Meeting of the Minds 2019

May 16th, 11:30 AM - 12:30 PM

Outstanding Graduate Student Researcher Awardee, Alana Muller

Alana Muller

Follow this and additional works at: https://scholarworks.lib.csusb.edu/meeting-minds

Muller, Alana, "Outstanding Graduate Student Researcher Awardee, Alana Muller" (2019). Meeting of the Minds. 5.
https://scholarworks.lib.csusb.edu/meeting-minds/2019/agenda-2019/5

This Other is brought to you for free and open access by the Office of Student Research at CSUSB ScholarWorks. It has been accepted for inclusion in Meeting of the Minds by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.
Alana Muller is a third-year masters student in the Psychological Science program. She was born in Hawaii, moved to California for college and stayed to pursue my masters. She was accepted into the Ph.D. program for Psychology at the University of Arizona for next school year.

She is a member of the cognitive neuroscience lab under Dr. Richard Addante, which uses electroencephalography (EEG) to study episodic memory and metacognition. Her thesis involves investigating the neural correlates of the Dunning-Kruger Effect which categorizes the phenomenon in which individuals who score low on a task over-estimate their performance while individuals who score high on a task under-estimate their performance. She helped design an innovative paradigm to study the neurophysiology of overconfidence while also being involved in at least five active or completed research projects in the lab.

She is also currently involved in a collaborative research project with Dr. Weiwei Zhang, a professor of psychology at UC Riverside, to study cognitive deficits that occur during concurrent physical exertion in astronauts. This experiment was approved to be conducted on an upcoming underwater NASA mission in June 2019. She is also working on a second project in preparation for the 2020 underwater NASA mission to mitigate those cognitive deficits using transcranial direct current stimulation (tDCS), which applies a mild current through the frontal lobe to increase functioning of the frontal cortex.