t0t2t4t0t2 ∈ N ≤ G′. Now we conjugate t0t2t4t0t2 ∈ G′ by the element

t0t2 ∈ G and find:

[t0t2t4t0t2]
t0t2 ∈ G′

[t0t2]
−1[t0t2t4t0t2][t0t2] ∈ G′

t2
−1t0

−1t0t2t4t0t2t0t2 ∈ G′

t2t0t0t2t4t0t2t0t2 ∈ G′

t2t2t4t0t2t0t2 ∈ G′

t4t0t2t0t2 ∈ G′

t4[t0, t2] ∈ G′.

But [t0, t2] ∈ G′. Therefore t4 ∈ G′. So we have G′ ≥< (0, 2, 4)(1, 3, 5), t4 >. So

we have G′ =< (0, 2, 4)(1, 3, 5), t0, t2, t4 > after conjugating t4 by x2 and x4.

Now consider the relation:
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t0t1t3t5 = (0, 4, 2)(1, 5, 3)t4t3t1

t0t1t3t5 = t0(0, 4, 2)(1, 5, 3)t3t1

t0t0t1t3t5 = t0t0(0, 4, 2)(1, 5, 3)t3t1

t1t3t5 = (0, 4, 2)(1, 5, 3)t3t1

t1t3t5t1 = (0, 4, 2)(1, 5, 3)t3t1t1

t1t3t5t1 = (0, 4, 2)(1, 5, 3)t3

t1t3t5t1t3 = (0, 4, 2)(1, 5, 3)t3t3

t1t3t5t1t3 = (0, 4, 2)(1, 5, 3).

So we see t1t3t5t1t3 ∈ G′. Now we conjugate t1t3t5t1t3 ∈ G′ by the element

t1t3 ∈ G and find:

[t1t3t5t1t3]
t1t3 ∈ G′

[t1t3]
−1[t1t3t5t1t3][t1t3] ∈ G′

t3
−1t1

−1t1t3t5t1t3t1t3 ∈ G′

t3t1t1t3t5t1t3t1t3 ∈ G′

t3t3t5t1t3t1t3 ∈ G′

t5t1t3t1t3 ∈ G′

t5[t1, t3] ∈ G′.

But [t1, t3] ∈ G′. Therefore t5 ∈ G′. So we haveG′ =< (0, 2, 4)(1, 3, 5), t0, t2, t4, t5 >.

After conjugating t5 by x2 and x4, we seeG′ =< (0, 2, 4)(1, 3, 5), t0, t2, t4, t5, t1, t3 >.

We have already shown x is generated by ti’s and therefore x2 would also be gen-

erated by ti’s. So we see G′ =< t0, t1, . . . , t5 >= G. So G′ = G.

(iv) The point stabiliser of N of G contains a normal abelian subgroup K whose con-

jugates generate G

Proof. Since N = D12, we will take the normal, abelian subgroup K given by

K =< (0, 3)(1, 2)(4, 5) >. Utilizing the following relation, we have:
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t0t3 = (0, 3)(1, 2)(4, 5)t0

t0t3t0 = (0, 3)(1, 2)(4, 5) ∈ KG

t0t3t0 ∈ K ⊆ KG.

Now conjugating t0t3t0 by the element t0 ∈ G we see:

[t0t3t0]
t0 ∈ KG

t0
−1t0t3t0t0 ∈ KG

t3 ∈ KG.

Since N ∈ G, we also have (t3)
N ∈ KG. Now we have KG ≥< t0, t1, . . . , t5 >= G

since G =< t0, t1, . . . , t5 >. But KG ≤ G, hence KG = G.

(v) The group G is simple. Furthermore, G ∼= L2(11).

Proof. We have shown that the group G acts faithfully on X, is primitive, is

perfect, and contains a normal abelian subgroup whose conjugates generate G.

Therefore by Iwasawa’s Lemma G is a simple group. Refering to [WB99], L2(11)

is the only non-abelian simple group of order 660.

2.2.4 Alternative Proof of G ∼= L(2, 11)

An alternative proof can be used to show G ∼= L(2, 11) = L2(11) utilizing

linear fractional mappings.

Let us first define our mappings given by α, β, γ, and δ.

For the linear fractional mapping L2(n), we have the following which are all

in modulo n:

α : x 7→ x+ 1

β : x 7→ kx, where k is a nonzero, finite square found in the integers 1, 2, . . . ,

n− 1 such that the powers of k generate the set of nonzero squares of 1, 2, . . . , n− 1

γ : x 7→ −x−1

δ : x 7→ M , where M =
ax+ b

cx+ d
, where ad − bc is a nonzero, nonsquare in

modulo n.

Furthermore, if n ≡ 3 (mod 4) then the presentation of L2(n) is given by:
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PSL(2, n) = L2(n) =< α, β, γ|αn, β
(n−1)

2 , γ2, αβα−k, (βγ)2, (αγ)3 >.

Similarly, if n ≡ 3 (mod 4) a presentation for PGL(2, n) is given by:

PGL(2, n) =< α, β, γ|αn−1, β
(n−1)

2 , γ2, αβα−k, (βγ)2, (αγ)3, δ2, αδ = ,

βδ = , γδ = > , where the action of αδ, βδ, γδ must be determined.

For now, we will only use the formula for L2(11) which is of the form n ≡ 3

(mod 4). We write our 12-letter permutations on the 12 letters given by 0, 1, 2, . . . , 10,∞.

We find the following:

α : x 7→ x+ 1 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)(∞) = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

In modulo 11, we calculate the nonzero, squares of 1, 2, . . . , 10,∞:

{12, 22, 32, 42, 52, 62, 72, 82, 92, 102,∞2} = {1, 4, 9, 5, 3, 3, 5, 9, 4, 1,∞} = {1, 3, 4, 5, 9}.
We find the following:

41 ≡ 4 (mod 11),

42 ≡ 16 (mod 11) ≡ 5 (mod 11),

43 ≡ 64 (mod 11) ≡ 9 (mod 11)

44 ≡ 256 (mod 11) ≡ 3 (mod 11)

45 ≡ 1024 (mod 11) ≡ 1 (mod 11).

Therefore the powers of 4 generate the set {1, 3, 4, 5, 9} in modulo 11. So k = 4

and we obtain:

β : x 7→ 4x = (0)(∞)(1, 4, 5, 9, 3)(2, 8, 10, 7, 6) = (1, 4, 5, 9, 3)(2, 8, 10, 7, 6).

Finally, to find γ : x 7→ −x−1, we will first find x−1, or the multiplicative in-

verse of each letter, and then multiply that value by −1 and determine its representative

value modulo 11.

For instance, the multiplicative inverse of 1 is itself since 1 × 1 = 1 ≡ 1

(mod 11), therefore 1 7→ −(1) ≡ 10 (mod 11). The multiplicative inverse of 2 is 6, since

2×6 = 12 ≡ 1 (mod 11). We define the multiplicative inverse of 0 as∞ and claim that

−∞ corresponds to the letter ∞. Let us first find solve x = 1. 1 7→ −(1)−1 = −1 ≡ 10

(mod 11). So we find that 1 should advance to 10 in permutation γ. Continuing this

pattern with the other 11 letters, we obtain the following permutation for γ:

γ : x 7→ −x−1 = (0,∞)(1, 10)(2, 5)(3, 7)(4, 8)(6, 9).

When observing the permutations for α, β, and γ, the order of each permuta-

tion follows the order that our presentation should have. α is of order 11, β is of order

11−1
2 = 5, and γ is of order 2. We denote the group H =< α, β, γ >.
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We can utilize the presentation formula of PSL(2, 11) = L2(11) from earlier

and obtain the following:

PSL(2, 11) = L2(11) =< α, β, γ|α11, β
(11−1)

2 , γ2, αβα−4, (βγ)2, (αγ)3 >.

After a quick computerized check, we find our group G is isomorphic to this

presentation of L2(11) and to our constructed group H.

2.3 PGL(2, 13) over N = D12

2.3.1 Double Coset Enumeration of G

We factor the progenitor 2∗6 : D12 by the two relations [xttx]7 and [xytxt]3,

where x = (1, 2, 3, 4, 5, 6) and y = (1, 5)(2, 4). Letting t be represented by t6, we compute

the two relations:

(xttx)3 = e

(xt6t1)
3 = e

x3[t6t1]
x2 [t6t1]

xt6t1 = e

x3t2t3t1t2t6t1 = e

(1, 4)(2, 5)(3, 6)t2t3t1 = t1t6t2

(xt)5 = e

(xt6)
5 = e

x5tx
4

6 t
x3

6 t
x2

6 t
x
6t6 = e

x5t4t3t2t1t6 = e

(1, 6, 5, 4, 3, 2)t4t3t2 = t6t1.

Let G be 2∗6 : D12/(1, 4)(2, 5)(3, 6)t2t3t1t2t6t1, (1, 6, 5, 4, 3, 2)t4t3t2t1t6, where

N =< (1, 2, 3, 4, 5, 6), (1, 5)(2, 4) > and t ∼ t6.
We will find the index of N in G by manual double coset enumeration of G

over N . We take G and express it as a union of double cosets NgN , where g is an
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element of G. So G = NeN ∪Ng1N ∪Ng2N ∪ ..., where gi’s are words in the ti’s.

We will complete a double coset enumeration of G over N to find the index

of N in G. We must find all distinct double cosets [w], where [w] = {Nwn|nεN}, and

the number of single cosets contained in each double coset. Our manual double coset

enumeration is completed when all potentially new double cosets have previously been

accounted for and when the set of right cosets is closed under right-multiplication by ti’s.

We symbolize, for each [w], the double coset to which Nwti belongs for one symmetric

generator ti from each orbit of the coset stabilser N (w) = {n in N : Nwn = Nw}, where

w is a word of ti’s on {0, 1, 2, 3, 4, 5} = X.

We begin with the double coset NeN , which we denote [∗]. This double coset

consists of the single coset N . Allowing 6 to be 0, the single orbit of N on X is

{0, 1, 2, 3, 4, 5}. We will choose t6 = t0 as our symmetric generator from the orbit

{0, 1, 2, 3, 4, 5} and find Nt0 belongs to Nt0N which is a new double coset. We denote

Nt0N by [0].

To find out how many single cosets [0] contains, we find the set of coset sta-

bilizers of [0], denoted N (0). The number of single cosets in [0] is equal to |N |
|N(0)| . We

have:

N (0) ≥< Id(G), (1, 5)(2, 4) >

≥ 2.

The number of single cosets in Nt0N = |N |
|N(0)| = 12

2 = 6. Our index is the sum

of distinct single cosets in each distinct double coset, such as [*] and [0]. As of now, we

have 1 + 6 = 7 single cosets. Note that the orbits of [0] are {0}, {1, 5}, {2, 4} and {3}.
We will continue to the next level of potential double cosets by investigating

the orbits of N (0) on X. The orbits of N (0) on X are {0}, {1, 5}, {2, 4} and {3} and

we take t0, t1, t2, and t3 from each orbit respectively. From the orbit {0} we get Nt0t0,

which belongs to the double coset [∗]. From the orbit {1, 5} we find a potentially new

double coset Nt0t1, which we denote [01]. From the orbit {2, 4} we get Nt0t2 we find

a potentially new double coset Nt0t2, which we denote [02]. From the orbit {3} we get

another potentially new double coset Nt0t3, which we will denote [03]. We must now

find the number of distinct single cosets in [01], [02] and [03].



41

Computing N (01) in N , we obtain:

|N (01)| ≥ |N01|

≥ | < Id(G) > |

≥ 1.

Computing N (02) in N :

|N (02)| ≥ |N02|

≥ | < Id(G) > |

≥ 1.

Computing N (03) in N :

|N (03)| ≥ |N03|

≥ | < Id(G), (1, 5)(2, 4) > |

≥ 2.

So the number of single cosets in Nt0t1N = |N |
|N(01)| = 12

1 = 12. The number

of single cosets in Nt0t2N = |N |
|N(02)| = 12

1 = 12. And the number of single cosets in

Nt0t3N = |N |
|N(03)| = 12

2 = 6.

Hence, our index is now 1 + 6 + 12 + 12 + 6 = 37.

We now explore the potentially new double cosets coming from representatives

from the orbits of N (01) on X. We find [01] has the orbits {0}, {1}, {2}, {3}, {4}
and {5}. The representative from the orbit {1} advances back to [0]. The other orbit

representatives bring the potentially new double cosets [012], [013], [014], [015], and

[010]. However, consider the following relation:

t0t1t5 = (0, 5)(1, 4)(2, 3)[t0t1t3]
(0,1)(5,2).

Hence in [01], the representative {5} advances to [013] and is already being

accounted for by the double coset [013]. So the only new double cosets coming from the

orbit representatives of N (01) on X are [012], [013], [014], and [010].

The orbits of N (02) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-
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sentative from the orbit {2} advances back to [0]. The other representatives bring the

potentially new double cosets [021], [023], [024], [025], and [020]. Consider the following

relations:

t0t2t3 = (0, 3)(1, 2)(5, 4)[t0t2t1]
(0,2)(5,3)

t0t2t0 = (0, 1, 2, 3, 4, 5)[t0t1t4]
(0,4,2)(1,5,3).

Hence in [02], the representative {3} will advance to [021] and the represen-

tative {0} advances to [014]. However, [023], [024], and [025] are new, distinct double

cosets.

Finally, the orbits of N (03) on X are {0}, {1, 5}, {2, 4}, and {3}. The repre-

sentative from the orbit {3} advances back to [0]. We take t0, t1, and t2 from the other

three orbits of N (03) on X. These three orbit representatives advance to the potentially

new double cosets [030], [031], and [032]. Consider the following relation:

t0t3t2 = (0, 2, 4)(1, 3, 5)[t0t1t4]
(0,3)(1,4)(5,2).

Hence the representatives from {2, 4} will actually advance to [014]. The other

two orbit representatives of N (03) on X will bring the new, distinct double cosets [031]

and [030].

The double cosets we must now investigate are [012], [013], [014], [010], [023],

[024], [025], [031] and [030].

Consider the relation:

t0t1t2 = t1t0t5, which implies [t0t1t2]
(1,0)(2,5)(3,4) = t1t0t5

⇒ [(1, 0)(2, 5)(3, 4)]εN012.

Computing N (012) in N , we obtain:

|N (012)| ≥ |N012|

≥ | < Id(G), (1, 0)(2, 5)(3, 4) > |

≥ 2.

Computing N (013) in N , we obtain:

|N (013)| ≥ |N013|

≥ | < Id(G) > |

≥ 1.
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Computing N (014) in N , we obtain:

|N (014)| ≥ |N014|

≥ | < Id(G) > |

≥ 1.

Computing N (010) in N , we obtain:

|N (010)| ≥ |N010|

≥< Id(G) >

≥ 1.

The number of single cosets in Nt0t1t2N = |N |
|N(012)| = 12

2 = 6. The number

of single cosets in Nt0t1t3N = |N |
|N(013)| = 12

1 = 12. The number of single cosets in

Nt0t1t4N = |N |
|N(014)| = 12

1 = 12. And the number of single cosets in Nt0t1t0N =
|N |

|N(010)| = 12
1 = 12.

Hence our index is increased to 37 + 6 + 12 + 12 + 12 = 79.

Consider the relation:

t0t2t5 = t3t1t4, so [t0t2t5]
(1,2)(3,0)(4,5) = t3t1t4 ⇒ [(1, 2)(3, 0)(4, 5)]εN025.

Computing N (023) in N , we obtain:

|N (021)| ≥ |N021|

≥ | < Id(G) > |

≥ 1.

Computing N (024) in N , we obtain:

|N (023)| ≥ |N023|

≥ | < Id(G) > |

≥ 1.
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Computing N (025) in N , we obtain:

|N (025)| ≥ |N025|

≥ | < Id(G), (1, 2)(3, 0)(4, 5) > |

≥ 2.

The number of single cosets in Nt0t2t3N = |N |
|N(023)| = 12

1 = 12. The number

of single cosets in Nt0t2t4N = |N |
|N(024)| = 12

1 = 12. The number of single cosets in

Nt0t2t5N = |N |
|N(025)| = 12

2 = 6.

Hence our index is increased to 79 + 12 + 12 + 6 = 109.

Finally, consider the relations:

t0t3t1 = t4t1t3, which implies [t0t3t1]
(0,4)(1,3) = t4t1t3 ⇒ [(0, 4)(1, 3)]εN031.

t0t3t0 = t3t0t3, so [t0t3t5]
(1,4)(2,5)(3,0) = t2t5t3 ⇒ [(1, 4)(2, 5)(3, 0)]εN030.

t0t3t5 = t2t5t3, so [t0t3t5]
(1,2)(3,0)(4,5) = t2t5t3 ⇒ [(1, 2)(3, 0)(4, 5)]εN030.

Computing N (031) in N , we obtain:

|N (031)| ≥ |N031|

≥ | < Id(G), (0, 4)(1, 3) > |

≥ 2.

Computing N (030) in N , we obtain:

|N (030)| ≥ |N030|

≥ | < Id(G), (1, 4)(2, 5)(3, 0), (1, 2)(3, 0)(4, 5) > |

≥ 4.

The number of single cosets in Nt0t3t1N = |N |
|N(031)| = 12

12 = 6. The number of

single cosets in Nt0t3t0N = |N |
|N(030)| = 12

4 = 3.

Hence our index is increased to 109 + 6 + 3 = 118.

We must now find the new level of double cosets coming from each double

coset’s orbits respectively. The orbits of N (012) on X are {0}, {1}, {2}, {3}, {4}
and {5}. The representative from the orbit {2} advances back to [01]. The other
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representatives bring the potentially new double cosets [0121], [0123], [0124], [0125],

and [0120]. Consider the following relations:

t0t1t2t4 = (0, 4, 2)(1, 5, 3)[t0t1t2t3]
(0,1)(5,2)

t0t1t2t5 = (0, 4, 2)(1, 5, 3)[t0t1]
(0,1)(5,2)

t0t1t2t0 = (0, 5, 4, 3, 2, 1)[t0t1t2t1]
(e).

Hence the representative from the {4} advances to [0123], the representative

from {5} advances to [01], and the representative from {0} advances to [0121]. From

the orbits of N (013) on X, the only new distinct double cosets are [0121] and [0123].

The orbits of N (013) on X are {0}, {1}, {2}, {3}, {4} and {5}. The represen-

tative from the orbit {3} advances back to [01]. The other orbit representatives bring

the potentially new double cosets [0131], [0132], [0134], [0135], and [0130]. Consider the

following relations:

t0t1t3t1 = (0, 4)(1, 3)[t0t1t2t3]
(0,3)(1,2)(5,4)

t0t1t3t2 = (0, 3)(1, 2)(5, 4)[t0t1]
(0,1)(5,2).

Hence the representative from {1} advances to [0123] and the representative

from {2} advances to [014]. So [0134], [0135], and [0130] are the potentially new double

coset coming from the orbits of N (013) on X.

The orbits of N (014) on X are {0}, {1}, {2}, {3}, {4} and {5}. The represen-

tative from the orbit {4} advances back to [01]. The other orbit representatives bring

the potentially new double cosets [0141], [0142], [0143], [0145], and [0140]. Consider the

following relations:

t0t1t4t1 = (0, 1)(5, 2)[t0t1t2t3]
(0,5)(1,4)(2,3)

t0t1t4t2 = (0, 5, 4, 3, 2, 1)[t0t2]
(0,2,4)(1,3,5)

t0t1t4t3 = (0, 2)(5, 3)[t0t1t3t0]
(e)

t0t1t4t5 = (0, 4, 2)(1, 5, 3)[t0t3]
(0,3)(1,4)(5,2).

Hence the representative from {1}advances to [0123], the representative from

{2} advances to [02], the representative from {3} advances to [0130], and the represen-

tative from {5} advances to [03]. There are no potentially new double cosets coming

from the orbits of N (014) on X.

The orbits of N (010) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {0} advances back to [01]. The other orbit representatives bring the

potentially new double cosets [0101], [0102], [0103], [0104], and [0105]. Consider the
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following relations:

t0t1t0t1 = (0, 3)(1, 2)(5, 4)[t0t1t4t0]
(0,5,4,3,2,1)

t0t1t0t2 = (0, 3)(1, 4)(5, 2)[t0t1t3t0]
(1,5)(2,4)

t0t1t0t3 = (0, 4)(1, 3)[t0t1t2t1]
(0,5,4,3,2,1)

t0t1t0t4 = (0, 1, 2, 3, 4, 5)[t0t2t3]
0,1,2,3,4,5).

Hence the representative from {1} advances to [0140], the representative from

{2} advances to [0130], the representative from {3} advances to [0121], and the repre-

sentative from {4} advances to [023]. So [0105] is our only potentially new double coset

coming from the orbits of N (010) on X.

The orbits of N (021) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {1} advances back to [02]. The other orbit representatives bring the

potentially new double cosets [0212], [0213], [0214], [0215], and [0210]. Consider the

following relations:

t0t2t1t2 = (0, 3)(1, 4)(5, 2)[t0t1t3t0]
(0,4)(1,3)

t0t2t1t3 = (0, 5, 4, 3, 2, 1)[t0t1t3t4]
(0,3)(1,2)(5,4)

t0t2t1t4 = (0, 3)(1, 2)(5, 4)[t0t1t2t3]
(0,4,2)(1,5,3)

t0t2t1t5 = (0, 1)(5, 2)[t0t2]
(0,2)(5,3)

t0t2t1t0 = (0, 1, 2, 3, 4, 5)[t0t1t0t5]
(0,2,4)(1,3,5).

Hence the representative from {2} advances to [0130], the representative from

{3} advances to [0134], the representative from {4} advances to [0123], the representative

from {5} advances to [02], and the representative from {0} advances to [0105]. There

are no potentially new double cosets coming from the orbits of N (021) on X.

The orbits of N (024) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {4} advances back to [02]. The other orbit representatives bring the

potentially new double cosets [0241], [0242], [0243], [0245], and [0240]. Consider the

following relations:

t0t2t4t1 = (e)[t0t1t2t1]
(0,4)(1,3)

t0t2t4t2 = (0, 3)(1, 4)(5, 2)[t0t1t4t0]
(0,1,2,3,4,5)

t0t2t4t3 = (0, 5)(1, 4)(2, 3)[t0t1t3t4]
(0,5)(1,4)(2,3)

t0t2t4t0 = (0, 3)(1, 4)(5, 2)[t0t1t3t0]
(0,5,4,3,2,1).

Hence the representative from {1} advances to [0121], the representative from

{2} advances to [0140], the representative from {4} advances to [0134], and the rep-
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resentative from {0} advances to [0130]. So [0245] is our only potentially new double

coset coming from the orbits of N (024) on X.

The orbits of N (025) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {5} advances back to [02]. The other orbit representatives bring the

potentially new double cosets [0251], [0252], [0253], [0254], and [0250]. Consider the

following relations:

t0t2t5t1 = (0, 2, 4)(1, 3, 5)[t0t1t2t3]
(e)

t0t2t5t2 = (0, 5, 4, 3, 2, 1)[t0t1t2t3]
(0,3)(1,2)(5,4)

t0t2t5t3 = (0, 5, 4, 3, 2, 1)[t0t1t4t0]
(0,5,4,3,2,1)

t0t2t5t4 = (0, 1, 2, 3, 4, 5)[t0t2]
(0,3)(1,2)(5,4)

t0t2t5t0 = (0, 2, 4)(1, 3, 5)[t0t1t4t0]
(0,4)(1,3).

Hence the representative from {1} advances to [0123], the representative from

{2} advances to [0123], the representative from {3} will advances to [0140], the repre-

sentative from {4} advances to [02], and the representative from {0} advances to [0140].

There are no potentially new double cosets coming from the orbits of N (025) on X.

The orbits of N (031) on X are {0}, {1} ,{2}, {3}, {4}, and {5}. The rep-

resentative from {1} advances back to [03]. The other orbit representatives bring the

potentially new double cosets [0312], [0313], [0314], [0315], and [0310]. Consider the

following relations:

t0t3t1t2 = (e)[t0t2t4t5]
(0,2,4)(1,3,5)

t0t3t1t3 = (0, 5, 4, 3, 2, 1)[t0t3]
(0,4,2)(1,5,3)

t0t3t1t4 = (0, 5, 4, 3, 2, 1)[t0t1t3t0]
(0,5,4,3,2,1)

t0t3t1t5 = (e)[t0t1t0t5]
(0,2)(5,3)

t0t3t1t0 = (e)[t0t1t3t0]
(0,5)(1,4))(2,3).

Hence the representative from {2} advances to [0245], the representative from

{3} advances to [03], the representative from {4} advances to [0130], the representative

from {5} advances to [0105], and the representative from {0} advances to [0130]. There

are no potentially new double cosets coming from the orbits of N (031) on X.

The orbits of N (030) on X are {0}, {1, 5}, {2, 4}, and {3}. The representative

from {0} advances back to [03]. The other orbit representatives bring the potentially

new double cosets [0301], [0302], and [0303]. Consider the following relations:

t0t3t0t1 = (0, 1)(5, 2)[t0t1t2t3]
(0,2,4)(1,3,5)
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t0t3t0t2 = (0, 5, 4, 3, 2, 1)[t0t1t2t3]
(0,1)(5,2)

t0t3t0t3 = (1, 5)(2, 4)[t0t3]
(0,3)(1,4)(5,2).

Hence the representatives from {1, 5} advance to [0123], the representatives

from {2, 4} advance to [0123], and the representative from {3} advances to [03]. There

are no potentially new double cosets coming from the orbits of N (030) on X.

We now continue to the next level of double cosets. The only new, distinct

double cosets we must investigate are [0121], [0123], [0134], [0135], [0130], [0140], [0105],

and [0245].

Consider the relations:

t0t1t2t1 = t1t0t5t0, which implies [t0t1t2t1]
(1,0)(2,5)(3,4) = t1t0t5t0

⇒ [(1, 0)(2, 5)(3, 4)]εN0121.

t0t1t3t4 = t5t4t2t1, which implies [t0t1t3t4]
(1,4)(2,3)(5,0) = t5t4t2t1

⇒ [(1, 4)(2, 3)(5, 0)]

εN0134.

t0t1t3t5 = t0t5t3t1 = t3t4t0t2 = t3t2t0t4, which implies the following three

statements:

[t0t1t3t5]
(1,5)(2,4) = t0t5t3t1 ⇒ [(1, 5)(2, 4)]εN0135

[t0t1t3t5]
(1,4)(2,5)(3,0) = t3t4t0t2 ⇒ [(1, 4)(2, 5)(3, 0)]εN0135

[t0t1t3t5]
(1,2)(3,0)(4,5) = t3t2t0t4 ⇒ [(1, 2)(3, 0)(4, 5)]εN0135.

t0t1t0t5 = t0t5t0t1, which implies [t0t1t0t5]
(1,5)(2,4) = t0t5t0t1

⇒ [(1, 5)(2, 4)]εN0105.

t0t2t4t5 = t0t4t2t1 = t3t1t5t4 = t3t5t1t2, which implies the following three

statements:

[t0t2t4t5]
(1,5)(2,4) = t0t4t2t1 ⇒ [(1, 5)(2, 4)]εN0245

[t0t2t4t5]
(1,2)(3,0)(4,5) = t3t1t5t4 ⇒ [(1, 2)(3, 0)(4, 5)]εN0245

[t0t2t4t5]
(1,4)(2,5)(3,0) = t3t5t1t2 ⇒ [(1, 2)(3, 0)(4, 5)]εN0245.

Computing N (0121) in N , which implies

|N (0121)| ≥ |N0121|

≥ | < Id(G), (1, 0)(2, 5)(3, 4) > |

≥ 2.
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Computing N (0123) in N , which implies

|N (0123)| ≥ |N0123|

≥ | < Id(G) > |

≥ 1.

Computing N (0134) in N , which implies

|N (0134)| ≥ |N0134|

≥ | < Id(G), (1, 4)(2, 3)(5, 0) > |

≥ 2.

Computing N (0135) in N , which implies

|N (0135)| ≥ |N0135|

≥ | < Id(G), (1, 5)(2, 4), (1, 4)(2, 5)(3, 0), (1, 2)(3, 0)(4, 5) > |

≥ 4.

Computing N (0130) in N , which implies

|N (0130)| ≥ |N0130|

≥ | < Id(G) > |

≥ 1.

Computing N (0140) in N , which implies

|N (0140)| ≥ |N0140|

≥ | < Id(G) > |

≥ 1.
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Computing N (0105) in N , which implies

|N (0105)| ≥ |N0105|

≥ | < Id(G), (1, 5)(2, 4) > |

≥ 2.

Computing N (0245) in N , which implies

|N (0245)| ≥ |N0245|

≥ | < Id(G), (1, 5)(2, 4), (1, 2)(3, 0)(4, 5), (1, 4)(2, 5)(3, 0) > |

≥ 4.

The number of single cosets in Nt0t1t2t1N = |N |
|N(0121)| = 12

2 = 6. The number

of single cosets in Nt0t1t2t3N = |N |
|N(0123)| = 12

1 = 12. The number of single cosets

in Nt0t1t3t4N = |N |
|N(0134)| = 12

2 = 6. The number of single cosets in Nt0t1t3t5N =
|N |

|N(0135)| = 12
4 = 3. The number of single cosets in Nt0t1t3t0N = |N |

|N(0130)| = 12
1 = 12.

The number of single cosets in Nt0t1t4t0N = |N |
|N(0140)| = 12

1 = 12. The number of

single cosets in Nt0t1t0t5N = |N |
|N(0105)| = 12

2 = 6. The number of single cosets in

Nt0t2t4t5N = |N |
|N(0245)| = 12

4 = 3.

Hence our index is increased to 118 + 6 + 12 + 6 + 3 + 12 + 12 + 6 + 3 = 178.

We must now find the new level of double cosets coming from each double

coset’s orbits respectively. The orbits of N (0121) on X are {0}, {1}, {2}, {3}, {4} and

{5}. The representative from {1} advances back to [012]. The other orbit representatives

bring the potentially new double cosets [01212], [01213], [01214], [01215] and [01210].

Consider the following relations:

t0t1t2t1t2 = (0, 3)(1, 2)(5, 4)[t0t1t0]
(1,5)(2,4)

t0t1t2t1t3 = (e)[t0t2t4]
(0,4)(1,3)

t0t1t2t1t4 = (0, 5, 4, 3, 2, 1)[t0t2t4]
(0,3)(1,4)(5,2)

t0t1t2t1t5 = (1, 5)(2, 4)[t0t1t0]
(0,1,2,3,4,5)

t0t1t2t1t0 = (0, 1, 2, 3, 4, 5)[t0t1t2]
(e).

Hence the representatives from {2} advances to [010], the representative from

{3} advances to [024], the representative from {4} advances to [024], the representative
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from {5} advances to [010], and the representative from {0} advances to [012]. There

are no new double cosets coming from the orbits of N (0121) on X.

The orbits of N (0123) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {3} advances back to [012]. The other orbit representatives bring the

potentially new double cosets [01231], [01232], [01234], [01235] and [01230]. Consider

the following relations:

t0t1t2t3t1 = (0, 5, 4, 3, 2, 1)[t0t2t5]
(0,3)(1,2)(5,4)

t0t1t2t3t2 = (0, 2)(5, 3)[t0t1t3]
(0,3)(1,2)(5,4)

t0t1t2t3t4 = (0, 3)(1, 2)(5, 4)[t0t1t4]
(0,5)(1,4)(2,3)

t0t1t2t3t5 = (0, 5, 4, 3, 2, 1)[t0t3t0]
(0,1,2,3,4,5)

t0t1t2t3t0 = (0, 1)(5, 2)[t0t2t1]
(0,2,4)(1,3,5).

Hence the representatives from {1} advances to [025], the representative from

{2} advances to [013], the representative from {4} advances to [014], the representative

from {5} advances to [030], and the representative from {0} advances to [021]. There

are no new double cosets coming from the orbits of N (0123) on X.

The orbits of N (0134) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {4} advances back to [013]. The other orbit representatives bring the

potentially new double cosets [01341], [01342], [01343], [01345] and [01340]. Consider

the following relations:

t0t1t3t4t1 = (0, 2, 4)(1, 3, 5)[t0t1t3]
(0,5)(1,4)(2,3)

t0t1t3t4t2 = (0, 5)(1, 4)(2, 3)[t0t2t4]
(0,5)(1,4)(2,3)

t0t1t3t4t3 = (0, 3)(1, 2)(5, 4)[t0t2t4]
(e)

t0t1t3t4t5 = (0, 3)(1, 4)(5, 2)[t0t2t1]
(0,2,4)(1,3,5)

t0t1t3t4t0 = (0, 5, 4, 3, 2, 1)[t0t2t1]
(0,3)(1,2)(5,4).

Hence the representatives from {1} advances to [013], the representative from

{2} advances to [024], the representative from {3} advances to [024], the representative

from {5} advances to [021], and the representative from {0} advances to [021]. There

are no new double cosets coming from the orbits of N (0134) on X.

The orbits of N (0135) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {5} advances back to [013]. The other orbit representatives bring the

potentially new double cosets [01351], [01352], [01353], [01354] and [01350]. Consider

the following relations:
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t0t1t3t5t1 = (0, 3)(1, 2)(5, 4)[t0t1t3]
(1,5)(2,4)

t0t1t3t5t2 = (0, 4)(1, 3)(2, 3)[t0t1t3]
(0,3)(1,4)(5,2)

t0t1t3t5t4 = (0, 5, 4, 3, 2, 1)[t0t1t3]
(0,3)(1,2)(5,4).

Hence the representatives from {1} advances to [013], the representative from

{2} advances to [013], and the representative from {3} also advances to [013]. The other

two orbit representatives of N (0135) on X will bring the potentially new, distinct double

cosets [01353] and [01350].

Now consider the relation: t0t1t3t5t0 = (0, 1, 2, 3, 4, 5)[t0t1t3t5t3]
(e). Hence

[01353] and [01350] are the same double coset. We will denote this new, distinct double

coset as [01353].

The orbits of N (0130) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {0} advances back to [013]. The other orbit representatives bring the

potentially new double cosets [01301], [01302], [01303], [01304] and [01305]. Consider

the following relations:

t0t1t3t0t1 = (0, 3)(1, 4)(5, 2)[t0t2t4]
(0,1,2,3,4,5)

t0t1t3t0t2 = (0, 3)(1, 4)(5, 2)[t0t2t1]
(0,4)(1,3)

t0t1t3t0t3 = (0, 2)(5, 3)[t0t1t4]
(e)

t0t1t3t0t4 = (0, 3)(1, 4)(5, 2)[t0t1t0]
(1,5)(2,4)

t0t1t3t0t5 = (e)[t0t3t1]
(0,5)(1,4)(2,3).

Hence the representatives from {1} advances to [024], the representative from

{2} advances to [021], the representative from {3} advances to [014], the representative

from {4} advances to [010], and the representative from {5} advances to [031]. There

are no new double cosets coming from the orbits of N (0130) on X.

The orbits of N (0140) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {0} advances back to [014]. The other orbit representatives bring the

potentially new double cosets [01401], [01402], [01403], [01404] and [01405]. Consider

the following relations:

t0t1t4t0t1 = (0, 3)(1, 4)(5, 2)[t0t2t4]
(0,5,4,3,2,1)

t0t1t4t0t2 = (0, 5)(1, 4)(2, 3)[t0t1t0]
(0,1,2,3,4,5)

t0t1t4t0t3 = (0, 4, 2)(1, 5, 3)[t0t1t0]
(1,5)(2,4)

t0t1t4t0t4 = (0, 1, 2, 3, 4, 5)[t0t2t5]
(0,1,2,3,4,5)

t0t1t4t0t5 = (0, 1, 2, 3, 4, 5)[t0t1t3t5t3]
(0,3)(1,4)(5,2).
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Hence the representatives from {1} advances to [024], the representative from

{2} advances to [010], the representative from {3} advances to [010], the representative

from {4} advances to [025], and the representative from {5} advances to [01353]. There

are no new double cosets coming from the orbits of N (0140) on X.

The orbits of N (0105) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {0} advances back to [010]. The other orbit representatives bring the

potentially new double cosets [01051], [01052], [01053], [01054] and [01050]. Consider

the following relations:

t0t1t0t5t1 = (0, 1, 2, 3, 4, 5)[t0t1t0]
(1,5)(2,4)

t0t1t0t5t2 = (0, 2, 4)(1, 3, 5)[t0t2t1]
(0,2)(5,3)

t0t1t0t5t3 = (e)[t0t3t1]
(0,2)(5,3)

t0t1t0t5t4 = (0, 5, 4, 3, 2, 1)[t0t2t1]
(0,4,2)(1,5,3).

Hence the representatives from {1} advances to [010], the representative from

{2} advances to [021], the representative from {3} advances to [021], and the represen-

tative from {4} advances to [021]. The other orbit representative of N (0105) on X will

bring the potentially new, distinct double coset [01050].

The orbits of N (0245) on X are {0}, {1}, {2}, {3}, {4} and {5}. The repre-

sentative from {0} advances back to [024]. The other orbit representatives bring the

potentially new double cosets [02451], [02452], [02453], [02454] and [02450]. Consider

the following relations:

t0t2t4t5t1 = (0, 5, 4, 3, 2, 1)[t0t2t4]
(1,5)(2,4)

t0t2t4t5t2 = (0, 1)(5, 2)[t0t2t4]
(0,3)(1,4)(5,2)

t0t2t4t5t3 = (1, 5)(2, 4)[t0t3t1]
(0,5)(1,4)(2,3)

t0t2t4t5t4 = (1, 5)(2, 4)[t0t2t4]
(0,3)(1,2)(5,4)

t0t2t4t5t0 = (e)[t0t3t1]
(0,4,2)(1,5,3).

Hence the representatives from {1} advances to [024], the representative from

{2} advances to [024], the representative from {3} advances to [031], the representative

from {4} advances to [024], and the representative from {0} advances to [031]. There

are no new double cosets coming from the orbits of N (0245) on X.

We now continue to the next level of double cosets. The only new, distinct

double cosets we must investigate are [01353] and [01050].

Consider the relations:



54

t0t1t3t5t3 = t3t4t0t2t0 = t0t5t3t1t3 = t3t2t0t4t0, which implies the following

three statements:

[t0t1t3t5t3]
(0,3)(1,4)(5,2) = t3t4t0t2t0 ⇒ [(0, 3)(1, 4)(5, 2)]εN01353

[t0t1t3t5t3]
(1,5)(2,4) = t0t5t3t1t3 ⇒ [(1, 5)(2, 4)]εN01353

[t0t1t3t5t3]
(0,3)(1,2)(5,4) = t3t2t0t4t0 ⇒ [(0, 3)(1, 2)(5, 4)]εN01353.

t0t1t0t5t0 = t2t1t2t3t2 = t4t3t4t5t4 = t2t3t2t1t2 = t3t4t3t2t3 = t1t0t1t2t1 =

t5t4t5t0t5 = t4t5t4t3t4 = t1t2t1t0t1 = t3t2t3t4t3 = t0t5t0t1t0 = t5t0t5t4t5, which implies

the following eleven statements:

[t0t1t0t5t0]
(0,2)(5,3) = t2t1t2t3t2 ⇒ [(0, 2)(5, 3)]εN01050

[t0t1t0t5t0]
(0,4)(1,3) = t4t3t4t5t4 ⇒ [(0, 4)(1, 3)]εN01050

[t0t1t0t5t0]
(0,2,4)(1,3,5) = t2t3t2t1t2 ⇒ [(0, 2, 4)(1, 3, 5)]εN01050

[t0t1t0t5t0]
(0,3)(1,4)(5,2) = t3t4t3t2t3 ⇒ [(0, 3)(1, 4)(5, 2)]εN01050

[t0t1t0t5t0]
(0,1)(5,2) = t1t0t1t2t1 ⇒ [(0, 1)(5, 2)]εN01050

[t0t1t0t5t0]
(0,5)(1,4)(2,3) = t5t4t5t0t5 ⇒ [(0, 5)(1, 4)(2, 3)]εN01050

[t0t1t0t5t0]
(0,4,2)(1,5,3) = t4t5t4t3t4 ⇒ [(0, 4, 2)(1, 5, 3)]εN01050

[t0t1t0t5t0]
(0,1,2,3,4,5) = t1t2t1t0t1 ⇒ [(0, 1, 2, 3, 4, 5)]εN01050

[t0t1t0t5t0]
(0,3)(1,2)(5,4) = t3t2t3t4t3 ⇒ [(0, 3)(1, 2)(5, 4)]εN01050

[t0t1t0t5t0]
(1,5)(2,4) = t0t5t0t1t0 ⇒ [(1, 5)(2, 4)]εN01050

and [t0t1t0t5t0]
(0,5,4,3,2,1) = t5t0t5t4t5 ⇒ [(0, 5, 4, 3, 2, 1)]εN01050.

We note that every element of D12 creates an equal face of [01050].

Computing N (01353) in N , we obtain:

|N (01353)| ≥ |N01353|

≥ | < Id(G), (0, 3)(1, 4)(5, 2), (1, 5)(2, 4), (0, 3)(1, 2)(5, 4) > |

≥ 4.

Computing N (01050) in N , we obtain:

|N (01050)| ≥ |N01050|

≥ |D12|

≥ 12.



55

The number of single cosets in Nt0t1t3t5t3N = |N |
|N(01353)| = 12

4 = 3. The number

of single cosets in Nt0t1t0t5t0N = |N |
|N(01050)| = 12

12 = 1.

Hence our index is increased to 178 + 3 + 1 = 182

We must now find the new level of double cosets coming from each double

coset’s orbits respectively. The orbits of N (01353) on X are {0}, {1}, {2}, {3}, {4} and

{5}. The representative from {3} advances back to [0135]. The other orbit representa-

tives bring the potentially new double cosets [013531], [013532], [013534], [013535] and

[013530]. Consider the following relations:

t0t1t3t5t3t1 = (0, 5, 4, 3, 2, 1)[t0t1t4t0]
(1,5)(2,4)

t0t1t3t5t3t2 = (0, 5, 4, 3, 2, 1)[t0t1t4t0]
(0,3)(1,4)(5,2)

t0t1t3t5t3t4 = (0, 4)(1, 3)[t0t1t4t0]
(0,3)(1,2)(5,4)

t0t1t3t5t3t5 = (0, 4)(1, 3)[t0t1t4t0]
(e)

t0t1t3t5t3t0 = (0, 5, 4, 3, 2, 1)[t0t1t3t5]
(e).

Hence the representatives from {1} advances to [0140], the representative from

{2} advances to [0140], the representative from {4} advances to [0140], the representative

from {5} advances to [0140], and the representative from {0} advances to [0135]. There

are no new double cosets coming from the orbits of N (01353) on X.

The orbits of N (01050) on X are {0}, {1}, {2}, {3}, {4} and {5}. The rep-

resentative from {0} advances back to [0105]. The other orbit representatives bring

the potentially new double cosets [010501], [010502], [010503], [010504] and [010505].

Consider the following relations:

t0t1t0t5t0t1 = (e)[t0t1t0t5]
(0,1,2,3,4,5)

t0t1t0t5t0t2 = (e)[t0t1t0t5]
(0,2,4)(1,3,5)

t0t1t0t5t0t3 = (e)[t0t1t0t5]
(0,3)(1,4)(5,2)

t0t1t0t5t0t4 = (e)[t0t1t0t5]
(0,4,2)(1,5,3)

t0t1t0t5t0t5 = (e)[t0t1t0t5]
(0,5,4,3,2,1).

Hence the representatives from {1}, {2}, {3}, {4}, and {5} all advance back

to [0105]. There are no new double cosets coming from the orbits of N (01050) on X.

Because there are no new words, we have completed our double coset enumer-

ation of G over N . Our group is closed under right multiplication of ti’s. The index of

N in G is 182. The Cayley graph for G is given below.
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Figure 2.3: PGL(2, 13) Cayley Graph

2.3.2 Proof of G ∼= PGL(2, 13)

We will now prove that the group of order 2184 is PGL(2, 13) utilizing linear

fractional mappings.

Let us first define our mapping given by α, β, γ, and δ. We are not able to

use the presentation formula as we used earlier since 13 6≡ 3 (mod 4). We will begin by

denoting our permutations on 14 letters by 0, 1, 2, . . . , 12,∞. We find the following:

α : x 7→ x+1 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)(∞) = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12).

In (mod 13), we calculate the nonzero, finite squares of {0, 1, 2, . . . , 12,∞}:
{12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122, 132} = {1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1}

= {1, 3, 4, 9, 10, 12}.
We find the following:

41 ≡ 4 (mod 13)
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42 ≡ 16 (mod 13) ≡ 3 (mod 13)

43 ≡ 64 (mod 13) ≡ 12 (mod 13)

44 ≡ 256 (mod 13) ≡ 9 (mod 13)

45 ≡ 1024 (mod 13) ≡ 10 (mod 13)

46 ≡ 4096 (mod 13) ≡ 1 (mod 13).

Therefore the powers of 4 generate the set {1, 3, 4, 9, 10, 12} in (mod 13). So

k = 4 and we obtain:

β : x 7→ 4x = (0)(∞)(1, 4, 3, 12, 9, 10)(2, 8, 6, 11, 5, 7) = (1, 4, 3, 12, 9, 10)(2, 8, 6, 11, 5, 7).

As before, to find γ : x 7→ −x−1, we will first find x−1, or the multiplicative in-

verse of each letter, and then multiply that value by −1 and determine its representative

value modulo 13.

For instance, the multiplicative inverse of 1 is itself since 1 × 1 = 1 ≡ 1

(mod 13), therefore 1 7→ −(1) ≡ 12 (mod 13). The multiplicative inverse of 2 is 7, since

2 × 7 = 14 ≡ 1 (mod 13). We will again define the multiplicative inverse of 0 as ∞
and claim that −∞ corresponds to the letter ∞. Let us first find solve x = 1. 1 7→
−(1)−1 = −1 ≡ 12 (mod 13). So we find that 1 should advance to 12 in permutation γ.

Continuing this pattern with the other 13 letters, we obtain the following permutation

for γ:

γ : x 7→ −x−1 = (0,∞)(1, 12)(2, 6)(3, 4)(5)(7, 11)(8)(9, 10).

We must also now calculate δ. We must find a mapping of the form:
ax+ b

cx+ d
,

where ad− bc is a nonzero, nonsquare in (mod 13).

We will let our mapping be
0x+ 7

1x+ 0
, since ad − bc = −7 ≡ 6 (mod 13), where

6 is not a square in (mod 13). So we find δ 7→ 0x+ 7

1x+ 0
=

7

x
= 7x−1. Following the

same method of finding permutations as we did in γ, we will first calculate x−1, then

multiply by 7 and determine the value in (mod 13).

For x = 1, 1 7→ 7x−1 = 7(1) ≡ 7 (mod 13). So we find that 1 should advance

to 7 in permutation δ. Continuing this pattern with the other 13 letters, we obtain the

following permutation for δ:

δ : x 7→ 7x−1 = (0,∞)(1, 7)(2, 10)(3, 11)(4, 5)(6, 12)(8, 9).

We let H =< α, β, γ, δ >= PGL(2, 13).

After a quick computerized check, we find that our group G is isomorphic to

our constructed group H.
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Chapter 3

Double Coset Enumeration of

Sporadic Groups

3.1 M11 over N = 2•S4

3.1.1 Double Coset Enumeration of G

We factor the progenitor 2∗8 : (2•S4), with t ∼ t8, by the two relations [zt]3

and [w−1vt]5 where v = (1, 2)(3, 6)(4, 5), w = (3, 6, 8)(4, 7, 5), x = (1, 3, 2, 5)(4, 8, 6, 7),

y = (1, 4, 2, 6)(3, 7, 5, 8), and z = (1, 2)(3, 5)(4, 6)(7, 8).

We compute the two relations:

(zt)3 = e

(zt8)
3 = e

z3(t8)
z2(t8)

zt8 = e

[(1, 2)(3, 5)(4, 6)(7, 8)]3t8t7t8 = e

(1, 2)(3, 5)(4, 6)(7, 8)t8 = t8t7
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(w−1vt)5 = e

(w−1vt8)
5 = e

[w−1v]5t
[w−1v]4

8 t
[w−1v]3

8 t
[w−1v]2

8 t
[w−1v]
8 t8 = e

[(1, 2)(3, 8)(5, 7)]5t8t3t8t3t8 = e

(1, 2)(3, 8)(5, 7)t8t3t8 = t8t3.

We let G be 2∗8 : (2•S4)/(1, 2)(3, 5)(4, 6)(7, 8)t8t7t8,

(1, 2)(3, 8)(5, 7)t8t3t8t3t8, where N =< (1, 2)(3, 6)(4, 5), (3, 6, 8)(4, 7, 5),

(1, 3, 2, 5)(4, 8, 6, 7), (1, 4, 2, 6)(3, 7, 5, 8), (1, 2)(3, 5)(4, 6)(7, 8) > and t ∼ t8.
We will find the index of N in G by manual double coset enumeration of G

over N . We take G and express it as a union of double cosets NgN , where g is an

element of G. So G = NeN ∪Ng1N ∪Ng2N ∪ ..., where gi’s are words in the ti’s.

We will complete a double coset enumeration of G over N to find the index

of N in G. We must find all distinct double cosets [w], where [w] = {Nwn|nεN},
and how many single cosets are contained in each double coset. The manual double

coset enumeration is finished when all potentially new double cosets have already been

accounted for and when the set of right cosets we find is closed under right-multiplication

by ti’s. We symbolize, for each [w], the double coset to which Nwti belongs for one

symmetric generator ti from each orbit of the coset stabilser N (w) = {n in N : Nwn =

Nw}, where w is a word of ti’s on X = {0, 1, 2, 3, 4, 5, 6, 7}.
We begin with the double coset NeN , which we denote [∗]. This double coset

consists of the single coset N . For convenience, we will let 8 be 0. The single orbit of

N on X is {0, 1, 2, 3, 4, 5, 6, 7}. We choose t8 = t0 as our symmetric generator from the

orbit {0, 1, 2, 3, 4, 5, 6, 7} and find Nt0 belongs to Nt0N which is a new double coset.

We denote Nt0N by [0].

To find the number of single cosets contained in [0] we must find the set of

coset stabilizers of 0, denoted N (0). This is relevant to us because the number of single
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cosets in [0] is equal to |N |
|N(0)| . We have:

N (0) ≥< (1, 2)(3, 6)(4, 5), (1, 4)(2, 6)(3, 5) >

≥ 6.

So the number of single cosets in Nt0N = |N |
|N(0)| = 48

6 = 8. When we conjugate

t0 by the transversals of [0], we find 6 single cosets are distinct. The index of N is the

sum of distinct single cosets in the distinct double cosets, such as [*] and [0]. As of now,

we have 1 + 8 = 9. The orbits of [0] are {0} {1, 2, 3, 4, 5, 6}, and {7}.
We continue to the next level of potential double cosets by working with the

orbits of N (0) on X. The orbits of N (0) on X are {0} {1, 2, 3, 4, 5, 6}, and {7} and we

take t0, t1, and t7 from each orbit respectively. From the orbit {0} we get Nt0t0, which

belongs to the double coset [∗]. From the orbit {1, 2, 3, 4, 5, 6} we find a potentially new

double coset Nt0t1, which we will denote [01]. From the orbit {7} we get Nt0t7 which

belongs to [07].

Consider the double coset [07]. We have the relation: (1, 2)(3, 5)(4, 6)(7, 8)t8 =

t8t7. This implies that any representative from the orbit {7} will actually loop back to

[0].

We will now determine how many distinct single cosets are contained in [01].

Computing N (01) in N , we obtain:

|N (01)| ≥ |N01|

≥ | < Id(G) > |

≥ 1.

The number of single cosets in Nt0t1N = |N |
|N(01)| = 48

1 = 48.

Hence, our index is increased to 9 + 48 = 57.

We now explore the potentially new double cosets coming from representatives

from the orbits of N (01) on X. We find [01] has the orbits {0}, {1}, {2}, {3}, {4}, {5},
{6} and {7}. The representative from the orbit {1} will advance to [0]. The other orbit

representatives will bring the potentially new double cosets [010], [012], [013], [014],

[015], [016] and [017]. However, consider the following relations:
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t0t1t0 = (1, 8)(2, 7)(3, 5)[t0t2]
e

t0t1t2 = (1, 2)(3, 5)(4, 6)(7, 8)[t0t1]
(1,2)(3,4)(5,6)(8,7)

t0t1t4 = (1, 8, 4)(2, 7, 6)[t0t2]
(1,8)(2,7)(3,5).

Hence in [01], the single representative {0} goes to [01], the single representa-

tive {2} goes to [01], and the single representative {4} goes to [01]. So the only new,

distinct double cosets are [013], [015], [016], and [017].

Since there are no more possible three letter words, we must now investigate

the double cosets: [013], [015], [016], and [017].

Consider the following relations:

t0t1t3 = t5t1t7, so [t5t1t7]
(3,7)(4,6)(5,0) = t0t1t3 ⇒ [(3, 7)(4, 6)(5, 0)]εN013.

t0t1t6 = t2t7t4, so [t2t7t4]
(1,7)(2,8)(4,6) = t0t1t6 ⇒ [(1, 7)(2, 8)(4, 6))]εN016.

t0t1t7 = t1t8t2, so [t1t8t2]
(1,8)(2,7)(3,5) = t0t1t7 ⇒ [(1, 8)(2, 7)(3, 5)]εN017.

t0t1t7 = t2t7t1, so [t2t7t1]
(1,7)(2,8)(4,6) = t0t1t7 ⇒ [(1, 7)(2, 8)(4, 6)]εN017.

Computing N (013) in N , we obtain:

|N (013)| ≥ |N013|

≥ | < Id(G), (3, 7)(4, 6)(5, 0) > |

≥ 2.

Computing N (016) in N , we obtain:

|N (016)| ≥ |N016|

≥ | < Id(G), (1, 7)(2, 8)(4, 6) > |

≥ 2.

Computing N (017) in N , we obtain:

|N (017)| ≥ |N017|

≥ | < Id(G), (1, 8)(2, 7)(3, 5), (1, 7)(2, 8)(4, 6) > |

≥ 4.

The number of single cosets in Nt0t1t3N = |N |
|N(013)| = 48

2 = 24. The number
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of single cosets in Nt0t1t6N = |N |
|N(015)| = 48

2 = 24. The number of single cosets in

Nt0t1t7N = |N |
|N(010)| = 48

4 = 12.

Hence our index is increased to 57 + 24 + 24 + 24 + 12 = 141.

We now explore any potentially new double cosets coming from representatives

from the orbits of N (013) on X, N (016) on X, N (017) on X.

The orbits of N (013) on X are {0}, {1}, {2}, {3}, {4}, {5}, {6} and {7}. The

representative from the orbit {3} advances to [01]. The other representatives will be

the potentially new double cosets [0130], [0131], [0132], [0134], [0135], [0136], [0137].

However, consider the following relations:

t0t1t3t0 = (1, 7, 3)(2, 8, 5)[t0t1]
e

t0t1t3t1 = (1, 2)(3, 8)(5, 7)[t0t1t3]
(3,7)(4,6)(5,8)

t0t1t3t2 = (1, 8)(2, 7)(3, 5)[t0t1t7]
(1,5,6)(2,3,4)

t0t1t3t5 = (1, 2)(3, 5)(4, 6)(7, 8)[t0t1t5]
(1,2)(3,5)(4,6)(7,8)

t0t1t3t6 = (1, 8, 3, 2, 7, 5)(4, 6)[t0t1t3t4]
(3,7)(4,6)(5,8)

t0t1t3t7 = (1, 8, 3, 2, 7, 5)(4, 6)[t0t1]
(3,7)(4,6)(5,8).

Hence the representative from the {0} will advance to [01], the representative

from {1} will advance to [013], the representative from {2} will advance to [017], the

representative from {5} will advance to [015], the representative from {6} will advance

to [0134], and the representative from {7} will advance to [01]. So the only new, distinct

double coset coming from the orbits of N (013) on X is [0134].

The orbits of N (015) on X are {0}, {1}, {2}, {3}, {4}, {5}, {6} and {7}.
The representative from the orbit {5} will advance to [01]. The other representatives

will bring the potentially new double cosets [0150], [0151], [0152], [0153], [0154], [0156],

[0157]. Consider the following relations:

t0t1t5t0 = (1, 3, 7)(2, 5, 8)[t0t1t3]
e

t0t1t5t1 = (3, 7)(4, 6)(5, 8)[t0t1t6]
(1,8,2,7)(3,4,5,6)

t0t1t5t2 = (1, 8)(2, 7)(3, 5)[t0t1t3]
(1,2)(3,5)(4,6)(7,8)

t0t1t5t3 = (1, 2)(3, 5)(4, 6)(7, 8)[t0t1t3]
(1,2)(3,5)(4,6)(7,8)

t0t1t5t4 = (1, 5, 8, 6, 2, 3, 7, 4)[t0t1t5]
(1,3,4,7,2,5,6,8)

t0t1t5t6 = (1, 4, 8)(2, 6, 7)[t0t1t6]
(1,7,5,6,2,8,3,4)

t0t1t5t7 = e[t0t1]
(1,2)(3,8)(5,7).

Hence the representative from the {0} will advance to [013], the representative



63

from {1} will advance to [016], the representative from {2} will advance to [013], the

representative from {3} will advance to [013], the representative from {4} will advance

to [015], the representative from {6} will advance to [016], and the representative from

{7} will advance to [01]. So no new double cosets come from the orbits of N (015) on X.

The orbits of N (016) on X are {0}, {1}, {2}, {3}, {4}, {5}, {6} and {7}.
The representative from {6} will advance to [01]. The other representatives will bring

the potentially new double cosets [0160], [0161], [0162], [0163], [0164], [0165], [0167].

Consider the following relations:

t0t1t6t0 = (1, 4, 8)(2, 6, 7)[t0t1t6]
(1,7,4,2,8,6)

t0t1t6t1 = (1, 6)(2, 4)(7, 8)[t0t1t5]
(1,2)(3,7,6,5,8,4)

t0t1t6t2 = (1, 8, 4)(2, 7, 6)[t0t1t6]
(1,6,8,2,4,7)(3,5))

t0t1t6t3 = (1, 6, 7, 5, 2, 4, 8, 3)[t0t1t3t4]
(3,5)(4,8)(6,7)

t0t1t6t4 = (1, 7, 4, 2, 8, 6)(3, 5)[t0t1]
(1,7)(2,8)(4,6)

t0t1t6t5 = (1, 5, 6)(2, 3, 4)[t0t1t5]
(1,6,5)(2,4,3)

t0t1t6t7 = (1, 4)(2, 6)(3, 5)[t0t1t5]
(1,7,2,8)(3,6,5,4).

Hence the representative from the {0} will advance to [016], the representative

from {1} will advance to [015], the representative from {2} will advance to [016], the

representative from {3} will advance to [0134], the representative from {4} will advance

to [01], the representative from {5} will advance to [015], and the representative from

{7} will advance to [015]. So no new double cosets come from the orbits of N (016) on

X.

The orbits of N (017) on X are {0}, {1}, {2}, {3}, {4}, {5}, {6} and {7}.
The representative from the orbit {7} will advance to [01]. The other representatives

will bring the potentially new double cosets [0170], [0171], [0172], [0173], [0174], [0175],

[0176]. Consider the following relations:

t0t1t7t0 = (1, 7)(2, 8)(4, 6)[t0t1]
(1,2)(3,5)(4,6)(7,8)

t0t1t7t1 = (1, 8)(2, 7)(3, 5)[t0t1]
(1,7)(2,8)(4,6)

t0t1t7t2 = (1, 2)(3, 5)(4, 6)(7, 8)[t0t1]
(1,8)(2,7)(3,5)

t0t1t7t3 = (1, 3, 7)(2, 5, 8)[t0t1t7]
(1,7)(2,8)(4,6)

t0t1t7t4 = (1, 2)(4, 7)(6, 8)[t0t1t3]
(1,6,5)(2,4,3)

t0t1t7t5 = (1, 8, 3, 2, 7, 5)(4, 6)[t0t1t7]
(1,2)(3,5)(4,6)(7,8)

t0t1t7t6 = (1, 7, 4, 2, 8, 6)(3, 5)[t0t1t3]
(1,4,3,8,2,6,5,7).
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Hence the representative from the {0} will advance to [01], the representative

from {1} will advance to [01], the representative from {2} will advance to [01], the

representative from {3} will advance to [017], the representative from {4} will advance

to [013], the representative from {5} will advance to [017], and the representative from

{6} will advance to [013]. So no new double cosets come from the orbits of N (017) on

X.

Since there are no other possible four letter words, we must now investigate

the double cosets: [0134].

Consider the following relations:

t0t1t3t4 = t7t6t3t2, so [t7t6t3t2]
(1,6)(2,4)(7,8) = t0t1t3 ⇒ [(1, 6)(2, 4)(7, 8)]εN0134.

Computing N (0134) in N , we obtain:

|N (0134)| ≥ |N0134|

≥ | < Id(G), (1, 6)(2, 4)(7, 8) > |

≥ 2.

The number of single cosets in Nt0t1t3t4N = |N |
|N(0134)| = 48

2 = 24.

Hence our index is increased to 141 + 24 = 165.

We now explore any potentially new double cosets coming from representatives

from the orbits of N (013) on X, N (016) on X, N (017) on X.

The orbits of N (0134) on X are {0}, {1}, {2}, {3}, {4}, {5}, {6} and {7}. The

representative from the orbit {4} advances to [013]. The other representatives will be

the potentially new double cosets [0137], [01341], [01342], [01343], [01345], [0146], and

[0147]. However, consider the following relations:

t0t1t3t4t1 = (1, 4, 2, 6)(3, 7, 5, 8)[t0t1t3t4]
(3,7)(4,6)(5,8)

t0t1t3t4t2 = (1, 4, 5, 2, 6, 3)(7, 8)[t0t1t3]
(1,6)(2,4)(7,8)

t0t1t3t4t3 = (1, 7, 5, 6, 2, 8, 3, 4)[t0t1t5]
(1,7,2,8)(3,6,5,4)

t0t1t3t4t5 = (1, 5, 4, 8, 2, 3, 6, 7)[t0t1t6]
(3,5)(4,8)(6,7)

t0t1t3t4t6 = (3, 6, 8)(4, 7, 5)[t0t1t3t4]
(1,6,2,4)(3,8,5,7)

t0t1t3t4t7 = (3, 8, 6)(4, 5, 7)[t0t1t3t4]
(1,2)(3,6)(4,5).

Because there are no new words of length six, we have completed our double

coset enumeration of G over N . Our group is closed under right multiplication of ti’s.
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The index of N in G is 165. The Cayley graph for G is given below.

Figure 3.1: M11 Cayley Graph

3.1.2 G is a Simple Group Using Iwasawa’s Lemma

We let X = {Nω} be the set of single cosets of G over N . We will use

Iwasawa’s Lemma and the transitive action of G on X to prove G is a simple group. If

we can show that G is faithful, G acts primitively on X, G = G′, and that there exists

a normal, abelian subgroup of G such that < KG >= G, we will have shown that G is

a non-abelian simple group of order 7920.

(i) G acts faithfully on X

Since X is a transitive G-set of degree 165, we have:

|G| = 165|G1|,
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where G1 is the one point stabiliser of the single coset N . However, N is stabilised

by only elements of N . Therefore G1 = N and |G1| = |N | = 48. It is then evident

that |G| = 7920. If |G| > 7920, X would not be faithful.

(ii) The group G acts primitively on X

Every group constructed by a Cayley graph is transitive. Since G is transitive,

we can assume N ∈ B. However, |B| must divide |X| = 165 = 3 × 5 × 11. By

observation of our Cayley graph, there are no possibilities for a nontrivial block.

Thus G acts primitively on X.

(iii) The group G is perfect

Let us first begin by showing that G is generated by involutions, or

G =< N, t0, t1, . . . , t7 >=< t0, t1, . . . , t7 >.

Since N is generated by a, b, c, d, and e, we will show each is generated by ti’s.

• Consider our original relation t8t7 = (1, 2)(3, 5)(4, 6)(7, 0)t8, where

e = (1, 2)(3, 5)(4, 6)(7, 0). So we see:

t8t7 = et8

t8t7t8 = e.

• Consider the relation t8t1t3t4t6 = (3, 6, 0)(4, 7, 5)t5t6t8t1, where

b = (3, 6, 0)(4, 7, 5). So we see:

t8t1t3t4t6 = bt5t6t8t1

t8t1t3t4t6t1t8t6t5 = b.

• Consider the relation t8t1t3t4t1 = (1, 4, 2, 6)(3, 7, 5, 0)t5t1t7t6, where

d = (1, 4, 2, 6)(3, 7, 5, 0). So we see:

t8t1t3t4t1 = dt5t1t7t6

t8t1t3t4t1t6t7t1t5 = d.

• Consider the relation t8t3t8 = (1, 2)(3, 8)(5, 7)t8t3, where

ab = (1, 2)(3, 8)(5, 7). But we know b = t8t1t3t4t6t1t8t6t5, so we see:



67

t8t3t8 = abt8t3

t8t3t8t3t8 = ab

t8t3t8t3t8 = a(t8t1t3t4t6t1t8t6t5)

t8t3t8t3t8t5t6t8t1t6t4t3t1t8 = a.

• Consider the relation t8t1t3t7 = (1, 8, 3, 2, 7, 5, 1)(4, 6)t5t1, where

cb−1 = (1, 8, 3, 2, 7, 5, 1)(4, 6). But |b| = 3, so b−1 = t5t6t8t1t6t4t3t1t8. So we

see:

t8t1t3t7 = cb−1t5t1

t8t1t3t7t1t5 = cb−1

t8t1t3t7t1t5 = c(t5t6t8t1t6t4t3t1t8)

t8t1t3t7t1t5t8t1t3t4t6t1t8t6t5 = c.

So we see that G is generated by the ti’s. Now G =< N, t >, where N = (2•S4),

we know (2•S4)
′ ≤ G′. Hence we have

(2•S4)
′ =< (3, 6, 8)(4, 7, 5), (1, 8, 2, 7)(3, 4, 5, 6) >=≤ G′. More importantly,

(1, 8, 2, 7)(3, 4, 5, 6)(1, 8, 2, 7)(3, 4, 5, 6) = (1, 2)(3, 5)(4, 6)(7, 8) ∈ G′.

Now consider the following relation:

(1, 2)(3, 5)(4, 6)(7, 8)t8 = t8t7

(1, 2)(3, 5)(4, 6)(7, 8) = t8t7t8,

So we see t8t7t8 ∈ G′. Now we conjugate by the element t8 ∈ G and find:

[t8t7t8]
t8 ∈ G′

[t8]
−1[t8t7t8][t8] ∈ G′

t7 ∈ G′.

Thus G′ ≥< (3, 6, 8)(4, 7, 5), (1, 8, 2, 7)(3, 4, 5, 6), t7 >= G. But we have already

shown that G =< t0, t1, . . . , t7 >. Hence G is perfect.
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(iv) The point stabiliser of N of G contains a subgroup K whose conjugates generate

G

Since N = 2• × S4, the center z = (1, 2)(3, 5)(4, 6)(7, 8) is a normal abelian sub-

group. Utilizing the same relation as before, we also obtain the following:

[t8t7t8]
t8 ∈ KG

[t8]
−1[t8t7t8][t8] ∈ KG

t7 ∈ KG,

It is then easy to see that KG ≥< t0, t1, . . . , t7 >= G. But KG ≤ G, hence we see

that KG = G.

(v) The group G is simple. Furthermore, G ∼= M11.

We have shown that the group G acts faithfully on X, is primitive, is perfect, and

contains a normal abelian subgroup whose conjugates generate G. Therefore by

Iwasawa’s Lemma, G is a non-abelian simple group. Refering to [WB99], M11 is

only simple group of order 7920.

3.2 M22 over M = 23 : L(3, 2)

We factor the progenitor 2∗7 : (7 : 3) by the two relations [x−1y−1t]5 and

[yxtx
2
]11, where x = (1, 2, 3, 5, 4, 6, 7) and y = (2, 3, 4)(5, 7, 6). Letting t be represented

by t7, we compute the two relations:

Letting π = x−1y−1 = (1, 7, 3)(2, 5, 4), we obtain:

[x−1y−1t]5 = e

[πt7]
5 = e

πt7πt7πt7πt7πt7 = e

π5tπ
4

7 t
π3

7 t
π2

7 t
π
7 t7 = e

π2t3t7t1t3t7 = e

(1, 3, 7)(2, 4, 5)t3t7t1 = t7t3.

Letting π = yx = (1, 3, 7)(2, 4, 5), we obtain:
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[yxtx
2
]11 = e

[πt5]
11 = e

πt5πt5πt5πt5πt5πt5πt5πt5πt5πt5πt5πt5 = e

π11tπ
10

5 tπ
9

5 t
π8

5 t
π7

5 t
π6

5 t
π5

5 t
π4

5 t
π3

5 t
π2

5 t
π
5 t5 = e

(1, 7, 3)(2, 5, 4)t2t5t4t2t5 = t5t2t4t5t2t4.

However, consider the subgroup (7 : 3) ∈ M22. (7 : 3) ≤ 23 : L(3, 2) ≤max
M22. So when M = 23 : L(3, 2), N ≤ M ≤ M . If we can find a subgroup of order

|23 : L(3, 2)| = 1344 generated by the elements x, y, t1, t2, . . . t7, we can construct a

double coset enumeration of G over M . We find M =< x, y, t1t2t1t2t7t1t2t1t2t1t7t2 >.

We will find the index of M in G by manual double coset enumeration of G

over M . We take G and express it as a union of double cosets MgN , where g is an

element of G. So G = MeN ∪Mg1N ∪Mg2N ∪ ..., where gi’s are words in the ti’s.

We must find all distinct double cosets [w], where [w] = {Mwn|nεN}, and

the number of single cosets contained in each double coset. Our manual double coset

enumeration is completed when all potentially new double cosets have previously been

accounted for and when the set of right cosets is closed under right-multiplication by ti’s.

We symbolize, for each [w], the double coset to which Mwti belongs for one symmetric

generator ti from each orbit of the coset stabilser M (w) = {n in N : Mwn = Mw},
where w is a word of ti’s on {0, 1, 2, 3, 4, 5} = X.

We begin with the double coset MeN , which we denote [∗]. This double coset

consists of the single coset M . Allowing 7 to be 0, the single orbit of M on X is

{0, 1, 2, 3, 4, 5, 6}. We will choose t7 = t0 as our symmetric generator from the orbit

{0, 1, 2, 3, 4, 5, 6} and find Mt0 belongs to Mt0N which is a new double coset. We

denote Mt0N by [0].

To find out how many single cosets [0] contains, we find the set of coset sta-

bilizers of [0], denoted N (0). The number of single cosets in [0] is equal to |N |
|N(0)| . We
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have:

|N (0)| ≥ | < Id(G), (1, 2, 5)(3, 6, 4) > |

≥ 3.

The number of single cosets in Mt0N = |N |
|N(0)| = 21

3 = 7. Our index is the sum

of distinct single cosets in each distinct double coset, such as [*] and [0]. As of now,

we have 1 + 7 = 8 single cosets. We note that the orbits of [0] are {0}, {1, 2, 5}, and

{3, 4, 6}.
We will continue to the next level of potential double cosets by investigating

the orbits of N (0) on X. The orbits of N (0) on X are {0}, {1, 2, 5}, and {3, 4, 6} and

we take t0, t1, and t3 from each orbit respectively. From the orbit {0} we get Nt0t0,

which belongs to the double coset [∗]. From the orbit {1, 2, 5} we find a potentially

new double coset Nt0t1, which we denote [01]. From the orbit {3, 4, 6} we get Nt0t3 we

find a potentially new double coset Nt0t3, which we denote [03]. We must now find the

number of distinct single cosets in [01] and [03].

Computing N (01) in M , we obtain:

|N (01)| ≥ |N01|

≥ | < Id(G) > |

≥ 1.

Computing N (03) in M , we obtain:

|N (03)| ≥ |N03|

≥ | < Id(G) > |

≥ 1.

So the number of single cosets in Mt0t1N = |N |
|N(01)| = 21

1 = 21. The number of

single cosets in Mt0t3N = |N |
|N(03)| = 21

1 = 21. Hence, our index is now 1+7+21+21 = 50.

We explore the potentially new double cosets coming from representatives from

the orbits of N (01) on X. We find [01] has the orbits {0}, {1}, {2}, {3}, {4}, {5}, and
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{6}. The representative from the orbit {1} advances back to [0]. The other orbit

representatives bring the potentially new double cosets [012], [013], [014], [015],[016],

and [010]. However, consider the following relations:

t0t1t3 = (0, 3, 1)(5, 4, 2)[t0t3]
(0,1,3)(5,2,4). But (0, 3, 1)(5, 4, 2) ∈M . SoMt0t1t3 ∈Mt0t3N .

t0t1t0 = [(1, 4, 7)(3, 6, 5)t2t6t2t6t4t2t6t2t6t2t4t6t3t5t3t5t2t3t5t3t5t3t2t5](t7t1)
e. But

(1, 4, 7)(3, 6, 5)t2t6t2t6t4t2t6t2t6t2t4t6t3t5t3t5t2t3t5t3t5t3t2t5 ∈M . SoMt0t1t0 ∈Mt0t3M .

Hence in [01], the representative {2} advances to [01] and is already being

accounted for by the double coset [01]. So the only new double cosets coming from the

orbit representatives of N (01) on X are [012], [014], [015] and [016].

The orbits of N (03) on X are {0}, {1}, {2}, {3}, {4}, {5}, and {6}. The

representative from the orbit {3} advances back to [0]. The other representatives bring

the potentially new double cosets [031], [032], [034], [035], [036] and [030]. Consider the

following relations:

t0t3t1 = (0, 1, 3)(5, 2, 4)[t0t1]
(0,3,1)(5,4,2)

t0t3t0 = m[t0t3]
n, for some m ∈M and for some n ∈ N .

Hence in [03], the representative {1} advances to [01] and the representative

{0} advances to [03]. However, [032], [034], [035] and [036] are new, distinct double

cosets.

The double cosets we must now investigate are [012], [014], [015], [016],[032],

[034], [035] and [036].

Computing N (012) in M , we obtain:

|N (012)| ≥ |N012|

≥ | < Id(G) > |

≥ 1.

Computing N (014) in M , we obtain:

|N (014)| ≥ |N014|

≥ | < Id(G) > |

≥ 1.
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Computing N (015) in M , we obtain:

|N (015)| ≥ |N015|

≥ | < Id(G) > |

≥ 1.

Computing N (016) in M , we obtain:

|N (016)| ≥ |N016|

≥ | < Id(G) > |

≥ 1.

The number of single cosets in Mt0t1t3N = |N |
|N(012)| = 21

1 = 21. The number

of single cosets in Mt0t1t4N = |N |
|N(014)| = 21

1 = 21. The number of single cosets in

Mt0t1t5N = |N |
|N(015)| = 21

1 = 21. And the number of single cosets in Mt0t1t6N =
|N |

|N(016)| = 21
1 = 21.

Hence our index is increased to 50 + 21 + 21 + 21 + 21 = 134.

Computing N (032) in M , we obtain:

|N (032)| ≥ |N032|

≥ | < Id(G) > |

≥ 1.

Computing N (034) in M , we obtain:

|N (034)| ≥ |N034|

≥ | < Id(G) > |

≥ 1.
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Computing N (035) in M , we obtain:

|N (035)| ≥ |N035|

≥ | < Id(G) > |

≥ 1.

Computing N (036) in M , we obtain:

|N (036)| ≥ |N036|

≥ | < Id(G) > |

≥ 1.

The number of single cosets in Nt0t3t2N = |N |
|N(032)| = 21

1 = 21. The number

of single cosets in Nt0t3t4N = |N |
|N(034)| = 21

1 = 21. The number of single cosets in

Nt0t3t5N = |N |
|N(035)| = 21

1 = 21. And he number of single cosets in Nt0t3t6N = |N |
|N(036)| =

21
1 = 21.

Hence our index is increased to 134 + 21 + 21 + 21 + 21 = 218.

We explore the potentially new double cosets coming from representatives from

the orbits of N (012) on X. We find [012] has the orbits {0}, {1}, {2}, {3}, {4}, {5}, and

{6}. The representative from the orbit {2} advances back to [01]. The other orbit rep-

resentatives bring the potentially new double cosets [0121], [0123], [0124], [0125],[0126],

and [0120]. However, consider the following relations:

t0t1t2t1 = m[t0t1t2]
n for some m ∈M and for some n ∈ N

t0t1t2t5 = (6, 3, 4)(1, 5, 2)[t0t1t5]
(6,4,3)(1,2,5)

t0t1t2t0 = m[t0t1t2t3]
n for some m ∈M and for some n ∈ N .

Hence in [012], the representative {1} advances back to [012], the representative

{5} advances to [015], and the representative {0} advances to [0123]. However, [0123],

[0124], and [0126] are new, distinct double cosets from the orbits of N (012) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (014) on X. We find [014] has the orbits {0}, {1}, {2}, {3}, {4}, {5}, and

{6}. The representative from the orbit {4} advances back to [01]. The other orbit rep-

resentatives bring the potentially new double cosets [0141], [0142], [0143], [0145],[0146],
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and [0140]. However, consider the following relations:

t0t1t4t1 = m[t0t3t4]
n for some m ∈M and for some n ∈ N

t0t1t4t3 = (0, 2, 5, 6, 1, 3, 4)[t0t1t2t6]
e

t0t1t4t6 = (0, 2, 3)(6, 4, 1)[t0t3t6]
(0,2,5,6,1,3,4)

t0t1t4t0 = (0, 1, 5, 4, 6, 3, 2)[t0t1t2t3]
(6,3,4)(1,5,2).

Hence in [014], the representative {1} advances to [034], the representative {3}
advances to [0126], the representative {6} advances to [0136], and the representative

{0} advances to [0123]. However, [0142] and [0145] are new, distinct double cosets from

the orbits of N (014) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (015) on X. We find [015] has the orbits {0}, {1}, {2}, {3}, {4}, {5}, and

{6}. The representative from the orbit {5} advances back to [01]. The other orbit rep-

resentatives bring the potentially new double cosets [0151], [0152], [0153], [0154],[0156],

and [0150]. However, consider the following relations:

t0t1t5t1 = m[t0t1t5]
n for some m ∈M and for some n ∈ N

t0t1t5t2 = (0, 4, 3)(1, 2, 5)[t0t1t2]
(6,3,4)(1,5,2)

t0t1t5t3 = m[t0t1t2t4]
n for some m ∈M and for some n ∈ N

t0t1t5t4 = m[t0t1t4t5]
n for some m ∈M and for some n ∈ N

t0t1t5t0 = m[t0t1t4t2]
n for some m ∈M and for some n ∈ N .

Hence in [015], the representative {1} advances to [015], the representative

{2} advances to [012], the representative {3} advances to [0124], the representative {4}
advances to [0145], and the representative {0} advances to [0142]. However, [0156] is

the new, distinct double coset from the orbits of N (015) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (016) on X. We find [016] has the orbits {0}, {1}, {2}, {3}, {4}, {5}, and

{6}. The representative from the orbit {6} advances back to [01]. The other orbit rep-

resentatives bring the potentially new double cosets [0161], [0162], [0163], [0164],[0165],

and [0160]. However, consider the following relations:

t0t1t6t1 = m[t0t1t6]
n for some m ∈M and for some n ∈ N

t0t1t6t2 = m[t0t1t2t6]
n for some m ∈M and for some n ∈ N

t0t1t6t3 = m[t0t1t2t4]
n for some m ∈M and for some n ∈ N

t0t1t6t4 = (0, 3, 2)(6, 1, 4)[t0t3t4]
(0,3,6,2,4,1,5)



75

t0t1t6t0 = m[t0t1t2t6]
n for some m ∈M and for some n ∈ N .

Hence in [016], the representative {1} advances to [016], the representative {2}
advances to [0126], the representative {3} advances to [0124], the representative {4}
advances to [034], and the representative {0} advances to [0126]. Hence, [0165] is the

only new, distinct double coset from the orbits of N (016) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (032) on X. We find [032] has the orbits {0}, {1}, {2}, {3}, {4}, {5}, and

{6}. The representative from the orbit {2} advances back to [03]. The other orbit rep-

resentatives bring the potentially new double cosets [0321], [0323], [0324], [0325],[0326],

and [0320]. However, consider the following relations:

t0t3t2t1 = m[t0t1t2t3]
n for some m ∈M and for some n ∈ N

t0t3t2t3 = m[t0t3t6]
n for some m ∈M and for some n ∈ N

t0t3t2t4 = (0, 6, 5)(4, 2, 3)[t0t3t5]
(0,6,4,5,3,2,1)

t0t3t2t5 = (0, 5, 1, 4, 2, 6, 3)[t0t1t2t4]
(0,4,1)(6,3,5)

t0t3t2t6 = m[t0t1t2t3]
n for some m ∈M and for some n ∈ N

t0t3t2t0 = m[t0t1t2t6]
n for some m ∈M and for some n ∈ N .

Hence in [032], the representative {1} advances to [0123], the representative

{3} advances to [036], the representative {4} advances to [035], the representative {5}
advances to [0124], the representative {6} advances to [0123], and the representative

{0} advances to [0126]. Hence there are no new double cosets coming from the orbits

of N (032) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (034) on X. We find [034] has the orbits {0}, {1}, {2}, {3}, {4}, {5}, and

{6}. The representative from the orbit {4} advances back to [03]. The other orbit rep-

resentatives bring the potentially new double cosets [0341], [0342], [0343], [0345],[0346],

and [0340]. However, consider the following relations:

t0t3t4t1 = m[t0t1t4t2]
n for some m ∈M and for some n ∈ N

t0t3t4t2 = (0, 5, 6)(4, 3, 2)[t0t1t6]
(0,5,1,4,2,6,3)

t0t3t4t3 = m[t0t1t4]
n for some m ∈M and for some n ∈ N

t0t3t4t6 = m[t0t1t6t5]
n for some m ∈M and for some n ∈ N

t0t3t4t0 = m[t0t1t2t4]
n for some m ∈M and for some n ∈ N .

Hence in [034], the representative {1} advances to [0142], the representative
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{2} advances to [016], the representative {3} advances to [014], the representative {6}
advances to [0165], and the representative {0} advances to [0124]. Hence, [0345] is the

only new, distinct double coset coming from the orbits of N (034) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (035) on X. We find [035] has the orbits {0}, {1}, {2}, {3}, {4}, {5}, and

{6}. The representative from the orbit {5} advances back to [03]. The other orbit rep-

resentatives bring the potentially new double cosets [0341], [0342], [0343], [0345],[0346],

and [0340]. However, consider the following relations:

t0t3t5t1 = m[t0t1t2t6]
n for some m ∈M and for some n ∈ N

t0t3t5t2 = m[t0t1t4t2]
n for some m ∈M and for some n ∈ N

t0t3t5t3 = m[t0t3t5]
n for some m ∈M and for some n ∈ N

t0t3t5t4 = m[t0t3t4t5]
n for some m ∈M and for some n ∈ N

t0t3t5t6 = m[t0t3t2]
n for some m ∈M and for some n ∈ N

t0t3t5t0 = m[t0t1t2t4]
n for some m ∈M and for some n ∈ N .

Hence in [035], the representative {1} advances to [0126], the representative

{2} advances to [0142], the representative {3} advances to [035], the representative {4}
advances to [0345], the representative {6} advances to [032] and the representative {0}
advances to [0124]. Hence there are no new double cosets coming from the orbits of

N (035) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (036) on X. We find [036] has the orbits {0}, {1}, {2}, {3}, {4}, {5}, and

{6}. The representative from the orbit {6} advances back to [03]. The other orbit rep-

resentatives bring the potentially new double cosets [0361], [0362], [0363], [0364],[0365],

and [0360]. However, consider the following relations:

t0t3t6t1 = m[t0t1t4t2]
n for some m ∈M and for some n ∈ N

t0t3t6t2 = m[t0t1t2t3]
n for some m ∈M and for some n ∈ N

t0t3t6t3 = m[t0t3t2]
n for some m ∈M and for some n ∈ N

t0t3t6t4 = m[t0t1t5t6]
n for some m ∈M and for some n ∈ N

t0t3t6t5 = m[t0t1t4]
n for some m ∈M and for some n ∈ N

t0t3t6t0 = m[t0t3t6]
n for some m ∈M and for some n ∈ N .

Hence in [035], the representative {1} advances to [0142], the representative

{2} advances to [0123], the representative {3} advances to [032], the representative {4}
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advances to [0156], the representative {5} advances to [014] and the representative {0}
advances to [036]. Hence there are no new double cosets coming from the orbits of

N (036) on X.

The double cosets we must now investigate are [0123], [0124], [0126], [0142],

[0145], [0156], [0165], and [0345].

Consider the following relations:

t0t1t4t5 = t6t3t4t1, which implies [t0t1t4t5]
(0,6,2)(1,3,5) = t6t3t4t1 ⇒ [(0, 6, 2)(1, 3, 5)] ∈

N (0145).

t0t1t5t6 = t3t4t5t1, which implies [t0t1t5t6]
(0,3,2)(1,4,6) = t3t4t5t1 ⇒ [(0, 3, 2)(1, 4, 6)] ∈

N (0156).

t0t1t6t5 = t1t3t6t2, which implies [t0t1t6t5]
(0,1,3)(2,4,5) = t1t3t6t2 ⇒ [(0, 1, 3)(2, 4, 5)] ∈

N (0165).

t0t3t4t5 = t6t5t4t1, which implies [t0t3t4t5]
(0,6,2)(1,3,5) = t1t3t6t2 ⇒ [(0, 6, 2)(1, 3, 5)] ∈

N (0345).

We find the following:

Computing N (0123) in M , we obtain:

|N (0123)| ≥ |N0123|

≥ | < Id(G) > |

≥ 1.

Computing N (0124) in M , we obtain:

|N (0124)| ≥ |N0124|

≥ | < Id(G) > |

≥ 1.

Computing |N (0126)| in M , we obtain:

|N (0126)| ≥ |N0126|

≥ | < Id(G) > |

≥ 1.
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Computing |N (0142)| in M , we obtain:

|N (0142)| ≥ |N0142|

≥ | < Id(G) > |

≥ 1.

Computing |N (0145)| in M , we obtain:

|N (0145)| ≥ |N0145|

≥ | < Id(G), (0, 6, 2)(1, 3, 5) > |

≥ 3.

Computing |N (0156)| in M , we obtain:

|N (0156)| ≥ |N0156|

≥ | < Id(G), (0, 3, 2)(1, 4, 6) > |

≥ 3.

Computing |N (0165)| in M , we obtain:

|N (0165)| ≥ |N0165|

≥ | < Id(G), (0, 1, 3)(2, 4, 5) > |

≥ 3.

Computing |N (0345)| in M , we obtain:

|N (0345)| ≥ |N0345|

≥ | < Id(G), (0, 6, 2)(1, 3, 5) > |

≥ 3.

The number of single cosets in Nt0t1t2t3N = |N |
|N(0123)| = 21

1 = 21. The number

of single cosets in Nt0t1t2t4N = |N |
|N(0124)| = 21

1 = 21. The number of single cosets
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in Nt0t1t2t6N = |N |
|N(0126)| = 21

1 = 21. The number of single cosets in Nt0t1t4t2N =
|N |

|N(0142)| = 21
1 = 21. The number of single cosets in Nt0t1t4t5N = |N |

|N(0145)| = 21
3 = 7.

The number of single cosets in Nt0t1t5t6N = |N |
|N(0156)| = 21

3 = 7. The number of

single cosets in Nt0t1t6t5N = |N |
|N(0165)| = 21

3 = 7. The number of single cosets in

Nt0t3t4t5N = |N |
|N(0345)| = 21

3 = 7.

Hence our index is increased to 218 + 21 + 21 + 21 + 21 + 7 + 7 + 7 + 7 = 330.

We explore the potentially new double cosets coming from representatives from

the orbits of N (0123) on X. We find [0123] has the orbits {0}, {1}, {2}, {3}, {4}, {5},
and {6}. The representative from the orbit {3} advances back to [012]. The other

orbit representatives bring the potentially new double cosets [01231], [01232], [01234],

[01235],[01236], and [01230]. However, consider the following relations:

t0t1t2t3t1 = m[t0t3t6]
n for some m ∈M and for some n ∈ N

t0t1t2t3t2 = m[t0t3t2]
n for some m ∈M and for some n ∈ N

t0t1t2t3t4 = m[t0t1t2t6]
n for some m ∈M and for some n ∈ N

t0t1t2t3t5 = m[t0t3t6]
n for some m ∈M and for some n ∈ N

t0t1t2t3t6 = m[t0t1t2]
n for some m ∈M and for some n ∈ N

t0t1t2t3t0 = m[t0t3t2]
n for some m ∈M and for some n ∈ N .

Hence in [0123], the representative {1} advances back to [036], the representa-

tive {2} advances to [032], the representative {4} advances to [0126], the representative

{5} advances to [036], the representative {6} advances to [012] and the representative

{0} advances to [032]. Hence there are no new, distinct double cosets from the orbits

of N (0123) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (0124) on X. We find [0124] has the orbits {0}, {1}, {2}, {3}, {4}, {5},
and {6}. The representative from the orbit {4} advances back to [012]. The other

orbit representatives bring the potentially new double cosets [01241], [01242], [01243],

[01245],[01246], and [01240]. However, consider the following relations:

t0t1t2t4t1 = m[t0t1t6]
n for some m ∈M and for some n ∈ N

t0t1t2t4t2 = m[t0t1t2t4]
n for some m ∈M and for some n ∈ N

t0t1t2t4t3 = m[t0t3t2]
n for some m ∈M and for some n ∈ N

t0t1t2t4t5 = m[t0t1t5]
n for some m ∈M and for some n ∈ N

t0t1t2t4t6 = m[t0t3t5]
n for some m ∈M and for some n ∈ N
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t0t1t2t4t0 = m[t0t3t4]
n for some m ∈M and for some n ∈ N .

Hence in [0124], the representative {1} advances back to [016], the representa-

tive {2} advances to [0124], the representative {3} advances to [032], the representative

{5} advances to [015], the representative {6} advances to [035] and the representative

{0} advances to [034]. Hence there are no new, distinct double cosets from the orbits

of N (0124) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (0126) on X. We find [0126] has the orbits {0}, {1}, {2}, {3}, {4}, {5},
and {6}. The representative from the orbit {6} advances back to [012]. The other

orbit representatives bring the potentially new double cosets [01261], [01262], [01263],

[01264],[01265], and [01260]. However, consider the following relations:

t0t1t2t6t1 = m[t0t1t6]
n for some m ∈M and for some n ∈ N

t0t1t2t6t2 = m[t0t1t2t3]
n for some m ∈M and for some n ∈ N

t0t1t2t6t3 = m[t0t1t4]
n for some m ∈M and for some n ∈ N

t0t1t2t6t4 = m[t0t3t5]
n for some m ∈M and for some n ∈ N

t0t1t2t6t5 = m[t0t3t2]
n for some m ∈M and for some n ∈ N

t0t1t2t6t0 = m[t0t1t6]
n for some m ∈M and for some n ∈ N .

Hence in [0126], the representative {1} advances back to [016], the representa-

tive {2} advances to [0123], the representative {3} advances to [014], the representative

{4} advances to [035], the representative {5} advances to [032] and the representative

{0} advances to [016]. Hence there are no new, distinct double cosets from the orbits

of N (0126) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (0142) on X. We find [0142] has the orbits {0}, {1}, {2}, {3}, {4}, {5},
and {6}. The representative from the orbit {2} advances back to [014]. The other

orbit representatives bring the potentially new double cosets [01421], [01423], [01424],

[01425],[01426], and [01420]. However, consider the following relations:

t0t1t4t2t1 = m[t0t3t6]
n for some m ∈M and for some n ∈ N

t0t1t4t2t3 = m[t0t3t5]
n for some m ∈M and for some n ∈ N

t0t1t4t2t4 = m[t0t1t4t2]
n for some m ∈M and for some n ∈ N

t0t1t4t2t5 = m[t0t1t4]
n for some m ∈M and for some n ∈ N

t0t1t4t2t6 = m[t0t3t4]
n for some m ∈M and for some n ∈ N
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t0t1t4t2t0 = m[t0t1t5]
n for some m ∈M and for some n ∈ N .

Hence in [0142], the representative {1} advances back to [036], the representa-

tive {3} advances to [0135], the representative {4} advances to [0142], the representative

{5} advances to [014], the representative {6} advances to [034] and the representative

{0} advances to [015]. Hence there are no new, distinct double cosets from the orbits

of N (0142) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (0145) on X. We find [0142] has the orbits {0}, {1}, {2}, {3}, {4}, {5},
and {6}. The representative from the orbit {5} advances back to [014]. The other

orbit representatives bring the potentially new double cosets [01451], [01452], [01453],

[01454],[01456], and [01450]. However, consider the following relations:

t0t1t4t5t1 = m[t0t1t4]
n for some m ∈M and for some n ∈ N

t0t1t4t5t2 = m[t0t1t5]
n for some m ∈M and for some n ∈ N

t0t1t4t5t3 = m[t0t1t4]
n for some m ∈M and for some n ∈ N

t0t1t4t5t4 = m[t0t1t4t5]
n for some m ∈M and for some n ∈ N

t0t1t4t5t6 = m[t0t1t5]
n for some m ∈M and for some n ∈ N

t0t1t4t5t0 = m[t0t1t5]
n for some m ∈M and for some n ∈ N .

Hence in [0145], the representative {1} advances to [014], the representative

{2} advances to [015], the representative {3} advances to [014], the representative {4}
advances to [0145], the representative {6} advances to [015] and the representative {0}
advances to [015]. Hence there are no new, distinct double cosets from the orbits of

N (0145) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (0156) on X. We find [0156] has the orbits {0}, {1}, {2}, {3}, {4}, {5},
and {6}. The representative from the orbit {6} advances back to [015]. The other

orbit representatives bring the potentially new double cosets [01561], [01562], [01563],

[01564],[01565], and [01560]. However, consider the following relations:

t0t1t5t6t1 = m[t0t1t5]
n for some m ∈M and for some n ∈ N

t0t1t5t6t2 = m[t0t3t6]
n for some m ∈M and for some n ∈ N

t0t1t5t6t3 = m[t0t3t6]
n for some m ∈M and for some n ∈ N

t0t1t5t6t4 = m[t0t1t5]
n for some m ∈M and for some n ∈ N

t0t1t5t6t5 = m[t0t1t6t5]
n for some m ∈M and for some n ∈ N
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t0t1t5t6t0 = m[t0t3t6]
n for some m ∈M and for some n ∈ N .

Hence in [0156], the representative {1} advances to [015], the representative

{2} advances to [036], the representative {3} advances to [036], the representative {4}
advances to [015], the representative {5} advances to [0165] and the representative {0}
advances to [036]. Hence there are no new, distinct double cosets from the orbits of

N (0156) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (0165) on X. We find [0165] has the orbits {0}, {1}, {2}, {3}, {4}, {5},
and {6}. The representative from the orbit {5} advances back to [016]. The other

orbit representatives bring the potentially new double cosets [01651], [01652], [01653],

[01654],[01656], and [01650]. However, consider the following relations:

t0t1t6t5t1 = m[t0t3t4]
n for some m ∈M and for some n ∈ N

t0t1t6t5t2 = m[t0t1t6]
n for some m ∈M and for some n ∈ N

t0t1t6t5t3 = m[t0t3t4]
n for some m ∈M and for some n ∈ N

t0t1t6t5t4 = m[t0t1t6]
n for some m ∈M and for some n ∈ N

t0t1t6t5t6 = m[t0t1t5t6]
n for some m ∈M and for some n ∈ N

t0t1t6t5t0 = m[t0t3t4]
n for some m ∈M and for some n ∈ N .

Hence in [0165], the representative {1} advances to [034], the representative

{2} advances to [016], the representative {3} advances to [034], the representative {4}
advances to [016], the representative {6} advances to [0156] and the representative {0}
advances to [034]. Hence there are no new, distinct double cosets from the orbits of

N (0165) on X.

We explore the potentially new double cosets coming from representatives from

the orbits of N (0345) on X. We find [0345] has the orbits {0}, {1}, {2}, {3}, {4}, {5},
and {6}. The representative from the orbit {5} advances back to [034]. The other

orbit representatives bring the potentially new double cosets [03451], [03452], [03453],

[03454],[03456], and [03450]. However, consider the following relations:

t0t3t4t5t1 = m[t0t3t4]
n for some m ∈M and for some n ∈ N

t0t3t4t5t2 = m[t0t3t5]
n for some m ∈M and for some n ∈ N

t0t3t4t5t3 = m[t0t3t4]
n for some m ∈M and for some n ∈ N

t0t3t4t5t4 = m[t0t3t4t5]
n for some m ∈M and for some n ∈ N

t0t3t4t5t6 = m[t0t3t5]
n for some m ∈M and for some n ∈ N
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t0t3t4t5t0 = m[t0t3t5]
n for some m ∈M and for some n ∈ N .

Hence in [0345], the representative {1} advances to [034], the representative

{2} advances to [035], the representative {3} advances to [034], the representative {4}
advances to [0345], the representative {6} advances to [035] and the representative {0}
advances to [035]. Hence there are no new, distinct double cosets from the orbits of

N (0345) on X.

Because there are no new words of length five, we have completed our double

coset enumeration of G over M . Our group is closed under right multiplication of ti’s.

The index of M in G is 330. However, the double cosets of M over N are given by:

M = N ∪Nt1t2t1t2t0t1t2t1t2t1t0t2N∪
Nt3t4t3t4t1t3t4t3t4t3t1t4t1t2t1t2t0t1t2t1t2t1t0t2N∪
Nt0t2t0t2t4t0t2t0t2t0t4t2t1t2t1t2t0t1t2t1t2t1t0t2N∪
Nt2t3t2t3t1t2t3t2t3t2t1t3t1t2t1t2t0t1t2t1t2t1t0t2N∪
Nt2t5t2t5t0t2t5t2t5t2t0t5t1t2t1t2t0t1t2t1t2t1t0t2N .

Since the double coset enumeration ofG overM gave usX = {M,Mt0,Mt1, . . . },
we can perform a double coset decomposition of M over N to find all single cosets of

G over N . Since there are 64 single cosets in M and there are 330 singles cosets in X,

There are 21120 single cosets in the double coset enumeration of G over N .

The Cayley graph for G over M is given below. Since the orbits on the Cayley

graph are difficult to follow, there is a table which illustrates the orbit destinations of

the double coset enumeration of G over M .
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Figure 3.2: M22 Cayley Graph
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Table 3.1: Orbits of M22(a)

NwN Orbits Potentially New DCs Destination

NeN {0, 1, 2, 3, 4, 5, 6} Mt0 → Mt0N

Mt0N {0}, {1, 2, 5}, Mt0t0 → N
{3, 4, 6} Mt0t1 → Mt0t1N

Mt0t3 → Mt3N

Mt0t1N {0}, {1}, {2}, {3}, Mt0t1t0 → Mt0t1N
{4}, {5}, {6} Mt0t1t1 → Mt0N

Mt0t1t2 → Mt0t1t2N
Mt0t1t3 → Mt0t3N
Mt0t1t4 → Mt0t1t4N
Mt0t1t5 → Mt0t1t5N
Mt0t1t6 → Mt0t1t6N

Mt0t3N {0}, {1}, {2}, {3}, Mt0t3t0 → Nt0t3N
{4}, {5}, {6} Mt0t3t1 → Mt0t1N

Mt0t3t2 → Mt0t3t2N
Mt0t3t3 → Mt0t3t3N
Mt0t3t4 → Mt0t3t4N
Mt0t3t5 → Mt0t3t5N
Mt0t3t6 → Mt0t3t6N

Mt0t1t2N {0}, {1}, {2}, {3}, Mt0t1t2t0 → Mt0t3N
{4}, {5}, {6} Mt0t1t2t1 → Mt0t1t2N

Mt0t1t2t2 → Mt0t1N
Mt0t1t2t3 → Mt0t1t2t3N
Mt0t1t2t4 → Mt0t1t2t4N
Mt0t1t2t5 → Mt0t1t5N
Mt0t1t2t6 → Mt0t1t2t6N
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Table 3.2: Orbits of M22(b)

NwN Orbits Potentially New DCs Destination

Mt0t1t4N {0}, {1}, {2}, {3}, Mt0t1t4t0 → Mt0t1t4t2N
{4}, {5}, {6} Mt0t1t4t1 → Mt0t3t4N

Mt0t1t4t2 → Mt0t1t4t2N
Mt0t1t4t3 → Mt0t1t2t6N
Mt0t1t4t4 → Mt0t1N
Mt0t1t4t5 → Mt0t1t4t5N
Mt0t1t4t6 → Mt0t3t6N

Mt0t1t5N {0}, {1}, {2}, {3}, Mt0t1t5t0 → Mt0t1t4t2N
{4}, {5}, {6} Mt0t1t5t1 → Mt0t1t5N

Mt0t1t5t2 → Mt0t1t2N
Mt0t1t5t3 → Mt0t1t2t4N
Mt0t1t5t4 → Mt0t1t4t5N
Mt0t1t5t5 → Mt0t1N
Mt0t1t5t6 → Mt0t1t5t6N

Mt0t1t6N {0}, {1}, {2}, {3}, Mt0t1t6t0 → Mt0t1t2t6N
{4}, {5}, {6} Mt0t1t6t1 → Mt0t1t6N

Mt0t1t6t2 → Mt0t1t2t6N
Mt0t1t6t3 → Mt0t1t2t4N
Mt0t1t6t4 → Mt0t3t4N
Mt0t1t6t5 → Mt0t1t6t5N
Mt0t1t6t6 → Mt0t1N

Mt0t3t2N {0}, {1}, {2}, {3}, Mt0t3t2t0 → Nt0t1t2t6N
{4}, {5}, {6} Mt0t3t2t1 → Mt0t1t2t3N

Mt0t3t2t2 → Mt0t3N
Mt0t3t2t3 → Mt0t3t6N
Mt0t3t2t4 → Mt0t3t5N
Mt0t3t2t5 → Mt0t1t2t4N
Mt0t3t2t6 → Mt0t1t2t3N

Mt0t3t4N {0}, {1}, {2}, {3}, Mt0t3t4t0 → Mt0t1t2t4N
{4}, {5}, {6} Mt0t3t4t1 → Mt0t1t4t2N

Mt0t3t4t2 → Mt0t1t6N
Mt0t3t4t3 → Mt0t1t4N
Mt0t3t4t4 → Mt0t3N
Mt0t3t4t5 → Mt0t1t6t5N
Mt0t3t4t6 → Mt0t1t2t3N

Mt0t3t5N {0}, {1}, {2}, {3}, Mt0t3t5t0 → Mt0t1t2t4N
{4}, {5}, {6} Mt0t3t5t1 → Mt0t1t2t6N

Mt0t3t5t2 → Mt0t1t4t2N
Mt0t3t5t3 → Mt0t3t5N
Mt0t3t5t4 → Mt0t3t4t5N
Mt0t3t5t5 → Mt0t3N
Mt0t3t5t6 → Mt0t3t2N



87

Table 3.3: Orbits of M22(c)

MwN Orbits Potentially New DCs Destination

Mt0t3t6N {0}, {1}, {2}, {3}, Mt0t3t6t0 → Mt0t1t2t3N
{4}, {5}, {6} Mt0t3t6t1 → Mt0t1t4t2N

Mt0t3t6t2 → Mt0t1t2t3N
Mt0t3t6t3 → Mt0t3t2N
Mt0t3t6t4 → Mt0t1t5t6N
Mt0t3t6t5 → Mt0t1t4N
Mt0t3t6t6 → Mt0t3N

Mt0t1t2t3N {0}, {1}, {2}, {3}, Mt0t1t2t3t0 → Mt0t3t2N
{4}, {5}, {6} Mt0t1t2t3t1 → Mt0t3t6N

Mt0t1t2t3t2 → Mt0t3t2N
Mt0t1t2t3t3 → Mt0t1t2N
Mt0t1t2t3t4 → Mt0t1t2t6N
Mt0t1t2t3t5 → Mt0t3t6N
Mt0t1t2t3t6 → Mt0t1t2N

Mt0t1t2t4N {0}, {1}, {2}, {3}, Mt0t1t2t4t0 → Mt0t3t4N
{4}, {5}, {6} Mt0t1t2t4t1 → Mt0t1t6N

Mt0t1t2t4t2 → Mt0t1t2t4N
Mt0t1t2t4t3 → Mt0t3t2N
Mt0t1t2t4t4 → Mt0t1t2N
Mt0t1t2t4t5 → Mt0t1t5N
Mt0t1t2t4t6 → Mt0t3t5N

Mt0t1t2t6N {0}, {1}, {2}, {3}, Mt0t1t2t6t0 → Mt0t1t6N
{4}, {5}, {6} Mt0t1t2t6t1 → Mt0t1t6N

Mt0t1t2t6t2 → Mt0t1t2t3N
Mt0t1t2t6t3 → Mt0t1t4N
Mt0t1t2t6t4 → Mt0t3t5N
Mt0t1t2t6t5 → Mt0t3t2N
Mt0t1t2t6t6 → Mt0t1t2N

Mt0t1t4t2N {0}, {1}, {2}, {3}, Mt0t1t4t2t0 → Mt0t1t5N
{4}, {5}, {6} Mt0t1t4t2t1 → Mt0t3t6N

Mt0t1t4t2t2 → Mt0t1t4N
Mt0t1t4t2t3 → Mt0t3t5N
Mt0t1t4t2t4 → Mt0t1t4t2N
Mt0t1t4t2t5 → Mt0t1t5N
Mt0t1t4t2t6 → Mt0t3t4N

Mt0t1t4t5N {0}, {1}, {2}, {3}, Mt0t1t4t5t0 → Mt0t1t5N
{4}, {5}, {6} Mt0t1t4t5t1 → Mt0t1t4N

Mt0t1t4t5t2 → Mt0t1t5N
Mt0t1t4t5t3 → Mt0t1t4N
Mt0t1t4t5t4 → Mt0t1t4t5N
Mt0t1t4t5t5 → Mt0t1t4N
Mt0t1t4t5t6 → Mt0t1t5N
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Table 3.4: Orbits of M22(d)

NwN Orbits Potentially New DCs Destination

Mt0t1t5t6N {0}, {1}, {2}, {3}, Mt0t1t5t6t0 → Mt0t3t6N
{4}, {5}, {6} Mt0t1t5t6t1 → Mt0t1t5N

Mt0t1t5t6t2 → Mt0t3t6N
Mt0t1t5t6t3 → Mt0t3t6N
Mt0t1t5t6t4 → Mt0t1t5N
Mt0t1t5t6t5 → Mt0t1t6t5N
Mt0t1t5t6t6 → Mt0t1t5N

Mt0t1t6t5N {0}, {1}, {2}, {3}, Mt0t1t6t5t0 → Mt0t3t4N
{4}, {5}, {6} Mt0t1t6t5t1 → Mt0t3t4N

Mt0t1t6t5t2 → Mt0t1t6N
Mt0t1t6t5t3 → Mt0t3t4N
Mt0t1t6t5t4 → Mt0t1t6N
Mt0t1t6t5t5 → Mt0t1t6N
Mt0t1t6t5t6 → Mt0t1t5t6N

Mt0t3t4t5N {0}, {1}, {2}, {3}, Mt0t1t2t4t0 → Mt0t3t5
{4}, {5}, {6} Mt0t1t2t4t1 → Mt0t3t4N

Mt0t1t2t4t2 → Mt0t3t5N
Mt0t1t2t4t3 → Mt0t3t4N
Mt0t1t2t4t4 → Mt0t3t4t5N
Mt0t1t2t4t5 → Mt0t3t5N
Mt0t1t2t4t6 → Mt0t3t5N
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3.2.1 Partial Proof of M22 by Iwasawa’s Lemma

We let X = {Nω} be the set of single cosets of G over N . We will use

Iwasawa’s Lemma and the transitive action of G on X to prove G is a simple group. If

we can show that G is faithful, G acts primitively on X, G = G′, and that there exists

a normal, abelian subgroup of G such that < KG >= G, we will have shown that G is

a non-abelian simple group of order 443520.

(i) G acts faithfully on X

Since X is a transitive G-set of degree 21120, we have:

|G| = 21120|G1|,

where G1 is the one point stabiliser of the single coset N . However, N is stabilised

by only elements of N . Therefore G1 = N and |G1| = |N | = 21. So we have

|G| > 21× 21120 = 443520. It is then evident that |G| = 443520. If |G| > 443520,

X would not be faithful.

(ii) The group G acts primitively on X

Every group constructed by a Cayley graph is transitive. Since G is transitive, we

can assume N ∈ B. However, |B| must divide |X| = 330 = 2× 3× 5× 11. So the

order of any nontrivial block must be of order 2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 55,

66, or 110.

Let us first exclude a few of these choices. By speculation of our Cayley graph,

there is one double coset with 1 double coset, five double cosets with 7 single

cosets, and the rest of the double cosets have 21 single cosets. This eliminates the

possibilities of obtaining a nontrivial block of size 2, 3, 5, 6, 10, 11, 30, 33, 55, 66,

and 110.

We must then determine if there are any nontrivial blocks of size 15 or 22.

Since a block of size 15 must have the double coset M and two double cosets with

7 single cosets, we will look at the various cases. The double cosets with 7 single

cosets are [0], [0145], [0156], [0165], and [0345].
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First consider a block containing N and Nt0. Then B > {M,Mt0,Mt1, . . .Mt6}.
But Bt0 = {Mt0,Mt0t0,Mt1t0, . . .Mt6t0} = {Mt0,M,Mt1t0, . . .Mt6t0}. But

this would imply Mt0t1N ∈ B, since Mt0t1 ∈ B and double cosets are either

disjoint or contained in B. But Mt0t1N has 21 single cosets, and we already said

there are no potential blocks that contain a double coset with 21 single cosets.

Therefore there Mt0N cannot be contained in a nontrivial block.

Next we consider a block with Mt0t1t4t5N . Then B > {M,Mt0t1t4t5, . . . }. But

Bt4 > {Mt4,Mt0t1t4t5t4, . . . }. But we have 0145 ∼ 01454, thereforeMt0t1t4t5t4 =

Mt0t1t4t5. So Mt0N ∈ B since Mt4 ∈Mt0N . Therefore a block with Mt0t1t4t5N

is trivial.

Next we consider a block with Mt0t3t4t5N . Then B > {M,Nt0t3t4t5, . . . }. But

Bt4 > {Mt4,Mt0t3t4t5t4, . . . }. But we have 0345 ∼ 03454, thereforeMt0t3t4t5t4 =

Mt0t3t4t5. So Mt0N ∈ B since Mt4 ∈Mt0N . Therefore a block with Mt0t3t4t5N

is trivial.

So a block of size 15 must have [∗], [0156], and [0165]. So we have

B = {M,Mt0t1t5t6, . . . ,Mt0t1t6t5, . . . }.

Consider Bt5 = {Mt5,Mt0t1t5t6t5, . . . ,Mt0t1t6t5t5, . . . }. But we have 01565 ∼
0165. So we see Mt0N ∈ B, since Mt5 ∈ Mt0N and Mt5 ∈ B. So this block is

trivial.

Therefore there are no nontrivial blocks of size 15.

We will now determine if there are any blocks of size 22.

As we seen before, there are no nontrivial blocks that include any double cosets

with 7 single cosets. So the only nontrivial blocks of size 22 must be formed

utilizing only one double coset with 21 single cosets and N . We will check [01],

[03], [012], [014], [015], [016], [032], [034], [035], [036], [0123], [0124], [0126], and

[0142] individually joined with [∗]. If we find that there are any extra cosets in B,

the block will be trivial.

If B = {M,Mt0t1, . . . }, consider Bt0 = {Mt0,Mt0t1t0, . . . }. But 010 ∼ 01. Then

Bt0 = {Mt0,Mt0t1, . . . }. So Mt0N ∈ B, since Mt0 ∈ Mt0N and Mt0 ∈ B. So

this block is trivial.
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If B = {M,Mt0t3, . . . }, consider Bt0 = {Mt0,Mt0t3t0, . . . }. But 030 ∼ 03. Then

Bt0 = {Mt0,Mt0t3, . . . }. So Mt0N ∈ B, since Mt0 ∈ Mt0N and Mt0 ∈ B. So

this block is trivial.

If B = {M,Mt0t1t2, . . . }, consider Bt1 = {Mt1,Mt0t1t2t1, . . . }. But 0121 ∼ 012.

Then Bt1 = {Mt1,Mt0t1t2, . . . }. So Mt0N ∈ B, since Mt1 ∈ Mt0N and Mt1 ∈
B. So this block is trivial.

If B = {M,Mt0t1t4, . . . }, consider Bt1t3 = {Mt1t3,Mt0t1t4t1t3, . . . }. But 0141 ∼
034. So we have Bt1t3 = {Mt1t3,Mt0t3t4t3, . . . }. But 0343 ∼ 014. So we have

Bt1t3 = {Mt1t3,Mt0t1t4, . . . }. So Mt0t1N ∈ B, since Mt1t3 ∈ Mt0t1N and

Mt1t3 ∈ B. So this block is trivial.

If B = {M,Mt0t1t5, . . . }, consider Bt1 = {Mt1,Mt0t1t5t1, . . . }. But 0151 ∼ 015.

So we have Bt1 = {Mt1,Mt0t1t5, . . . }. So Mt0N ∈ B, since Mt1 ∈ Mt0N and

Mt1 ∈ B. So this block is trivial.

If B = {M,Mt0t1t6, . . . }, consider Bt1 = {Mt1,Mt0t1t6t1, . . . }. But 0161 ∼ 016.

So we have Bt1 = {Mt1,Mt0t1t6, . . . }. So Mt0N ∈ B, since Mt1 ∈ Mt0N and

Mt1 ∈ B. So this block is trivial.

If B = {M,Mt0t3t2, . . . }, consider Bt4t6 = {Mt4t6, Nt0t3t2t4t6, . . . }. But 0324 ∼
035. So we have Bt4t6 = {Mt4t6, Nt0t3t5t6, . . . }. But 0356 ∼ 032. So we have

Bt4t6 = {Mt4t6,Mt0t3t2, . . . }. So Mt0t1N ∈ B, since Mt4t6 ∈ Mt0t1N and

Mt4t6 ∈ B. So this block is trivial.

If B = {M,Mt0t3t4, . . . }, consider Bt3t1 = {Mt3t1, Nt0t3t4t3t1, . . . }. But 0343 ∼
014. So we have Bt3t1 = {Mt3t1, Nt0t1t4t6, . . . }. But 0146 ∼ 034. So we have

Bt3t1 = {Mt3t1,Mt0t3t4, . . . }. So Mt0t3N ∈ B, since Mt3t1 ∈ Mt0t3N and

Mt3t1 ∈ B. So this block is trivial.

If B = {M,Mt0t3t5, . . . }, consider Bt3 = {Mt3,Mt0t3t5t3, . . . }. But 0353 ∼ 035.

So we have Bt3 = {Mt3,Mt0t3t5, . . . }. So Mt0N ∈ B, since Nt3 ∈ Mt0N and

Mt3 ∈ B. So this block is trivial.

If B = {M,Mt0t3t6, . . . }, consider Bt5t6 = {Mt5t6,Mt0t3t6t5t6, . . . }. But 0365 ∼
014. So we have Bt5t6 = {Mt5t6,Mt0t1t4t6, . . . }. But 0146 ∼ 034. So we have

Bt5t6 = {Mt5t6,Mt0t3t4, . . . }. So Mt0t1N ∈ B, since Mt5t6 ∈ Mt0t1N and
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Mt5t6 ∈ B. So this block is trivial.

If B = {M,Mt0t1t2t3, . . . }, consider Bt4t2 = {Mt4t2,Mt0t1t2t3t4t2, . . . }. But

01234 ∼ 0126. So we have Bt5t6 = {Mt4t2,Mt0t1t2t6t2, . . . }. But 01262 ∼ 0123.

So we have Bt4t2 = {Mt4t2,Mt0t1t2t3, . . . }. So Mt0t1N ∈ B, since Mt5t6 ∈
Mt0t1N and Mt4t2 ∈ B. So this block is trivial.

If B = {M,Mt0t1t2t4, . . . }, consider Bt2 = {Mt2,Mt0t1t2t4t2, . . . }. But 01242 ∼
0124. So we have Bt2 = {Mt2,Mt0t1t2t4, . . . }. So Mt0N ∈ B, since Mt2 ∈Mt0N

and Mt2 ∈ B. So this block is trivial.

If B = {M,Mt0t1t2t6, . . . }, consider Bt2t4 = {Mt2t4,Mt0t1t2t6t2t4, . . . }. But

01262 ∼ 0123. So we have Bt2t4 = {Mt2t4,Mt0t1t2t3t4, . . . }. But 01234 ∼ 0126.

So we have Bt2t4 = {Mt2t4,Mt0t1t2t6, . . . }. So Mt0t3N ∈ B, since Mt2t4 ∈
Mt0t3N and Mt2t4 ∈ B. So this block is trivial.

If B = {M,Mt0t1t4t2, . . . }, consider Bt4 = {Mt2,Mt0t1t4t2t4, . . . }. But 01424 ∼
0142. So we have Bt4 = {Mt2,Mt0t1t4t2, . . . }. So Mt0N ∈ B, since Mt4 ∈Mt0N

and Mt4 ∈ B. So this block is trivial.

Thus G acts primitively on X since there are no nontrivial blocks.

(iii) The group G is perfect

We should begin by showing that G =< x, y, t0, t1, . . . , t6 >=< t0, t1, . . . , t6 >.

Consider the relations:

t0t3t2t4 = (0, 3, 2)(1, 4, 6)t3t6t1, where a = (0, 3, 2)(1, 4, 6)

t0t3t2t4t1t6t3 = a

t0t1t3 = (0, 3, 1)(2, 5, 4)t1t0, where a−1b−1 = (0, 3, 1)(2, 5, 4) t0t1t3t0t1 = a−1b−1.

But as we seen before, a is generated by ti’s, so b is also generated by ti’s.

Hence G =< N, t0, t1, . . . , t6 >=< t0, t1, . . . , t6 >.

We must now show that G = G′. Since N ≤M ≤ G, the derived group of N ∈ G′.
The derived group of N =< b >.
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As we have done before, we find a relation that has only b and some ti’s in it.

We then isolate b by putting all the ti’s on the other side of the equation. This

helps us see that this product of ti’s is in N ′. From here, we try to show that this

product of ti’s is actually a product of commutators and one single ti. If we can

accomplish this, we have that a single ti ∈ N ′ ≤ G′. From here, it is easy to see

that G =< t0, t1, . . . , t6 >= G′.

For instance, we have the relation t0t3t2t5 = b4t4t0t2t1. So b4 = t0t3t2t5t1t2t0t4.

But b4 ∈ N ′, so t0t3t2t5t1t2t0t4 ∈ N ′ ≤ G′.

Due to time constraints, there is no proof to show G = G′.

(iv) The point stabiliser of N of G contains a normal abelian subgroup K whose con-

jugates generate G

We know a normal abelian subgroup of M is also a normal abelian subgroup of

G. In this case, K = 23 ≤ [23 : L(3, 2)] = M , where the elements that generate

K = 23 =< Ka,Kb,Kc > are given by:

Ka = (2, 3, 4)(5, 7, 6)t4t2t4t2t1t4t2t4t2t4t1t3t2t3t1t2t3t2t1t3

Kb = (2, 3, 4)(5, 7, 6)t2t3t2t3t1t2t3t2t3t2t1t3t4t3t4t1t3t4t3t4t3t1t4

Kc = (1, 7, 3)(2, 5, 4)t3t0t3t0t6t3t0t3t0t3t6t0t1t3t1t3t6t1t3t1t3t1t6t3.

To solve this, we want to show that an element in K can be conjugated by elements

from G to generate a single ti.

Due to time constraints, there is no proof to show KG = G.
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Chapter 4

Isomorphism Types of Some

Groups

4.1 M11 × S4

We begin with the infinite progenitor 2∗8 : (2•S4) and factor by suitable rela-

tions to give us G:

G =< v,w, x, y, z, t|v2, w3, x2 = z, y2 = z, z2, wv = w2, xv = y, xw = yz, yv =

x, yw = xy, yx = yz, zv = z, zw = z, zx = z, zy = z, t2, (t, v), (t, wy−1) >.

To make this group progenitor finite, we factor it by suitable relations. The fi-

nite group we will investigate is G ∼=< v,w, x, y, z, t|v2, w3, x2 = z, y2 = z, z2, wv =

w2, xv = y, xw = yz, yv = x, yw = xy, yx = yz, zv = z, zw = z, zx = z, zy =

z, t2, (t, v), (t, wy−1), (xt)6, (xw−1t)6, (zt)3 >. By the Jordan-Hölder Theorem, we know

that every finite group can be factored into simple groups. We can then examine the

isomorphism type of our group G.

When determining the isomorphism type, there are different extension types

of the groups which have simple factors. If N is normal in G and H is isomorphic to

G/N , we say that G is an extension of N by H.

When examining the composition factors of G, we find G consists of one M11

group, followed by one C2 group, a C3 group, and two C2 groups. We must now deter-

mine the extension problems associated with these simple groups. We first determine

that our group has no central element. When observing the minimal normal subgroups
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of G, we find that there is a normal subgroup of order 24 and another of order 7920.

Furthermore, the order of G = 190080 = 7920× 24. We should then check if our group

is a direct product of both these normal subgroups.

The normal subgroup of order 24 has an abelian subgroup of order 4. After

a quick computerized check, we find that this subgroup of order 24 is S4. The normal

subgroup of order 7920 is the sporadic Mathieu Group 11 simple group M11. After

observing the normal lattice of G, S4 is denoted by NL[4] and M11 is denoted by

NL[5].

After a computerized check, we find that G is a direct product between NL[4]

and NL[5]. Hence G ∼= M11 × S4.
A presentation for S4 is < a, b|a4, b2, (ab)3 >.

A presentation for M11 is < c2, d4, d−1cd−2cd−2cd2cd2cd2cd−1,

cdcdcd−1cd−1cdcd−1cd2cdcd−1, cd−2cd−1cdcd−2cd−1cdcd2cd−1cd, (cd−1)11 >.

In a direct product, the generators of S4 and M11 will commute with one

another, hence the presentation for this group can be given by the following:

G = M11 × S4 =< a, b, c, d|a4, b2, (ab)3, c2, d4, d−1cd−2cd−2cd2cd2cd2cd−1,
cdcdcd−1cd−1cdcd−1cd2cdcd−1, cd−2cd−1cdcd−2cd−1cdcd2cd−1cd, (cd−1)11,

(a, c), (a, d), (b, c), (b, d) >.

4.2 Z8
• : [D12 : (Z4 × Z4)]

We begin with the infinite progenitor G = 2∗6 : D12, given by the follow-

ing presentation: G ∼=< x, y|x3, y2, (xy)2 >. To make this infinite progenitor finite,

we can factor it by suitable relations. The finite group we will investigate is G ∼=<
x, y, t|x3, y2, (xy)2, t2, (t, y), (xt)8, (xttx)2, (xytxt)8, (ttxt)8 >. By the Jordan-Hölder The-

orem, we know that every finite group can be factored into simple groups. We can then

examine the isomorphism type of our group G.

We will use the normal lattice, denoted NL, to help work with the composition

factors of G. We find G consists of ten simple groups; nine C2 groups and one C3 group.

Furthermore, we have the composition series G ⊃ G1 ⊃ G2 ⊃ G3 ⊃ G4 ⊃ G5⊃ G6 ⊃ G7⊃
G8⊃ G9⊃ 1, where G = (G/G1)(G1/G2) · · · (G9/1) = C2C3C2C2C2C2C2C2C2C2. We

must determine the extension problems associated with G. We first find that |Z(G)| = 2,



96

and this centre is equal to G9/1. So we have a central extension of order 2 and can

factor G by this centre. After factoring by the centre of G, we obtain a remainder which

we denote as A. So we have G = 2•?A, where a question mark represents the unknown

extension. However, there is no normal subgroup of G that is a direct product with G9

to equal G. Hence, our central extension is a semi-direct product with the quotient A

and we obtain G = 2• : A.

In a similar fashion to before, we have a composition series of A, which is A

⊃ A1 ⊃ · · · ⊃ A8⊃ 1, where A = (A/A1)(A1/A2) · · · (A8/1) = C2C3C2C2C2C2C2C2C2.

We then find |Z(A)| = 2 and this centre is equal to A8/1. After factoring A by the centre,

we obtain a remainder which we denote as B. As of now, we have G = 2•?2• : B, where

a question mark represents the unknown extension. There is also is no normal subgroup

of A which is a direct product with A8 to equal A. Hence we obtain G = 2• : 2• : B.

The composition series of B is B ⊃ B1⊃ · · ·⊃ B7 superset 1, where B =

(B/B1)(B1/B2) · · · (B7/1) = C2C3C2C2C2C2C2C2. We find that |Z(B)| = 2 and this

centre is equal to B7/1. After factoring B by the centre, we obtain a remainder which

we denote as Q. As of now, we have G = 2•?2• : 2• : Q, , where a question mark

represents the unknown extension. There is no normal subgroup of B which is a direct

product with B7 which gives us B. So we now have G = 2• × 2• : 2• : Q.

However, we should note that (G7/G8)(G8/G9)(G9/1) is abelian. This implies

that our three centres can be written as Z8. So our extension is really G = Z8
•Q.

We will first determine the isomorphism type of Q before we investigate the

central element Z8. The composition series of Q is Q ⊃ Q1 ⊃ · · · ⊃ Q6 ⊃ 1, where

Q = (Q/Q1)(Q1/Q2) · · · (Q6/1) = C2C3C2C2C2C2C2. We find that |Z(Q)| = 1, so Q

does not have a central extension. Since the minimal normal subgroup of Q is of order

4 and there is a normal subgroup of order 16, we should check if

(Q3/Q4)(Q4/Q5)(Q5/Q6)(Q6/1) = C2C2C2C2 is a direct product of two groups of order

4. This is indeed the case, so we obtain Q3 = Z4 × Z4.

We continue to the next level of our composition series and find C2 = (Q2/Q3) =

Q2/(Z4×Z4), which implies Q2 = C2?(4×4), where a question mark represents the un-

known extension. However, we know that there are no normal subgroups of Q of order

2, so this extension must be a semi-direct product. So we now have Q2 = C2 : (Z4×Z4).

We continue to C3 = Q1/Q2 = Q1/[C2 : (Z4 × Z4)]. So Q1 = C3?[C2 :
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(Z4 × Z4)], where a question mark represents the unknown extension. Since Q does

not have a normal subgroup of order 3, we know this extension must be a semi-direct

product. So Q1 = C3 : [C2 : (Z4 × Z4)].

Finally, we arrive at C2 = Q/Q1 = Q/[C3 : C2 : Z4 × Z4)]. So Q = C2?[C3 :

C2 : (Z4 × Z4)], where a question mark represents the unknown extension. But, as

before, Q has no normal subgroup of order 2, so this extension is a semi-direct product.

So we obtain Q = [C2 : C3 : C2 : (Z4 × Z4)].

The presentation for Q is given by < i, j, k, l,m|i4, j4, k2, l3,m2, (i, j), ik =

i−1, jk = j−1, il = j, jl = i−1j−1, kl = k, im = i−1, jm = ij, km = k, lm = l−1 >.

Now consider C2 : C3 : C2. Our presentation of this semi direct product is

given by G < a, b, c >:= Group < a, b, c|a2, b3, c2, ab = a, ac = a, bc = b−1 >. However,

this presentation is that of the Dihedral Group 12, D12. Thus, we can rewrite the presen-

tation of D12
∼= C2 : C3 : C2 as G < a, b >:= Group < a, b|a6, b2, (ab)2 >. So we obtain

Q ∼= D12 : (Z4 × Z4) ∼=< j, k, l >:= Group < j, k, l|j6, k2, l2, (jk)2, (jl)8, (kl)2, (jkl)3 >.

Now G is a mixed extension of the cyclic group Z8 by Q. The usual treatment

of this is as follows. Our group G has a normal subgroup Z8 and a quotient group Q.

Regard Q as the group of the cosets of G. Pick a ”factor set”: a representative from

each coset, with the one from the identity of the quotient group being the identity of

G. Then find a map from Q × Q to Z8 such that the factor set is ”compatible”, i.e.

everything fits together correctly. We accomplish this by inserting the MAGMA code

below.

Let T:=Transversal(G1,NL[6]);
T2:=T[2];
T3:=T[3];
T4:=T[4];
D:=T2*T3*T4;

We note that |D| = 6 and |ND| = 3. Thus ND3 = N . So D3 ∈ N and

we readily found that D3 = a3, where a is a generator of Z8. Also, the action of the

generators of Q (as automorphisms of Z8) on a needs to be determined. We insert

an element i of order 8 and determine how j,k, and l act on i . We then determine

that ij = i−1, ik = i, and il = i−1. The presentation of G = Z8
• : [D12 : (Z4 × Z4)]

is G < i, j, k, l >:= Group < i, j, k, l|i8, j6, k2, l2, (jk)2, (jl)8, (kl)2, (jkl)3 = i3, ij =

i−1, ik = i, il = i−1 >.
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Chapter 5

Methods of Finding Progenitors

5.1 Common Finite Groups

Consider the group N = D12, or Dihedral Group 12 of the form Dn with

n = 12. The permutation representation of D12 on the minimal number of generators

is given by X = (1, 2, 3, 4, 5, 6) and Y = (1, 5)(2, 4). The presentation for any dihedral

group is of the form Dn =< x, y|x
n
2 , y2, (xy)2 >. We then wish to introduce an element

t to N to create our infinite progenitor.

The elements of D12 are given by:

D12 = {Id(N), (1, 5, 3)(2, 6, 4), (1, 2)(3, 6)(4, 5), (1, 2, 3, 4, 5, 6), (1, 5)(2, 4), (1, 3)(4, 6),

(1, 6, 5, 4, 3, 2), (1, 4)(2, 3)(5, 6), (1, 6)(2, 5)(3, 4), (1, 3, 5)(2, 4, 6), (1, 4)(2, 5)(3, 6),

(2, 6)(3, 5)}.
We let t ∼ t6. It is then clear that only Y = (1, 5)(2, 4) fixes t pointwise. When

constructing a progenitor, you must label which elements of N commute with your t.

By saying t and y commute with one another, we are saying that ty = yt. We can use

a shorthand notation in our presentation and insert (t, y) to imply t commutes with y.

We will allow our progenitor to have ti’s over order 2. Hence our infinite progenitor is

given by the following:

2∗6 : D12 =< x, y, t|x6, y2, (xy)2, t2, (t, y) >.

Elements of this progenitor are simply a product of a, b, t1, t2, . . . , t6. As

of now, we know the order of each ti is 2, but we are unable to collapse multiple ti’s
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multiplied together. If we can find suitable relations that are able to breakdown the

product of multiple ti’s, we can obtain finite homomorphic images of our progenitor

2∗6 : D12.

One should first start by determining all possible first ordered relations. These

relations appear as relations with an element of N multiplied by a single ti. Adjusting

the order of this first ordered relation will yield different groups. Let us first start by

listing some of these first ordered relations:

(xt)i, (x2t)j , (x3t)k, (x4t)l, (x5t)m, (yt)n, (xyt)o, (x2yt)p, (x3yt)q, (x4yt)r, (x5yt)s.

We will omit multiplying ti’s by the identity because there will be a trivial

solution each time. Notice above, we have only calculated first ordered relations that

have t = t6 as our ti. Therefore, we should also have 11 × 5 more relations to list

utilizing the other ti’s. Most of these relations will actually be repeats of one another

because they are in the same class or have ti’s in the same orbit of one another.

By entering the Classes(N); command, MAGMA determines the different

conjugacy classes of D12. For instance, [2] has length 1, which implies there is only one

representative in class [2]. In [3], there are 3 representatives of order two that fall under

the same conjugacy class. In every level, a representative is given.

> Classes(N);
Conjugacy Classes of group N
----------------------------
[1] Order 1 Length 1

Rep Id(N)

[2] Order 2 Length 1
Rep (1, 4)(2, 5)(3, 6)

[3] Order 2 Length 3
Rep (1, 5)(2, 4)

[4] Order 2 Length 3
Rep (1, 6)(2, 5)(3, 4)

[5] Order 3 Length 2
Rep (1, 3, 5)(2, 4, 6)

[6] Order 6 Length 2
Rep (1, 2, 3, 4, 5, 6)
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So this implies that of the 12 elements of D12, half of the elements are repeats.

Because this group is so small in size, it is very easy to determine which element of D12

is terms of our generators x and y. In larger progenitors, we will use the Schreier system

cide in MAGMA to determine what these permutations are in terms of our generators

of N . We then determine the centralizers of each class representative to find which ti’s

are in the same orbit. In doing this, we are narrowing down the number of relations

even further. For instance, in [2] we can take the representative (1, 4)(2, 5)(3, 6) and

multiply it to any of our 6 ti’s. We would like to write our relations as (ωti)
k, for some

ω ∈ N and for some k ∈ N. However, we will find that if we take the centralizer of

a class representative, ti’s that are in the same orbits will actually be repeats of one

another.

> C2:=Centraliser(N,N!(1, 4)(2, 5)(3, 6));
> Orbits(C2);
[

GSet{@ 1, 2, 5, 3, 4, 6 @}
]
>
> C3:=Centraliser(N,N!(1, 5)(2, 4));
> Orbits(C3);
[

GSet{@ 3, 6 @},
GSet{@ 1, 5, 4, 2 @}

]
>
> C4:=Centraliser(N,N!(1, 6)(2, 5)(3, 4));
> Orbits(C4);
[

GSet{@ 2, 5 @},
GSet{@ 1, 6, 4, 3 @}

]
>
> C5:=Centraliser(N,N!(1, 3, 5)(2, 4, 6));
> Orbits(C5);
[

GSet{@ 1, 3, 4, 5, 6, 2 @}
]
>
> C6:=Centraliser(N,N!(1, 2, 3, 4, 5, 6));
> Orbits(C6);
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[
GSet{@ 1, 2, 3, 4, 5, 6 @}

Table 5.1: Conjugacy Classes of D12

Class Class Representative # of Elements Orbits

C1 e 1 {1, 2, 3, 4, 5, 6}
C2 x3 = (1, 4)(2, 5)(3, 6) 1 {1, 2, 3, 4, 5, 6}
C3 y = (1, 5)(2, 4) 3 {1, 2, 4, 5}, {3, 6}
C4 yx = (1, 6)(2, 5)(3, 4) 3 {1, 3, 4, 6}, {2, 5}
C4 x2 = (1, 3, 5)(2, 4, 6) 2 {1, 2, 3, 4, 5, 6}
C4 x = (1, 2, 3, 4, 5, 6) 2 {1, 2, 3, 4, 5, 6}

Since x3 = (1, 4)(2, 5)(3, 6), the first ordered relation (x3t0)
k will be the one

distinct relation we should use for C2. Using (x3t0)
k and (x3t1)

k will be redundant.

So we continue this pattern by taking a representative from a class and multi-

plying it by each by a ti in each orbit, and we obtain all first ordered relations D12.

(x3t)i, (yt)j , (yta)k, (yxt)l, (yxta
2
)m, (x2t)n, (xt)o.

So we factor 2∗6 : D12 by the first ordered relations and a few other relations

and obtain:

G < x, y, t|x6, y2, (xy)2, t2, (t, y), (x3t)i, (yxt)j , (yxtx
2
)k, (x2t)l, (xt)m, (xttx)n, (xytxt)o >.

A table is provided below to show some of the homomorphic images found.

Table 5.2: D12 Progenitor Table

D12 Progenitor Table

i j k l m n o Order of G Shape of G

3 5 0 0 7 0 0 5040 S7
0 0 0 0 5 3 0 1320 L(2, 11)× 2

3 0 6 10 5 0 0 249600 [2 : U(3, 4)]× 2

3 0 0 0 0 3 0 6552 L(2, 13)× S3
3 0 0 4 0 0 0 720 S5 × S3
0 0 0 0 0 7 3 2184 PGL(2, 13)

3 6 0 0 7 0 0 241920 L(3, 4) : (2× S3)

This is the conventional way of finding progenitors. Most of the small groups

and simple groups have been investigated thoroughly already. We must then find pro-

genitors that have not been worked on by other means. Fortunately, as long as we
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can create presentation of a group, we are able to use MAGMA to find a permutation

representation of that group on a minimal number of involutions.

5.2 Group Extension Progenitors

Consider the group S3 × S3. With our knowledge of group presentations and

direct products, a presentation for this group should be two images of S3 such that their

generators commute with one another. Our presentation is given by:

G =< a, b, c, d|a3, b2, (ab)2, c3, d2, (cd)2, (a, c), (a, d), (b, c), (b, d) >.

Now we must find a permutation representation of this group so we can form

a progenitor. We can use a few MAGMA commands to form this permutation repre-

sentation.

f,G1,k:=CosetAction(G,sub< G|Id(G) >); Creates an image of G.

SL:=Subgroups(G1); Finds all subgroups of G.

T:=X‘subgroup:X in SL; Gathers all subgroups found in SL.

TrivCore:= H:H in T|#Core(G1,H) eq 1; Determines faithful permutation representa-

tions of G.

mdeg:=Min(Index(G1,H):H in TrivCore); Gives permutation representations with the

least number of letters.

Good:=H:H in TrivCore— Index(G1,H) eq mdeg; Determines how many faithful per-

mutation representations have a minimal number of letters.

H := Rep(Good); Picks a representative from Good.

f,G1,K := CosetAction(G1,H); Creates a permutation representation of the chosen rep-

resentative from Good.

>G<a,b,c,d>:=Group<a,b,c,d|aˆ3,bˆ2,(ab)ˆ2,cˆ3,dˆ2,(cd)ˆ2,(a,c),

(a,d),(b,c),(b,d)>;

>f,G1,k:=CosetAction(G,sub<G| Id( G )>));

>SL:=Subgroups(G1);

>T:={X‘subgroup: X in SL};
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>TrivCore:={ H : H in T | \#Core(G1,H) eq 1};

>mdeg:=Min({Index(G1,H):H in TrivCore});

>Good:={H: H in TrivCore $|$ Index(G1,H) eq mdeg};

>H:=Rep(Good);

>f,G1,K:=CosetAction(G1,H);

>G1;

Permutation group G1 acting on a set of cardinality 6

Order = 36 = 2ˆ2 * 3ˆ2

(1, 2, 4)(3, 6, 5)

(1, 3)(2, 5)(4, 6)

(1, 4, 2)(3, 6, 5)

(1, 3)(2, 6)(4, 5)

So we label a = (1, 2, 4)(3, 6, 5), b = (1, 3)(2, 5)(4, 6), c = (1, 4, 2)(3, 6, 5), and

d = (1, 3)(2, 6)(4, 5).

Since we have a permutation representation of our G, we must now introduce

a new element, t, to form our progenitor. Letting our t ∼ t6, we can use the MAGMA

command Stabiliser(N,6) to find which elements of N fix t.

We find N0:=Stabiliser(N,6) =< (1, 2, 4), (2, 4)(3, 5) >. Since it is not obvi-

ous which elements (1, 2, 4) and (2, 4)(3, 5) are, we can utilize the Schreier System in

MAGMA. The Schreier System allows us to insert generators of a group and receieve

what that permutation is terms of the generators you inserted. Since we have a, b, c,

and d as our generators, we give the MAGMA output of what each permutation is in

terms of these generators.

>S:=Sym(6);
>A:=S!(1, 2, 4)(3, 6, 5);
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>B:=S!(1, 3)(2, 5)(4, 6);
>C:=S!(1, 4, 2)(3, 6, 5);
>D:=S!(1, 3)(2, 6)(4, 5);
>N:=sub<S|A,B,C,D>;
>NN:=G<a,b,c,d>:=Group<a,b,c,d|aˆ3,bˆ2,(a*b)ˆ2,cˆ3,dˆ2,(c*d)ˆ2,
>(a,c),(a,d),(b,c),(b,d)>;
>
>Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
>ArrayP:=[Id(N): i in [1..36]];
>for i in [2..36] do
>P:=[Id(N): l in [1..#Sch[i]]];
>for j in [1..#Sch[i]] do
>if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
>if Eltseq(Sch[i])[j] eq -1 then P[j]:=Aˆ{-1}; end if;
>if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
>if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
>if Eltseq(Sch[i])[j] eq -3 then P[j]:=Cˆ{-1}; end if;
>if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;
>end for;
>PP:=Id(N);
>for k in [1..#P] do
>PP:=PP*P[k]; end for;
>ArrayP[i]:=PP;
>end for;
>
>for i in [1..36] do if ArrayP[i] eq N!(1, 2, 4)
> then print Sch[i]; end if; end for;
>c*aˆ-1
>for i in [1..36] do if ArrayP[i] eq N!(2, 4)(3, 5)
> then print Sch[i]; end if; end for;
>b*a*d*c

So we obtain that (1, 2, 4) = ca−1 and (2, 4)(3, 5) = badc. Our infinite progen-

itor is given by the following:

G :=< a, b, c, d, t|a3, b2, (ab)2, c3, d2, (cd)2, (a, c), (a, d), (b, c), (b, d), t2, (t, ca−1), (t, badc) >.

We must now factor our group by relations to create homomorphic images of

2∗6 : (S3×S3). Utilizing some of the first ordered relations and a few seperate relations,

we will let our group be factored by the following:

G :=< a, b, c, d, t|a3, b2, (ab)2, c3, d2, (cd)2, (a, c), (a, d), (b, c), (b, d), t2, (t, ca−1), (t, badc),

(a2c2t)i, (bct)j , (ttba)k = badc, (t(tc)a)l = abc−1d−1, (bt)m, (cd2ta)n, (at)o, (adt)p >.
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A table is provided below to show some of the homomorphic images found.

Table 5.3: S3 × S3 Progenitor Table

S3 × S3 Progenitor Table

i j k l m n o p Order of G Shape of G

3 11 0 0 0 0 0 0 190080 2 : M12

3 0 4 0 16 0 0 0 3753792 2 : L(3, 7)

0 0 0 0 0 0 0 0 241920 L(3, 4) : D12

0 0 0 0 0 0 0 0 483840 S3 : L(3, 4)× 22

0 0 2 0 0 0 3 0 5040 S7

5.3 MAGMA Database Progenitors

5.3.1 Some MAGMA Databases

There are databases that are accessible and stored inside MAGMA. Utilizing

these databases, we can work with groups of specific orders and have the option to pick

groups with special properties such as transitivity and primitivity.

The SmallGroupDatabase is a collection of small groups of order less than

or equal to 2000, excluding a few. In order to access groups in this database, we simply

insert D:=SmallGroupDatabase();. We can then choose a group of a specific order

to work with.

There are TransitiveGroup() and PrimitiveGroup() commands which al-

low us to choose groups with each respective property. We can ask MAGMA Num-

berOfTransitiveGroups(n) or NumberOfPrimitiveGroups(n), where n repre-

sents the number of involutions you wish to have.

For example, we ask MAGMA the following:

> NumberOfTransitiveGroups(8);

and learn that there are 50 different transitive groups generated by permuta-

tions on 8 letters. Once we determine which transitive group we wish to work with in

the database, we must label it and determine which group MAGMA has stored it as in

the SmallGroupDatabase.
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We will use N = TransitiveGroup(8,23) as an example. We input the code

below in MAGMA and receieve the following output:

> D:=SmallGroupDatabase();
> N:=TransitiveGroup(8,23);
> IdentifyGroup(N);
<48, 29>.

This tells us that MAGMA stores TransitiveGroup(8,23) as SmallGroup(D,48,29)

in the SmallGroupDatabase. 48 represents the number of elements in N and 29 repre-

sents the 29th group of order 48.

As of now, we have neither a permutation representation or even a presentation

of our group which we will label G. However, we can use the command FPGroup(G);

to form a presentation for G.

We use the FPGroup command in MAGMA below to determine a presentation

for G.

> FPGroup(G);
Finitely presented group on 5 generators
Relations

$.1ˆ2 = Id($)
$.2ˆ3 = Id($)
$.3ˆ2 = $.5
$.4ˆ2 = $.5
$.5ˆ2 = Id($)
$.2ˆ$.1 = $.2ˆ2
$.3ˆ$.1 = $.4
$.3ˆ$.2 = $.4 * $.5
$.4ˆ$.1 = $.3
$.4ˆ$.2 = $.3 * $.4
$.4ˆ$.3 = $.4 * $.5
$.5ˆ$.1 = $.5
$.5ˆ$.2 = $.5
$.5ˆ$.3 = $.5
$.5ˆ$.4 = $.5

Mapping from: GrpFP to GrpPC: G

Translating this into a presentation, we obtain the following:

G =< a, b, c, d, e|a2, b3, c2 = e, d2 = e, e2, ba = b2, ca = d, cb = de, da = c, db = cd, dc =

de, ea = e, eb = e, ec = e, ed = e >.
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Now that we have a presentation for G, we are able to use the TrivCore,

mdeg, and Good commands as we had before to create a permutation representation

of G. We are then able to form a progenitor by choosing a ti as t in our progenitor, and

showing what elements generate the stabilising group of t.

In this progenitor, we let t ∼ t8. Furthermore, the elements that fix t are a

and bd−1.

Utilizing some of the first ordered relations of G and a few seperate relations,

we let our group be factored by the following:

G =< a, b, c, d, e, t|a2, b3, c2 = e, d2 = e, e2, ba = b2, ca = d, cb = de, da = c,

db = cd, dc = de, ea = e, eb = e, ec = e, ed = e, t2, (t, a), (t, bd−1),

(et)i, (act)j , (b−1at)k, (bct)l, (ac−1t)m, (atc)n, (ct)o, (cb−1t)p >.

A table is provided below to show some of the homomorphic images found.

Table 5.4: SmallGroup(D,48,29) ∼= 2•S4 Progenitor Table

SmallGroup(D,48,29) ∼= 2•S4 Progenitor Table

i j k l m n o p Order of G Shape of G

3 6 0 0 0 0 0 0 33696 L(3, 3) : S3
3 0 0 0 0 0 6 6 190080 M11 × S4
0 6 0 0 0 8 0 0 2016 PGL(2, 7)×S3
0 6 0 0 0 0 7 0 120960 L(3, 4) : S3
0 0 0 4 0 0 6 0 240 2•S5
3 0 0 8 6 0 0 0 11232 L(3, 3) : 2

3 0 5 0 0 0 0 0 7920 M11

5.3.2 A Few Tables of Database Progenitors

We let our N = SmallGroup(16,8) = 2•D4, A = (1, 2, 4, 7)(3, 5, 8, 6),

B = (2, 5)(3, 8)(6, 7), C = (1, 3, 4, 8)(2, 6, 7, 5) and D = (1, 4)(2, 7)(3, 8)(5, 6) where

N =< A,B,C,D >. Letting t ∼ t8, we factor N by the following relations:

G =< a, b, c, d, t|a2 = d, b2, c2 = d, d2, ba = bc, ca = cd, cb = cd, (d, a), (d, b), (d, c), t2,

(t, bd), (bc−1t)i, (ct)j , (at)k, (dt)l, (a−1bt)m, (bact)n >.
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Table 5.5: SmallGroup(16,8) ∼= 2•D4 Progenitor Table

SmallGroup(16,8) ∼= 2•D4 Progenitor Table

i j k l m n Order of G Shape of G

3 3 8 0 0 0 720 S6
3 3 12 0 0 0 15600 PGL(2, 25)

3 3 13 0 0 0 5616 L(3, 3)

0 4 7 3 0 6 40320 L(3, 4) : 2

3 3 14 0 0 0 56448 (L(2, 7))2 : 2

3 0 7 0 8 0 336 PGL(2, 7)

3 0 10 0 8 0 1440 S6 : 2

We let our N = TransitiveGroup(8,27) = (2×8)• : 4, A = (1, 2)(3, 7)(4, 5, 8, 6),

B = (1, 3)(2, 5)(4, 8)(6, 7), C = (1, 4)(2, 6)(3, 8)(5, 7), D = (4, 8)(5, 6), E = (2, 7)(5, 6),

and F = (1, 3)(2, 7)(4, 8)(5, 6) where N =< A,B,C,D,E, F >. Letting t ∼ t8, we

factor N by the following relations:

G :=< a, b, c, d, e, f, t|a2 = d, b2, c2, d2, e2, f2, ba = bc, ca = ce, cb = c, da = d, db = de,

dc = df, ea = ef, eb = e, ec = e, ed = e, fa = f, f b = f, f c = f, fd = f, fe = f, t2,

(t, e), (t, bf), (t, df), (cft)i, (dct)j , (abt)k, (cta)l, (bat)m, (tab)n, (bcet)o, (aca−1t)p >.

A table is provided below to show some of the homomorphic images found.

5.4 Progenitors of Sporadic Subgroups

Progenitors are created by introducing an element to an already existing N to

form a new group. Furthermore, that new group must have a subgroup N inside it. We

should then consider observing subgroups of sporadic groups in hopes of finding new

homomorphic images.

We first will investigate M11’s subgroups. M11 has the following maximal

subgroups: M10, L(2, 11), M9 : 2, S5, and 2•S4. Since symmetric and linear group

progenitors are typically studied a lot, we will work examine the maximal subgroup

M9 : 2. We will first analyze the subgroup M9 ⊂M9 : 2.
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Table 5.6: TransitiveGroup(8,27) ∼= (2× 8)• : 4) Progenitor Table

TransitiveGroup(8,27) ∼= (2× 8)• : 4)

i j k l m n o p Order of G Shape of G

3 3 9 0 0 0 0 0 4896 PGL(2, 17)

3 0 0 9 0 0 0 0 6840 PGL(2, 19)

3 0 0 11 11 0 0 0 6072 L(2, 23)

3 0 0 13 10 0 0 0 15600 PGL(2, 25)

3 0 0 17 10 0 0 0 8160 PGL(2, 16)

0 0 0 13 0 6 5 0 124800 U(3, 4) : 2

3 0 0 12 13 0 0 3 11232 L(3, 3) : 2

3 3 6 0 0 0 0 0 240 2•S5
3 3 7 0 0 0 0 0 336 PGL(2, 7)

0 0 5 0 0 0 0 5 720 S6

M9 is saved in the MAGMA database as SmallGroup(D,72,41). Following the

methods we used before, we can find a permutation representation and a presentation

using MAGMA commands. Since we are pursuing M11, it would be very useful to

determine if it is even possible to find it as a homomorphic image of 2∗9 : M9. A

presentation for M9 is given by:

N =< a, b, c, d, e|a2 = c, b2 = c, c2, d3, e3, ba = bc, ca = c, cb = c, da = de2,

db = e, dc = d2, ea = d2e2, eb = d2, ec = e2, ed = e >.

Now that we have a presentation, we can find a permutation representation of

M9 by asking MAGMA. Afterwards, we can form our progenitor. Letting t ∼ t9, we

obtain the following infinite progenitor:

P =< a, b, c, d, e, t|a2 = c, b2 = c, c2, d3, e3, ba = bc, ca = c, cb = c, da = de2,

db = e, dc = d2, ea = d2e2, eb = d2, ec = e2, ed = e, t2, (t, e−1a), (t, abd−1) >

Although we can begin by adding relations to this progenitor, there exists a

MAGMA program (See [Why06]) that computes all homomorphic images of all almost

simple groups. We run the code below in MAGMA.

> P<a,b,c,d,e,t>:=Group<a,b,c,d,e,t|aˆ2=c,bˆ2=c,cˆ2,dˆ3,eˆ3,
bˆa=b*c,cˆa=c,cˆb=c, dˆa=d*eˆ2,dˆb=e,dˆc=dˆ2,eˆa=dˆ2*eˆ2,
eˆb=dˆ2,eˆc=eˆ2,eˆd=e,tˆ2,(t,eˆ-1*a),(t,a*b*dˆ-1)>;
>
> D:=AlmostSimpleGroupDatabase();
> for i in [1..#D] do
for> G1:=GroupData(D,i)‘permrep;
for> sg:=GroupData(D,i)‘subgens;
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for> if #sg eq 0 then
for|if> G:=sub<G1|G1.1,G1.2>;
for|if> else
for|if> F:=Parent(sg[1]);
for|if> t:=Ngens(G1)-2;
for|if> phi:= hom<F -> G1 |
for|if> [G1.(i+2) : i in [1..t]] cat [Id(G1) : i in [t+1..\
Ngens(F)]]>;
for|if> G:= sub <G1 | G1.1, G1.2, [phi(s): s in sg]>;
for|if> end if;
for> if #Homomorphisms(P,G: Limit:=1) gt 0 then GroupData(\
D,i)‘name; end if;
for> end for;

The AlmostSimpleGroupDatabase contains groups G where S ≤ G ≤ Aut(S)

where S is simple. Groups of this database are those of order less than 16000000, as

well as M24, HS, J3, McL, Sz(32), and L(6, 2). The only almost simple group that we

can obtain on this progenitor is PSL(3, 4). The L(3, 4) progenitor is given below after

being factored by a few relations.

> G<a,b,c,d,e,t>:=Group<a,b,c,d,e,t|aˆ2=c,bˆ2=c,cˆ2,dˆ3,eˆ3,
bˆa=b*c,cˆa=c,cˆb=c,dˆa=d*eˆ2,dˆb=e,dˆc=dˆ2,eˆa=dˆ2*eˆ2,
eˆb=dˆ2,eˆc=eˆ2,eˆd=e,tˆ2,(t,eˆ-1*a),(t,a*b*dˆ-1),
(c*eˆ-1*t)ˆ5, (b*t)ˆ7, (b*d*a*t)ˆ7>;
>
> f,G1,k:=CosetAction(G,sub<G|Id(G)>);
> CompositionFactors(G1);

G
| A(2, 4) = L(3, 4)
1

Since we do not see M11 as a possible homomorphic image of M9, we should

suspect M9 : 2 should not have M11 as a homomorphic image either. This is the case.

So our next aim is to find progenitors of special subgroups of simple groups that have

the capabilities of generating those same sporadic groups.

5.5 Progenitors of Specific Sporadic Subgroups

MAGMA stores many sporadic groups which are accessible to any user. Con-

sider the Mathieu sporadic group, M22. To load this group in MAGMA, we type:
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load m22;

and MAGMA labels our group as G. By asking MAGMA for G, it gives a

permutation representation of M22.

We wish to find an element c of order 2 and a subgroup H ≤ G, such that

< c,H >= G, which implies < cH >= G. We can then find a faithful permutation

representation of H on n letters, where n = |cH |. Equivalently, n is the quotient of the

number elements in H and the number of elements in the centraliser of c in H.

For example, let aa,bb,cc be the permutation representation of G = M22. We

then take an element c ∈ G and a subgroup H =< dd, ee, ff, hh > and find cH = G.

The MAGMA code below expresses this.

> S:=Sym(22);
> aa:=S!(1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12)
(5, 10, 20, 17, 11,22, 21, 19, 15, 7, 14);
> bb:=S!(1, 18, 4, 2, 6)(5, 21, 20, 10, 7)(8, 16, 13, 9, 12)
(11,19, 22, 14, 17);
> cc:=S!(1, 18, 2, 4)(3, 15)(5, 9)(7, 16, 21, 8)
(10, 12, 20, 13)(11, 17, 22, 14);
> m22:=sub<S|aa,bb,cc>;
> G:=m22;
> c:=G!(1, 16)(3, 8)(5, 10)(6, 11)(7, 17)(9, 21)
(13, 22)(18, 20);
>
> dd:=G!(2, 17, 15, 11)(3, 19, 6, 12)(4, 21)(5, 13, 16, 8)
(7, 9, 22, 20)(14, 18);
> ee:=G!(2, 11, 20, 22)(3, 5, 13, 12)(4, 18)(6, 16, 8, 19)
(7, 15,17, 9)(14, 21);
> ff:=G!(2, 20)(3, 13)(5, 12)(6, 8)(7, 17)(9, 15)
(11, 22)(16, 19);
> hh:=G!(2, 15)(3, 6)(5, 16)(7, 22)(8, 13)(9, 20)
(11, 17)(12, 19);
> HH:=sub<G|dd,ee,ff,hh>;
21
> #Centraliser(HH,c);
3
> #(cˆHH);
7
> #Conjugates(HH,c);
7
> G eq sub<G|cˆHH>;
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true

So we find that M22 is a homomorphic image of 2∗7 : N , where N is a transitive

subgroup of S7 with order 21. This result lead us to the discovery of the M22 simple

group on the progenitor 2∗7 : [7 : 3].
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Chapter 6

Other Notable Progenitors

Discovered

Some of the progenitors investigated yielded very few interesting homomorphic

images. However, many Mathieu Group M12 automorphism groups and Symplectic

groups were found on these progenitors. Rather than making a table for one group

found on a specific progenitor, we will list the progenitor with relations used.

6.1 Non-Simple Mathieu Group M12 Groups

6.1.1 M12 : 2

Letting our progenitor be N = TransitiveGroup(8,30) = (23 : 2) :• 4 and t ∼ t8,
we obtain the group below.

> G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|aˆ2=d,bˆ2,
> cˆ2=f,dˆ2,eˆ2,fˆ2,bˆa=b*c,cˆa=c*e,cˆb=c*f,dˆa=d,
> dˆb=d*e*f,dˆc=d*f,eˆa=e*f,eˆb=e,eˆc=e,eˆd=e,
> fˆa=f,fˆb=f,fˆc=f,fˆd=f,fˆe=f, tˆ2,(t,d*f),(t,b*d),
> (t*tˆc)ˆ3=b*d, (c*t*a)ˆ6, (t*a*b)ˆ11=d>;
>
> f,G1,k:=CosetAction(G,sub<G|a,b,c,d,e,f>);
> CompositionFactors(G1);

G
| Cyclic(2)

*
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| M12
1

> Center(G1);
Permutation group acting on a set of cardinality 23760
Order = 1

6.1.2 M12 : 2

Letting our progenitor be N = 3•A4 and our t ∼ t12, we obtain the group

below.

> G<a,b,c,d,e,t>:=Group<a,b,c,d,e,t|aˆ2,bˆ2,cˆ2,dˆ2,eˆ3,
> (a*b)ˆ2,(a*c)ˆ2,(b*c)ˆ2,(b*d)ˆ2,(c*d)ˆ2,d*eˆ-1*b*e,
> eˆ-1*b*a*e*a,eˆ-1*d*c*e*c,tˆ2,(t,c),(t,a*b),
> (b*c*t)ˆ0, (e*t)ˆ5, (a*c*d*t)ˆ3>;
>
> f,G1,k:=CosetAction(G,sub<G|a,b,c,d,e>);
> CompositionFactors(G1);

G
| Cyclic(2)

*
| M12
1

> Center(G1);
Permutation group acting on a set of cardinality 3960
Order = 1

6.1.3 2•(M12 : 2)

Letting our N = TransitiveGroup(8,35); = 2•(24 : 22) and our t ∼ t8, we

obtain the group below.

> G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|aˆ2,bˆ2,cˆ2,dˆ3,
> eˆ2,fˆ2,bˆa=b*c,cˆa=c,cˆb=c,dˆa=dˆ2,dˆb=d,dˆc=d,eˆa=f,
> eˆb=e,eˆc=e,eˆd=f,fˆa=e,fˆb=f,fˆc=f,fˆc=f,fˆd=e*f,fˆe=f,
> tˆ2,(t,a*d),(t,a*b*d*e),(a*c*dˆ-1*t)ˆ5, (b*a*t)ˆ6>;
>
> CompositionFactors(G1);

G
| Cyclic(2)

*
| M12

*
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| Cyclic(2)
1

> Center(G1);
Permutation group acting on a set of cardinality 3960
Order = 2

6.1.4 2•(M12 : 2)

Letting our N = TransitiveGroup(12,52) = 24 : S3 and our t ∼ t12, we obtain

the group below.

> G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|aˆ2,bˆ2,cˆ2,dˆ3,eˆ2,
> fˆ2, bˆa=b*c,cˆa=c,cˆb=c,dˆa=dˆ2,dˆb=d,dˆc=d,eˆa=f,eˆb=e,
> eˆc=e,eˆd=f,fˆa=e,fˆb=f,fˆc=f,fˆc=f,fˆd=e*f,fˆe=f,tˆ2,
> (t,a*d),(t,a*b*d*e),(a*c*dˆ-1*t)ˆ5, (b*a*t)ˆ6>;
>
> f,G1,k:=CosetAction(G,sub<G|a,b,c,d,e,f>);
> CompositionFactors(G1);

G
| Cyclic(2)

*
| M12

*
| Cyclic(2)
1

> Center(G1);
Permutation group acting on a set of cardinality 3960
Order = 2

6.1.5 (2•M12) : A4

Letting our N =TransitiveGroup(8,32) = 2•(42 : 3) and our t ∼ t8, we obtain

the group below.

> G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|aˆ3,bˆ2,cˆ2,dˆ2,
> eˆ2,fˆ2, bˆa=c, cˆa=b*c,dˆa=e,dˆb=d,dˆc=d*f, eˆa=d*e,
> eˆb=e*f, (a,f),(b,f),(c,f),(d,f),(e,f), tˆ2,(t,aˆ-1*e*b),
> (t,e*f), (t,d*e), (b*d*c*e*t)ˆ5, (c*t*a)ˆ6, (c*b*d*t)ˆ6>;
>
> f,G1,k:=CosetAction(G,sub<G|a,b,c,d,e>);
> CompositionFactors(G1);

G
| M12
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*
| Cyclic(3)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)
1

> Center(G1);
Permutation group acting on a set of cardinality 23760
Order = 2

6.2 Sporadic Simple Groups

6.2.1 M12

Letting our N = C11 and our t ∼ t11, we obtain the group below.

> G<a,t>:=Group<a,t|aˆ11,tˆ2,
> (a*t)ˆ6, (aˆ4*t)ˆ3, (aˆ4*t*a)ˆ6>;
>
> f,G1,k:=CosetAction(G,sub<G|a>);
> CompositionFactors(G1);

G
| M12
1

> Center(G1);
Permutation group acting on a set of cardinality 8640
Order = 1

6.2.2 J2

Letting our N = A5 × 2 and our t ∼ t10, we obtain the group below.

> G<a,b,c,t>:=Group<a,b,c,t|aˆ2,bˆ3,(a*b)ˆ5,cˆ2,(a,c),(b,c),
> tˆ2,(t,a),(t,bˆ-1*a*bˆ-1*a*b*a),(c*t)ˆ3,(a*b*t)ˆ5,
> (a*b*c*t)ˆ12>;
> f,G1,k:=CosetAction(G,sub<G|a,b,c>);
> CompositionFactors(G1);

G
| J2
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1

6.3 Non-Sporadic Findings

6.3.1 8•L(3, 4)

Letting our N = 2× 4 and t ∼ t8, we obtain the group below.

> G<a,b,t>:=Group<a,b,t|aˆ4,bˆ2,(a,b),tˆ2,
> (a*t)ˆ5, (b*a*t)ˆ7, (a*b*a*t)ˆ3>;
>
> f,G1,k:=CosetAction(G,sub<G|a,b>);
> CompositionFactors(G1);

G
| A(2, 4) = L(3, 4)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)
1

> Center(G1);
Permutation group acting on a set of cardinality 20160
Order = 8 = 2ˆ3

6.3.2 4•S(4, 3)

Letting our N = 2× 3× 2 and our t ∼ t12, we obtain the group below.

> G<a,b,c,t>:=Group<a,b,c,t|aˆ2,bˆ3,cˆ2,(a,b),(a,c),(b,c),
> tˆ2,(b*a*t)ˆ4, (c*a*t)ˆ4, (b*t)ˆ3, (a*t)ˆ6, (c*t)ˆ4>;
>
> f,G1,k:=CosetAction(G,sub<G|a,b,c>);
> CompositionFactors(G1);

G
| C(2, 3) = S(4, 3)

*
| Cyclic(2)

*
| Cyclic(2)
1
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> Center(G1);
Permutation group acting on a set of cardinality 8640
Order = 4 = 2ˆ2

6.3.3 S(4, 5)

Letting our N = 6•22 and our t ∼ t12, we obtain the group below.

> G<a,b,c,d,t>:=Group<a,b,c,d,t|aˆ2,bˆ2,cˆ3,dˆ2,bˆa=b*d,
> cˆa=c,cˆb=c,(d,a),(d,b),(d,c),tˆ2,(t,b*d),
> (d*t)ˆ5, (d*b*c*a*t)ˆ5, (c*a*t)ˆ13>;
>
> f,G1,k:=CosetAction(G,sub<G|a,b,c,d>);
> CompositionFactors(G1);

G
| C(2, 5) = S(4, 5)
1

> Center(G1);
Permutation group acting on a set of cardinality 195000
Order = 1

6.3.4 U(3, 4) : 2

Letting our N = D8 and our t ∼ t4, we obtain the group below.

> G<a,b,c,t>:=Group<a,b,c,t|aˆ2,bˆ2,cˆ2,bˆa=b*c,
> cˆa=c,cˆb=c,tˆ2,(t,a*c),(a*t)ˆ5, (b*a*t)ˆ6, (b*c*t)ˆ13>;
>
> f,G1,k:=CosetAction(G,sub<G|Id(G)>);
> CompositionFactors(G1);

G
| Cyclic(2)

*
| 2A(2, 4) = U(3, 4)
1

> Center(G1);
Permutation group acting on a set of cardinality 124800
Order = 1

6.3.5 2•(S(4, 3) : 2)

Letting our N = TransitiveGroup(12,14) = 6•22 and our t ∼ t12, we obtain

the group below.
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> G<a,b,c,d,t>:=Group<a,b,c,d,t|aˆ2,bˆ2,cˆ3,dˆ2,bˆa=b*d,
> cˆa=c,cˆb=c, dˆa=d,dˆb=d,dˆc=d,tˆ2,(t,b*d),
> (c*t)ˆ4, (b*c*a*b*t)ˆ5, (d*a*b*t)ˆ4>;
>
> f,G1,k:=CosetAction(G,sub<G|a,b,c,d>);
> CompositionFactors(G1);

G
| Cyclic(2)

*
| C(2, 3) = S(4, 3)

*
| Cyclic(2)
1

>
> Center(G1);
Permutation group acting on a set of cardinality 4320
Order = 2

6.3.6 2•Sz(8)

Letting our N = PrimitiveGroup(5,3) = D10 : 2 and our t ∼ t5, we obtain the

group below.

> G<a,b,c,t>:=Group<a,b,c,t|aˆ2=b,bˆ2,cˆ5,bˆa=b,
> cˆa=cˆ2,cˆb=cˆ4,tˆ2,(t,c*a),
> (a*cˆ-1*a*t)ˆ7, (c*a*b*t)ˆ7>;
>
> f,G1,k:=CosetAction(G,sub<G|a,b,c>);
>
> CompositionFactors(G1);

G
| 2B(2, 8) = Sz(8)

*
| Cyclic(2)
1

> Center(G1);
Permutation group acting on a set of cardinality 2912
Order = 2
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Appendix A

MAGMA Code for L(2, 11)× 2

DCE

/* This code guides a double coset enumeration of G over N.

%--------------------------------------------------

S:=Sym(6);
xx:=S!(1,2,3,4,5,6);
yy:=S!(1,5)(2,4);

G<x,y,t>:=Group<x,y,t|xˆ6, yˆ2,(x*y)ˆ2, tˆ2,(t,y),
(x*t*tˆx)ˆ3, (t*t*x*t)ˆ5>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
IN:=sub<G1|f(x),f(y)>;
sub<N|yy> eq Stabiliser(N,6);

#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);

prodim:=function(pt, Q, I)
v := pt;
for i in I do

v := vˆ(Q[i]);
end for;

return v;
end function;
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ts := [Id(G1): i in [1 .. 6] ];
ts[6]:=f(t); ts[1]:=f(tˆx); ts[2]:=f(tˆ(xˆ2));
ts[3]:=f(tˆ(xˆ3)); ts[4]:=f(tˆ(xˆ4)); ts[5]:=f(tˆ(xˆ5));
cst:=[null : i in [1 .. Index(G,sub<G|x,y>)]]
where null is [Integers() | ];

for i := 1 to 6 do
cst[prodim(1, ts, [i])] := [i];

end for;
m:=0;
for i in [1..110] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

%--------------------------------------------------

N0:=Stabiliser (N,6);

N0s:=N0;
T0:=Transversal(N,N0s);
T0;
for i in [1..#T0] do
ss:=[6]ˆT0[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..110] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N0);

%--------------------------------------------------

N01:=Stabiliser(N0,1);

SSS:={[6,1]}; SSS:=SSSˆN;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[6]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N01s:=N01;
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T01:=Transversal(N,N01s);
T01;
for i in [1..#T01] do
ss:=[6,1]ˆT01[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..110] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N01);

%--------------------------------------------------

N02:=Stabiliser(N0,2);

SSS:={[6,2]}; SSS:=SSSˆN;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[6]*ts[2] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N02s:=N02;

T02:=Transversal(N,N02s);
T02;
for i in [1..#T02] do
ss:=[6,2]ˆT02[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..110] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N02);

%--------------------------------------------------

N03:=Stabiliser(N0,3);

SSS:={[6,3]}; SSS:=SSSˆN;
#(SSS);
Seqq:=Setseq(SSS);
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Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[6]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N03s:=N03;

T03:=Transversal(N,N03s);
T03;
for i in [1..#T03] do
ss:=[6,3]ˆT03[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..110] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N03);

%--------------------------------------------------

/* After inserting the chunk of code for a double
coset,if m increases by a value, the double coset
is new. Your single coset count, m, is increased by
the number of single cosets in the double coset
checked.

/* One should follow this pattern until m = 110, since
the index of our group is |G| / |N| = 1320/12 = 110.

/* Below is an example of what to add for if the loop:

for n in N do
if ts[a]*ts[b]*ts[c] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]] then print Rep(Seqq[i]);
end if; end for; end for;

actually gives equal coset names. In this example, the
double coset [713] = [431]. In this case, we want
all elements in N that send [713] to [431]. If there
were more equal names of [713], we would have to make
N013s include all of those elements in N that send [713]
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to equal names.

%--------------------------------------------------

N013:=Stabiliser(N01,3);

SSS:={[6,1,3]}; SSS:=SSSˆN;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[6]*ts[1]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*
ts[Rep(Seqq[i])[3]] then print Rep(Seqq[i]);
end if; end for; end for;

for g in N do if 6ˆg eq 4 and 1ˆg eq 3 and 3ˆg eq 1
then N013s:=sub<N|N013s,g>; end if; end for;
#N013s;

T013:=Transversal(N,N013s);
T013;

for i in [1..#T013] do
ss:=[6,1,3]ˆT013[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..110] do if cst[i] ne []
then m:=m+1; end if; end for; m;

... and so on

%--------------------------------------------------

/* Once all single cosets have been accounted for,
we must determine which double cosets were equal
to one another.

/* Save equal double cosets up here with
K=ts[7]*ts[1]*ts[7].
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for g in IN do for h in IN do
if ts[6]*ts[4] eq g*(ts[6]*ts[2])ˆh
then g,h; end if; end for; end for;

for g in IN do for h in IN do
if K eq g*(ts[6]*ts[1])ˆh
then g,h; end if; end for; end for;

%--------------------------------------------------

/* Change K to a double coset which is a repeat of one
which has already been accounted for.

K:=ts[7]*ts[1]*ts[7];

for g in IN do for h in IN do
if K eq g*(ts[6])ˆh
then g,h; end if; end for; end for;

for g in IN do for h in IN do
if K eq g*(ts[6]*ts[1])ˆh
then g,h; end if; end for; end for;

for g in IN do for h in IN do
if K eq g*(ts[6]*ts[2])ˆh
then g,h; end if; end for; end for;

...

for g in IN do for h in IN do
if K eq g*(ts[6]*ts[1]*ts[2]*ts[3])ˆh
then g,h; end if; end for; end for;

%--------------------------------------------------

/* If a double coset does not increase m, we should check
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which double coset that double coset is equal to. It is
simple to run as many loops as you have double cosets to
check which two are equal. We can label our potentially
new double coset as a variable, say K, and check every
possible double coset it could be equal to. Note, it can
only be equal to one of them. All the other loops ran
should give no values. Once all orbits have been accounted
for, our group is closed under right multiplication. One
should then verify that the Cayley graph works correctly.
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Appendix B

MAGMA Code for M22 over M

DCE

/* This code guides a double coset enumeration of
G over M. The process is similar, but we must change one
loop to have M instead of N.

%------------------------------------------------------

s:=Sym(7);
A:=s!(2,3,4)(5,7,6);
B:=s!(1,2,3,5,4,6,7);
N:=sub<s|A,B>;
G<a,b,t>:=Group<a,b,t|aˆ3,bˆ7,bˆa=bˆ2,tˆ2,(t,a*b),
(aˆ-1*bˆ-1*t)ˆ5,(b*a*tˆ(aˆ2))ˆ11>;

H:=sub<G|a,b,tˆb*tˆ(bˆ2)*tˆb*tˆ(bˆ2)*t*tˆb*
tˆ(bˆ2)*tˆb*tˆ(bˆ2)*tˆb*t*tˆbˆ2>;
f,G1,k:=CosetAction(G,H);

M:=sub<G1|f(a),f(b),
f(tˆb*tˆ(bˆ2)*tˆb*tˆ(bˆ2)*t*tˆb*tˆ(bˆ2)*tˆb*
tˆ(bˆ2)*tˆb*t*tˆbˆ2)>;

IN:=sub<G1|f(a),f(b)>;

#DoubleCosets(G,sub<G|a,b,tˆb*tˆ(bˆ2)*tˆb*tˆ(bˆ2)*
t*tˆb*tˆ(bˆ2)*tˆb*tˆ(bˆ2)*tˆb*t*tˆ(bˆ2)>,sub<G|a,b>);
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Index(G,sub<G|a,b,
tˆb*tˆ(bˆ2)*tˆb*tˆ(bˆ2)*t*tˆb*tˆ(bˆ2)*tˆb*
tˆ(bˆ2)*tˆb*t*tˆbˆ2>);

prodim:=function(pt, Q, I)
v := pt;
for i in I do

v := vˆ(Q[i]);
end for;

return v;
end function;

ts := [Id(G1): i in [1 .. 7] ];
ts[7]:=f(t); ts[1]:=f(tˆb); ts[2]:=f(tˆ(bˆ2));
ts[3]:=f(tˆ(bˆ3)); ts[4]:=f(tˆ(bˆ5));
ts[5]:=f(tˆ(bˆ4)); ts[6]:=f(tˆ(bˆ6));

cst:=[null : i in [1 .. 330]] where null is [Integers()|];
for i := 1 to 7 do

cst[prodim(1, ts, [i])] := [i];
end for;

m:=0;
for i in [1..15] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

for i in [1..12] do i, cst[i]; end for;

%-------------------------
N0:=Stabiliser(N,7);
Orbits(N0);

N0s:=N0;
T0:=Transversal(N,N0s);
T0;
for i in [1..#T0] do
ss:=[7]ˆT0[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..330] do if cst[i] ne []
then m:=m+1; end if; end for; m;

%-------------------------
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N01:=Stabiliser(N0,1);
SSS:={[7,1]}; SSS:=SSSˆN;
#(SSS);
Seqq:=Setseq(SSS);
for i in [1..#SSS] do
for n in M do
if ts[7]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N01s:=N01;

T01:=Transversal(N,N01s);
T01;
for i in [1..#T01] do
ss:=[7,1]ˆT01[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..330] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N01);

%--------------------------------------------------

N03:=Stabiliser(N0,3);
SSS:={[7,3]}; SSS:=SSSˆN;
#(SSS);
Seqq:=Setseq(SSS);
for i in [1..#SSS] do
for n in M do
if ts[7]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N03s:=N03;

T03:=Transversal(N,N03s);
T03;
for i in [1..#T03] do
ss:=[7,3]ˆT03[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..330] do if cst[i] ne []
then m:=m+1; end if; end for; m;
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Orbits(N03);

%--------------------------------------------------

N012:=Stabiliser(N01,2);
SSS:={[7,1,2]}; SSS:=SSSˆN;
#(SSS);
Seqq:=Setseq(SSS);
for i in [1..#SSS] do
for n in M do
if ts[7]*ts[1]*ts[2] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*
ts[Rep(Seqq[i])[3]] then print Rep(Seqq[i]);
end if; end for; end for;
N012s:=N012;

T012:=Transversal(N,N012s);
T012;
for i in [1..#T012] do
ss:=[7,1,2]ˆT012[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..330] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N012);

%--------------------------------------------------

N013:=Stabiliser(N01,3);
SSS:={[7,1,3]}; SSS:=SSSˆN;
#(SSS);
Seqq:=Setseq(SSS);
for i in [1..#SSS] do
for n in M do
if ts[7]*ts[1]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*
ts[Rep(Seqq[i])[3]] then print Rep(Seqq[i]);
end if; end for; end for;
N013s:=N013;

T013:=Transversal(N,N013s);
T013;
for i in [1..#T013] do
ss:=[7,1,3]ˆT013[i];
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cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..330] do if cst[i] ne []
then m:=m+1; end if; end for; m;

... and so on

%--------------------------------------------------

/* After inserting the chunk of code for a double
coset, if m increases by a value, the double coset
is new. Your single coset count, m, is increased by
the number of single cosets in the double coset checked.

/* Below is an example of what to add for if the loop:

for n in M do
if ts[a]*ts[b]*ts[c] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

*ts[Rep(Seqq[i])[3]] then print Rep(Seqq[i]);
end if; end for; end for;

actually gives equal coset names. In this example, the
double coset [7145] = [6341]. In this case, we want
all elements in N that send [7145] to [6341]. If there
were more equal names of [7145], we would have to make
N0145s include all of those elements in N that send [7145]
to equal names.

%--------------------------------------------------

N0145:=Stabiliser(N014,5);
SSS:={[7,1,4,5]}; SSS:=SSSˆN;
#(SSS);
Seqq:=Setseq(SSS);
for i in [1..#SSS] do
for n in M do
if ts[7]*ts[1]*ts[4]*ts[5] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*
ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;
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for g in N do if 7ˆg eq 6 and 1ˆg eq 3 and 4ˆg eq 4 and
5ˆg eq 1 then N0145s:=sub<N|N0145s,g>; end if; end for;
#N0145s;

N0145s:=N0145;
T0145:=Transversal(N,N0145s);
T0145;
for i in [1..#T0145] do
ss:=[7,1,4,5]ˆT0145[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..330] do if cst[i] ne []
then m:=m+1; end if; end for; m;

%--------------------------------------------------

\* Once all single cosets have been accounted for, we must
determine which double cosets were equal to one another.
This loop is also similar to the loop before, except we
must find our element g in M instead of N.

for g in M do for h in IN do
if ts[7]*ts[1]*ts[3] eq g*(ts[7]*ts[3])ˆh then g,h;
end if; end for; end for;

%--------------------------------------------------

K:=ts[7]*ts[1]*ts[7];

for g in M do for h in IN do
if K eq g*(ts[7])ˆh then g,h;
end if; end for; end for;

for g in M do for h in IN do
if K eq g*(ts[7]*ts[1])ˆh then g,h;
end if; end for; end for;

for g in M do for h in IN do
if K eq g*(ts[7]*ts[3])ˆh then g,h;
end if; end for; end for;
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for g in M do for h in IN do
if K eq g*(ts[7]*ts[1]*ts[2])ˆh then g,h;
end if; end for; end for;

for g in M do for h in IN do
if K eq g*(ts[7]*ts[1]*ts[4])ˆh then g,h;
end if; end for; end for;

...

for g in M do for h in IN do
if K eq g*(ts[7]*ts[3]*ts[4]*ts[5])ˆh then g,h;
end if; end for; end for;

%--------------------------------------------------

/* If a double coset does not increase m, one should check
which double coset that double coset is equal to. It is
simple to label your potentially new double coset as a
variable, say K, and check every possible double coset
it could be equal to. It can only be equal to one of them.
All the other loops ran should give no values.
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