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Chapter 5

Progenitors with Isomorphism

Types

5.1 7⇤3 :m S3

G<x,y,t>:=Group<x,y,t|x^3,y^2,(x*y)^2,t^7,t^x=t^2,

(y*t)^i,(x*t*t^x*t^(x^2))^j,(y*t^2)^k,(x*y*t^3)^l>;

Table 5.1: 7⇤3 :m S3

i j k l G

0 0 0 4 6⇥ PSL(2, 7)
0 0 0 3 PSL(2, 7)
5 6 7 14 A7

15 0 15 5 J1
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5.2 2⇤9 : D18

G<x,y,t>:=Group<x,y,t|x^{-9},y^2,(x^{-1}*y)^2,t^2,(t,y*x)

,(x^3*t)^i,(x^4*t^x)^j,(y*t)^k,(x*t*t^{x^2}*t)^l>;

Table 5.2: 2⇤9 : D18

i j k l G

0 0 3 5 PSL(2, 19)
0 16 4 2 2⇥ PSL(2, 17)
0 3 6 0 ((2⇥ PSL(2, 19)) : 2)
0 9 7 2 PSL(2, 8)
2 0 7 9 PSL(2, 71)
2 0 7 10 PGL(2, 29)
2 0 7 11 PSL(2, 43)
2 0 8 7 PGL(2, 41)
2 0 13 4 PGL(2, 27)
2 9 18 4 PGL(2, 17)
2 10 9 0 6⇥ PSL(2, 19)
2 10 10 10 2•(U(3, 4) : 2)
2 10 15 5 J1
2 10 13 6 (U(3, 4) : 2)
2 11 12 6 (M12 : 2)
2 12 15 5 J2
2 13 7 0 PSL(2, 13)
2 13 8 8 PGL(3, 3)

5.3 2⇤6 : ((C3 ⇥ C3) : C2)

G<a,b,c,t>:=Group<a,b,c,t|a^2,b^3,c^3,b^a=b,c^a=c^2,

c^b=c,t^2,(t,b^-1*c^-1),(a*t)^i,(a*b^-1*c^-1*t)^j,

(c^-1*t^a*t)^k,(b^-1*c^-1*t^a)^l,(a*b*c*t*t^c*t)^m>;

Table 5.3: 2⇤6 : ((C3 ⇥ C3) : C2)

i j k l m G

0 0 0 3 11 M12

0 0 5 3 0 3•S8

0 0 5 3 10 S8
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5.4 2⇤7 : (C7 : C3)

G<a,b,t>:=Group<a,b,t|a^3,b^7,b^a=b^2, t^2,(t,a),

(a*b*a^-1*t*t^(b^2))^i, (a^-1*t^b*t*t^b)^j,(b*a*t^(b^-1))^k,

(a*b^-1*a^-1*t*t^(b^2)*t^(b^-1))^l

>;

Table 5.4: 2⇤7 : (C7 : C3)

i j k l G

0 2 0 0 U(3, 3)
0 0 5 0 4⇥M22

0 7 5 8 M22

5.5 2⇤5 : ((C5 : C2) : C2)

G<a,b,c,t>:=Group<a,b,c,t|a^2=b,b^2,c^5,b^a=b,c^a=c^2,

c^b=c^4,t^2,(t,a),(t,b),(b*c*t)^i,(a*c^-1*a*t)^j,(c*t)^k,

(c^2*t*t^c^2)^l,(a^-1*t*t^c*t)^m>;

Table 5.5: 2⇤5 : ((C5 : C2) : C2)

i j k l m G

0 0 6 6 12 (4⇥M12) : 2
0 0 7 0 7 2•SZ(8)
0 0 7 13 7 SZ(8)
0 0 8 5 7 2•(PSL(3, 4) : 2)
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5.6 2⇤12 : (22 : 3)

G<x,y,z,t>:=Group<x,y,z,t|x^3,y^2,z^2,y^x=z,

z^x=y*z,t^2,(x*t)^a,(x^2*y*z*t^(y))^b,

(y*x*z*x^2*t*t^y)^c,((x*y*z)^a*t*t^z)^d,(t*(t)^(z))^e

>;

Table 5.6: 2⇤12 : (22 : 3)

a b c d e f G

0 2 3 0 4 8 PGL(2, 7)
0 2 4 5 5 6 ((22 ⇥ U(3, 5)) : 3) : 2
2 0 3 7 0 0 PSL(2, 13)⇥ PGL(2, 7)
2 7 0 6 5 3 J1
2 7 8 6 0 3 PSL(2, 97)
2 8 4 6 6 0 3• : (((4⇥ PSL(3, 3)) : 3) : 2)
2 9 0 0 3 3 PSL(2, 37)
2 10 5 6 5 3 6⇥M12

5.7 2⇤11 : D22

G<x,y,t>:=Group<x,y,t|x^11,y^2,(x^-1*y)^2,t^2,(t,y*x),

(y*t^(x^-1))^i,(x*t)^j, (x^2*t*t^y)^k, (x^5*t)^l,

(x*t*t^y*t^x)^m>;

Table 5.7: 2⇤11 : D22

i j k l m G

0 12 6 4 2 (2⇥ 11)• : (PGL(2, 11))
0 5 5 0 2 2⇥ PSL(2, 89)
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5.8 2⇤10 : D20

G<x,y,t>:=Group<x,y,t|x^10,y^2,(x^-1*y)^2,t^2,(t,y*x),

(y*x^2*t)^i,(x^5*t)^j, (y*t*t^x*t^(x^2))^k, (y*t^(x^2))^l,

(x*y*t^x)^m, (x^2*t)^n>;

Table 5.8: 2⇤10 : D20

i j k l m n G

0 0 0 2 4 6 2⇥ PGL(2, 11)
0 0 6 2 4 7 PGL(2, 29)
0 0 0 3 4 5 PGL(2, 16)
0 0 0 3 6 3 2•((A5 ⇥A5) : 2)
0 0 0 3 4 4 S3 : PGL(2, 25)
0 0 2 3 12 10 (6⇥ PSL(2, 11)) : 2
0 0 2 4 7 10 (2⇥A7) : 2
0 0 2 10 5 5 (2⇥A5 ⇥ PSL(2, 7)) : 2
0 0 3 2 0 5 2•PSL(2, 59)
0 0 3 2 7 0 2•PSL(2, 29)
0 0 6 2 4 7 PSL(2, 29)

5.9 2⇤14 : D28

G<x,y,t>:=Group<x,y,t|x^14,y^2,(x^-1*y)^2,t^2,(t,y*x),

(x*t)^i, (x*y*t^x^3)^j,(x^6*t)^k, (x^5*t)^l>;

Table 5.9: 2⇤14 : D28

i j k l G

0 0 4 3 3⇤ : (((PSL(2, 7)⇥ PGL(2, 13)) : 2) : 2)
0 6 4 3 S3 : PGL(2, 13)
8 8 3 4 2•((PSL(2, 7)⇥ PSL(2, 7) : 2) : 2)
0 12 3 4 6• : PGL(2, 10)
3 4 15 14 PGL(2, 29)
3 8 3 7 PGL(2, 7)
3 9 3 7 PSL(2, 8)
3 13 3 7 PSL(2, 13)
4 8 3 8 2•PGL(2, 49)
4 3 0 0 2•PSL(2, 43)
7 0 4 3 2•PSL(2, 13)
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5.10 2⇤11 : L2(7)

G<a,b,t>:=Group<a,b,t|a^5,b^3,b*a^2*b^-1*a^2*b*a^-1*b^-1*a^-1,

(a*b*a*b*a)^2, t^2, (t,a^2 * b^-1 * a^-1 * b * a^-2),

(t,a^-1 * b * a^2 * b * a^2), (t,b * a^-2 * b * a^-1 * b * a),

(t, a * b^-1 * a * b^-1 * a^-1 * b * a),

(b*t*t^b*t^b^2)^i, (a*b^-1*t^b*a^4)^j, (b^-1*a^-1*t*t^a*t)^k,

(b^2*a*t*t^(a*b^-1)*t^a^4)^l, (a*t)^m,

(a^2 * b * a^-1 * b * a^-1 * b^-1 * a*t)^n>;

Table 5.10: 2⇤11 : L2(7)

i j k l m n G

0 0 0 6 0 4 211 : PSL(2, 11)
0 0 0 5 19 5 J1

5.11 3⇤3 :m S4

G<x,y,t>:=Group<x,y,t|x^4,y^2,(x*y)^3,t^3,(t,x^2*y),t^y=t^2,

(y*t)^i,((x^2*y)^2*t^(x^3))^j,(y*x^2*t^x)^k, (y*t^x)^l,

(y*x*t^x)^m>;

Table 5.11: 3⇤3 :m S4

i j k l m G

2 0 0 0 5 PGL(2, 11)
0 2 6 5 13 PSL(2, 25)
0 0 12 6 8 PGL(3, 3)
0 2 6 10 7 3•(A7 : 2)
0 2 6 0 12 (3⇥ PSL(3, 5)) : 2
0 0 6 10 13 2•PSL(2, 25)
0 2 14 14 6 (3⇥ PSL(2, 13)) : 2
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5.12 2⇤7 : (7 : 3)

G<a,b,t>:=Group<a,b,t|a^3,b^7,b^a=b^2,t^2,(t,a),

(a*b*a^-1*t*t^(b^2))^i,(a^-1*t^b*t*t^b)^j,

(b*a*t^(b^-1))^k,(a*b^-1*a^-1*t*t^(b^2)*t^(b^-1))^l>;

Table 5.12: 2⇤7 : (7 : 3)

i j k l G

0 0 5 0 6•M22

0 0 5 8 4•M22

0 2 8 6 U(3, 3) : 2
0 7 5 8 M22

5.13 2⇤7 : ((7 : 3) : 2)

G<a,b,c,t>:=Group<a,b,c,t|a^2,b^3,c^7,b^a=b,c^a=c^6,c^b=c^2,

t^2,(t,a),(t,b), (a*b*c^-1*b^-1*t)^i, (a*c*t)^j,

(c*t^c*t^(c^2)*t^(c*b^-1))^k, (a*b*t^c)^l, (b^-1*c*t)^m,

(b*c*b^-1*t*t^c^4*t)^n>;

Table 5.13: 2⇤7 : ((7 : 3) : 2)

i j k l m n G

0 0 0 7 7 6 J2

5.14 7⇤2 :m D18

G<x,y,t>:=Group<x,y,t|x^-9,y^2,(x^-1*y)^2,t^7,t^x=t^2,

(y*t)^i,(y*t^x)^j,(y*t^(x^2))^k,(x*t)^l,(x*t*t^x*t)^m>;

Table 5.14: 7⇤2 :m D18

i j k l m G

0 0 3 0 3 PSL(2, 7)
0 0 4 9 0 S3 ⇥ PSL(2, 7)
0 5 7 9 12 A7

0 6 7 3 9 26 : PSL(2, 7)
5 15 5 3 3 J1
6 6 6 0 3 (3 : PGL(3, 4)) : 2
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5.15 2⇤10 : (2•(5 : 2) : 2)

G<a,b,c,t>:=Group<a,b,c,t|a^4,b^2,c^5,b^a=b,c^a=c^2,

c^b=c^4,t^2,(t,a),(a*t)^i,(t*t^(b))^j,(t*a*t)^k,(t^c*t)^l,

(c*t^a)^m,(b*t*c)^n>;

Table 5.15: 2⇤10 : (2•(5 : 2) : 2)

i j k l m n G

4 1 0 9 8 6 (4⇥M12) : 2

5.16 2⇤6 : (3•(3 : 2))

G<a,b,c,t>:=Group<a,b,c,t|a^2,b^3,c^3,b^a=b,c^a=c^2,

c^b=c,t^2,(t,b^-1*c^-1),(a*t)^i,(a*b^-1*c^-1*t)^j,

(c^-1*t^a*t)^k,(b^-1*c^-1*t^a)^l,(a*b*c*t*t^c*t)^m>;

Table 5.16: 2⇤6 : (3•(3 : 2))

i j k l m G

0 0 20 3 9 4• : ((A5)3 : 3
0 0 0 3 10 3•(A7 : 2)
0 0 6 3 11 M12

0 0 5 3 10 A7 : 2
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Chapter 6

Manual Double Coset

Enumeration

6.1 Definition for Double Coset Enumeration

Definition 6.1. Double Coset

[Cur07] Let H and K be subgroups of the group G and define a relation on G as follows:

x ⇠ y () 9h 2 H and k 2 K such that y = hxk

where ⇠ is an equivalence relation and the equivalence classes are sets of the following

form

HxK = {hxk|h 2 H, k 2 K} = [k2KHxk = [h2HhxK

Such a subset of G is called a double coset.

Now we consider the double cosets of the form NxN , where x = ⇡w for some

n 2 N and w is a reduced word in the t0is. Thus NxN = N⇡wN = NwN = [w].

Definition 6.2. [Cur07] Let G be a group of permutations of a set S. For each g, s 2 S,

let gs = g, then we call the set of s 2 S the point stabilizer of g 2 G.

Definition 6.3. [Cur07] The coset stabilizing group of a coset Nw is defined as

N (w) = {⇡ 2 N |Nw⇡ = Nw}

where n 2 N and w a reduced word in the t0is.
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Theorem 6.4. Number of single cosets in NwN [Cur07]The above definition gives,

N (w) = {⇡ 2 N |Nw⇡ = Nw}

= {⇡ 2 N |(Nw)⇡ = Nw}

= N \Nw

The number of single cosets in NwN is given by [N : N (w)]

Definition 6.5. Let G be a group of permutations of a set S. For each s in S, let

orbG(s) = {�(s)|� 2 G}. The set orbG(s) is a subset of S called the orbits of s under

G. We use |orbG(s)| to denote the number of elements in orbG(s).

6.2 Double Coset Enumeration 2⇤5 : A5

We factor the progenitor 2⇤5 : A5 by a single relator, t3t4t1t2t5 = e, and let

G ⇠= 2⇤5 : A5 be a symmetric presentation of G given by:

< x, t, y|x2, y3, (xy)5, t2, (t, x), (t, xyx?1, xy?1), (xyt)5 >

where N ⇠= A5 =< x, y|x2, y3, (xy)5 > and x ⇠ (1, 2)(3, 4)y ⇠ (1, 3, 5). Our relation is

t3t4t1t2t5 = e. First, we are going to rearrange our relation,

t3t4t1t2t5 = e

=) t3t4t1 = t5t2

=) t3t4 = t5t2t1

We will begin the manual double coset enumeration by looking at our first

double coset. Note the definition of a double coset is as follows: NwN = {Nwn|n 2

N}. For our first double coset we have, NeN = {Nen|n 2 N} = {N} denoted by

[*], which contains one single coset. N is transitive on {1, 2, 3, 4, 5}, so it has a single

orbit {1, 2, 3, 4, 5}. Take a representative from the orbit, say 5, and find to which double

coset Nt5 belongs. This will create a new double coset, which we will label as [5]. Note

Nt5N = {Nt1, Nt2, Nt3, Nt4, Nt5}. Now consider the coset stabilizer N (5). Note that

the coset stabilizer of Nt5 is equal to the point stabilizer N5.
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Thus N (5) =< (1, 2)(3, 4), (2, 3, 4), (1, 3, 4) > and the number of the single cosets in the

double coset, Nt5N , is at most: |N |
|N(5)| = 60

12 = 5. Looking at the generators of N (5),

we can see that the orbits of N (5) on {1, 2, 3, 4, 5} are {1, 2, 3, 4} and {5}. We take a

representative from each orbit, say 1 and 5 respectively and then determine to which

double coset Nt5t5, and Nt5t1 belong. All the t0s have order two, thus Nt5t5 = N 2 [⇤].

Since the orbit {5} contains one element, then one symmetric generator goes back to the

double coset [⇤]. Now, Nt5t1 2 Nt5t1N is a new double coset we have yet to see, therefore

this will be our new double coset. Note four symmetric generators go to the next double

coset which we will label [51].

We then consider the coset stabilizer of N (51). N (51) = N51 =< (2, 3, 4) > and

the number of single cosets in the double coset, Nt5t1N , is at most: |N |
|N(51)| =

60
3 = 20.

In order to find the distinct single cosets in [51], we must find the right cosets of N (51)

in N . Without the loss of generality, they are Nt5t1(e), Nt5t1(1, 2)(3, 4), Nt5t1(1, 3, 5),

Nt5t1(1, 2, 3, 4, 5), Nt5t1(1, 4, 3, 5, 2),Nt5t1(1, 5, 3), Nt5t1(2, 4, 5), Nt5t1(1, 2, 5, 3, 4),

Nt5t1(1, 5, 4, 3, 2), Nt5t1(1, 3, 2, 5, 4), Nt5t1(2, 3)(4, 5), Nt5t1(1, 4, 2, 3, 5),

Nt5t1(1, 5, 2, 4, 3), Nt5t1(1, 3, 2, 5, 4), Nt5t1(1, 4, 2, 5, 3), Nt5t1(1, 5)(2, 3), Nt5t1(1, 4, 2),

Nt5t1(3, 4, 5), Nt5t1(1, 3, 4), Nt5t1(1, 2)(4, 5). Taking a representative from each of the

cosets, we form the set of transversals, say T . Then, T = {(e), (1, 2)(3, 4), (1, 3, 5)

, (1, 2, 3, 4, 5), (1, 4, 3, 5, 2), (1, 5, 3), (2, 4, 5), (1, 2, 5, 3, 4), (1, 5, 4, 3, 2), (1, 3, 2, 5, 4),

(2, 3)(4, 5), (1, 4, 2, 3, 5), (1, 5, 2, 4, 3), (1, 3, 2, 5, 4), (1, 4, 2, 5, 3), (1, 5)(2, 3), (1, 4, 2),

(3, 4, 5), (1, 3, 4), (1, 2)(4, 5)}.

Conjugating the coset Nt5t1 by each of the elements in the set T , we get the other dis-

tinct cosets in Nt5t1N . Thus we will have the following cosets in the double coset [51] :

Nt1t3, Nt5t3, Nt4t1, Nt5t4, Nt2t4, Nt1t4, Nt3t4, Nt3t1, Nt1t2, Nt5t2, Nt4t2, Nt2t1, Nt5t1

, Nt1t5, Nt2t5, Nt3t5, Nt4t3, Nt3t2, Nt2t3, Nt4t5. Looking at the generators of N (51), we

can see that the orbits of N (51) on {1, 2, 3, 4, 5} are {2, 3, 4}, {1} and {5}. We take a

representative from each orbit, say {2}, {1}, and {5} respectively and then determine

to which double coset Nt5t1t2, Nt5t1t1 and Nt5t1t5 belong. Since our t0s have order 2,

Nt5t1t1 = N 2 [5]. The orbit containing 1 only has one symmetric generator which will

be sent back to that double coset [5]. We have yet to see Nt5t1t5 2 Nt5t1t5N , a new

double coset which we will label as [515]. The coset Nt5t1t2 requires further investiga-

tion. Our relation is t3t4t1 = t5t2, and to obtain all of the relations we conjugate our



78

relation by N . However, we want to know specifically where the coset Nt5t1t2 goes. The

conjugation of t3t4t1 = t5t2 by (1, 2, 3, 5, 4) 2 N gives

t3t4t
(1,2,3,5,4)
1 = t5t

(1,2,3,5,4)
2 =) t5t1t2 = t1t3. This implies Nt5t1t2 = Nt1t3 2 [51].

Therefore the coset Nt5t1t2 will loop back to [51]. Since there are three symmetric gen-

erators in the orbit that contains 2, three symmetric generators will loop back into the

double coset [51]. Continuing with our new double coset [515], we will compute the coset

stabilizing group N (515). Note that the coset stabilizing group

N (515) = N (51) =< (2, 3, 4) > . Although, this increases with our relation. We then con-

jugate our new coset Nt5t1t5 by all elements of N . It gives us a list of 20 single cosets, and

the set is given as follows: {Nt1t5t1, Nt2t4t2, Nt3t5t3, Nt2t1t2, Nt3t1t3, Nt4t2t4, Nt5t3t5,

Nt5t4t5, Nt1t4t1, Nt1t2t1, Nt5t1t5, Nt1t3t1, Nt4t5t4, Nt2t5t2, Nt3t4t3, Nt5t2t5, Nt3t2t3,

Nt2t3t2,

Nt4t3t4}. We find that Nt5t1t5 = Nt2t1t2 = Nt3t1t3 = Nt4t1t4. These relations will

increase the elements in our coset stabilizer, since

Nt5t1t
(2,4,5)
5 = Nt2t1t2 = Nt5t1t5N =) (2, 4, 5) 2 N (515)

Nt5t1t
(2,4,3)
5 = Nt5t1t5 = Nt5t1t5N =) (2, 4, 3) 2 N (515)

Nt5t1t
(2,3)(4,5))
5 = Nt4t1t4 = Nt5t1t5N =) (2, 3)(4, 5) 2 N (515)

Nt5t1t
(3,4,5)
5 = Nt3t1t3 = Nt5t1t5N =) (3, 4, 5) 2 N (515)

Thus, N (515)
�< (2, 4, 3), (2, 4, 5), (2, 5)(3, 4), (2, 3, 5) >= {e, (2, 4, 3), (2, 5)(3, 4),

(2, 3, 5), (3, 4, 5), (2, 4, 5), (2, 5, 4), (2, 3, 4), (3, 5, 4), (2, 4)(3, 5), (2, 5, 3), (2, 3)(4, 5)}.

The number of single cosets in the double coset,Nt5t1t5N , is at most |N |
|N(515)| =

60
12 = 5. In

order to find the di↵erent cosets in [515], we find the right cosets of N (515) in N . The right

cosets are as follows: Nt5t1t5(e), Nt5t1t5(1, 2)(3, 4), Nt5t1t5(1, 3, 5), Nt5t1t5(1, 4, 3, 5, 2),

Nt5t1t5(1, 5, 3). Taking a representative from each of the cosets, we form the set of

transversals, T = {(e), (1, 2)(3, 4), (1, 3, 5), (1, 4, 3, 5, 2), (1, 5, 3)}. Conjugating the coset

Nt5t1t5N by each of the elements in the set T , we get the other distinct cosets in

Nt5t1t5N . Thus we will have the following cosets in the double coset [515] with their

equal names: 515 ⇠ 212 ⇠ 313 ⇠ 414
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{515 ⇠ 212 ⇠ 313 ⇠ 414}(1,2)(3,4) = {525 ⇠ 121 ⇠ 424 ⇠ 323}

{515 ⇠ 212 ⇠ 313 ⇠ 414}(1,3,5) = {131 ⇠ 232 ⇠ 535 ⇠ 343}

{515 ⇠ 212 ⇠ 313 ⇠ 414}(1,4,3,5,2) = {242 ⇠ 141 ⇠ 545 ⇠ 343}

{515 ⇠ 212 ⇠ 313 ⇠ 414}(1,5,3) = {353 ⇠ 252 ⇠ 151 ⇠ 454}

Looking at the generators of N (515), we can see that the orbits of N (515) on

{1, 2, 3, 4, 5} are {2, 3, 4, 5} and {1}. We take a representative from each orbit, say 5 and

1 respectively, and then determine to which double coset Nt5t1t5t1, and Nt5t1t5t5 belong.

Since our t0s have order 2 Nt5t1t5t5 2 Nt5t1 = [51]. The orbit that contains 5 has three

other symmetric generators thus a total of four symmetric generators will be sent back to

the double coset [51]. We have yet to see Nt5t1t5t1 2 Nt5t1t5t1N = [5151]. Now the coset

stabilizing group of N (5151) = N (51) =< (2, 3, 4) >. However, as before this increases with

our relation. Proceeding as we did with the double coset [515] we conjugate the coset

Nt5t1t5t1 by all the elements of N . It gives us a list of 20 di↵erent single cosets and they

are shown below. {Nt1t5t1t5, Nt2t4t2t4, Nt3t5t3t5, Nt2t1t2t1, Nt3t1t3t1, Nt4t2t4t2,

Nt5t3t5t3, Nt5t4t5t4, Nt1t4t1t4, Nt1t2t1t2, Nt5t1t5t1, Nt1t3t1t3, Nt4t5t4t5,

Nt2t5t2t5, Nt3t4t3t4, Nt5t2t5t2, Nt3t2t3t2, Nt2t3t2t3, Nt4t3t4t3}.

We have that, Nt1t5t1t5 = Nt2t4t2t4 = Nt3t5t3t5 = Nt2t1t2t1 = Nt3t1t3t1 = Nt4t2t4t2 =

Nt5t3t5t3 = Nt5t4t5t4 = Nt1t4t1t4 = Nt2t1t2t1 = Nt5t1t5t1 = Nt1t3t1t3 = Nt4t5t4t5 =

Nt2t5t2t5 = Nt3t4t3t4 = Nt5t2t5t2 = Nt3t2t3t2 = Nt2t3t2t3 = Nt4t3t4t3. These relations

will increase the elements in our coset stabilizer, since

Nt5t1t5t
(2,4,5)
1 = Nt2t1t2t1 = Nt5t1t5t1N =) (2, 4, 5) 2 N (5151)

Nt5t1t5t
(2,4,3)
1 = Nt5t1t5t1 = Nt5t1t5t1N =) (2, 4, 3) 2 N (5151)

Nt5t1t5t
(1,3,2,5,4)
1 = Nt4t1t4t1 = Nt5t1t5t1N =) (1, 3, 2, 5, 4) 2 N (5151)

Nt5t1t5t
(1,3)(4,5)
1 = Nt4t3t4t3 = Nt5t1t5t1N =) (1, 3)(4, 5) 2 N (5151)

Nt5t1t5t
(2,3,5)
1 = Nt2t1t2t1 = Nt5t1t5t1N =) (2, 3, 5) 2 N (5151)

Nt5t1t5t
(1,3,5,4,2)
1 = Nt4t3t4t3 = Nt5t1t5t1N =) (1, 3, 5, 4, 2) 2 N (5151)
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Thus N (5151)
�< (2, 4, 3), (2, 4, 5), (2, 5)(3, 4), (2, 3, 5), (1, 3, 2, 5, 4), (1, 3, 5, 4, 2),

(1, 3)(4, 5) >. The number of single cosets in the double cose Nt5t1t5t1N , is at most
|N |

|N(5151)| =
60
60 = 1. Also note that there is only one single orbit of N (5151) on {1, 2, 3, 4, 5},

which is {1, 2, 3, 4, 5}. If we take a representative from the orbit say {1}, we can see that

Nt5t1t5t1t1 2 Nt5t1t5 = [515]. Thus five symmetric generators take us back. Finally, our

Cayley diagram is as follows.

Figure 6.1: Cayley Diagram of 2⇤5 : A5

6.3 Finding the Center of the Cayley Diagram

From the diagram above, it is clear that G contains a center. We first gather the

stabilizer of a coset in G that fixes another coset at a maximum distance from the first.

The blocks of imprimitivity are of size two, thus |Z(G)| = 2 where Z(G) =< nw >. Let

 : G �! S32 and let G =<  (x), (y), (t5) >. Given G is a G� set, then by definition

a block is a subset B of G such that, for each g 2 G, either gB = B or gB \ B = ;

Suppose that {1, 32} is a block of G. From above, {1, 32} (x), (y), (t5) = {1, 32} or

{1, 32} (x), (y), (t5) = ;:

{1, 32}(3,5)(4,7)(6,9)(8,12)(10,17)(11,18)(13,22)(14,24)(15,25)(16,27)(19,28)(20,30)(21,26)(23,31)

= {1, 32}

{1, 32}(2,3,4)(6,10,11)(8,13,14)(9,15,16)(12,20,21)(18,27,26)(19,29,23)(22,25,30) = {1, 32}

{1, 32}(1,2)(3,6)(4,8)(5,9)(7,12)(10,17)(11,19)(13,23)(14,24)(15,26)(16,20)(18,28)(21,25)(22,31)(27,30)(29,32)

= {2, 29}
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Now consider the block {2, 29} and proceed as we have above. Then,

{2, 29}(3,5)(4,7)(6,9)(8,12)(10,17)(11,18)(13,22)(14,24)(15,25)(16,27)(19,28)(20,30)(21,26)(23,31)

= {1, 32}

{2, 29}(2,3,4)(6,10,11)(8,13,14)(9,15,16)(12,20,21)(18,27,26)(19,29,23)(22,25,30) = {3, 23}

{2, 29}(1,2)(3,6)(4,8)(5,9)(7,12)(10,17)(11,19)(13,23)(14,24)(15,26)(16,20)(18,28)(21,25)(22,31)(27,30)(29,32)

= {1, 32}

It can also be shown that {3,23}, {4,19}, {5,31}, {6,13}, {7,28}, {8,11}, {9,22},

{10,14}, {12,18}, {15,25}, {16,30}, {17,24}, {20,27}, and {21,26} are also blocks of G.

Therefore the blocks of G are: {{1,32}, {2,29}, {3,23}, {4,19}, {5,31}, {6,13}, {7,28},

{8,11}, {9,22}, {10,14}, {12,18}, {15,25}, {16,30}, {17,24}, {20,27}, {21,26}}. Since G

contains nontrivial blocks, G is imprimitive. We must now find the non-identity element,

say z, of the center. From the Cayley diagram in the previous example, we note that

the last double cost, [5151], has one single coset which was Nt5t1t5t1. We then set

Nt5t1t5t1 = e =) nt5t1t5t1 = e where n 2 N , since z 2 G = 2⇤5:A5
t3t4t1t2t5=e and z = nw,

where n 2 N and w is a word in the t0s. To factor G by the center, we need to consider

nt5t1t5t1 = e 2 G. Thus, t5t1t5t1 = n�1. We let m = n�1 =) t5t1t5t1 = m. We now

compute m by its action on the cosets {Nt1, Nt2, Nt3, Nt4, Nt5}. Computing the action

of m on the coset Nt1 we get:
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Ntm1 = Ntt5t1t5t11

= N(t5t1t5t1)
�1t1t5t1t5t1

= Nt1t5t1t5t1t5t1t5t1

= Nt1t5t1t5t5t4t3t2t1t1t5t1t5t1

= Nt1t5t1t4t3t2t5t1t5t1

= Nt1t5t1t1t5t3t2t4t4t3t2t5t1t5t1

= Nt1t3t2t3t2t5t1t5t1

= Nt1t3t2t1t4t1t5t1

= Nt1t3t2t1t4t4t2t3t5t1t1t5t1

= Nt1t3t2t1t2t3t1

= Nt1t3t2t1t5t4

= Nt1

We now compute the action of m on Nt2 :

Ntm2 = Ntt5t1t5t12

= N(t5t1t5t1)
�1t2t5t1t5t1

= Nt1t5t1t5t2t5t1t5t1

= Nt1t5t1t5t4t3t1t5t1

= Nt1t5t1t1t2t5t1

= Nt1t5t2t5t1

= Nt1t1t3t4t2t5t5t2t5t1

= Nt3t4t5t1

= Nt2
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The action of m on the coset Nt3 :

Ntm3 = Ntt5t1t5t13

= N(t5t1t5t1)
�1t3t5t1t5t1

= Nt1t5t1t5t3t5t1t5t1

= Nt1t5t1t5t2t4t1t1t5t1

= Nt1t5t1t5t2t4t5t1

= Nt1t5t1t1t3t5t1

= Nt1t5t3t5t1

= Nt1t1t4t2t3t5t5t3t5t1

= Nt4t2t5t1

= Nt3

The action of m on the coset Nt4 :

Ntm4 = Ntt5t1t5t14

= N(t5t1t5t1)
�1t4t5t1t5t1

= Nt1t5t1t5t4t5t1t5t1

= Nt1t5t1t5t3t2t1t1t5t1

= Nt1t5t1t5t3t2t5t1

= Nt1t5t1t1t4t5t1

= Nt1t5t4t5t1

= Nt1t1t2t3t4t5t5t4t5t1

= Nt2t3t5t1

= Nt4

Next, we need to compute the action of m on the coset Nt5. To show this we will first
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show that t5t1t5t1 = t1t5t1t5. Our original relation is t3t4t1t2t5 = e

t3t4t1t2t5 = e

=) t5t2t1t1t2t5 = e

=) t5t1t5t4t3t1t1t2t5 = e

=) t5t1t5t4t3t2t5 = e

=) t5t1t5t1t2t5t3t3t2t5 = e

=) t5t1t5t1t2t5t2t5 = e

=) t5t1t5t1 = t2t5t2t5

Thus,

Ntm5 = Ntt5t1t5t15

= N(t5t1t5t1)
�1t5t5t1t5t1

= Nt1t5t1t5t1t5t1

= Nt1t2t5t2t5t5t1

= Nt1t2t5t2t1

= Nt1t2t5t5t3t4t1t2t2t1

= Nt1t2t3t4

= Nt5

Finally this tells us, Ntm1 = Nt1, Ntm2 = Nt2, Ntm3 = Nt3, Ntm4 = Nt4,

Ntm5 = Nt5. Thus m = e, and t5t1t5t1 = e is the generator of the center. Now we factor

G = 2⇤5:A5
t3t4t1t2t5=e by the additional center relation. However, we first determine whether

or not t5t1t5t1 = e, implies the original relation. Now,
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t5t1t5t1 = e

=) t5t
(1,3)(4,5)
1 = t1t

(1,3)(4,5)
5

=) t4t3 = t3t4

=) t4t3t1t2t5 = t3t4t1t2t5

Note t3t4t1t2t5 = e =) t3t4t1t2t
(1,2)(3,4)
5 = e(1,2)(3,4) =) t4t3t1t2t5 = e. Therefore we

have t3t4t1t2t5 = e. Hence, G factored by t5t1t5t1 = e is

G ⇠= 2⇤5:A5
t3t4t1t2t5=e,t5t1t5t1=e

⇠= 2⇤5:A5
t5t1t5t1=e .

Now we will begin manual double coset enumeration by first looking at our two

relations. Our relations are t3t4t1t2t5 =e and t5t1t5t1 = e. Now, t3t4t1t2t5 = e ()

t3t4t1 = t5t2 () t3t4 = t5t2t1 t5t1t5t1 = e () t5t1 = t1t5 Our first double

coset, NeN = {Nen|n 2 N} = {N} denoted by [⇤], contains one single coset. N is

transitive on {1,2,3,4,5}, so it has a single orbit {1,2,3,4,5}. We take a representative

from the orbit,say {5}, and find to which double coset Nt5 belongs. This will create a

new double coset, which we will label as [5]. Note Nt5N = {Nt1, Nt2, Nt3, Nt4, Nt5}.

Now consider the coset stabilizer N (5). Note that the coset stabilizer of Nt5 is equal

to the point stabilizer N5. Thus N (5) =< (1, 2)(3, 4), (1, 4)(2, 3), (1, 4, 3) > and the

number of the single cosets in the double coset, Nt5N , is at most |N |
|N(5)| = 60

12 = 5.

Looking at the generators of N (5), we can see that the orbits of N (5) on {1,2,3,4,5} are

{1,2,3,4} and {5}. We take a representative from each orbit, say 1 and 5 respectively

and then determine to which double coset Nt5t5,and Nt5t1 belong. All the t0s have

order two, thus Nt5t5 = N 2 [⇤]. Since the orbit {5} contains one element, then one

symmetric generator goes back to the double coset [⇤]. Now, Nt5t1 2 Nt5t1N is a

new double coset we have yet to see. Note four symmetric generators go to the next

double coset which we will label as [51]. We then consider the coset stabilizer of N (51).

N (51) = N51 =< (2, 3, 4) >. Although, this increases with our relation. From our

relation we have, t5t1t5t1 = e () t5t1 = t1t5 =) Nt5t1N = Nt1t5N . Therefore

(1, 5)(2, 4), (1, 5)(3, 4), (1, 5)(2, 3) 2 N (51) since
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Nt5t
(1,5)(2,4)
1 = Nt1t5 = Nt5t1N =) (1, 5)(2, 4) 2 N (51)

Nt5t
(1,5)(3,4)
1 = Nt1t5 = Nt5t1N =) (1, 5)(3, 4) 2 N (51)

Nt5t
(1,5)(2,3)
1 = Nt1t5 = Nt5t1N =) (1, 5)(2, 3) 2 N (51)

Thus N (51) =< (2, 3, 4), (1, 5)(2, 4), (1, 5)(3, 4), (1, 5)(2, 3) > and the number of single

cosets in the double coset, Nt5t1N , is at most |N |
|N(51)| = 60

6 = 10. In order to find the

distinct single cosets in [51], we must find the 51 right cosets of N (51)
2 N . Without loss

of generality, the are Nt5t1(e),Nt5t1(1, 2, 3),Nt5t1(2, 5, 3),Nt5t1(1, 2, 5),Nt5t1(1, 2)(4, 5),

Nt5t1(1, 5, 4),Nt5t1(3, 5, 4), Nt5t1(1, 3)(4, 5). Taking a representative from each of the

cosets, we form the set of transversals, T . Then, T = {(e), (1, 2, 3), (2, 5, 3), (1, 2, 5),

(1, 2)(4, 5), (1, 5, 3), (1, 2)(3, 5), (1, 5, 4), (3, 5, 4), (1, 3)(4, 5)}. Conjugating the coset Nt5t1

by each of the elements in the set T , we get the other distinct cosets in Nt5t1N . Thus we

will have the following cosets in the double coset [51] with their equal names: 51 ⇠ 15.

51 ⇠ 15(1,2,3) = 52 ⇠ 25

51 ⇠ 15(2,5,3) = 31 ⇠ 13

51 ⇠ 15(1,2,5) = 12 ⇠ 21

51 ⇠ 15(1,2)(4,5)) = 42 ⇠ 24

51 ⇠ 15(1,5,3) = 35 ⇠ 53

51 ⇠ 15(1,2)(3,5) = 32 ⇠ 23

51 ⇠ 15(1,5,4) = 45 ⇠ 54

51 ⇠ 15(3,5,4) = 41 ⇠ 14

51 ⇠ 15(1,3)(4,5) = 43 ⇠ 34

Looking at the generators of N (51), we can see that the orbits of N (51) on

{1,2,3,4,5} are {1,5} and {2,3,4}. We take a representative from each orbit, say 1, and

2 respectively and then determine to which double coset Nt5t1t1 and Nt5t1t2 belong.

Since the t0s have order 2, Nt5t1t1 = N 2 [5]. The orbit containing 1 has two symmetric
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generators which will be sent back to that double coset [5]. The coset Nt5t1t2 requires

further investigation. Our relation is t3t4t1 = t5t2, and to obtain all of the relations we

conjugate our relation by N . However, we want to know specifically where the coset

Nt5t1t2 goes. The conjugation of t3t4t1 = t5t2 by (1, 2, 3, 5, 4) 2 N gives t3t4t
(1,2,3,5,4)
1 =

t5t
(1,2,3,5,4)
2 =) t5t1t2 = t1t3 . This implies Nt5t1t2 = Nt1t3 2 [51]. Therefore the

coset Nt5t1t2 will loop back to the double coset [51]. Since there are three symmetric

generators in the orbit that contains 2, three symmetric generators will loop back into the

double coset [51]. This completes our double coset enumeration and our Cayley diagram

is as follows.

Figure 6.2: Cayley Diagram of 2⇤5 : A5 Factored by the Center
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Chapter 7

Double Coset Enumeration over

Maximal Subgroups

As we have seen before, double coset enumeration can get complex and di�cult.

Recall, the double coset enumeration process was done over a control group N that

decomposed our group G into the form NwN , where w is a word in the ti’s. It has been

suggested that following the same algorithm over a maximal subgroup can provide the

same information as does the enumeration over the smaller control group N . Thus, we

will find a single coset decomposition of a group, G over M , where N  M  G. We will

show that the double coset enumeration of G over M accomplishes the same task as the

double coset enumeration of G over N . We will show this with a much smaller example,

and then expand this concept to a much larger group.

7.1 Double Coset Enumeration of S5 ⇥ 2 over S4

We start by factoring the progenitor 2⇤4 : S4 by a single relator (1, 2, 4) =

t4t1t2t4. Now let,

G ⇠= 2⇤4:S4
(1,2,4)=t4t1t2t4

The symmetric presentation of G is given by:

G < x, y, t >:= Group < x, y, t|x4, y2, (x ⇤ y)3, t2, (t, y), (t, (xy)x
3
, (xy)x

2
t =

ttxtx
2
> where,
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N ⇠= S4 =< x, y|x4, y2, (x ⇤ y)3 > and our x ⇠ (1, 2, 3, 4) y ⇠ (1, 2) and our

t ⇠ t4.

Now we will follow the algorithm of double coset enumeration. First we note

that NeN = {Nen|n 2 N} = N . NeN will be labeled as [⇤], which contains one single

coset. N ⇠= S4 which is 4-transitive. Thus N is transitive on {1, 2, 3, 4}, so we have only

a single orbit {1, 2, 3, 4}. We take a representative from this orbit say {4} and find to

which double coset does Nt2 belongs. Clearly, this will give us our new double coset,

which we will label as [4]. Since,

Nt4 2 Nt4N = {Ntn4 |n 2 N} = {Nt1, Nt2, Nt3, Nt4}. Now we consider the coset

stabilizer, denoted as N (4). Note that the coset stabilizer of Nt4 is equal to the point

stabilizer N4. Thus,

N (4) = N4 =< (1, 2), (1, 3, 2), (2, 3) >= {e, (1, 2, 3), (1, 2), (1, 3, 2), (2, 3), (1, 3)}. Thus,

the number of the single cosets in Nt4N is at most: |N |
|N(4)| =

24
6 = 4. The orbits of the

coset stabilizing group can be found by simply looking at the generators. We can see

that the orbits of {1, 2, 3, 4} are {1, 2, 3} and {4}. We take a representative from each

orbit, say {2} and {4}, respectively. Now we determine to which double coset Nt4t2 ,

and Nt4t2 belong. All ti’s have order 2 thus, Nt4t4 = N 2 [⇤]. Therefore, since the orbit

{4} contains one element, then one symmetric generator goes back to the double coset

NeN , and Nt4t2 will send it forward to our next double coset. Note, three symmetric

generators go to the next double coset Nt4t2N 2 [42]. [42] is the label we use for the

double coset Nt4t2N . Continuing, we now consider the coset stabilizer N (42). The coset

stabilizer of Nt4t2 is given by: N (42)
� N42 = {e, (1, 3)}. Elements that fix 4 and 2 point

wise will also fix the coset Nt4t2N . Our goal is to find all permutations that stabilize the

coset Nt4t2. This is where we need to look at our relation, (1, 2, 4) = t4t1t2t4.

(1, 2, 4) = t4t1t2t4 ) (1, 2, 4)t4t2 = t4t1

Taking N of both sides of the equation we see that the permutation (1, 2, 4) will

get absorbed by N , since (1, 2, 4) 2 N . Thus we get Nt4t2 = Nt4t1. Recall the definition

of coset stabilizer. The coset stabilizer is defined as NwN = {Nwn = Nw|n 2 N}. So we

search for permutations that sends 4 ! 4 and 2 ! 1, since these will stabilize the coset

Nt4t2. Hence, the permutations (1, 2) 2 N (42) and (1, 3, 2) 2 N (42), since Nt4t
(1,2)
2 =

Nt4t1 = Nt4t2 ) (1, 2) 2 N (42). Nt4t
(1,3,2)
2 = Nt4t1 = Nt4t2 ) (1, 3, 2) 2 N (42).
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Now N (4,2)
�< (1, 3), (1, 2), (1, 3, 2) >= {e, (1, 2, 3), (1, 2), (1, 3, 2), (2, 3), (1, 3)}. Thus,

Nt4t2 = Nt4t1 = Nt4t3. The number of the single cosets in Nt4t2N is at most: |N |
|N(42)| =

24
6 = 4. In order to find the other three distinct cosets with three equal names for each in

Nt4t2N , we find the right cosets of N (42) in N . We will take the following right cosets,

Nt4t2e, Nt4t2(1, 2, 3, 4), Nt4t2(1, 3)(2, 4), Nt4t2(1, 4, 3, 2). Taking a representative for

each of the cosets we form the transversal, T . T = {e, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}.

By taking these representatives and conjugating the three di↵erent names we found above,

we will get the other three distinct cosets in Nt4t2N . From above we found 42 ⇠ 41 ⇠ 43.

42 ⇠ 41 ⇠ 43 conjugated by (1, 2, 3, 4) yields 13 ⇠ 12 ⇠ 14

42 ⇠ 41 ⇠ 43 conjugated by (1, 3)(2, 4) yields 24 ⇠ 23 ⇠ 21

42 ⇠ 41 ⇠ 43 conjugated by (1, 4, 3, 2) yields 31 ⇠ 34 ⇠ 32

Looking at the generators of N (42) on {1, 2, 3, 4}, we can see that it will have

two orbits {1, 2, 3} and {4}. We take a representative from each orbit, say {2} and {4}

respectively and see to which double cosetNt4t2t2 andNt4t2t4 belong. Again, all ti’s have

order 2 thus, Nt4t2t2 = N 2 [4]. Therefore, since the orbit {2} contains three elements,

then three symmetric generators go back to the double coset Nt4N , and Nt4t2t4 will

send it forward to our next double coset. Before we continue investigating this double

coset, we will first return to our relation. As stated previously conjugating our relation(s)

by N yields more relationships. Note, conjugating (1, 2, 4) = t4t1t2t4 by (1, 4) gives us

(4, 2, 1) = t1t4t2t1 ) (4, 2, 1)t1t2 = t1t4. Now, we need to look for the coset stabilizer of

Nt4t2t4N . From the last double coset we found that 42 ⇠ 41 ⇠ 43. By multiplying t4 to

the right of each of these equal names, the equality still holds. Thus 424 ⇠ 414 ⇠ 434.

This implies that N (424)
� N (42) = {e, (1, 2, 3), (1, 2), (1, 3, 2), (2, 3), (1, 3)}. From our

relation we see, (1, 2, 4)t4t2 = t4t1 ) (1, 2, 4)t4t2t4 = t4t1t4.
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From above, we can replace t1t4 by (4, 2, 1)t1t2 to achieve

(1, 2, 4)t4t2t4 = t4t1t4

= t4(4, 2, 1)t1t2

= t2t1t2

Now taking N of both sides we see Nt4t2t4N = Nt2t1t2. So, we search for

permutations that send 4 ! 2 and 2 ! 1, since these will stabilize the cosetNt4t2t4. Thus

the permutation(4, 2, 1) 2 N (424), since Nt4t2t
(4,2,1)
4 = Nt2t1t2 = Nt4t2t4 ) (4, 2, 1) 2

N (424). Notice when we add this element in to the set above we get all of S4, since

N (424)
�< (1, 3), (1, 2), (1, 3, 2), (4, 2, 1) >= S4. Therefore, the number of the single

cosets Nt4t2t4N is at most: |N |
|N(424)| = 24

24 = 1. To achieve all the equal names of this

double coset, we can conjugate t4t2t4 by all of N (424). This gives us

313 ⇠ 343 ⇠ 323 ⇠ 242 ⇠ 232 ⇠ 212 ⇠ 131 ⇠ 121 ⇠ 141 ⇠ 424 ⇠ 414 ⇠ 434.

Again, by looking at the generators of N (424) on {1, 2, 3, 4}, we can see that it

will have a single orbit of {1, 2, 3, 4}. We take a representative from this orbit, say {4},

and we note that Nt4t2t4t4 = Nt4t2 2 [42]. Therefore, four symmetric generators go back

to the double coset Nt4t2N . Therefore, we have completed the double coset enumeration

and it shows that the index of N ⇠= S4 in G is at most: 1 + 4 + 4 + 1 = 10 ) |G| 

10 ⇤ |N | = 10 ⇤ 24 = 240.

Figure 7.1: Calyey Diagram of S5 over S4
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7.2 Double Coset Enumeration of H over N

Now let H =< x, y, ttx > be a subgroup of G that is isomorphic to S4. We will

perform a manual double coset enumeration of H over N . Thus,

H = NeN [Nt4t1N

= N [Nt4t1 [Nt1t3 [Nt2t4 [Nt3t1

7.3 Double Coset Enumeration of G over H

We begin this double coset enumeration as we do with N . We note that Hen =

{Hen|n 2 H} = H. HeN will be labeled as [⇤], which contains one single coset. Now H

is a subgroup of G that contains N and N is transitive on {1,2,3,4}. Thus, by taking a

representative from this set, say 4, will give us our new double coset Ht4N , which we will

label as [4]. Now by definition, Ht4N = {Htn4 |n 2 N} = {Ht4, Ht1, Ht2, Ht3}. However,

the order of H is 120. If {Ht4, Ht1, Ht2, Ht3} are all distinct then this would allow us

to say the order of G > 240 which is a contradiction. Thus we must show that the single

cosets are not all distinct. Now,

Ht1N = Ht2N

() Ht1 = Ht2

() = Ht1t2 2 H

Notice we let H =< x, y, ttx >=< x, y, t1t2 >. Thus Ht1t2 2 H Also, since

N is 4�transitive a similar argument can be applied for t2 and t3. Therefore, only one

single coset exists in Ht4N , namely Ht4. The double coset enumeration of G over H then

becomes

G = HeN [Ht4N

= H [Ht4
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7.4 Computing Double Coset Enumeration of G over N

Given the info above, we can compute the single coset decomposition of G over N .

G = HeN [Ht4N

= H [Ht4t

= N [Nt4t1 [Nt1t3 [Nt2t4 [Nt3t1 [Nt4[

Nt4t1t4 [Nt1t3t4 [Nt2t4t4 [Nt3t1t4

Using the relations from G we know that Nt1t3 = Nt1t4 ) Nt1t3t4 = Nt1.

Also, Nt3t1 = Nt3t4 ) Nt3t1t4 = Nt3, and Nt2t4t4 = Nt2 since our t’s are of order 2.

Thus our final single coset decomposition is as follows:

G = HeN [Ht4N

= H [Ht4t

= N [Nt4t1 [Nt1t3 [Nt2t4 [Nt3t1 [Nt4[

Nt4t1t4 [Nt1 [Nt2 [Nt3

From this example we have shown that by computing the double coset enumer-

ation of both G over H and H over N we can form the double coset enumeration of G

over N . This process allows us the ability to perform the double coset enumeration over

a maximal subgroup of G and ultimately end up with the same result as the double coset

enumeration of G over N , with a much smaller Cayley diagram.
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7.4.1 Mathematical Insight

When we find the single coset decomposition of our maximal subgroup M over

N we are expressing M as the following

M = [x2TNx

where T represents the transversals for N in M .

Now computing the single coset decomposition for M in G we get a similar equation

G = [y2T 0My

where T 0 represents the transversals for M in G.

By putting the two compositions together we arrive at the composition of G

over N ,

G = [y2T 0My = [x2T,y2T 0Nxy

7.5 Double Coset Enumeration of U(3,3) over a Maximal

Subgroup

Typically, double coset enumeration is done over the control group N, as seen in

the previous examples. However, this process can get very complex and tedious. To allow

for a much easier computation, we can accomplish the same goal by doing the process of

double coset enumeration over a maximal subgroup of the image of our progenitor. Thus,

we take a N  M  G and achieve the single coset decomposition of G = [Mt0isN .

We then compute the double coset enumeration of M over N (as shown in the above

example). This leads us to the double coset enumeration of G over N .

We will now perform manual double coset enumeration of U(3, 3) over M ⇠=

PGL(2, 7). The symmetric presentation 2⇤7 : (C7 : C3) is given by: < a, b, t|a3, b7, b9 =

b2, t2, (t, a), (a�1tbt)tb)2 >, where (C7 : C3) =< a, b > and the action of N on the symmet-

ric generators is given by a ⇠ (2, 3, 4)(5, 7, 6) and b ⇠ (1, 2, 3, 5, 4, 6, 7). We factor our pro-

genitor by the relation ((2, 4, 3)(5, 6, 7)t2t1t2)2 = e, which is equivalent to t3t1t3t2t1t2 = e.
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However, instead of the double coset enumeration over N , as usual, we will be perform-

ing the double coset enumeration over M =< f(a), f(b), f(tbtbta�1btbtb2) > which is

isomorphic to PGL(2, 7).

First we need to look for the first double coset of our Cayley diagram. Since

we are doing a double coset enumeration over M, our double coset definition changes to

MwN = {Mwn
|n 2 N}. So, for our first double coset we have, MeN = {Men|n 2 N} =

{Me|e 2 N} = {M}. We will denote the first node as [⇤], which contains one single coset.

Our Cayley diagram this far is,

Figure 7.2: First Double Coset

Now N is transitive on {1, 2, 3, 4, 5, 6, 7} so it has a single orbit {1, 2, 3, 4, 5, 6, 7}.

Now taking a representative from this orbit, namely 1 and right multiplying it to the

existing double coset we get a new double coset Mt1N , which we will denote by [1].

Note, Mt1N = {Mtn1 |n 2 N} = {Mt1,Mt2,Mt3,Mt4,Mt5,Mt6,Mt7}. Now con-

sider the coset stabilizer M (1), which is equal to the point stabilizer M1. M (1) =<

(2, 3, 4)(5, 7, 6) >= {e, (2, 3, 4)(5, 7, 6), (2, 4, 3)(5, 6, 7)}. Then the number of single cosets

ofMt1N is at most |N |
|M(1)| =

21
3 = 7. Now looking at the generators ofM (1) we can see that

the orbits on {1, 2, 3, 4, 5, 6, 7} are {1}, {2, 3, 4} and {5, 6, 7}. We take a representative

from each orbit, say {1}, {2}, and {5} respectively. Now we determine to which double

coset Mt1t1,Mt1t2, and Mt1t5 belong. Since ti’s have order 2 Mt1t1 2 M 2 [⇤]. Thus

one symmetric generator goes back. From our relation we have that Mt1t2N = Mt1t5N .

Thus six symmetric generators send us to our new double coset Mt1t5 which we will

denote as [15].

Taking a look at our next double coset and using the definition we find that

Mt1t5N = {Mt1t
n
5 |n 2 N} = {Mt1t5,Mt1t7,Mt2t4,Mt1t6,Mt2t1,Mt3t2,Mt3t6,Mt2t7,

Mt3t1,Mt4t3,Mt5t3,Mt4t5,Mt5t7,Mt4t1,Mt5t2

,Mt6t5,Mt7t4,Mt6t4,Mt7t6,Mt6t2,Mt7t3}
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Next we know that M (15)
� M15 =< e >. Our relation will not increase

the number of elements in the coset stabilizing group M (15) . Thus, the number of

single cosets Mt1t5N is at most: |N |
|M(15)| =

21
1 = 21. The orbits on {1, 2, 3, 4, 5, 6, 7} are

{1},{2},{3},{4},{5},{6}, and {7}. Taking a representative from each orbit we must see

to which double coset Mt1t5t1,Mt1t5t2,Mt1t5t3,Mt1t5t4,Mt1t5t5,Mt1t5t6, and Mt1t5t7

belong. Clearly, Mt1t5t5 2 [1]. From our relation we also have that Mt1t5t1 = Mt5.

Thus two symmetric generators will go back to [1]. Through further investigation and

many conjugations of our relation we find that

Mt1t5t2 = Mt4t6

Mt1t5t4 = Mt7t2

Mt1t5t6 = Mt7t2

Mt1t5t7 = Mt4t6

From these relations we find that four symmetric generators will loop back into

the double coset [15]. Now, the only symmetric generator that sends us forward is {3}.

Thus our new double coset is Mt1t5t3N , which we will label as [153].

Now consider the coset stabilizer of N (153). We know that N (153) = N153 =<

e >. After conjugating our relation and simplifying we have that Mt1t5t3 = Mt3t1t5 =

Mt5t3t1. Thus we look in N for permutations that send 1 ! 3, 5 ! 1 and 3 ! 5

and as well as permutations that send 1 ! 5, 5 ! 5, and 3 ! 1. Thus Mt1t5t3 �<

(1, 3, 5)(2, 7, 6)(1, 5, 3)(2, 6, 7) >. Thus, the number of single cosets Mt1t5N is at most:
|N |

|M(153)| =
21
3 = 7. In order to find the other six distinct cosets with three equal names for

each in Nt1t5t3N we find the right cosets of M (153) in N . We will take the following right

cosets, and put them in a set T . So T = {e, (2, 3, 4)(5, 7, 6), (1, 5, 2)(3, 4, 6), (2, 4, 3)(5, 6, 7),

(1, 7, 6, 4, 5, 3, 2), (1, 7, 4)(3, 5, 6), (1, 6, 2)(4, 7, 5)}. Taking these representatives and conju-

gating them by the three di↵erent names we found above, we will get the other six distinct

cosets in Nt1t5t3N with their three names. From above we found 153 ⇠ 315 ⇠ 531.

153 ⇠ 315 ⇠ 531 conjugated by (2, 3, 4)(5, 7, 6) yields 174 ⇠ 417 ⇠ 741

153 ⇠ 315 ⇠ 531 conjugated by (1, 5, 2)(3, 4, 6) yields 524 ⇠ 452 ⇠ 245

153 ⇠ 315 ⇠ 531 conjugated by (2, 4, 3)(5, 6, 7) yields 162 ⇠ 216 ⇠ 621

153 ⇠ 315 ⇠ 531 conjugated by (1, 7, 6, 4, 5, 3, 2) yields 732 ⇠ 273 ⇠ 327

153 ⇠ 315 ⇠ 531 conjugated by (1, 7, 4)(3, 5, 6) yields 765 ⇠ 576 ⇠ 657

153 ⇠ 315 ⇠ 531 conjugated by (1, 6, 2)(4, 7, 5) yields 643 ⇠ 364 ⇠ 436
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Looking at the generators of M (153), we see that the orbits on {1,2,3,4,5,6,7} are

{4},{1,3,5}, and {2,7,6}. Taking a representative from each orbit, say {4},{3}, and {2}

respectively, we need to find to which double coset Mt1t5t3t4, Mt1t5t3t3, and Mt1t5t3t2

belong. Note Mt1t5t3t3 2 [15], since all ti’s are of order 2. Now using the our relations

we have that,

Mt1t5t3t4 = Mt1t3t5

Mt1t5t3t2 = Mt1t3t5.

From above, we see that a total of 3 symmetric generators go back to [15] while

the other 4 loop back into the current double coset. This completes the double coset

enumeration of U(3, 3) over the maximal subgroup M ⇠= PGL(2, 7).

Figure 7.3: Caley Graph of U(3, 3)
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Now we will perform the double coset of U(3, 3) over H ⇠=< a, b, tbtbta�1btbtb2 >

G = HeN [Ht1N [Ht1t5N [Ht1t5t3N

= H [Ht1 [Ht2 [Ht3 [Ht4 [Ht5 [Ht6 [Ht7[

Ht1t5 [Ht1t7 [Ht2t4 [Ht1t6 [Ht2t1 [Ht3t2[

Ht3t6 [Ht2t7 [Ht3t1 [Ht4t3 [Ht5t3 [Ht4t5[

Ht5t7 [Ht4t1 [Ht5t2 [Ht6t5 [Ht7t4 [Ht6t4[

Ht7t6 [Ht6t2 [Ht7t3 [Ht1t5t3 [Ht1t7t4[

Ht5t2t4 [Ht1t6t2 [Ht7t3t2 [Ht7t6t5 [Ht6t4t3.

Similar to the example above, we will now compute the double coset enumeration

of H over N .

H = NeN [Ntbtbta�1btbtb2N

= N [Nt6t2t4t5t3 [Nt3t1t4t6t7 [Nt7t4t3t6t2[

Nt4t1t5t3t2 [Nt3t1t6t7t1 [Nt6t1t6t1 [Nt3t4t5t2t1[

Nt4t6t4t6 [Nt7t1t7t1 [Nt5t7t3t2t1 [Nt5t3t5t3[

Nt6t7t6t7 [Nt5t2t5t2 [Nt4t1t4t1 [Nt5t4t7t6t1

Combining the two decompositions above we could find the single coset decom-

position of G over N which would result in 576 single cosets. If this were to be further

investigated, one should compute the single cosets over N as needed.
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Chapter 8

Use of Iwasawa’s Theorem

8.1 Use of Iwasawa’s

We consider

G ⇠= 2⇤4:S4
(xt0)11,(yxt0)11,y=(t0t1)3

A presentation for the group G is as follows:

< x, y, t|x4, y2, (xy)3, t2, (t, y), (tx, y), (xt)11, (yxt)11, y = (ttx)3 >

where x ⇠ (0, 1, 2, 3) and y ⇠ (2, 3).

The manual double coset enumeration was done by Lamies AlNazzal [Lam04],

and the corresponding Cayley diagram is given as follows:
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Figure 8.1: Caley Diagram of L2(23) over A4

Iwasawa’s lemma consists of three critertion to prove that a group G is simple.

If G acts on X faithfully and primitively, G is perfect, and 9 x 2 X and a normal abelian

subgroup K of Gx such that the conjugates of K 2 G generate G, then G is simple.

We will first show that G acts on X faithfully and primitively.

Proof. Now from our Cayley diagram we have that G acts on

X = {N,Nt0N,Nt0t1N,Nt0t1t0N,Nt0t1t2N,Nt0, t1t0t2N,Nt0t1t2t0N,Nt0t1t2t1N,

Nt0t1t2t3N,Nt0t1t2t0t2N,Nt0t1t2t0t1N,Nt0t1t2t0t3N,Nt0t1t2t3t0N,

Nt0t1t2t3t1N,Nt0t1t2t0t3t2N,Nt0t1t2t3t1t0N}

G acts on X =) 9 a homomorphism f : G ! S253. By the First Isomorphism

Theorem then G/kerf ⇠= f(G). If the kerf = 1 then f is faithful. Now N acts as the

identity element of G, so we cannot have non identity elements of G be taken to non-

identity elements of Sx. G acts on X faithfully if gx = x, 8x 2 X exactly when g = e.

From our cayley diagram above we see that |G| � 6072. However, theorem 2.21 gives

|G| = 253 ⇤ |G1| = 253⇥ 24 = 6072. Therefore the kerf = 1 and the action of G on X is

faithful.
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Now show that G is primitive by showing that G is transitive and there are no

nontrivial blocks. Now from the Cayley diagram it is apparent that G is transitive on X.

Since we will use this argument frequently, a proof of this statement is given below.

Theorem 8.1. If a group G can be represented as a Cayley diagram, then G is transitive

Proof. Given that G can be represented as a Cayley diagram, we see that every double

coset is given a label, say NwN . Now transitivity would imply that there exist an

element(s) of g 2 G such that you can go from one single coset to any other in the Cayley

diagram. Assume we pick an arbitrary single coset, Nw̄ that lives inside the double coset

NwN . Then by the definition of double coset, i.e. Nwn = {Nwn
|n 2 N}, there exists an

n 2 N such that Nw̄n = Nw. Now by right multiplying by w�1, we arrive at N . Clearly,

from here we can then multiply by the appropriate w to then arrive at whichever double

coset we desire. Since we can move through the Cayley diagram my multiplying by the

correct elements of G, this shows that G is transitive.

Continuing we will show that G has no nontrivial blocks. Recall that the prop-

erty of a block states that |B| must divide |X|. Therefore, the only possible sizes for a

block are 11 and 23. Let B be a nontrivial block, then transitive allows for N 2 B. Then

if Nt0 2 B then Bt0 = {N,Nt0}. By the definition of a block, if we take elements of

G and multiply by B, we will see that B contains the entire double coset Nt0N . ** As

short hand, if one of the single cosets of G over N is in B, then the entire double coset

containing that single coset is in B. Therefore, B={N ,Nt0N}={N,Nt0, Nt1, Nt2, Nt3}.

Recall the definition of a block, 8g 2 G, gB = B or gB \ B = ;. Now let g = t1and

compute gB. Now

B = {Nt1, Nt0t1, Nt1t1 = N,Nt2t1, Nt3t1}, since N 2 B \Bt0, B = Bt0. Now

from ** B = {N,Nt0N,Nt0t1N} and |B| = 17. So,

B = {N,Nt0, Nt1, Nt2, Nt3, Nt0t1, Nt1t2, Nt1t3, Nt1t0, Nt2t3, Nt2t0, Nt2t1,

Nt0t2, Nt0t3, Nt3t0, Nt3t1, Nt3t2}. Now let g = t2 and compute gB. We now see that

B = {Nt2, · · · , Nt2t2, Nt0t1t2, · · · }. Thus Nt0t1t2N 2 B. Since N is common

and either gB = B or gB \ B = ;, we have gB = B. Now |B| = 41, but |X| = 253 and

the only divisors of 253 are 1, 11, 23, and 253. This concludes that if B is a nontrivial

block and N 2 B then if Nt0 2 B B = X.
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Through inspection, of the Cayley diagram, we see that the only time we can

have a block of order 23 is if we include Nt0,however from above we see if we include this

single coset the result turns out to be the entire set X. Thus since we cannot form a block

of 11 or 23, G contains no non trivial blocks and is transitive, achieving G is primitive.

Next we show that G = G0. Now we know that N = S4 ✓ G implying S0
4 ✓ G0.

The derived group of S4 is given as S0
4 =< (1, 2, 3), (2, 3, 4) >. Now (1, 2, 3) = yx2yxy

and (2, 3, 4) = x2yx3. Thus we know yx2yxy, x2yx3 2 G0. From above we see that G is

generated by x, y, t but our relations give us y = t0t1t0t1t0t1 and x3t0t1t2t3t0t1t2t3t0t1t2 =

1 =) x = t0t1t2t3t0t1t2t3t0t1t2. Thus x, y can be written in terms of t0s. This allows us

to say G is generated by the t0is, hence G =< t0, t1, t2, t3 > .

Now,

yt1t0 = t0t1t0t1

yt1t0 = [0, 1]

Thus this implies yt1t0 2 G0. So far, G0
�< yt0t1, x

2yx3, yx2yxy >. Since G0 E G, then

for any a 2 G0 and 8g 2 G, ag 2 G0. So yt0t1 = t0t1t0t1 and we know (1, 0, 2) 2 S0
4 ✓ G0.

Thus if (1, 0, 2) 2 G0, then its inverse must also live there. Hence, (1, 2, 0) 2 G0. Note

that (1, 2, 0) = t1t0t2t1t0t2t1t0t2t1t0 and yt0t1 = t0t1t0t1.

Now,

(1, 2, 0)yt0t1 = t1t0t2t1t0t2t1t0t2t1t0t0t1t0t1

= t1t0t2t1t0t2t1t0t2t0t1



103

Therefore t1t0t2t1t0t2t1t0t2t0t1 2 G0 Now conjugate the above element by t1t0t2 2

G. Note this element will be in G0.

t1t0t2t1t0t2t1t0t2t0t
t1t0t2
1 = t2t0t1t1t0t2t1t0t2t1t0t2t0t1t1t0t2

= t1t0t2t1t0 2 G0

Now we must multiply yt0t1 = t0t1t0t1 by the element above and since G0 is a

group the result will lie in G0.

So,

t0t1t0t1t1t0t2t1t0 = t0t1t2t1t0

Lastly, by conjugating this element by t0t1 2 G we achieve t0t1t2t1t
t0t1
0 =

t1t0t0t1t2t1t0t0t1 = t2.

Now t2 2 G0. Conjugating t2 by x, x2, and x3 gives t3, t0, t1 respectively. How-

ever, G � G0
�< t0, t1, t2, t3 >= G. Thus G = G0 and G is perfect.

Finally, we require x 2 X and a normal abelian subgroup K  Gx such that the

conjugates of K generate G. Recall, G1 = N = S4. Now let

K =< (1, 3)(2, 0), (1, 0)(2, 3) >. So, (0, 2)(1, 3) = t0t1t2t3t1t0t1t3t0t2t3t1.
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Chapter 9

Double Coset Enumeration of

L2(8) over D18

A symmetric presentation of 2⇤9 : D18 is given by:

G < x, y, t >:= Group < x, y, t|x�9, y2, (x�1
⇤ y)2, t2, (t, y ⇤ x), (x4 ⇤ tx)9, (y ⇤ t)7, (x ⇤ t ⇤

tx
2
⇤ t)2 >; where D18 =< x, y >, and the action of N on the symmetric generators is

given by x ⇠ 1, 2, 3, 4, 5, 6, 7, 8, 9), y ⇠ (1, 9)(2, 8)(3, 7)(4, 6). We factor G by using the

following relations to obtain

2⇤9:D18
(xt1t3t1)2,(x4t2)9,(yt1)7

⇠= L2(8)

9.1 Manual Double Coset Enumeration

We begin by looking for our first double coset. Recall the definition of a double

coset, NwN = {Nwn
|n 2 N}. Thus we have, NeN = {Nen|n 2 N} = {Nn|n 2 N} =

{N}. Standardly, we will denote NeN as [⇤], and N contains one single coset. N is

transitive on {1, 2, 3, 4, 5, 6, 7, 8, 9}, so it has a single orbit {1, 2, 3, 4, 5, 6, 7, 8, 9}. Now

take a representative, say {1}, from this orbit, and find which double coset Nt1 belong.

This will generate a new double coset, Nt1N , which we will label as [1]. By definition,

Nt1N = {Ntn1 |n 2 N} = {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9}. Now we con-

sider the coset stabilizer N (1). The coset stabilizer of Nt1 is equal to the point stabilizer

N1. Thus, N (1) = N1 =< (2, 9)(3, 8)(4, 7)(5, 6) >. Then the number of single cosets in

Nt1N is at most |N |
|N(1)| =

18
2 = 9 Observing the generators of N (1), we can see that the
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orbits on {1, 2, 3, 4, 5, 6, 7, 8, 9} are {1}, {3, 8}, {2, 9}, {4, 7}, and {5, 6}. Taking a represen-

tative from each orbit, say {1}, {3}, {2}, {4}, and {5} respectively we wish to determine to

which double cosetNt1t1, Nt1t3, Nt1t2, Nt1t4, andNt1t5 belong. Since our t0s are of order

two we see that Nt1t1 = N 2 [⇤]. Thus one symmetric generator will send us back to the

double coset labeled [⇤] Consider the following relation: t1t3 = (1, 3)(4, 9)(5, 8)(6, 7)t1. By

taking N to both sides of the equation, Nt1t3 = Nt1. Since the orbit containing 3 has two

elements then two symmetric generators will loop back into the double coset labeled [1].

Now we don’t have any relations involving Nt1t2,and Nt1t4. However, through the use of

MAGMA we find that Nt1t4N = Nt1t5N thus the only two double cosets left to investi-

gate are [12], and [14]. Next, we will consider the double coset Nt1t2N . The coset stabi-

lizer N (1,2)
� N1,2 = {e}. Considering our given relations we try to see if we can increase

our coset stabilizing group. We have t1t2 = (1, 9, 8, 7, 6, 5, 4, 3, 2)t6t5 =) Nt1t2 = Nt6t5.

Thus (1, 6)(2, 5)(3, 4)(7, 9) 2 N (1,2) since Nt1t
1,6)(2,5)(3,4)(7,9)
2 = Nt6t5, but Nt1t2 = Nt6t5

, hence (1, 6)(2, 5)(3, 4)(7, 9) stabilizes the coset Nt1t2. Thus the number of single cosets

in Nt1t2N is at most |N |
|N(1,2)| = 18

2 = 9. To get the other distinct cosets we must

find the right distinct cosets of N (1,2). This will give us a set of transversals that will

contain 2 equal names in each. The following set is the set of transversals, T : T =

{e, (1, 2, 3, 4, 5, 6, 7, 8, 9), (1, 4, 7)(2, 5, 8)(3, 6, 9), (1, 9, 8, 7, 6, 5, 4, 3, 2), (1, 3, 5, 7, 9, 2, 4, 6, 8),

(1, 5, 9, 4, 8, 3, 7, 2, 6), (1, 8, 6, 4, 2, 9, 7, 5, 3), (1, 6, 2, 7, 3, 8, 4, 9, 5), (1, 7, 4)(2, 8, 5)(3, 9, 6)}.

If we take a representative from the above set and conjugate Nt1t2 = Nt6t5, which we

will write as 12 ⇠ 65 (for easier notational purposes), we will gain the other eight distinct

cosets in Nt1t2.

(12 ⇠ 65)e = 12 ⇠ 65 (12 ⇠ 65)(1,2,3,4,5,6,7,8,9) = 23 ⇠ 75

(12 ⇠ 65)(1,4,7)(2,5,8)(3,6,9) = 45 ⇠ 98 (12 ⇠ 65)(1,9,8,7,6,5,4,3,2) = 91 ⇠ 54

(12 ⇠ 65)(1,3,5,7,9,2,4,6,8) = 34 ⇠ 87 (12 ⇠ 65)(1,5,9,4,8,3,7,2,6) = 56 ⇠ 19

(12 ⇠ 65)(1,8,6,4,2,9,7,5,3) = 89 ⇠ 43 (12 ⇠ 65)(1,6,2,7,3,8,4,9,5) = 67 ⇠ 21

(12 ⇠ 65)(1,7,4)(2,8,5)(3,9,6) = 78 ⇠ 32

Looking at the generators of the coset stabilizing group of N (1,2), we can compute the

orbits to be {8}, {1, 6}, {2, 5}, {3, 4}, and {7, 9}. Taking a representative from each orbit,

say {8}, {1}, {2}, {3}, and {7} respectively we wish to determine to which double coset

Nt1t2t8, Nt1t2t1, Nt1t2t2, Nt1t2t3, and Nt1t2t7 belong. Again, since our t0s are of order

2 then Nt1t2t2 2 [1]. Since the orbit containing 2 has two elements, then two symmetric
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generators go back to [1]. Through the use of MAGMA we obtain two relations: t1t2t1 =

x4t1t9 and t1t2t7 = yx4t1t2. Taking N to right side of each of these relations we find that

Nt1t2t1 = Nt1t9 2 Nt1t2N and Nt1t2t7 = Nt1t2 2 Nt1t2N . Notice that each of the

orbits containing 1 and 7 each have order 2. Thus 2 + 2 symmetric generators will

loop back inside to [12]. In addition through the use of MAGMA we have found that

Nt1t2t8N = Nt1t4N and Nt1t2t3N = Nt1t4N . Therefore a total of 2 + 1 symmetric

generators will send us to the double coset [14].

Next we investigate the double coset Nt1t4N , [14]. The coset stabilizer N (1,4)
�

N1,4 = {e}. Considering our given relations we try to see if we can increase our coset

stabilizing group. We have t1t4 = (1, 9, 8, 7, 6, 5, 4, 3, 2)t8t5 =) Nt1t4 = Nt8t5. Thus

(1, 8)(2, 7)(3, 6)(4, 5) 2 N (1,4) since Nt1t
(1,8)(2,7)(3,6)(4,5)
4 = Nt8t5, but Nt1t4 = Nt8t5 ,

hence (1, 8)(2, 7)(3, 6)(4, 5) stabilizes the coset Nt1t4. Thus the number of single cosets

in Nt1t4N is at most |N |
|N(1,4)| = 18

2 = 9. To get the other distinct cosets we must

find the right distinct cosets of N (1,4). This will give us a set of transversals that will

contain 2 equal names in each. The following set is the set of transversals, T : T =

{e, (1, 2, 3, 4, 5, 6, 7, 8, 9), (1, 9, 8, 7, 6, 5, 4, 3, 2), (1, 3, 5, 7, 9, 2, 4, 6, 8), (1, 8, 6, 4, 2, 9, 7, 5, 3),

(1, 4, 7)(2, 5, 8)(3, 6, 9), (1, 7, 4)(2, 8, 5)(3, 9, 6), (1, 5, 9, 4, 8, 3, 7, 2, 6), (1, 6, 2, 7, 3, 8, 4, 9, 5)}.

If we take a representative from the above set and conjugate Nt1t4 = Nt8t5, which we

will write as 14 ⇠ 85 again for easier notational purposes, we will gain the other eight

distinct cosets in Nt1t4.

(14 ⇠ 85)e = 14 ⇠ 85 (14 ⇠ 85)(1,2,3,4,5,6,7,8,9) = 25 ⇠ 96

(14 ⇠ 85)(1,9,8,7,6,5,4,3,2) = 93 ⇠ 74 (14 ⇠ 85)1,3,5,7,9,2,4,6,8) = 36 ⇠ 17

(14 ⇠ 85)(1,8,6,4,2,9,7,5,3) = 82 ⇠ 63 (14 ⇠ 85)(1,4,7)(2,5,8)(3,6,9) = 47 ⇠ 28

(14 ⇠ 85)(1,7,4)(2,8,5)(3,9,6) = 71 ⇠ 52 (14 ⇠ 85)(1,5,9,4,8,3,7,2,6) = 58 ⇠ 39

(14 ⇠ 85)(1,6,2,7,3,8,4,9,5) = 69 ⇠ 41

Looking at the generators of the coset stabilizing group of N (1,4), we can compute the

orbits to be {9}, {1, 8}, {2, 7}, {3, 6}, and {4, 5}. Taking a representative from each orbit,

say {9}, {1}, {2}, {3}, and {4} respectively we wish to determine to which double coset

Nt1t4t9, Nt1t4t1, Nt1t4t2, Nt1t4t3, and Nt1t4t4 belong. Again, since our t0s are of order

2 then Nt1t4t4 2 [1]. Since the orbit containing 2 has two elements, then two symmetric

generators go back to [1]. However through the use of MAGMA we have that t1t4t1 =

yx2t6 2 [1]. Thus a total of 4 = 2 + 2 symmetric generators go back to the double
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Figure 9.1: Cayley Diagram of L2(8)

coset Nt1N . In addition we also have the relations t1t4t9 = t2t3, t1t4t2 = x3yt9t1, and

t1t4t3 = x4yt2t5 and applying N to both sides to each of these relations we have the

following:

Nt1t4t9 = Nt2t3 2 [12] Nt1t4t2 = Nt9t1 2 [12] Nt1t4t3 = Nt1t4 2 [14]

This completes the double coset enumeration of L2(8) over D18.

9.2 Iwasawa’s Lemma to Show G ⇠= L2(8)

In order to prove that a group is simple using Iwasawa’s Lemma, we must show

the following three criteria hold:

(1) G acts faithfully and primitively X

(2) G is perfect (G = G0)

(3) There 9x 2 X and a normal abelian subgroup K of Gx such that the

conjugates of K generate G.

9.2.1 G Acts Faithfully X

Let G act on X = {N,Nt1N,Nt1t2N,Nt1t4N}. G acts on X =) there exists

a homomorphism

f : G �! Sx (|x| = 18)
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By the First Isomorphism Theorem we have

G
kerf

⇠= f(G)

If ker(f) = 1 then we say f is faithful. Recall Gx represents the stabilizer of x in G.

Now, G1 = N , as routine, since the only elements of N . Thus by definition 2.23

|G| = 28 ⇤ |G1|

= 28 ⇤ |N |

= 28 ⇤ 18

= 504

=) |G| = 504

From our Cayley diagram, |G|  504. However, from above |G| = 504 implying that

ker(f) = 1. Since ker(f) = 1 then G acts faithfully on |X|.

9.2.2 G Acts Primitively on X

To show that G is primitive, we must show that G is transitive on X and there

exists no nontrivial blocks of X. From theorem 8.1 our Cayley diagram of G over N

allows us to conclude that G is transitive. In addition, as stated in definition 2.26 if G is

a transitive group on X and B is a nontrivial block then |Bg|||X|, 8g 2 G. By observation

of our Cayley diagram we see that the only divisors of |X| = 28 are 1, 2, 4, 7, 14 and 28

and we cannot create blocks of these sizes. Thus, we conclude that G is primitive.

9.2.3 G is Perfect, G0 = G

Next we want to show that G = G0. Now D18  G, so D0
18  G0. Now the

derived group, D0
18 =< (1, 2, 3, 4, 5, 6, 7, 8, 9) > G0, where x ⇠ (1, 2, 3, 4, 5, 6, 7, 8, 9).

Also, G is generated by < x, y, t > but from our relations we see that y = t1t9t1t9t1t9t1

and x2 = t1t3t1t2t4t2 =) x = (t1t3t1t2t4t2)5. Since x, y can be written in terms of t0s

then G =< t1, t2, t3, t4.t5, t6, t7, t8, t9 >.

Since G0/G then for any a 2 G0 and 8g 2 G then ag 2 G0. Now since,

N 0 < x > G then x2 2 G0. Thus,
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x2 = t1t3t1t2t4t2

Conjugating both sides by t1t2 we get

(x2)t1t2 = (t1t3t1t2t4t2)
t1t2

t2t1x
2t1t2 = t2t1t1t3t1t2t4t2t1t2

x2t4t3t1t2 = t2t1t1t3t1t2t4t2t1t2

x2 = t2t1t1t3t1t2t4t2t1t2t2t1t3t4

Since our t0s are of order 2 some t0s will cancel and we are left with,

x2 = t2t3t1t2t4t2t3t4

Recall that the derived group is generated by the commutators thus the commutator

[2, 4], [4, 3] 2 G0. Using this fact we simplify to achieve the following:

x2 = t2t3t1t2t4t2t3t4

= t2t3t1[2, 4]t4t3t4

= t2t3t1[2, 4][4, 3]t3 2 G0

Now if we conjugate t2t3t1[2, 4][4, 3]t3 by t3 and right multiply by the inverse of the

commutators [2, 4], [4, 3] 2 G0 we will have:

t3t2t3t1

=) [3, 2]t2t1 2 G0

Now left multiplying by the inverse of the commutator [3,2] we obtain t2t1 2 G0
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From our double coset enumeration we also have relation t1t2t1 = x4t1t9 =)

x4 = t1t2t1t9t1. Since x4 2 N 0
 G0 then t1t2t1t9t1 2 G0. Now [1, 9] 2 G0, so

t1t2t1t9t1 2 G0

=) t1t2[1, 9]t9

=) t9t1t2 2 G0

From our steps above we have to show that t9t1t2 2 G0 and t2t1 2 G0. Since, G0

is a group and is closed under multiplication then

(t9t1t2)(t2t1) = t9t1t2t2t1 = t9 2 G0

Now conjugating t9 2 G0 by all powers of x shows that t1, t2, t3, t4, t5, t6, t7, t8, t9 2

G0, but G � G0
� < t1, t2, t3, t4, t5, t6, t7, t8, t9 >= G. Thus G = G0 and G is perfect.

9.2.4 Conjugates of a Normal Abelian Subgroup K Generate G

Now we require x 2 X and a normal abelian subgroup K  Gx such that the

conjugates of K generate G. Recall, G1 = N = D18. Let K =< (1, 2, 3, 4, 5, 6, 7, 8, 9) >.

Now since K is normal then for any a 2 K and 8g 2 G then ag 2 K.

Since x2 2 K and x2 = t1t3t1t2t4t2. Now, conjugating the relation x2 =

t1t3t1t2t4t2 by t1 2 G the result will lie in K, since K is normal. Thus,

x2 = t1t3t1t2t4t2

=) (x2)t1 = (t1t3t1t2t4t2)
t1

=) t1x
2t1 = t1t1t3t1t2t4t2t1

=) x2t3t1 = t1t1t3t1t2t4t2t1

=) x2 = t1t1t3t1t2t4t2t1t1t3

Since our t0s are of order 2 some t0s will cancel and we are left with,

x2 = t3t1t2t4t2t3 2 K
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Now conjugating t3t1t2t4t2t3 by t3 gives us t1t2t4t2 2 K. Next if we conjugate t1t2t4t2 2 K

by t2t4 2 G we get (t1t2t4t2)t2t4 = t4t2t1t2 2 K.

As a result from our double coset enumeration we also have the relation x3 =

t1t2t6t1t2. Now, conjugating this relation by t1 2 G the result will again lie in K. Thus,

x3 = t1t2t6t1t2

=) (x3)t1 = (t1t2t6t1t2)
t1

=) t1x
3t1 = t1t1t2t6t1t2t1

=) x3t4t1 = t1t1t2t6t1t2t1t1t4

=) x3 = t2t6t1t2t4

Therefore we have t2t6t1t2t4 2 K and t4t2t1t2 2 K. Since, K is a group and is

closed under multiplication then

(t2t6t1t2t4)(t4t2t1t2) = t2t6t2 2 K

Finally, conjugating t2t6t2 by t2 2 G we see t2t6t
t2
2 = t6 2 K. Now con-

jugating t6 2 K by all powers of x shows that t1, t2, t3, t4, t5, t6, t7, t8, t9 2 K, but

= G < t1, t2, t3, t4, t5, t6, t7, t8, t9 >. Thus the conjugates of K generate G. Therefore

by Iwasawa’s Lemma, G ⇠= L2(8) is simple.

9.3 J1 is Simple

We will now show that G = J1, which was found from the progenitor 7⇤3 :m S3

is simple. However, since J1 is such a large group we will have to MAGMA verify all

three conditions of the lemma.

To show G is transitive and primitive we normally would construct a Cayley

diagram and show there exists no non-trivial blocks, where G acts on the set X consist-

ing of the cosets from the double coset enumeration. Now completing the double coset

enumeration over the maximal subgroup 2•A5  G is both transitive and primitive. The

code below verifies the above statements.

> G<x,y,t>:=Group<x,y,t|x^3,y^2,(x*y)^2,t^7,t^x=t^2, (y*t)^15,

(y*t^2)^15,(x*y*t^3)^5>;
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> f,G1,k:=CosetAction(G,sub<G|x,y>);

> CompositionFactors(G1);

G

| J1

1

> M:=MaximalSubgroups(G1);

> M;

Conjugacy classes of subgroups

------------------------------

[1] Order 42 Length 4180

Permutation group acting on a set of cardinality 29260

Order = 42 = 2 * 3 * 7

[2] Order 110 Length 1596

Permutation group acting on a set of cardinality 29260

Order = 110 = 2 * 5 * 11

[3] Order 114 Length 1540

Permutation group acting on a set of cardinality 29260

Order = 114 = 2 * 3 * 19

[4] Order 60 Length 2926

Permutation group acting on a set of cardinality 29260

Order = 60 = 2^2 * 3 * 5

[5] Order 120 Length 1463

Permutation group acting on a set of cardinality 29260

Order = 120 = 2^3 * 3 * 5

[6] Order 168 Length 1045

Permutation group acting on a set of cardinality 29260

Order = 168 = 2^3 * 3 * 7

[7] Order 660 Length 266

Permutation group acting on a set of cardinality 29260

Order = 660 = 2^2 * 3 * 5 * 11

> C:=Conjugates(G1,M[5]‘subgroup);

> C:=SetToSequence(C);

Recall when we are performing double coset enumeration

over a maximal subgroup we have to make sure that our N

lies inside the maximal subgroup.

> for i in [1..#C] do if f(x) in C[i] and f(y) in C[i] then i;

end if; end for;

> 189

> C189:=C[189];

> f2,G2,k2:=CosetAction(G1,C189);

> IsPrimitive(G2);
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true

Now we must show that G is perfect by showing G = G0. The code below

confirms G is perfect.

> D:=DerivedGroup(G2);

> D eq G2;

true

Finally we must find a normal abelian subgroup K  G1 = N such that the

conjugates of K generate G. This step is shown in the code given below:

> NL:=NormalLattice(C189);

> NL;

> IsAbelian(NL[2]);

true

> sub<G1|NL[2]^G1> eq G1;

true

By the use of MAGMAwe have shown that J1 is simple. For further investigation

and completeness, one should perform the double coset enumeration over the maximal

subgroup by hand.
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Chapter 10

Conclusion

As we came to the end of our research, we began to concentrate our attention

on Robert Curtis’ [Cur07] example of how M24 was generated by seven involutions, men-

tioned in chapter 1. As a result of his findings we investigated numerous progenitors of

all di↵erent types in the hope of finding sporadic groups. We wrote such progenitors on

many groups with no thinking behind the choice of our control groups. We then searched

for a method to find a more e�cient way to choose a control group N , that upon writing

our progenitor would generate a homomorphic image of a target sporadic group. We note

that each sporadic group is simple and thus is generated by involutions (Feit Thompson

Theorem). Knowing M24 was simple, [Cur07] used a maximal subgroup, M of M24 and

found an element of order two that was not contained in M which then would generate

M24. Expanding on this idea we came up with the following observation:

Lemma 10.1. If G =< t1, t2, · · · , tn > where |ti| = 2, for 1  i  n, and N =

Normalizer(G, {< t1 >,< t2 >, · · · , < tn >}) where N acts transitively on {< t1 >

,< t2 >, · · · , < tn >}, then G is a homomorphic image of the progenitor 2⇤n : N

Curtis also proven the following theorem:

Theorem 10.2. Any finite non-abelian simple group is an image of a progenitor of form

P = 2⇤n : N , where N is transitive subgroup of the symmetric group of Sn.

The above theorem and lemma allowed us to prove a corollary to this theorem.
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Corollary 10.3. Let G be a non-abelian simple group with H is a proper subgroup of

G and assume 9t 2 G such that |t| = 2 and G =< H, t >. Then G is a homomorphic

image of 2⇤n : H, where H is a transitive subgroup of Sn. Moreover, H has a faithful

permutation representation representation of the cosets of H over K, where K is the

centralizer of t in H.

Proof. Let G be non-abelian and simple. Let H be a proper subgroup of G with t 2 G

such that t /2 H, |t| = 2 and G =< H, t >. We will now show that

G =< tH >. < tH > is normalized by H and t. Therefore,

G =< H, t >=< tH >, otherwise < tH > 6= 1 / G, but G is simple.

Thus G = {t1, t2, · · · , tn}, |ti| = 2 for 1  i  n. By theorem 2.7 we can define a

homomorphism � : 2⇤n : H ! G given by �(ti) = ti and �(H) = H. We note that

�(H) = H, ti has n conjugates under �(H), and �(H) acts as H on the n conjugates of

ti by conjugation implying that G is a homomorphic image of 2⇤n : H. To show that H

is a transitive subgroup of Sn we must show H acts faithfully on the set {t1, t2, · · · , tn}

by conjugation. Clearly, H is transitive on n letters, since {t1, t2, · · · , tn} was generated

by tHi . Lastly, to show that H acts faithfully on {t1, t2, · · · , tn} then the only element

that commutes with each ti must be the identity element. Assume by contradiction, that

9 h 2 H 6= Id such that tHi = ti for 1  i  n. Therefore, tih = hti for 1  i  n,

but G =< t1, t2, · · · , tn >. Thus h commutes with g, 8g 2 G. Therefore, h 2 Z(G)

but G is simple and Z(G) / G implies Z(G) = G, but G is non-abelian, a contradiction.

Therefore, H is a transitive subgroup of Sn that acts faithfully.

We note that ourH is written on the same number of letters that G is written on,

but we want to find a transitive and faithful permutation representation of H of degree n.

Allowing K  H, with K equal to the centralizer of t in H, we find that the right cosets

of H in K will always generate a transitive and faithful permutation representation. To

show this we must first show that K is a subgroup of H. We note that K is not empty

since e 2 K, (tei = ti). Now let h1 2 K,h2 2 K then show h1 ⇤ h
�1
2 2 K. Now if h 2 K

then h�1
2 K since
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thi = ti

h�1tih = ti

(h�1tih)
h�1

= th
�1

i

hh�1tihh
�1 = th

�1

i

ti = th
�1

i

Now h1 2 K =) th1
i = ti and h2 2 K =) h�1

2 2 K, from above. Thus h�1
2 2 K =)

t
h�1
2

i = ti. So,

th1
i t

h�1
2

i = titi = e 2 K

Thus by the one step subgroup test K is a subgroup of H. By Theorem 2.9 we know

that H over K is transitive on the n letters. It is left to show that the action of H on

the cosets is faithful. We note that Khi = Khj () thi
i = t

hj

i , since if

Khi = Khj

() Khih
�1
j = K

() hih
�1
j 2 K

() t
hih

�1
j

i = ti

() thi
i = t

hj

i

Thus, if 9 h 2 H such that Khih = Khi then thih
i = thi

i =) [thi
i ]h = thi

i . So

thi = ti for all 1  i  n implies h 2 Z(G) since G =< t1, t2, · · · , tn >. Now G is simple

gives h = 1. Therefore H acts faithfully on H over K .

In light of the above corollary Dustin Grindsta↵ and I have developed a pro-

gram in MAGMA to find such control groups, H. Corollary 10.3 implies that given a

subgroup, H of such a group G, we can always find a transitive and faithful permutation

representation on the cosets of a subgroup K of H. The program is presented below.

load "Simple Group";



117

count:=0;

SG:=Subgroups(G);

for i in [1..#SG] do for t in G do

if Order(t) eq 2 and t notin SG[i]‘subgroup and

sub<G|SG[i]‘subgroup,t> eq G then

H:=SG[i]‘subgroup;

K:=Centraliser(H,t);

f,N,k:=CosetAction(H,K);

"=============================================";

"2 *",Index(H,K),": N";

"t =", t;

"N = \n", N;

"\n", CompositionFactors(N);

"\n", FPGroup(N);

"\nStabiliser of 1 in N\n", Stabiliser(N,1);

"\n\n\n";

count:=count+1;

break; end if; end for; end for;

count;

From running the above program and creating their corresponding progenitors

we have found the following groups.

While running the program to find homomorphic images of J2 it produced a

group H ⇠= 2•(24 : 5) who which was transitive on 32 letters. As a result we wrote a

permutation progenitor and found the following group. We would like to note that the

relations that we used to find this group was a combination of first order relations and

relations of our own with much thought in mind.

G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^2,b^2,c^2,d^2,f^2,(a*d)^2,

(b*d)^2,(c*d)^2,b*e^-1*a*e,d*e^-1*d*e,f*e^-1*c*e,a*b*a*b*d,

a*c*a*c*d,e*d*a*e^-1*f,c*a*b*a*c*b,e^-3*d*e^-2,e^-1*c*b*a*e*a*c,t^2,

(t,d*e),(f*e^-1*t)^i,(e*c*f*e*t*t^a)^j,

(a*b*t^c*t^b)^k,(f*a*e^-2*t*t^a*t)^l,(a*t^c)^m

>;

Table 10.1: 2⇤32 : (2•(24 : 5))

i j k l m G

0 0 5 0 3 5•J2
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As our research came to an end we didn’t get to investigate the program as much

as we would like. Often times if we ran the program looking for a particular sporadic

group we didn’t the one we were looking for but we did find others of interest. In the

following list of tables we first note the group we were trying to find but were unsuccessful,

while listing the groups of much importance.
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While looking for J1 we ran the following two progenitors and this is what we

found.

G<x,y,t>:=Group<x,y,t|x^3,x*y^-1*x^-1*y^2,t^2,(t,x),(y*x*t)^i,

(y*x*t^y*t*t^y)^j,(x^-1*y^-1*t^y*t*t^(y^4))^k,(y*t*t^(y^2)*t)^l,

(y^3*t*t^(x*y))^m

>;

Table 10.2: 2⇤7 : (7 : 3)

i j k l m G

0 0 5 5 0 2•(6⇥M22)
0 0 5 8 0 4⇥M22

0 6 6 8 5 PGL(3, 4)⇥ 2
0 0 7 6 6 A8

G<x,y,t>:=Group<x,y,t|x^3,x*y^-1*x^-1*y^2,t^2,(t,x),(y*x*t)^i,

(y*x*t^y*t*t^y)^j,(x^-1*y^-1*t^y*t*t^(y^4))^k,(y*t*t^(y^2)*t)^l,

(y^3*t*t^(x*y))^m

>;

Table 10.3: 2⇤7 : (7 : 3)

i j k l m G

0 0 0 0 3 32 ⇥ (PSL(3, 4) : 2)
0 0 2 0 0 U(3, 3) : 2

While looking for J2 we ran the following two progenitors and what we found is

listed below.

G<a,b,c,d,t>:=Group<a,b,c,d,t|a^4,b^3,c^4,d^2,a^-2*d,

c^-1*a^2*c^-1,c^-1*b*a*b^-1,a^-1*c^-1*a*c^-1,a^-1*b^-1*a^-1*b*c^-1,t^2,

(t,b),

(a*b*t)^i,

(b^-1*a^-1*t^c)^j,

(b*d*t*t^c)^k,

(b*d*t)^l,

(d*b^-1*t^a)^m,

(d*b^-1*t)^o

>;
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Table 10.4: 2⇤7 : (7 : 2)

i j k l m n o G

0 0 3 0 0 8 3 23 ⇥ PSL(2, 3)
0 0 4 0 6 0 0 S8

0 0 4 0 8 2 3 27 ⇥ U(3, 3)
0 0 5 0 6 8 3 M11

G<a,b,c,d,t>:=Group<a,b,c,d,t|a^4,b^3,c^4,d^2,a^-2*d,

c^-1*a^2*c^-1,c^-1*b*a*b^-1,a^-1*c^-1*a*c^-1,a^-1*b^-1*a^-1*b*c^-1,t^2,

(t,b),

(d*b^-1*t^a)^i,

(b*d*t^a)^j,

(b*d*t^c*t^a*t)^k,

(d*a*t)^l

>;

Table 10.5: 2⇤7 : (7 : 2)

i j k l G

0 6 3 6 (22 ⇥M11) : 3

Lastly, we tried to find the Mathieu M24 group, however we were unsuccessful.

Instead we found the groups listed below.

Table 10.6: 2⇤5 : (5 : 2)

i j k G

0 3 9 PSL(2, 19)
0 3 10 2•PSL(2, 19)
0 3 11 PSL(2, 89)
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Appendix A

Double Coset Enumeration Codes

A.1 Double Coset Enumeration of PSL(2, 8) over D18

i:=0;j:=9;k:=7;l:=2;

G<x,y,t>:=Group<x,y,t|x^-9,y^2,(x^-1*y)^2,t^2,(t,y*x),

(x^3*t)^i,

(x^4*t^x)^j,

(y*t)^k,

(x*t*t^x^2*t)^l

>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

S:=Sym(9);

xx:=S!(1, 2, 3, 4, 5, 6, 7, 8, 9);

yy:=S!(1, 9)(2, 8)(3, 7)(4, 6);

N:=sub<S|xx,yy>;

H1:=sub<G|x,y>;

#DoubleCosets(G,H1,H1);

IN:=sub<G1|f(x),f(y)>;

ts:=[Id(G1):i in [1..9]];

ts[1]:=f(t);

ts[2]:=(f(t)^f(x));

ts[3]:=(f(t)^f(x^2));

ts[4]:=(f(t)^f(x^3));

ts[5]:=(f(t)^f(x^4));

ts[6]:=(f(t)^f(x^5));

ts[7]:=(f(t)^f(x^6));

ts[8]:=(f(t)^f(x^7));

ts[9]:=(f(t)^f(x^8));

prodim := function(pt, Q, I)
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/*

Return the image of pt under permutations Q[I] applied sequentially.

*/

v := pt;

for i in I do

v := v^(Q[i]);

end for;

return v;

end function;

cst := [null : i in [1 .. Index(G,sub<G|x,y>)]] where null is

[Integers() | ];

for i := 1 to 9 do

cst[prodim(1, ts, [i])] := [i];

end for;

m:=0;

for i in [1..28] do if cst[i] ne [] then m:=m+1; end if; end for; m;

N1:=Stabiliser (N,[1]);

SSS:={[1]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[1]eq

n*ts[Rep(Seqq[i])[1]]

then print Rep(Seqq[i]);

end if; end for; end for;

N1; #N1;

T1:=Transversal(N,N1);

for i in [1..#T1] do

ss:=[1]^T1[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..28] do if cst[i] ne []

then m:=m+1; end if; end for; m;

Orbits(N1);

//Checking Orbits//

for g in IN do for h in IN do if ts[1]*ts[2] eq g*(ts[1])^h then

"true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[3] eq g*(ts[1])^h then

"true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[4] eq g*(ts[1])^h then
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"true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[5] eq g*(ts[1])^h then

"true"; break; end if; end for; end for;

N12:=Stabiliser (N,[1,2]);

SSS:={[1,2]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[1]*ts[2]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if; end for; end for;

N12s:=N12;

for n in N do if 1^n eq 6 and 2^n eq 5 then N12s:=sub<N|N12s,n>;

end if; end for;

N12s; #N12s;

[1,2]^N12s;

T12:=Transversal(N,N12s);

for i in [1..#T12] do

ss:=[1,2]^T12[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..28] do if cst[i] ne []

then m:=m+1; end if; end for; m;

for i in [1..#T12] do ([1,2]^N12s)^T12[i]; end for;

Orbits(N12s);

for g in IN do for h in IN do if ts[1]*ts[4] eq g*(ts[1]*ts[2])^h then

"true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[2]*ts[8] eq g*(ts[1]*ts[4])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[2]*ts[1] eq g*(ts[1]*ts[7])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[2]*ts[3] eq g*(ts[1]*ts[4])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[2]*ts[7] eq g*(ts[1]*ts[2])^h

then "true"; break; end if; end for; end for;

N14:=Stabiliser (N,[1,4]);

SSS:={[1,4]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);
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Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[1]*ts[4]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if; end for; end for;

N14s:=N14;

for n in N do if 1^n eq 8 and 4^n eq 5 then N14s:=sub<N|N14s,n>;

end if; end for;

N14s; #N14s;

[1,4]^N14s;

T14:=Transversal(N,N14s);

for i in [1..#T14] do

ss:=[1,4]^T14[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..28] do if cst[i] ne []

then m:=m+1; end if; end for; m;

for i in [1..#T14] do ([1,4]^N14s)^T14[i]; end for;

Orbits(N14s);

for g in IN do for h in IN do if ts[1]*ts[5] eq g*(ts[1]*ts[4])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[4] eq g*(ts[1]*ts[2])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[4]*ts[9] eq g*(ts[1]*ts[2])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[4]*ts[1] eq g*(ts[1])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[4]*ts[2] eq g*(ts[1]*ts[2])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[4]*ts[3] eq g*(ts[1]*ts[4])^h

then "true"; break; end if; end for; end for;

xxx:=f(x);

yyy:=f(y);

ttt:=f(t);

N:=sub<G1|f(x),f(y),f(t)>;

ArrayP:=[Id(N): i in [1..#N]];

Sch:=SchreierSystem(G,sub<G|Id(G)>);

ArrayP:=[Id(N): i in [1..#N]];

for i in [2..#N] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=xxx; end if;
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if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxx^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=yyy; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=ttt; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

for i in [1..#N] do if ArrayP[i] eq N!(2, 4, 6, 10, 16, 15, 9, 5, 3)

(7, 13, 21, 27, 22, 14, 8, 12, 11)(17, 25, 19, 23,

28, 24, 20, 26, 18)

then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq N!(2, 16, 3, 10, 5, 6, 9, 4, 15)

(7, 22, 11, 27, 12, 21, 8, 13, 14)(17, 28, 18, 23,

26, 19, 20, 25, 24)then print Sch[i];

end if; end for;

A.2 Double Coset Enumeration of PSL(2,23) to Find Re-

lations

G<x,y,t>:=Group<x,y,t|x^4,y^2,(x*y)^3,t^2,(t,y),(t^x,y),(x*t)^11,

(y*x*t)^11,y=(t*t^x)^3>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

S:=Sym(4);

xx:=S!(1,2,3,4);

yy:=S!(2,3);

N:=sub<S|xx,yy>;

IN:=sub<G1|f(x),f(y)>;

ts:=[Id(G1):i in [1..4]];

ts[4]:=f(t);

ts[1]:=(f(t)^f(x));

ts[2]:=(f(t)^f(x^2));

ts[3]:=(f(t)^f(x^3));

N4121:=Stabiliser (N,[4,1,2,1]);

SSS:={[4,1,2,1]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do
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for n in IN do

if ts[4]*ts[1]*ts[2]*ts[1]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]

*ts[Rep(Seqq[i])[4]]

then print Rep(Seqq[i]);

end if; end for; end for;

N4121s:=N4121;

for n in N do if 4^n eq 3 and 1^n eq 2 and 2^n eq 1 and 1^n eq 2 then

N4121s:=sub<N|N4121s,n>; end if; end for;

T4121:=Transversal(N,N4121s);

for i in [1..#T4121] do ([4,1,2,1]^N4121s)^T4121[i]; end for;

So 3242~1424

for g in IN do if ts[3]*ts[2]*ts[4]*ts[2] eq g*(ts[1]*ts[4]*ts[2]*ts[4])

then g; end if; end for;

xx:=f(x);

yy:=f(y);

tt:=f(t);

N:=sub<G1|xx,yy,tt>;

NN<x,y,t>:=Group<x,y,t|x^4,y^2,(x*y)^3,t^2,(t,y),(t^x,y),(x*t)^11,

(y*x*t)^11,y=(t*t^x)^3>;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

for i in [2..#N] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=xx^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=tt; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

for i in [1..#N] do if ArrayP[i] eq A then print Sch[i];

end if; end for;

//y * x^2 * y * x

x:=S!(1,2,3,4);

y:=S!(2,3);

N412432:=Stabiliser (N,[4,1,2,4,3,2]);

SSS:={[4,1,2,4,3,2]}; SSS:=SSS^N;
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SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[4]*ts[1]*ts[2]*ts[4]*ts[3]*ts[2] eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]*

ts[Rep(Seqq[i])[4]]*ts[Rep(Seqq[i])[5]]*ts[Rep(Seqq[i])[6]]

then print Rep(Seqq[i]);

end if; end for; end for;

N412432s:=N412432;

for n in N do if 4^n eq 1 and 1^n eq 2 and 2^n eq 3 and 4^n eq 1 and 3^n

eq 4 and 2^n eq 3 then N412432s:=sub<N|N412432s,n>; end if; end for;

for n in N do if 4^n eq 2 and 1^n eq 3 and 2^n eq 4 and 4^n eq 2 and 3^n

eq 1 and 2^n eq 4 then N412432s:=sub<N|N412432s,n>; end if; end for;

for n in N do if 4^n eq 3 and 1^n eq 4 and 2^n eq 1 and 4^n eq 3 and 3^n

eq 2 and 2^n eq 1 then N412432s:=sub<N|N412432s,n>; end if; end for;

T412432:=Transversal(N,N412432s);

for i in [1..#T412432] do ([4,1,2,4,3,2]^N412432s)^T412432[i]; end for;

f(t*t^x*t^(x^2)*t*t^(x^3)*t^(x^2)*t^(x^3)*t*t^x*t^(x^3)*t^(x^2)*t^x);

for g in IN do if ts[4]*ts[1]*ts[3]*ts[4]*ts[2]*ts[3] eq

g*(ts[2]*ts[4]*ts[1]*ts[2]*ts[3]*ts[1] ) then A:=g; end if; end for;

for i in [1..#N] do if ArrayP[i] eq A then print Sch[i];

end if; end for;

N414:=Stabiliser (N,[4,1,4]);

SSS:={[4,1,4]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[4]*ts[1]*ts[4]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]

then print Rep(Seqq[i]);

end if; end for; end for;

N414s:=N414;

for n in N do if 4^n eq 1 and 1^n eq 4 and 4^n eq 1 then

N414s:=sub<N|N414s,n>; end if; end for;

T414:=Transversal(N,N414s);

for i in [1..#T414] do ([4,1,4]^N414s)^T414[i]; end for;

for g in IN do if ts[2]*ts[3]*ts[2]eq g*(ts[3]*ts[2]*ts[3]) then

A:=g; end if; end for;
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N4142:=Stabiliser (N,[4,1,4,2]);

SSS:={[4,1,4,2]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[4]*ts[1]*ts[4]*ts[2]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*

ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]

then print Rep(Seqq[i]);

end if; end for; end for;

N4142s:=N4142;

for n in N do if 4^n eq 1 and 1^n eq 4 and 4^n eq 1

and 2^n eq 2

then N4142s:=sub<N|N4142s,n>; end if; end for;

T4142:=Transversal(N,N4142s);

for i in [1..#T4142] do ([4,1,4,2]^N4142s)^T4142[i];

end for;

for g in IN do if ts[3]*ts[1]*ts[3]*ts[1] eq

g*(ts[3]*ts[1]*ts[3])

then A:=g; end if; end for;

xxx:=S!(1,2,3,4);

yyy:=S!(2,3);

N412314:=Stabiliser (N,[4,1,2,3,1,4]);

SSS:={[4,1,2,3,1,4]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[4]*ts[1]*ts[2]*ts[3]*ts[1]*ts[4] eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]*

ts[Rep(Seqq[i])[4]]*ts[Rep(Seqq[i])[5]]*ts[Rep(Seqq[i])[6]]

then print Rep(Seqq[i]);

end if; end for; end for;

N412314s:=N412314;

for n in N do if 4^n eq 1 and 1^n eq 3 and 2^n eq 2 and 3^n eq 4

and 1^n eq 3 and 4^n eq 1 then N412314s:=sub<N|N412314s,n>;

end if; end for;

for n in N do if 4^n eq 3 and 1^n eq 4 and 2^n eq 2 and 3^n eq 1

and 1^n eq 4 and 4^n eq 3 then N412314s:=sub<N|N412314s,n>;
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end if; end for;

T412314:=Transversal(N,N412314s);

for i in [1..#T412314] do ([4,1,2,3,1,4]^N412314s)^T412314[i]; end for;

for g,h in IN do if ts[4]*ts[1]*ts[2]*ts[3]*ts[1]*ts[4] eq

g*(ts[4]*ts[1]*ts[2]*ts[3]*ts[1]*ts[4]*ts[2])^h then g,h; end if;

end for;

A:=G1!(2, 3, 4)(6, 13, 10)(7, 11, 14)(8, 9, 12)(15, 17, 19)(16, 40, 34)

(18, 20, 44)(21, 35, 38)(22, 37, 26)(23, 31, 46)(24, 33, 32)

(25, 36, 29)(27, 30, 28)(39, 42, 55)(41, 94, 92)(43, 56, 97)(45, 98, 68)

(47, 70, 99)(48, 50,53)(49, 109, 54)(51, 87, 111)(52, 107, 86)

(57, 103, 90)(58, 89, 78)(59, 75,119)(60, 85, 84)(61, 110, 63)

(62, 88, 81)(64, 82, 65)(66, 67, 71)(69, 83,108)(72, 77, 104)

(73, 80, 79)

(74, 91, 76)(93, 96, 127)(95, 184, 182)(100,102, 105)(101, 190, 126)

(106, 142, 189)(112, 113, 133)(114, 201, 206)(115, 117, 130)

(116, 212, 196)(118, 138, 188)(120, 122, 125)(121, 194, 139)

(123,175, 219)(124, 216, 173)(128, 214, 180)(129, 209, 166)

(131, 163, 231)(132,203, 200)(134, 199, 171)(135, 205, 137)

(136, 202, 169)(140, 186, 145)(141,187, 144)(143, 197, 210)

(146, 218, 156)(147, 192, 217)(148, 179, 178)(149,152, 224)

(150, 177, 215)(151, 181, 153)(154, 172, 193)(155, 176, 174)

(157,191, 158)(159, 170, 204)(160, 165, 198)(161, 168, 167)

(162, 195, 164)(183,185, 244)(207, 208, 239)(211, 213, 232)

(220, 221, 241)(222, 223, 243)(225,226, 240)(227, 253, 252)

(228, 230, 229)(233, 246, 251)(234, 236, 237)

(235, 250, 249)(242, 247, 248);

B:=G1!(2, 4)(6, 14)(7, 10)(8, 12)(11, 13)(15, 17)(16, 38)(20, 44)

(21, 34)(22, 46)(23, 26)(24, 36)(25, 33)(27, 28)(29, 32)(31, 37)

(35, 40)(39, 53)(41, 111)(42,50)(43, 54)(45, 99)(47, 68)(48, 55)

(49, 97)(51, 92)(52, 90)(56, 109)(57,86)(58, 108)(59, 63)(60, 104)

(61, 119)(62, 91)(64, 80)(65, 79)(66, 71)(69, 78)(70, 98)(72, 84)

(73, 82)(74, 88)(75, 110)(76, 81)(77, 85)(83, 89)(87,94)(93, 133)

(95, 206)(96, 113)(100, 102)(101, 189)(103, 107)(106, 126)

(112, 127)(114, 182)(115, 125)(116, 219)(117, 122)(118, 139)

(120, 130)(121,188)(123, 196)(124, 210)(128, 200)(129, 217)

(131, 156)(132, 180)(134,215)(135, 224)(136, 181)(137, 149)

(138, 194)(140, 187)(141, 186)(142,190)(143, 173)(144, 145)

(146, 231)(147, 166)(148, 204)(150, 171)(151,202)(152, 205)

(153, 169)(154, 198)(155, 195)(157, 168)(158, 167)(159, 178)

(160, 193)(161, 191)(162, 176)(163, 218)(164, 174)(165, 172)

(170, 179)(175, 212)(177, 199)(183, 239)(184, 201)(185, 208)

(192, 209)(197, 216)(203, 214)(207, 244)(211, 241)(213, 221)

(220, 232)(222, 230)(223,228)(225, 237)(226, 236)(227, 249)

(229, 243)(233, 248)(234, 240)(235, 252)(238, 245)(242, 251)
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(246, 247)(250, 253);

for i in [1..#N] do if ArrayP[i] eq A then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq B then print Sch[i];

end if; end for;

xxx:=S!(1,2,3,4);

yyy:=S!(2,3);

for g,h in IN do if ts[4]*ts[1]*ts[2]*ts[1]*ts[4] eq

g*(ts[4]*ts[1]*ts[2]*ts[3])^h then g,h; end if; end for;

for i in [1..#N] do if ArrayP[i] eq g then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq h then print Sch[i];

end if; end for;

A.3 Double Coset Enumeration of U(3,3) over a Maximal

Subgroup

i:=0;j:=2;

G<a,b,t>:=Group<a,b,t|a^3,b^7,b^a=b^2,t^2,(t,a),

(a*b*a^-1*t*t^(b^2))^i,

(a^-1*t^b*t*t^b)^j

>;

f,G1,k:=CosetAction(G,sub<G|a,b>);

S:=Sym(5);

ww:=S!(2, 3, 4, 5);

xx:=S!(2,4)(3,5);

yy:=S!(1,2,3,5,4);

N:=sub<S|ww,xx,yy>;

M:=MaximalSubgroups(G1);

C:=Conjugates(G1,M[1]‘subgroup);

C:=Setseq(C);

for i in [1..#C] do if f(a) in C[i] and f(b) in C[i] then i;

end if; end for;

NumberOfGenerators(C[33]);

A:=C[28].1;

B:=C[28].2;

xx:=f(a);

yy:=f(b);

tt:=f(t);

N:=sub<G1|xx,yy,tt>;

#N;

NN<a,b,t>:=Group<a,b,t|a^3,b^7,b^a=b^2,t^2,(t,a),

(a^-1*t^b*t*t^b)^2>;
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Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

for i in [2..#N] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=xx^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=yy^-1; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=tt; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

for i in [1..#N] do if ArrayP[i] eq A then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq B then print Sch[i];

end if; end for;

i:=0;j:=2;

G<a,b,t>:=Group<a,b,t|a^3,b^7,b^a=b^2,t^2,(t,a),

(a*b*a^-1*t*t^(b^2))^i,

(a^-1*t^b*t*t^b)^j

>;

f,G1,k:=CosetAction(G,sub<G|a,b>);

for g in C[28] do if sub<G1|f(a),f(b),g> eq C[28] then g;

end if; end for;

S:=Sym(576);

T:=S!(1, 506)(2, 431)(3, 337)(4, 428)(5, 220)(6, 513)(7, 503)

(8, 438)(9, 95)(10, 274)(11, 143)(12, 153)(13, 444)(14, 434)

(15, 525)(16, 217)(17, 249)(18, 267)(19, 275)(20, 512)(21, 157)

(22, 40)(23, 240)(24, 549)(25, 270)(26, 135)(27, 134)(28, 179)

(29, 86)(30, 163)(31, 71)(32, 138)(33, 158)(34, 89)(35, 385)

(36, 142)(37, 218)(38, 511)(39, 518)(41, 47)(42, 162)(43, 229)

(44, 419)(45, 221)(46, 137)(48, 122)(49, 140)(50, 288)(51, 542)

(52, 354)(53, 383)(54, 238)(55, 149)(56, 279)(57, 350)(58, 316)

(59, 441)(60, 455)(61, 423)(62, 517)(63, 480)(64, 550)(65, 104)
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(66, 401)(67, 559)(68,308)(69, 439)(70, 362)(72, 370)(73, 183)

(74, 319)(75, 242)(76, 378)(77, 196)(78, 239)(79, 414)(80, 285)

(81, 489)(82, 351)(83, 457)(84, 338)(85, 376)(87, 359)(88, 191)

(90, 257)(91, 398)(92, 507)(93, 410)(94, 458)(96, 515)(97, 342)

(98, 384)(99, 287)(100, 462)(101, 417)(102, 309)(103, 348)(105,409)

(106, 231)(107, 449)(108, 538)(109, 203)(110, 466)(111, 305)

(112, 372)(113, 488)(114, 421)(115, 402)(116, 141)(117, 294)(118, 380)

(119, 358)(120, 422)(121, 554)(123, 301)(124, 181)(125, 253)(126, 151)

(127, 456)(128, 485)(129, 306)(130, 176)(131, 546)(132, 408)(133, 326)

(136,161)(139, 254)(144, 344)(145, 341)(146, 332)(147, 391)(148, 166)

(150,187)(152, 245)(154, 522)(155, 258)(156, 371)(159, 479)(160, 375)

(164, 207)(165, 280)(167, 227)(168, 339)(169, 277)(170, 300)(171, 430)

(172, 330)(173, 262)(174, 299)(175, 268)(177, 182)(178, 329)(180, 425)

(184, 474)(185, 519)(186, 562)(188, 266)(189, 420)(190, 505)(192, 404)

(193, 353)(194, 259)(195, 263)(197, 224)(198, 366)(199, 246)(200, 233)

(201,260)(202, 251)(204, 528)(205, 400)(206, 459)(208, 388)(209, 331)

(210,523)(211, 367)(212, 365)(213, 361)(214, 282)(215, 468)(216, 310)

(219,521)(222, 335)(223, 315)(225, 454)(226, 499)(228, 432)(230, 486)

(232,465)(234, 281)(235, 501)(236, 530)(237, 320)(241, 276)(243, 496)

(244,575)(247, 442)(248, 392)(250, 545)(252, 460)(255, 395)(256, 555)

(261,557)(264, 552)(265, 537)(269, 481)(271, 360)(272, 494)(273, 429)

(278,463)(283, 539)(284, 548)(286, 298)(289, 461)(290, 415)(291, 544)

(292,377)(293, 379)(295, 411)(296, 407)(297, 543)(302, 571)(303, 476)

(304,526)(307, 547)(311, 567)(312, 576)(313, 527)(314, 450)(317, 451)

(318,498)(321, 514)(322, 541)(323, 508)(324, 427)(325, 470)(327, 566)

(328,531)(333, 469)(334, 487)(336, 565)(340, 445)(343, 484)(345, 532)

(346,475)(347, 570)(349, 446)(352, 529)(355, 560)(356, 453)(357, 574)

(363,535)(364, 533)(368, 509)(369, 448)(373, 563)(374, 524)(381, 491)

(382,500)(386, 471)(387, 561)(389, 572)(390, 540)(393, 443)(394, 477)

(396,440)(397, 553)(399, 490)(403, 564)(405, 502)(406, 504)(412, 568)

(413, 558)(416, 569)(418, 467)(424, 536)(426, 472)(433, 520)(435, 447)

(436, 483)(437, 573)(452, 551)(464, 510)(473, 482)(478, 492)(493, 516)

(495, 556)(497, 534);

for i in [1..#N] do if ArrayP[i] eq T then print Sch[i];

end if; end for;

#sub<G1|f(a),f(b),f(t * b * t * b * t * a^-1 * b * t * b * t * b^2)>;

//////////DOUBLE COSET ENUMERATION///////////////////

i:=0;j:=2;

G<a,b,t>:=Group<a,b,t|a^3,b^7,b^a=b^2,t^2,(t,a),

(a*b*a^-1*t*t^(b^2))^i,

(a^-1*t^b*t*t^b)^j

>;

H1:=sub<G|a,b>;

H2:=sub<G|a,b,t * b * t * b * t * a^-1 * b * t * b * t * b^2>;
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DoubleCosets(G,H2,H1);

f,G1,k:=CosetAction(G,sub<G|a,b>);

#k;

S:=Sym(7);

xx:=S!(2, 3, 4)(5, 7, 6);

yy:=S!(1, 2, 3, 5, 4, 6, 7);

N:=sub<S|xx,yy>;

#N;

IM:=sub<G1|f(a),f(b),

f(t * b * t * b * t * a^-1 * b * t * b * t * b^2)>;

IN:=sub<G1|f(a),f(b)>;

ts:=[Id(G1):i in [1..7]];

ts[1]:=f(t);

ts[2]:=(f(t)^f(b));

ts[3]:=(f(t)^f(b^2));

ts[4]:=(f(t)^f(b^4));

ts[5]:=(f(t)^f(b^3));

ts[6]:=(f(t)^f(b^5));

ts[7]:=(f(t)^f(b^6));

prodim := function(pt, Q, I)

/*

Return the image of pt under permutations Q[I] applied sequentially.

*/

v := pt;

for i in I do

v := v^(Q[i]);

end for;

return v;

end function;

cst := [null : i in [1 .. Index(G,sub<G|a,b>)]] where null is

[Integers() | ];

for i := 1 to 7 do

cst[prodim(1, ts, [i])] := [i];

end for;

m:=0;

for i in [1..576] do if cst[i] ne [] then m:=m+1; end if; end for; m;

N1:=Stabiliser (N,[1]);

SSS:={[1]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do
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for n in IN do

if ts[1]eq

n*ts[Rep(Seqq[i])[1]]

then print Rep(Seqq[i]);

end if; end for; end for;

N1; #N1;

T1:=Transversal(N,N1);

for i in [1..#T1] do

ss:=[1]^T1[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..576] do if cst[i] ne []

then m:=m+1; end if; end for; m;

Orbits(N1);

N15:=Stabiliser (N,[1,5]);

SSS:={[1,5]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IM do

if ts[1]*ts[5]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if; end for; end for;

N15; #N15;

T15:=Transversal(N,N15);

for i in [1..#T15] do

ss:=[1,5]^T15[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..576] do if cst[i] ne []

then m:=m+1; end if; end for; m;

Orbits(N15);

CHECKING WHERE EACH ORBIT GOES {1},and {5}

for g in IM do for h in IN do if ts[1]*ts[5]*ts[1] eq

g*(ts[1])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[5] eq

g*(ts[1])^h then

"true"; break; end if; end for; end for;

CHECKING WHERE EACH ORBIT GOES {2},{4},{6} and {7}

for g in IM do for h in IN do if ts[1]*ts[5]*ts[2] eq
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g*(ts[1]*ts[2])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[4] eq

g*(ts[1]*ts[2])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[6] eq

g*(ts[1]*ts[2])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[7] eq

g*(ts[1]*ts[2])^h then

"true"; break; end if; end for; end for;

N12:=Stabiliser (N,[1,2]);

SSS:={[1,2]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IM do

if ts[1]*ts[2]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if; end for; end for;

N12; #N12;

T12:=Transversal(N,N12);

for i in [1..#T12] do

ss:=[1,2]^T12[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..576] do if cst[i] ne []

then m:=m+1; end if; end for; m;

Orbits(N12);

for g in IM do for h in IN do if ts[1]*ts[2]*ts[1] eq

g*(ts[1])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]*ts[2] eq

g*(ts[1])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]*ts[3] eq

g*(ts[1]*ts[5])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]*ts[4] eq

g*(ts[1]*ts[5])^h then

"true"; break; end if; end for; end for;
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for g in IM do for h in IN do if ts[1]*ts[2]*ts[5] eq

g*(ts[1]*ts[5])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]*ts[7] eq

g*(ts[1]*ts[5])^h then

"true"; break; end if; end for; end for;

N153:=Stabiliser (N,[1,5,3]);

SSS:={[1,5,3]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IM do

if ts[1]*ts[5]*ts[3]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]

then print Rep(Seqq[i]);

end if; end for; end for;

N153s:=N153;

for n in N do if 1^n eq 3 and 5^n eq 1 and 3^n eq 5 then

N153s:=sub<N|N153s,n>; end if; end for;

for n in N do if 1^n eq 5 and 5^n eq 3 and 3^n eq 1 then

N153s:=sub<N|N153s,n>; end if; end for;

N153s; #N153s;

[1,5,3]^N153s;

T153:=Transversal(N,N153s);

for i in [1..#T153] do

ss:=[1,5,3]^T153[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..364] do if cst[i] ne []

then m:=m+1; end if; end for; m;

for i in [1..#T153] do ([1,5,3]^N153s)^T153[i]; end for;

Orbits(N153s);

for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[1] eq

g*(ts[1]*ts[5])^h then"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[2] eq

g*(ts[1]*ts[5]*ts[3])^h then "true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[3] eq

g*(ts[1]*ts[5])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[4] eq

g*(ts[1]*ts[5]*ts[3])^h then

"true"; break; end if; end for; end for;
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for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[5] eq

g*(ts[1]*ts[5])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[6] eq

g*(ts[1]*ts[5]*ts[3])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[7] eq

g*(ts[1]*ts[5]*ts[3])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2] eq g*(ts[1]*ts[5])^h

then "true"; break;

end if; end for; end for;
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Appendix B

J1 is Simple Using Iwasawa’s

i:=15;j:=0;k:=15;l:=5;

G<x,y,t>:=Group<x,y,t|x^3,y^2,(x*y)^2,t^7,t^x=t^2,

(y*t)^i,

(x*t*t^x*t^(x^2))^j,

(y*t^2)^k,

(x*y*t^3)^l

>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

M:=MaximalSubgroups(G1);

C:=Conjugates(G1,M[5]‘subgroup);

C:=SetToSequence(C);

for i in [1..#C] do if f(x) in C[i] and f(y) in C[i] then i;

end if; end for;

C189:=C[189];

NL:=NormalLattice(C402);

NL;

sub<G1|NL[2]^G1> eq G1;

f2,G2,k2:=CosetAction(G1,C402);

IsPrimitive(G2);

#Stabiliser(G2,402);

#sub<G1|C402>;

A:=C189.1;

B:=C189.2;

C:=C189.3;

D:=DerivedGroup(G2);

D eq G2;
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Appendix C

Solved Composition Factor of the

6• : (PSL(2, 4) : 2)

a:=0;b:=5;c:=10;d:=0;e:=10;

G<x,y,t>:=Group<x,y,t|x^4,y^2,(x*y)^3,t^2,(t,y),(t,y^x),(x*t)^a,

(x*t*t^x)^b,(x*y*t*t^x*t^(y))^c,(x^3*t*t^x*t^y)^d,(x*y*t)^e>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

NL:=NormalLattice(G1);

NL;

IsAbelian(NL[4]);

q,ff:=quo<G1|NL[4]>;

D:=DirectProduct(NL[2],NL[3]);

s,t:=IsIsomorphic(D,NL[4]);

s;

H<a,b>:=Group<a,b|a^2,b^4,(a*b)^7,(a*b^2)^5,

(a*b*a*b^2)^7,(a*b*a*b*a*b^2*a*b^-1)^5>;

f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);

NL:=NormalLattice(q);

NL;

s,t:=IsIsomorphic(H1,NL[2]);

s;

for z1 in NL[3] do if Order(z1) eq 2 and z1 notin NL[2] and

NL[3] eq sub<q|NL[2],z1> then Z1:=z1;break; end if; end for;

s,t:=IsIsomorphic(H1,NL[2]);

A:=t(f1(a));

B:=t(f1(b));

N:=sub<q|A,B>;

NN<a,b>:=Group<a,b|a^2,b^4,(a*b)^7,(a*b^2)^5,



140

(a*b*a*b^2)^7,(a*b*a*b*a*b^2*a*b^-1)^5>;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

for i in [2..#N] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=B^-1; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

for i in [1..#N] do if ArrayP[i] eq A^Z1 then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq B^Z1 then print Sch[i];

end if; end for;

H<a,b,c>:=Group<a,b,c|a^2,b^4,(a*b)^7,(a*b^2)^5,(a*b*a*b^2)^7,

(a*b*a*b*a*b^2*a*b^-1)^5,c^2,a^c=a*b*a*b^-1*a*b*a*b*\

a*b^-1*a*b^-1*a*b*a*b^-1*a*b^2*a*b^-1*a*b^2,b^c=a*b*a*

b^-1*a*b*a*b^-1*a*b^-1*a*b*a*b*a*b^-1>;

f2,H2,k2:=CosetAction(H,sub<H|Id(H)>);

s,t:=IsIsomorphic(H2,q);

s;

NL:=NormalLattice(G1);

T:=Transversal(G1,NL[4]);

A:=t(f2(a));

B:=t(f2(b));

C:=t(f2(c));

for i in [1..#T] do if ff(T[i]) eq A then i; end if;end for;

for i in [1..#T] do if ff(T[i]) eq B then i; end if;end for;

for i in [1..#T] do if ff(T[i]) eq C then i; end if;end for;

A:=T[16890];

B:=T[6838];

C:=T[14720];

for d,e in NL[4] do if Order(e) eq 2 and Order(d) eq 3 and e^d eq e

then D:=d; E:=e; end if; end for;

Order(D);

sub<G1|E,D> eq NL[4];

for i in [0..3] do for j in [0..2] do if A^2 eq D^i*E^j

then i,j; break; end if;
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end for; end for;

for i in [0..3] do for j in [0..2] do if B^4 eq D^i*E^j

then i,j; break; end if;

end for; end for;

for i in [0..3] do for j in [0..2] do if (A*B)^7 eq D^i*E^j

then i,j; break; end if;

end for; end for;

for i in [0..3] do for j in [0..2] do if (A*B^2)^5 eq D^i*E^j

then i,j; break; end if;

end for; end for;

for i in [0..3] do for j in [0..2] do if (A*B*A*B^2)^7 eq D^i*E^j

then i,j; break;

end if;end for; end for;

for i in [0..3] do for j in [0..2] do if

(A * B * A * B * A * B^2 * A * B^-1)^5 eq

D^i*E^j then i,j; break; end if;end for; end for;

for i in [0..3] do for j in [0..2] do if C^2 eq D^i*E^j then

i,j; break; end if;end for;

end for;

for i in [0..3] do for j in [0..2] do if A^C eq D^i*E^j then

i,j; break; end if;end for;

end for;

for i in [0..3] do for j in [0..2] do if B^C eq D^i*E^j then

i,j; break; end if;end for;

end for;

for i,k in [0..2] do for j in [0..4] do if A^D eq

A^i*B^j*C^k then i,j,k; break; end if;

end for;end for;

for i,k in [0..2] do for j in [0..4] do if A^E eq

A^i*B^j*C^k then i,j,k; break; end if;

end for; end for;

for i,k in [0..2] do for j in [0..4] do if B^E eq

A^i*B^j*C^k then i,j,k; break; end if;

end for; end for;

for i,k in [0..2] do for j in [0..4] do if B^D eq

A^i*B^j*C^k then i,j,k; break; end if;

end for; end for;

for i,k in [0..2] do for j in [0..4] do if C^D eq

A^i*B^j*C^k then i,j,k; break; end if;

end for; end for;

for l in [0..3] do for i,k,m in [0..2] do for j in [0..4]

do if C^D eq A^i*B^j*C^k*D^l*

E^m then i,j,k,l,m; break; end if; end for; end for;

end for;
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for i,k in [0..2] do for j in [0..4] do if C^E eq

A^i*B^j*C^k then i,j,k; break; end if;

end for;end for;

H<a,b,c,d,e>:=Group<a,b,c,d,e|d^3,e^2,(d,e),a^2,

b^4,(a*b)^7=d*e,(a*b^2)^5,

(a*b*a*b^2)^7=d,(a*b*a*b*a*b^2*a*b^-1)^5\

=d^2,c^2,a^c=a*b*a*b^-1*a*b*a*b*a*b^-1*a*b^-1*

a*b*a*b^-1*a*b^2*a*b^-1*a*

b^2,b^c=a*b*a*b^-1*a*b*a*b^-1*a*b^-1*a*b*a*b\

*a*b^-1,a^d=a,a^e,a,b^d=b,b^e=b,c^d=c*d^2,c^e=c>;

#H;

H<a,b,c,d,e>:=Group<a,b,c,d,e|d^3,e^2,(d,e),a^2,b^4,

(a*b)^7=d*e,(a*b^2)^5,

(a*b*a*b^2)^7=d,(a*b*a*b*a*b^2*a*b^-1)^5\

=d^2,c^2,a^c=a*b*a*b^-1*a*b*a*b*a*b^-1*a*b^-1*a*b

*a*b^-1*a*b^2*a*b^-1*a*b^2,

b^c=a*b*a*b^-1*a*b*a*b^-1*a*b^-1*a*b*a*b\

*a*b^-1,a^d=a,a^e=a,b^d=b,b^e=b,c^d=c*d^2,c^e=c>;

#H;

#G1;

f2,H2,k2:=CosetAction(H,sub<H|Id(H)>);

s,t:=IsIsomorphic(H2,G1);

s;
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Appendix D

Unsuccessful Progenitors and

their Relations

D.1 Wreath Product Z2 Wr A5

S:=Sym(10);

tt:=S!(1,6);

uu:=S!(2,7);

vv:=S!(3,8);

ww:=S!(4,9);

xx:=S!(5,10);

yy:=S!(1,2)(3,4)(6,7)(8,9);

zz:=S!(1,5,4)(6,10,9);

N:=sub<S|tt,uu,vv,ww,xx,yy,zz>;

#N;

NN<a,b,c,d,e,f,g>:=Group<a,b,c,d,e,f,g|a^2,b^2,c^2,d^2,

e^2,(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),

f^2,g^3,(f*g)^5,a^f=b,b^f=a,c^f=d,d^f=c,e^f=e,a^g=e,

b^g=b,c^g=c,d^g=a,e^g=d>;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

for i in [2..#N] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=tt; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=uu; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=vv; end if;
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if Eltseq(Sch[i])[j] eq 4 then P[j]:=ww; end if;

if Eltseq(Sch[i])[j] eq 5 then P[j]:=xx; end if;

if Eltseq(Sch[i])[j] eq 6 then P[j]:=yy; end if;

if Eltseq(Sch[i])[j] eq 7 then P[j]:=zz; end if;

if Eltseq(Sch[i])[j] eq -7 then P[j]:=zz^-1; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

N1:=Stabiliser(N,[1]);

N1;

for i in [1..#N] do if ArrayP[i] eq N!(2, 7) then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq N!(3, 8) then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq N!(4, 9) then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq N!(5, 10) then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq

N!(2, 9)(3, 5)(4, 7)(8, 10) then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq

N!(3, 9, 10)(4, 5, 8) then print Sch[i];

end if; end for;

/*Progenitor */

G<a,b,c,d,e,f,g,t>:=Group<a,b,c,d,e,f,g,t|a^2,b^2,c^2,d^2,e^2,(a,b),

(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),f^2,g^3,

(f*g)^5,a^f=b,b^f=a,c^f=d,d^f=c,e^f=e,a^g=e,b^g=b,c^g=c,d^g=a,

e^g=d,t^2,(t,b),

(t,c),(t,d),(t,e),(t,b*d*g*f*g^-1),(t,c*e*g^-1*f*g*f*g^-1*f*g^-1)>;

C:=Centraliser(N,Stabiliser(N,[1,2]));

C;

for i in [1..#N] do if ArrayP[i] eq N!(3, 8)(4,9)(5,10) then

print Sch[i];end if; end for;

for i in [1..#N] do if ArrayP[i] eq

N!(1, 6)(2, 7)(3, 8)(4, 9)(5, 10) then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq N!(2, 7)(3, 8)(4, 9)(5, 10)

then print Sch[i];

end if; end for;

for i,j,k,l,m in [0..50] do
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G<a,b,c,d,e,f,g,t>:=Group<a,b,c,d,e,f,g,t|a^2,b^2,c^2,d^2,e^2,(a,b),

(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),f^2,g^3,

(f*g)^5,a^f=b,b^f=a,c^f=d,d^f=c,e^f=e,a^g=e,b^g=b,c^g=c,d^g=a,

e^g=d,t^2,(t,b),(t,c),(t,d),(t,e),(t,b*d*g*f*g^-1),

(t,c*e*g^-1*f*g*f*g^-1*f*g^-1),

(f*t)^i,

(g*t*t^a*t^g*e)^j,

(b*c*d*e*t^f*t^f*b)^k,

(a*b*c*d*e*t)^l,

c*d*e=(t*t^f)^m>;

if Index(G,sub<G|a,b,c,d,e,f,g>) ge 2 then i,j,k,l,m,

Index(G,sub<G|a,b,c,d,e,f,g>), #G;

end if; end for;

D.2 Wreath Product Z2 Wr S4

W:=WreathProduct(CyclicGroup(2),Sym(4));

W;

G<a,b,c,d,e,f>:=Group<a,b,c,d,e,f|a^2,b^2,c^2,d^2,(a,b),

(a,c),(a,d),(b,c),(b,d),(c,d),e^4,f^2,(e*f)^3,a^e=b,b^e=c,

c^e=d,d^e=a,a^f=b,b^f=a,c^f=c,d^f=d>;

#G;

/*First I tried this*/

for A,B,C,D,E,F in W do if Order(A) eq 2 and Order(B) eq 2 and

Order(C) eq 2and Order(D) eq 2 and (A,B) eq Id(W) and (A,C) eq

Id(W) and (A,D) eq Id(W) and (B,C) eq Id(W) and (B,D) eq Id(W)

and (C,D) eq Id(W) and Order(E) eq 4 and Order(F) eq 2 and

Order((e*f)) eq 3 and A^E eq B and B^E eq C and C^E eq D and \

D^E eq A and A^F eq B and B^F eq A and C^F eq C and D^F eq

D and W eq sub<W|A,B,C,D,E,F> then A,B,C,D,E,F; break; end if;

end for;

/*Now the Classes*/

CC:=Classes(W);

#CC;

C[2][1];

C[8][1];

for A,B,C,D,F in Class(W,CC[2][3]) join Class(W,CC[3][3]) join

Class(W,CC[4][3]) join Class(W,CC[5][3]) join Class(W,CC[6][3])

join Class(W,CC[7][3]) join Class(W,CC[8][3]) do for E in

Class(W,CC[11][3]) join Class(W,CC[12][3]) join Class(W,CC[13][3]) j

oin Class(W,CC[14][3]) join Class(W,CC[15][3]) join

Class(W,CC[16][3]) do if Order(E*F) eq 3 and (A,B) eq Id(W) and (A,C)

eq Id(W) and (A,D) eq Id(W) and (B,C) eq Id(W) and (B,D) eq Id(W) and
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(C,D) eq Id(W) and A^E eq B and B^E eq C and C^E eq D and D^E eq A

and A^F eq B and B^F eq A and C^F eq C and D^F eq D and W eq

sub<W|A,B,C,D,E,F> then A,B,C,D,E,F; break; end if; end for; end for;

G<a,b,c,d,e,f>:=Group<a,b,c,d,e,f|a^2,b^2,c^2,d^2,(a,b),(a,c),(a,d),

(b,c),(b,d),(c,d),e^4,f^2,(e*f)^3,a^e=b,b^e=c,c^e=d,d^e=a,a^f=b,

b^f=a,c^f=c,d^f=d>;

#G;

f,N,k:=CosetAction(G,sub<G|Id(G)>);

A:=N.1;B:=N.2; C:=N.3; D:=N.4; E:=N.5; F:=N.6;

NN:=G;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..384]];

for i in [2..384] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;

if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;

if Eltseq(Sch[i])[j] eq 5 then P[j]:=E; end if;

if Eltseq(Sch[i])[j] eq -5 then P[j]:=E^-1; end if;

if Eltseq(Sch[i])[j] eq 6 then P[j]:=F; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

S:=Subgroups(N);

for i in [1..#S] do if Index(N,S[i]‘subgroup) eq 8 then i; end if;

end for;

H:=S[171]‘subgroup;

for i in [1..384] do if ArrayP[i] eq H.1 then Sch[i]; end if; end for;

for i in [1..384] do if ArrayP[i] eq H.2 then Sch[i]; end if; end for;

for i in [1..384] do if ArrayP[i] eq H.3 then Sch[i]; end if; end for;

for i in [1..384] do if ArrayP[i] eq H.4 then Sch[i]; end if; end for;

for i in [1..384] do if ArrayP[i] eq H.5 then Sch[i]; end if; end for;

G<a,b,c,d,e,f>:=Group<a,b,c,d,e,f|a^2,b^2,c^2,d^2,(a,b),(a,c),(a,d),

(b,c),(b,d),(c,d),e^4,f^2,(e*f)^3,a^e=b,b^e=c,c^e=d,d^e=a,a^f=b,

b^f=a,c^f=c,d^f=d>;

HH:=sub<G|a,a * b * c * d * e * f * e^2 * f,e^2 * f * e^-1,a*c,b*c>;

#HH;
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f,G1,k:=CosetAction(G,HH);

#G1;

IsIsomorphic(G1,W);

S:=Sym(8);

A:=S!(5,6);

B:=S!(7,8);

C:=S!(1,2);

D:=S!(3,4);

E:=S!(1,3,6,7)(2,4,5,8);

F:=S!(5,8)(6,7);

N:=sub<S|A,B,C,D,E,F>;

NN:=G;

N1:=Stabiliser(N,[1]);

N1;

for i in [1..384] do if ArrayP[i] eq N!(3,6)(4,5) then print Sch[i];

end if; end for;

G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^2,b^2,c^2,d^2,(a,b),(a,c),

(a,d),(b,c),(b,d),(c,d),e^4,f^2,(e*f)^3,a^e=b,b^e=c,c^e=d,d^e=a,

a^f=b,b^f=a,c^f=c,d^f=d, t^2, (t,a), (t,b), (t,d), (t,f),(t,e*f*e^-1)>;

for i,j,k,l,m,n in [0..10] do

G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^2,b^2,c^2,d^2,(a,b),

(a,c),(a,d),(b,c),(b,d),(c,d),e^4,f^2,(e*f)^3,a^e=b,b^e=c,c^e=d,

d^e=a,a^f=b,b^f=a,c^f=c,d^f=d, t^2, (t,a), (t,b), (t,d), (t,f),

(t,e*f*e^-1), (a*t)^i,(e*t*t^(b))^j,(t*f*t)^k,(e*t*t^(d))^l,

(c*t^(f*c))^m,(c*t*e)^n>;if Order(G) ge 18 then i,j,k,l,m,n,

Order(G); end if;

end for;

D.3 Wreath Product Z2 Wr A4

W:=WreathProduct(CyclicGroup(2),Alt(4));

#W;

G<a,b,c,d,e,f>:=Group<a,b,c,d,e,f|a^2,b^2,c^2,

d^2,(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),e^3,f^2,(e*f)^3,

(e,f)^2,a^e=b,b^e=c,c^e=a,d^e=d,a^f=b,b^f=a,c^f=d,

d^f=c>;

#G;

/*for A,B,C,D,E,F in W do if Order(A) eq 2 and

Order(B) eq 2 and Order(C) eq 2\

and Order(D) eq 2 and (A,B) eq Id(W) and (A,C) eq

Id(W) and (A,D) eq Id(W) and (B,C) eq Id(W) and

(B,D) eq Id(W) and (C,D) eq Id(W)

and Order(E) eq 3 and O\
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rder(F) eq 2 and Order((e*f)) eq 3 and Order((e,f)) eq 2

and A^E eq B and B^E eq C and C^E eq A and \

D^E eq D and A^F eq B and B^F eq A and C^F eq D and

D^F eq C and W eq sub<W|A,\

B,C,D,E,F> then A,B,C,D,E,F; break; end if; end for;*/

CC:=Classes(W);

for A,B,C,D,F in Class(W,CC[2][3]) join Class(W,CC[3][3]) join

Class(W,CC[4][3]) join Class(W,CC[5][3]) join

Class(W,CC[6][3]) do for E in Class(W,CC[7][3]) join

Class(W,CC[8][3]) do if Order(E*F) eq 3 and Order((E,F))

eq 2 and (A,B) eq Id(W) and (A,C) eq Id(W) and (A,D) eq

Id(W) and (B,C) eq Id(W) and (B,D) eq Id(W) and (C,D) eq

Id(W) and A^E eq B and B^E eq C and C^E eq A and

D^E eq D and A^F eq B and B^F eq A and C^F eq D and

D^F eq C and W eq sub<W|A,B,C,D,E,F> then A,B,C,D,E,F;

break; end if; end for; end for;

S:=Sym(8);

A:=S!(3,4);

B:=S!(7,8);

C:=S!(1,2);

D:=S!(5,6);

E:=S!(1,3,8)(2,4,7);

F:=S!(1,5)(2,6)(3,8)(4,7);

N:=sub<S|A,B,C,D,E,F>;

NN:=G;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..192]];

for i in [2..192] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;

if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;

if Eltseq(Sch[i])[j] eq 5 then P[j]:=E; end if;

if Eltseq(Sch[i])[j] eq -5 then P[j]:=E^-1; end if;

if Eltseq(Sch[i])[j] eq 6 then P[j]:=F; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

for i in [1..192] do if ArrayP[i] eq N!(3,4) then print Sch[i];
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end if; end for;

for i in [1..192] do if ArrayP[i] eq N!(7,8) then print Sch[i];

end if; end for;

for i in [1..192] do if ArrayP[i] eq N!(5,6) then print Sch[i];

end if; end for;

for i in [1..192] do if ArrayP[i] eq N!(3,6,7,4,5,8) then

print Sch[i];

end if; end for;

G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^2,b^2,c^2,d^2,(a,b)

,(a,c),(a,d),(b,c),(b,d),(c,d),e^3,f^2,(e*f)^3,(e,f)^2,a^e=b,

b^e=c,c^e=a,d^e=d,a^f=b,b^f=a,c^f=d,d^f=c,t,(t,a),(t,b),(t,d),

(t,a*f*e*f)>;

for i,j,k,l,m,n in [0..10] do

G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^2,b^2,c^2,d^2,

(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),e^3,f^2,(e*f)^3,(e,f)^2,

a^e=b,b^e=c,c^e=a,d^e=d,a^f=b,b^f=a,c^f=d,d^f=c,t,

(t,a),(t,b),(t,d),(t,a*f*e*f),(a*t)^i,(e*t*t^(b))^j,(t*f*t)^k,

(e*t*t^(d))^l,(c*t^(f*c))^m,(c*t*e)^n>;

if Order(G) ge 18 then i,j,k,l,m,n, Order(G); end if; end for;

D.4 Wreath Product Z3 Wr Z2

W:=WreathProduct(CyclicGroup(3),CyclicGroup(2));

G<a,b,c>:=Group<a,b,c|a^3,b^3,(a,b),c^2,a^c=b,b^c=a>;

#G;

for A,B,C in W do if Order(A) eq 3 and Order(B) eq 3 and

(A,B) eq Id(W) and Order(C) eq 2 and A^C eq B and B^C eq A

and W eq sub<W|A,B,C> then A,B,C; break; end if; end for;

S:=Sym(6);

A:=S!(4,5,6);

B:=S!(1,2,3);

C:=S!(1,4)(2,5)(3,6);

N:=sub<S|A,B,C>;

N eq W;

N1:=Stabiliser(N,1);

G<a,b,c,t>:=Group<a,b,c,t|a^3,b^3,(a,b),c^2,a^c=b,

b^c=a,t^2,(t,a)>;

for i,j,k,l,m,n in [0..10] do

G<a,b,c,t>:=Group<a,b,c,t|a^3,b^3,(a,b),c^2,a^c=b,b^c=a,t^2,

(t,a),(a*t)^i,(t*t^(b))^j,(t*a*t)^k,(t^c*t)^l,(c*t^a)^m,(b*t*c)^n>;

if Order(G) ge 18 then i,j,k,l,m,n, Order(G); end if; end for;
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Appendix E

Di�cult Extension Problems

E.1 Mixed Extension Using Database

a:=0;b:=0;c:=0;d:=3;e:=0;

G<x,y,t>:=Group<x,y,t|x^4,y^2,(x*y)^3,t^2,(t,y),(t,y^x),(x*t)^a,

(x*t*t^x)^b,(x*y*t*t^x*t^(y))^c,(x^3*t*t^x*t^y)^d,(x*y*t)^e>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

#G1;

CompositionFactors(G1);

NL:=NormalLattice(G1);

NL;

D:=DerivedGroup(G1);

D;

s:=IsIsomorphic(D,NL[3]);

IsPerfect(D);

DerivedGroup(D) eq D;

DB := PerfectGroupDatabase();

"A5" in TopQuotients(DB);

ExtensionPrimes(DB, "A5");

ExtensionExponents(DB, "A5", 5);

ExtensionNumbers(DB, "A5", 5, 3);

H1:=Group(DB, "A5", 5, 3,1);

H1;

P1:=PermutationGroup(DB, "A5", 5, 3,1);

s:=IsIsomorphic(NL[3],P1);

s;

P2:=PermutationGroup(DB, "A5", 5, 3,2);

s:=IsIsomorphic(NL[3],P2);

s;

H2:=Group(DB, "A5", 5, 3,2);
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H2;

q,ff:=quo<NL[3]|NL[2]>;

A:=q.1;

B:=q.2;

ff(NL[3].1) eq A;

ff(NL[3].2) eq B;

T:=Transversal(NL[3],NL[2]);

ff(T[2]) eq A;

ff(T[3]) eq B;

#T;

(A*B)^5;

(T[2]*T[3])^5 in NL[2];

(T[2]*T[3])^5;

X:=NL[2].2;

Y:=NL[2].3;

Z:=NL[2].4;

C:=T[2];

D:=T[3];

N:=sub<G1|X,Y,Z>;

NN<k,l,m>:=Group<k,l,m|k^5,l^5,m^5,(k,l),(k,m),(l,m)>;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..125]];

for i in [2..125] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=X; end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=X^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=Y; end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=Y^-1; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=Z; end if;

if Eltseq(Sch[i])[j] eq -3 then P[j]:=Z^-1; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

X eq NL[3].3;

Y eq NL[3].4;

Z eq NL[3].5;

for i in [1..125] do if ArrayP[i] eq (C*D)^5 then Sch[i];

end if; end for;

A:=[Id(NN) : i in [1..6]];

for i in [1..125] do if X^C eq ArrayP[i] then A[1]:=Sch[i];
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Sch[i]; end if; end for;

for i in [1..125] do if X^D eq ArrayP[i] then A[2]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..125] do if Y^C eq ArrayP[i] then A[3]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..125] do if Y^D eq ArrayP[i] then A[4]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..125] do if Z^C eq ArrayP[i] then A[5]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..125] do if Z^D eq ArrayP[i] then A[6]:=Sch[i];

Sch[i]; end if; end for;

A;

NN<a,b,k,l,m>:=Group<a,b,k,l,m|k^5,l^5,m^5,(k,l),(k,m),(l,m),

a^2,b^3,(a*b)^5=k * m * l^-2,

k^a=m^-1,k^b= k * m,l^a= m * k^-1 * l^-1,l^b= m,m^a= k^-1,

m^b= l^-1 * m^-1>;

#NN;

N1:=CosetAction(NN,sub<NN|Id(NN)>);

f1,N1,k1:=CosetAction(NN,sub<NN|Id(NN)>);

#N1;

s:=IsIsomorphic(N1,NL[3]);

s;

for r in G1 do if Order(r) eq 2 and r notin NL[3] and G1 eq

sub<G1|NL[3],r> then R:=r; break; end if; end for;

G1 eq sub<G1|NL[3],R>;

N:=sub<G1|X,Y,Z,C,D>;

NN<a,b,k,l,m>:=Group<a,b,k,l,m|k^5,l^5,m^5,(k,l),(k,m),(l,m),

a^2,b^3,(a*b)^5=k * m * l^-2,

k^a=m^-1,k^b= k * m,l^a= m * k^-1 * l^-1,l^b= m,m^a= k^-1,

m^b= l^-1 * m^-1>;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..7500]];

for i in [2..7500] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=X; end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=X^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=Y; end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=Y^-1; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=Z; end if;

if Eltseq(Sch[i])[j] eq -3 then P[j]:=Z^-1; end if;

if Eltseq(Sch[i])[j] eq 4 then P[j]:=C; end if;

if Eltseq(Sch[i])[j] eq 5 then P[j]:=D; end if;

if Eltseq(Sch[i])[j] eq -5 then P[j]:=D^-1; end if;
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end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

A:=[Id(NN) : i in [1..5]];

for i in [1..7500] do if X^R eq ArrayP[i] then A[1]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..7500] do if Y^R eq ArrayP[i] then A[2]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..7500] do if Z^R eq ArrayP[i] then A[3]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..7500] do if C^R eq ArrayP[i] then A[4]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..7500] do if D^R eq ArrayP[i] then A[5]:=Sch[i];

Sch[i]; end if; end for;

E.2 Extension Problem (2⇥ 11)• : (PGL(2, 11))

i:=0;j:=0;k:=0;l:=4;m:=2;

G<x,y,t>:=Group<x,y,t|x^11,y^2,(x^-1*y)^2,t^2,(t,y*x),

(y*t^(x^-1))^i,

(x*t)^j,

(x^2*t*t^y)^k,

(x^5*t)^l,

(x*t*t^y*t^x)^m

>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

Center(G1);

NL:=NormalLattice(G1);

NL;

IsAbelian(NL[4]);

q,ff:=quo<G1|NL[4]>;

CompositionFactors(q);

s,t:=IsIsomorphic(q,PGL(2,11));

s;

FPGroup(q);

H<a,b,c>:=Group<a,b,c|a^-11,b^2,c^2,(a^-1*b)^2,(a*c*b)^2,

a^2*c*a^-2*c*a*b*c,\

(a*c*a*c*a^2)^2>;

#H;
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#PGL(2,11);

f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);

s,t:=IsIsomorphic(H1,q);

s;

A:=t(f1(a));

B:=t(f1(b));

C:=t(f1(c));

T:=Transversal(G1,NL[4]);

for i in [1..#T] do if ff(T[i]) eq A then i; end if; end for;

for i in [1..#T] do if ff(T[i]) eq B then i; end if; end for;

for i in [1..#T] do if ff(T[i]) eq C then i; end if; end for;

A:=T[367];

B:=T[694];

C:=T[495];

NL[4];

D:=DirectProduct(CyclicGroup(2),CyclicGroup(11));

s,t:=IsIsomorphic(D,NL[4]);

s;

for d,e in NL[4] do if Order(d) eq 2 and Order(e) eq 11 and d^e eq d

then D:=d; E:=e; end if; end for;

Order(D);

H;

for i in [0..1] do for j in [0..10] do if A^-11 eq D^i*E^j then

i,j; break; end if; end for; end for;

for i in [0..1] do for j in [0..10] do if B^2 eq D^i*E^j then

i,j; break; end if; end for; end for;

for i in [0..1] do for j in [0..10] do if C^2 eq D^i*E^j then

i,j; break; end if; end for; end for;

for i in [0..1] do for j in [0..10] do if (A^-1*B)^2 eq D^i*E^j

then i,j; break; end if; end for; end for;

for i in [0..1] do for j in [0..10] do if (A*C*B)^2 eq D^i*E^j

then i,j; break; end if; end for; end for;

for i in [0..1] do for j in [0..10] do if A^2*C*A^-2*C*A*B*C eq

D^i*E^j then i,j; break; end if; end for; end for;

for i in [0..1] do for j in [0..10] do if (A*C*A*C*A^2)^2 eq D^i*E^j

then i,j;

break; end if; end for; end for;
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for i,b,c in [0..1] do for j in [0..10] do for a in [0..21] do if A^D eq

A^a*B^b*C^c*D^i*E^j

then a,b,c,i,j; break; end if; end for; end for;end for;

for i,b,c in [0..1] do for j in [0..10] do for a in [0..21] do if B^D eq

A^a*B^b*C^c*D^i*E^j

then a,b,c,i,j; break; end if; end for; end for;end for;

for i,b,c in [0..1] do for j in [0..10] do for a in [0..21] do if C^D eq

A^a*B^b*C^c*D^i*E^j then a,b,c,i,j; break; end if; end for;

end for;end for;

for i,b,c in [0..1] do for j in [0..10] do for a in [0..21] do

if A^E eq A^a*B^b*C^c*D^i*E^j then a,b,c,i,j; break; end if; end for;

end for;end for;

for i,b,c in [0..1] do for j in [0..10] do for a in [0..21] do if B^E

eq A^a*B^b*C^c*D^i*E^j then a,b,c,i,j; break; end if; end for; end for;

end for;

for i,b,c in [0..1] do for j in [0..10] do for a in [0..21] do if C^E eq

A^a*B^b*C^c*D^i*E^j then a,b,c,i,j; break; end if; end for; end for;

end for;

H<a,b,c,d,e>:=Group<a,b,c,d,e|a^-11=d,b^2,c^2,(a^-1*b)^2,(a*c*b)^2=

e^6,a^2*c*a^-2*c*a*b*c=e,(a*c*a*c*a^2)^2=e^10,d^2,e^11,(d,e),a^d=a,

b^d=b,c^d=c,a^e=a,b^e=b*e^2,c^e=c*e^2>;

f2,H2,k2:=CosetAction(H,sub<H|Id(H)>);

s,t:=IsIsomorphic(H2,G1);

s;

E.3 Extension Problem 2•(U(3, 4) : 2)

i:=2;j:=10;k:=10;l:=10;

G<x,y,t>:=Group<x,y,t|x^-9,y^2,(x^-1*y)^2,t^2,(t,y*x),

(x^3*t)^i,

(x^4*t^x)^j,

(y*t)^k,

(x*t*t^x^2*t)^l

>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

NL:=NormalLattice(G1);
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NL;

Center(G1);

q,ff:=quo<G1|NL[2]>;

CompositionFactors(q);

Center(q);

Permutation group acting on a set of cardinality 1600

Order = 1

nl:=NormalLattice(q);

nl;

//FROM ATLAS WE HAVE A PRESENTATION FOR U(3,4):2 //

H<a,b>:=Group<a,b|a^2,b^3,(a*b)^8,(a,b)^13,

(a,b*a*b*a*b*a*b^-1*a*b*a*b)^2,(a\

,b^-1*a*b*a*b)^5>;

#H;

f1,H1,k1:=CosetAction(H,sub<P|Id(H)>);

s,t:=IsIsomorphic(P1,q);

s;

T:=Transversal(G1,NL[2]);

Current total memory usage: 96.2MB, failed memory request: 13982.0MB

System error: Out of memory.

At this point we would of found elements from the above presentation

that can be written in terms of the center but Magma ran out of storage.
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