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Inference-Guiding for Intelligent Agents 

Jinchang Wang 
The Richard Stockton College of New Jersey 

ABSTRACT 

In many applications of intelligent agents, initially given facts are not sufficient to reach 
a decision, and more data are needed. In that case. Inference-guiding is needed to identify the 
missing information and lead inference to a conclusion. This paper presents a new inference-
guiding strategy that selects the key pieces of missing information in such a way that the total 
cost of acquiring additional information for reaching a conclusion is the lowest. The 
computational experiments show that the new strategy is more effective and economical than the 
inference-guiding strategies currently available for the intelligent systems. 

INTRODUCTION 

The ''intelligent agent', a term in artificial intelligence, refers to a deviee or a system that can, to some 
extent, 'think' as human beings and 'act' rationally. A robot is a typical example of an intelligent agent. An 
intellijjenl agent as a node in a computer network handles the information transmitted through the node. Other 
examples include an automatic real-time control mechanism, a computerized system for disease diagnosing, 
debugging, or professional training. Comparing to an expert system and a knowledge-based system, which are 
computer systems that store human's knowledge and mimic the human's logic to solve problems in certain domains, 
an intelligent agent is more self-contained, more autonomous, and more action-oriented. 

j'tn intelligent agent has three major functions: perceiving the environment, making judgments / decisions, 
and acting. Percepts of environment are obtained through perceptors such as various sensors, data input channels 
from a database, and devices for inputs from users. Judgments and decisions are made in the 'brain' of the 
intelligent: agent, which contains a knowledge base and an inference engine. The knowledge base stores knowledge. 
The inference engine is software for doing logical inference. The third function, acting, is to execute the decision or 
announce the judgment through actuators. An actuator is a device such as an arm of a robot, a control mechanism, 
and a natural language output device. 

In many applications of intelligent agents, such as diagnosing, training, and real-time control, initial data 
about the environment are often ineomplete, because of huge amount of the 'complete' data and the cost of 
obtaining them. The cost of obtaining data can be monetary cost or cost of time. To get information from 
electriDcardiograms and CT, for example, would cost money, and to ask a patient questions would cost time. If no 
solid conclusions can be made due to insufficient data, an intelligent agent should be able to pinpoint the missing 
data, imake hypothesis, collect more information, and prove the hypothesis. In this sense, an intelligent agent should 
be not only a 'thinker' but also an 'investigator'. Just as a human inspector has to do investigation when initial 
clues for a case are not sufficient. An intelligent agent for disease diagnosing, which makes judgjnent on the 
ailment tliat a patient may have, must also do investigations by, for example, asking the patient to provide more 
infonnation on symptoms and selecting some examinations for the patient to do, when the information on hand is 
not sufficient to get any solid conclusion. The process of 'investigation' is called inference-guiding (IG), or 
question-asking [Wang et al. (1990)], which pursues more information about the environment for further inference. 
A good IG process would be able to identify a few relevant and key missing data in an efficient way, and lead 
inferenee quickly to a conclusion. A bad IG process, on the other hand, would ask irrelevant, costly, and silly 
questions, and retard the inference proeess. 

The function of inference-guiding resides in the inferenee engine of an intelligent agent. ITie inference 
engine should be able to, like human being, figure out what information should be pursued if the current known data 
are not sufficient. A human inspector ought to be good in not only analysis but also investigation. That is, he 
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should be good in exploring the meaning of the clues he has by logically linking them, and reaches a conclusion if 
the clues are sufficient; and he should also be good in investigations, if the clues are not sufficient, by figuring out 
the key missing data and collecting the data to prove his hypothesis. An inference engine of an intelligent agent 
thus has two tasks. One is logical inference (or simply inference), which is to make deductions to reveal logical 
implications of the known information and to make the judgment or decision. Another task is inference-guiding, 
which is to identify the missing data if given facts are not sufficient to reach any solid conclusion. Figure 1 shows 
an intelligent agent with inference-guiding function and its interaction with the environment. 

Figure 1. The intelligent agent with inference guiding function. 

Logical inference is a subject that has been studied extensively. The Davis-Putnam algorithm [Davis et al. 
(I960)] and DPLL backtracking algorithm [Davis et al. (1962)] were among the earliest effective algorithms for 
prepositional knowledge bases. Thereafter Robinson developed the full resolution rule [Robinson (1965)]. Due to 
the close relation between prepositional inference and the satisfiability problem (SAT), all the algorithms developed 
for SAT are actually working for prepositional inference either [Gu et al. (1997)]. Modus ponens [Bonissone 
(1993)] [Awad (1996)] is a deductive rule among implications. Forward chaining (or data-driven) and backward 
chaining (or goal-driven) [Turban et al. (2001)] are two alternative methods for controlling inference in rule-based 
intelligent systems, based on which there are many variations and extended technologies, such as the production 
system [Palopoli et al. (1997)] and deductive database [Ramakrisshnan et al (1995)] [Ullman (1989)]. The 
Jeroslow-Wang algorithm [Jeroslow et al. (1990)] utilized the integer programming techniques into logical 
inference. That algorithm was further improved in [Wang (1997)] and [Wang (1998-B)]. 

Comparing to logical inference, inference-guiding has been less explored. But still some research results have 
been achieved. EXPERT used pre-listed orderings of mles and questions [Hayes-Roth et al. (1983)]. KAS, a shell over 
PROSPECT, used both forward and backward chaining, together with a scoring function, for picking more relevant 
missing data [Duda et al. (1979)]. Mellish's procedure [Mellish (1985)], using a so-called 'Alpha-beta pruning 
technique', eliminated irrelevant questions for acyclic inference nets. Wang and Vande Vate proved that the problem of 
identifying the fewest key questions was computationally hard even in a Hom system, and they developed a heuristic 
algorithm for Hom systems [Wang et al. (1990)]. A cost-effective IG strategy for Hom systems was developed by 
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Wang and Triantaphyllou [Wang et al. (1996)]. For the prepositional systems, Wang's IG algorithm in [Wang (1998-A)] 
aimed at selecting fewer questions. The algorithm in [Wang (2005)] took the cost factor into accoimt. 

We present a new IG approach in this paper, which is an improvement of the algorithm in [Wang (2005)]. 
Section II introduces fiindamental concepts and terms. Section III discusses the general process of so-called 'top-level-
concltrsion oriented inference' in an intelligent agent. In Section IV, we review three currently existing IG algorithms. 
The new IG strategy is presented in Section V, and the results of computational experiments shown in Section VI. 
Section VII discusses the managerial implications and applications of the new IG strategy. 

FUNDAMENTALS 

A, predicate names a relationship between objects. If each object is an assertion (or a statement), whose 
value is either true or false, then the predicate is called a propositional formula, or simply a proposition. The 
relationship between assertions can be "OR" (v), "AND" (a), "IMPLY" (—>), "EQUIVALENT" (<->). The negation 
is demhed as A literal is a propositional assertion or its negation. A truth valuation of a proposition is a set of 
value assij^nments to all assertions. 

propositional formula B is in a conjunctive normal form (CNF) if it is a conjunction of formulas Bj 
(l<i<t), where each Bj, called a clause, is a disjunction of literals. A unit clause is a clause consisting of one literal. 
Any propositional formula can be transformed into a CNF. A disjunctive clause can be put into an implication, i.e., 
a form of "if...then..." mle, and vice versa, by applying the relation (BivB2)= (-•Bi^Ba). In an implication Bi->B2, 
Bi is c alled the premise and B2 is called the conclusion. 

In applications of intelligent agents, inference is carried out to prove some goals that are called top-level-
conclusions (TLC). For example, possible faults in an engine are TLCs in a diagnosing system for maintenance of an 
aircrall; and required operating adjustments are TLCs of a real-time piloting control system. An assertion is observable 
if its value can be obtained from the environment or user directly with no inference is needed. For example, the 
assertiions about the result of an X-ray examination and about the answer of a patient to a question from the doctor 
are oh sertfable. An observable assertion is called an unconfirmed observable assertion (UOA) if its value is not yet 
obtained. Eiach UOA has a cost that indicates the cost to obtaining its value, which is called questioning cost or 
confirmation cost. 

A literal L is derived (reached or proved) if and only if (KaF—>L} is a tautology (i.e., it is true for any 
truth valuation), where K is the knowledge base; F is the set of known facts. For example, K = {-iA3-)-A2, 
A4AA2—>A|} is a knowledge base, F={A3=false, A4=true} is the given fact set. We can see that every truth 
valuation of AI, A2, A3, and A4 would make (KaF-^L) = {((-IA3->A2) a (A4aA2->Ai) a (-1A3) a (A4)) -> (AI)} 
true. In this case we say AI is derived. But if F={A3=false}, then {KaF->L} = {((-1A3—>A2) a (A|aA2->A|) a 

(-1A3)) —> (Al)} is no longer a tautology, since the truth valuation {Ai=false, A2=true, A3=false, A4=false} would 
make it fiilse. In this case, we say A] is not derived (not implied by K and F). 

There is an altemative way of defining derivation of a literal. A literal is derived (reached or proved) if it 
must be logically true given the knowledge base and the known facts. In the example of the last paragraph, 
K={-iA3->A2, A4aA2->Ai} and F={A3=false, A4=true} would derive Ai because Ai must be logically true per to K 
and F. But if F={A3=false}, then Ai's value can be either 'true' or 'false', therefore A] is not derived. A derived 
literal is called a logical consequence of the knowledge base and the given facts. 

Suppose K is a knowledge base in which knowledge is represented by implications (i.e., if..then... rules). 
There! are: n assertions. A], A2,..., An, and m if..then... rules (or clauses) in K. We use the symbol R(ij) to denote 
the j-th mle whose conclusion is Lj. For an observable assertion A;, we reserve R(i,0) to denote a clause of fact "Ai 
is tme" or' Ai is false". Thus each assertion, including each UOA, appears as a conclusion in some rale. A proof 5 
is a 2n-diimensional vector such that for each literal L, R(i,8(i)) is a rale concluding Li. A proof 5 gives a possible 
way of proving each assertion. The deriving cost of a literal associated with a proof is the sum of the questioning 
costs of the UGAs in the proof. 
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If there is at most one positive literal in a disjunctive clause, then the clause is called a Horn clause. A 
Horn clause in form of implication is that a set of positive assertions implies one positive assertion. A conjunction 
of Horn clauses is called a Ham system. 

We define an unconfirmed observable assertion set (UOA-set) of Aj in a Hom system as a set of UOAs 
such that if all the UOAs were confirmed true, then Aj would be proved, but if any one were false, then Ai could not 
be concluded from the others in this set. A UOA-set thus is a minimal set of UOAs that could derive a TLC. An 
assertion Aj may have many UOA-sets associated with it. Each UOA-set of Aj corresponds to a proof S in such a 
way the UOA-set contains the UOAs in the proof 5, and the proof 5 indicates how Aj can be proved by the UOA-
set. 

TLC-ORIENTED INFERENCE 

TLC-oriented inference refers to the intellectual process that starts with some data and aims at deriving a 
TLC (top-level-conclusion). Note the difference between ordinary logical inference and TLC-oriented inference. 
Ordinary logical inference does not have a particular 'goal' during inference. It is just to derive, based on the given 
facts, as many logical consequences as possible. It stops when it cannot derive any more logical consequences. 
TLC-oriented inference, on the other hand, has TLCs as the 'goal'. It will continue as far as no TLC is derived. In 
the circumstance that ordinary logical inference has to stop due to failing to generate new logical consequences, 
TLC-oriented inference would seek more information from the environment to make logical inference continue. 
TLC-oriented inference has a lot of applications, particularly in the intelligent systems for problem diagnosing, 
troubleshooting, consulting, and real-time controlling. 

TLC-oriented inference has a counterpart in human's problem-solving process whose goal is 'solving a 
problem'. 'Data analysis' is the first phase in the human's problem-solving process, which makes a thought on 
whether the problem can be solved with data currently on hand. If not, then the second phase, 'investigation', must 
be carried out to find more information. Data analysis and investigation are carried out alternately until the problem 
is solved. The corresponding two phases in TLC-oriented inference are ordinary logical inference and inference-
guiding. Let K denote the knowledge base, F the set of known facts. The process of TLC-oriented inference is as 
follows: 

TLC-oriented Inference: 

Alternately run the two phases until a TLC is derived: 

Phase 1. Logical inference (inference). 

To see whether any TLC can be derived as a logical consequence of F and K. That is, whether KAF—FT 
where T is a TLC. If so. Stop, we are done, otherwise go to Phase 2. 

Phase 2. Inference-Guiding. 

Pick up a UOA and obtain its value from some information source (such as the user, a sensor, or a meter). 
After getting its value, put the new fact into F and go to Phase 1. 

The above TLC-oriented inference tells what to do. It does not tell how to do. Many algorithms have been 
developed for 'how' in either phase, as we reviewed in Section 1. In this paper, we focus on 'how' to do Phase 2, 
inference-guiding. 

The IG problem is an optimization problem by its nature since it seeks the missing data that would 
contribute to reaching a TLC fast and economically. On the other hand, the IG problem is computationally hard 
[Wang et al. (1990)], which means that there is no known efficient algorithm to identify the 'optimal' questions to 
ask. Given the hardness of the IG problem, we develop heuristic algorithms for IG, which pursue "good", instead 
of the "best", results in an efficient way. 
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REVIEW OF THREE CURRENT IG STRATEGIES 

Inference-guiding is Phase 2 of the TLC-oriented inference process. Our goal is to develop more effective 
and efficient algorithms for inference-guiding. In this section, we review three currently existing IG strategies. 

Wild Randomness IG Strategy (WRS) 

The wild randomness IG strategy (WRS) selects next question from the pool of current UOAs randomly. 
Let UPL denote the pool of UOAs. UPL initially contains all UOAs. The wild randomness IG method is as 
follovre. 

Step L Pick up a UOA, Pkfor example, from UPL randomly: 
Step 2. Obtain the value v of Pkfrom an information source, and put its value into the fact set F. 

Let UPL=UPL/{Pk}. 

The main advantage of WRS is its simplicity. It just picks a UOA randomly. Its weakness is obvious, - it 
may select many irrelevant questions. 

Backward Chaining IG Strategy (BCS) 

The backward chaining IG strategy (BCS) is widely used in the knowledge-based systems that apply 
backv/ard chaining [Luger et al. (1989)] [Horowitz (1978)] as the logical inference algorithm. It starts with a TLC 
and takes it as a goal to pursue. It then looks at the mles that can be used to prove the goal. The premises of such a 
rule are then taken as subgoals to pursue. This process goes backward from a TLC, until a UOA is encountered, 
and tliat UOA is the question to be asked. This method is stated formally as following. 

Step 0: Place a TLC in a stack S. 
Step 1: Pop out a literal from the top of the stack S. 

If the literal is observable and its value is known, go to beginning of Step 1; 
If the literal is a UOA, go to Step 2; 
Otherwise, select a rule that can prove it and put the premise assertions of the rule into the stack S, go 

to beginning of Step 1. 
Step 2: Ask about the selected UOA, obtain its value, and put its value into the fact set F. 

"ifhis strategy is better than the wild randomness IG strategy because it aims at a TLC all the time, which 
guarantees that all the questions are relevant to a possible TLC. However, it still involves randomness. A TLC is 
randomly selected in Step 0. And when a goal or subgoal can be proved by many rules, a rule is selected randomly. 
Moreover it does not consider total cost or total number of questions when selecting questions. 

Cost-Reducing IG Strategy (CRS) 

Let K be a prepositional knowledge base which is composed of "if...then..." rales. Let KHOIH be the 
knowledge laase, which is the same as K except that all the negation signs "-i" are removed. Knom is a Horn clause 
system that is referred to as the associated Horn system of prepositional knowledge base K. A set of UOAs is 
called a PH-UOA-set (pseudo-Horn-UOA-set) of K if it is a UGA-set in Knom-

Identifying a good PH-UOA-set in Horn system Knom is easier than identifying a good UOA-set in 
propositional system K. To find a good PH-UOA-set of low cost, a heuristic labeling algorithm is used on KHOHH 
which calculates the cost (more exactly, the upper bound of the cost) of reaching each goal and subgoal. After a 
low-cost PH-UOA-set that could reach a TLC is identified, questions are selected from the PH-UOA-set to ask, 
until: (a) an answer is obtained and it is not in favor of proving the TLC through the proof associated with the 
selected PH-UOA-set, and another PH-UOA-set has to be identified; or (b) all UOAs in that PH-UOA-set are asked, 
and answers are all in favor of proving the TLC through the proof associated with the PH-UOA-set, then the TLC is 
proved. 
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The Cost-Reducing IG Strategy with PH-UOA-Set (CRS) is outlined as follows. 

Step 1. Convert the current propositional system K into Kuom by removing all the negation signs of assertions. 
Step 2. Identifying a PH-UOA-set U inKnom by using the heuristic developed in [Wang (2005)]. 
Step 3. Select a UOA Atfrom the PH-UOA-set U; Get the value of Aj^from an information resource about the value 

of Ah Put its value into the fact set F. 

The heuristic of identifying a PH-UOA-set in Step 2 is a labeling algorithm to find a good UGA-set in the 
Horn system. It labels each assertion with the smallest upper-bound-cost of obtaining its value in a forward process; 
then picks a TLC with the smallest label and identifies the corresponding UGA-set in a backward process. This IG 
strategy was put forward in [Wang (2005)]. The experiments showed that this IG strategy is substantially better 
than BCS and WRS. 

THE NEW IG STRATEGY (NewS) 

Even though the strategy CRS performed significantly better than WRS and BCS, CRS contains two 
approximations in selecting a UGA-set. One is using the upper bound of the minimum cost of proving an assertion, 
which is represented by the label of an assertion, to approximate the minimum cost of proving the assertion. 
Another is using the associated Hom system, instead of the original propositional system. The two approximations 
make CRS pick up a UGA fast, though it may reduce the quality of the UGA-set. 

The second approximation, using the associated Hom system, has a major weakness. The PH-UGA-set 
selected by CRS is not necessarily leading to a TLC. For example, we have a small propositional system with three 
clauses K={A2A—1A3—»Ai, A3AA4—>A2, A4A—A5—>-iA3} in which Ai is TLC, A4 and A5 are UGAs. The value of 
TLC A| is not forced to be tme or false, so it is not derived. The Hom system associated with the propositional 
system is KHom={A2AA3->A|, A3aA4->A2, A4AA5—>A3}, by removing all negation signs. Gne can see that {A4,A5} 
is a PH-UGA-set in KHom- However, no matter what values At and A5 take, the TLC Ai is not forced to be either 
tme or false in K. This weakness may mislead inference and cost more by asking irrelevant questions that lead to 
no TLCs. How often such misleading may happen depends on the specific knowledge bases. 

The new IG strategy improves CRS by making sure that each UGA-set identified would be associated with 
a TLC. We defme a prooaeation- UOA -set in a propositional system as a set of UGAs that can be identified by 
using backward chaining so that if these UGAs took certain values then a TLC would be proved, and the process of 
backward chaining takes an assertion and its negation as two different assertions. A propagation-UGA-set will 
always be associated with a TLC, since it is derived by using backward chaining directly on the original system. 
Another advantage of using the propagation-UGA-set is that it is computationally efficient to identify a good 
propagation-UGA-set. 

The new IG strategy is to select a low-cost propagation-UGA-set and pick up a UGA from the set to ask. 
We use a labeling algorithm, which is an extension of the labeling algorithm for the Hom system, to identify a small 
propagation-UGA-set. 

The following is the procedure of the new IG algorithm, NewS. Let K denote the knowledge base that is in 
form of "if...then..." mles, D(i) the index set of mles that have literal Li as the conclusion, I(i,d) the index set of the 
premises of mle R(i,d), Cost(i) the questioning cost of UGA Ai. Note that here we are dealing with literals rather 
than assertions since we take an assertion and its negation separately. There are n assertions in the knowledge base 
K, therefore there are 2n literals such that Li=Ai, Ln+i=—lAi, for i=I,2,...,n. 

The New IG Strategy with Fropagation-UGA-Set (NewS). 

BEGIN {Main}; 
Step 1. Identifying apropagation-UOA-set of K: 

Label the unconfirmed literals and rules by using the procedure LABELING, taking an assertion and its 
negation separately; 
Select a potential TLC Ac that has the smallest label; 
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Trace backfrom and find the propagation-UOA-set, say U, which is associated with smallest label; 
Step 2. Asking Question: 

Select a question At to ask from the propagation-UOA-set U; 
Get the value of At from an information resource. 

END {Main}; 
Procedure LABELING; 
BEGIN { LABELING } ; 
Step 1: Label each UOA Ai as Ci=Cost(i). 
Step 2: Alternately use procedure PROPAGATE and procedure ASSIGN to label the literals and clauses until no 

new labels are applied in either subroutine. 
END (LABELING); 
Procedure PROP AG A TE; 
BEGIN{PROPAGATE} ; 
While there is an unlabeled element t: 
If the element tis a rule R(i,d) and all its premises are labeled, then label rule R(i,d) as: 

C,j = E Q 
jel(i,d) 

If the element tis a literal Lj and all the rules with Li as the conclusion are labeled, then label literal Li as: 

where S(i) £D(i) is such that 

END (PROPAGATE); 

Procedure ASSIGN ; 
BEGIN ( ASSIGN) ; 
Among all labeled rules whose conclusions are not labeled, choose the one, say (k,d*), with the smallest label. 

That is: 

Ckd»=MIN (^id). 
R(i,d) labeled and A; unlabeled 

Let. Ci( Gh^j* 
END (ASSIGN). 

The characteristics of the new IG strategy NewS include the follows: 
(a) The calculations of the labels are in the original propositional system, rather than the associated Horn system, so 
that the selected UOA is guaranteed to be relevant to a TLC. 

(b) It takes an assertion and its negation as two different assertions in inference-guiding to make sure that the 
propagation-UOA-set identified is associated with a TLC. For example, in a small database K={A4A->A2, 
A3—>-iA:!, A2—>Ai} with Ai as the TLC, At and A3 as UOAs, the propagation-UOA-set identified by NewS is {At}, 
whicli is associated with TLC Ai. But if we did not differentiate an assertion from its negation, then we would have 
two propagation-UOA-set, {A4} and {A3}, in which {A3} would not be associated with TLC A| at all. However, in 
logical inference, an assertion and its negation must not be taken as two independent assertions, since they are 
closely related semantically; If A is known to be true then -lA must be false, and vice versa. 

(c) It uses the upper bound of the cost of deriving the value of an assertion as the criterion of labeling the assertion. 
That is, each assertion's label is the minimum of the upper bounds of the total costs to derive the assertion's value. 
The r eason of doing so is to make the algorithm efficient in identifying a propagation-UOA-set. 

(d) It allows the knowledge base to have cycles. It is not uncommon for a knowledge base to have cycles. A robust 
algorithm should be able to work on knowledge bases with cycles. In this IG strategy, cycles are dealt with in the 
sub-routine ASSIGN. 
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(e) The computational complexity of the algorithm is log-linear to the size of the knowledge base in terms of the 
number of assertions [Wang et al. (1990)]. 

However, the propagation-UOA-set has its weaknesses. In a prepositional system, not all UOA-sets are 
propagation-UOA-sets. In other words, not all UOA-sets can be found by backward chaining propagation. For 
example, {—IAIAAS—^As, -1A3A—lAj—^Ai, A4A—lA^—>Ai, A3A—1A5—>Ai} is a small knowledge base in which Aj is 
TLC, At, As and are UGAs. There are two propagation-UOA-sets, {A4, Ag} and {A4, As, A^}, which can be 
identified by backward propagation. {As} is not a propagation-UOA-set. But {A5} is a UOA-set, since if As's 
value is "false", then TLC At must be 'true' (i.e., Aj is derived) no matter the values of A4 and Aj. 

Moreover, a propagation-UOA-set does not guarantee to be a 'minimal' set of UOAs that eould derive a 
TLC. In the above example, {At, As, As} is a propagation-UOA-set, but it is not a minimal set of UOAs for 
deriving TLC At since just As itself is sufficient to derive TLC At, if A5="false", without using A4 and A^. 

Despite the weaknesses of the propagation-UOA-set, we expect NewS to be more effective than CRS 
because NewS eliminates the waste of picking up a UOA-set that does not lead to any TLC in any cases. We need 
computational experiments to verify this hypothesis and to quantify the improvements. 

COMPUTATIONAL EXPERIMENTS 

We have carried out computational experiments to test the new IG strategy NewS by comparing it with the 
three existing ones reviewed in Seetion IV. In the experiments, inference scenarios were generated randomly. We 
used the Jeroslow-Wang (JW) algorithm [Jeroslow et al. (1990)] with modification [Wang (2003)] for logical 
inference. The experiments were run on Gateway 2000 personal compute Pentium 350. Programs were written in 
Borland C" 4.5. 

We created knowledge bases of "if...then..." clauses randomly with parameters including number of 
clauses, number of propositional assertions, length of a clause, number of UOAs, and number of TLCs. The sign of 
an assertion (i.e., whether it is a negation) was determined randomly with half-by-half chanee. The questioning eost 
of a UOA was determined randomly with 90% chance in the range of [1, 100], and 10% chance in the range of 
[1001, 2000]. The purpose to put the cost structure in this way was to test whether an IG strategy could be 
intelligent enough so that the high eost UOAs were avoided unless they had to be used for inferenee-guiding. 

Table 1 shows the experiment results on 200 randomly generated knowledge bases that are elustered into 
twenty groups. Eaeh group contains ten knowledge bases of same values of parameters in number of clauses, 
number of assertions, length of a clause, number of UOAs, and levels of rules. The strategies are compared upon 
number of questions asked (Questions), total questioning cost of deriving a TLC (TCost), average eost per UOA 
questioned (Cost/Que), CPU time for logical inference (In/Time) which is for Phase 1 of the TLC-oriented process, 
and CPU time for inference-guiding (IGTime) which is for Phase 2 of the TLC-oriented process. In the table, WRS 
stands for the wild randomness IG strategy, BCS for the baekward chaining IG strategy, CRS for cost-redueing IG 
Strategy, and NewS for the new IG strategy with propagation-UOA-set. The five eolumns on the left provide the 
knowledge base parameters, where n stands for number of elauses, m for number of assertions, len for the maximum 
number of assertions in a clause (i.e., length of a clause), UOAs for number of UOAs, TLCs for number of top-
level-conelusions. The sixth column, KBs, gives number of knowledge bases tested in a group. 

Table 1: Experiment Results on Four IG Strategies. 

«=number of clauses, m=number of assertions, fe/j=max length of a clause 
C/CMi=number of UOAs, rLCx=number TLCs 
XS5=number of knowledge bases with the parameters on the left. 
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n m len UOAs TLCs KBs WRS BCS CRS NewS 

100 100 3 50 5 10 Questions 23.3 14.8 10.5 9.2 
TCost 5934.05 2848 741.05 479.25 

Cost/Que 254.68 192.43 70.58 52.09 
InfTime 2.315 1.523 1.105 0.978 
IGTime 0.035 0.078 0.073 0,077 

100 100 4 50 5 10 Questions 28 15.2 12.4 10.2 
TCost 5035.85 3736.3 841.1 778.9 

Cost/Que 179.85 245.81 67.83 76.36 
InfTime 2.877 1.636 1.317 1.096 
IGTime 0.033 0.075 0.077 0.09 

100 100 3 40 5 10 Questions 30 16.5 14.5 11.2 
TCost 6104.75 3774.9 1521.75 1405.9 

Cost/Que 203.49 228.78 104.95 125.53 
InfTime 2.98 1.693 1.522 1,179 
IGTime 0.028 0.076 0.085 0.102 

200 200 3 100 10 10 Questions 51.6 22.2 7.6 6 
TCost 10353.4 4211.4 195.3 159.3 

Cost/Que 200.65 189.70 25.70 26.55 
InfTime 13.693 6.403 2.261 1.826 
IGTime 0.135 0.286 0.123 0.15 

300 300 3 150 15 10 Questions 68.8 27.8 15.4 12.1 
TCost 12997.6 4724.6 307.3 247.7 

Cost/Que 188.92 169.95 19.95 20.47 
InfTime 35.825 16.029 9.337 7.436 
IGTime 0.231 0.675 0.456 0.6 

500 500 3 250 25 10 Questions 84.9 25.1 12.4 10 
TCost 17647.4 4421.6 206.2 173.9 

Cost/Que 207.86 176.16 16.63 17.39 
InfTime 124.271 40.792 21.142 17.403 
IGTime 0.508 1.46 0.86 1.25 

800 800 3 400 20 10 Questions 111.6 22.2 11.2 10.8 
TCost 21997.2 3723.9 169.5 158.2 

Cost/Que 197.11 167.74 15.13 14.65 
InfTime 226.052 51.298 26.366 25.424 
IGTime 1.285 3.13 1.651 3,007 

00 200 4 100 10 10 Questions 61.6 13.3 9.4 8 
TCost 11382.4 2517.3 234.4 214.7 

Cost/Que 184.78 189.27 24.94 26.84 
InfTime 16.687 4.204 3.051 2,612 
IGTime 0.149 0.188 0.167 0,229 

500 350 3 175 9 10 Questions 66.6 19.4 14.1 10.1 
TCost 13718.5 4161.9 289.5 190.8 

Cost/Que 205.98 214.53 20.53 18.89 
InfTime 30.731 10.067 7.35 5.425 
IGTime 0.387 0.751 0.674 0.857 

101 9

Wang: Inference-Guiding for Intelligent Agents

Published by CSUSB ScholarWorks, 2005



J. Wang 2005 Volume 14, Numbers 1 & 2 

n m len UOAs TLCs KBs WRS BCS CRS NewS 
TCost 6120.1 3634.1 261.9 243.3 

Cost/Que 168.13 200.78 25.93 26.16 
InfTime 9.978 5.142 3.039 2.845 
IGTime 0.122 0.305 0.22 0.325 

600 400 3 200 15 10 Questions 55.2 20.1 12.1 9.3 
TCost 10912.5 3014.4 196.7 148.8 

Cost/Que 197.69 149.97 16.26 16.00 
InfTime 51.287 19.891 12.448 9.791 
IGTime 0.44 0.968 0.758 1.066 

500 300 3 150 10 10 Questions 42.4 21.1 9.7 7.3 
TCost 7868.6 3845.8 139.3 121.2 

Cost/Que 185.58 182.27 14.36 16.60 
InfTime 22.05 11.375 5.616 4.305 
IGTime 0.288 0.705 0.446 0.567 

600 400 3 200 11 10 Questions 50.1 18.3 9.9 6.6 
TCost 9612.3 3508.5 175.1 115.2 

Cost/Que 191.86 191.72 17.69 17.45 
InfTime 34.745 13.744 7.705 5.159 
IGTime 0.427 0.917 0.637 0.768 

600 300 3 150 9 10 Questions 48.8 15.7 11.3 8.2 
TCost 8616.1 2479.3 170.5 128.7 

Cost/Que 176.56 157.92 15.09 15.70 
InfTime 25.736 9.275 6.944 5.178 
IGTime 0.369 0.575 0.572 0.732 

600 300 4 150 9 10 Questions 57.7 25.4 13.4 11.2 
TCost 12237.05 4956.1 315 301.9 

Cost/Que 212.08 195.12 23.51 26.96 
InfTime 32.647 16.572 9.182 7.843 
IGTime 0.452 1.008 0.696 0.987 

400 200 5 100 6 10 Questions 53.7 26.1 9.4 7.2 
TCost 10200.9 4759.1 248.6 198.1 

Cost/Que 189.96 182.34 26.45 27.51 
InfTime 16.505 9.437 4.7 3.808 
IGTime 0.271 0.615 0.334 0.384 

500 250 5 125 7 10 Questions 63.6 31.9 23.1 19.2 
TCost 14399.2 7130.1 1270.2 943.2 

Cost/Que 226.40 223.51 54.99 49.13 
InfTime 26.397 15.889 11.488 10.475 
IGTime 0.393 0.988 0.82 1.131 

600 300 5 150 9 10 Questions 68.8 32.1 13.2 11.5 
TCost 15572.1 6974.4 351.7 338.3 

Cost/Que 226.34 217.27 26.64 29.42 
InfTime 42.792 23.26 11.346 10.498 
IGTime 0.543 1.321 0.762 1.079 
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n m len UOAs TLCs KBs WRS BCS CRS NewS 

600 300 5 200 10 10 Questions 69.5 34.8 12.1 10.3 
TCost 15181.6 7822.6 327.4 298.2 

Cost/Que 218.44 224.79 27.06 28.95 
Inffime 43.279 25.368 11.096 10.312 
IGTime 0.528 1.408 0.695 1.006 

800 400 5 200 10 10 Questions 86.3 51.1 10.3 9.4 
TCost 16223.7 8459 260.9 239 

Cost/Que 187.99 165.54 25.33 25.43 
InfTime 74.854 50.687 13.081 12.224 
IGTime 0.959 3.157 0.9 1,433 

Avg. fuest ions (UOAs asked to reach a TLC) 57.9 23.6 12.1 9.9 
Avg. TCost (total questioning cost to reach a TLC) 

Avg. Cost/Que (costper UOA asked) 
A\vg. InfTime (inference time to reach a TLC) 

Avg. IGTime (IG time to reach a TLC) 

11605.77 4535.17 411.17 344.23 Avg. TCost (total questioning cost to reach a TLC) 
Avg. Cost/Que (costper UOA asked) 

A\vg. InfTime (inference time to reach a TLC) 
Avg. IGTime (IG time to reach a TLC) 

200.29 192.49 33.97 34.93 
Avg. TCost (total questioning cost to reach a TLC) 

Avg. Cost/Que (costper UOA asked) 
A\vg. InfTime (inference time to reach a TLC) 

Avg. IGTime (IG time to reach a TLC) 
41.785 16.714 8.505 7.291 

Avg. TCost (total questioning cost to reach a TLC) 
Avg. Cost/Que (costper UOA asked) 

A\vg. InfTime (inference time to reach a TLC) 
Avg. IGTime (IG time to reach a TLC) 0.379 0.934 0.550 0.792 

V/e summarize our observations and analyses of the experiment results as follows: 

(1) CRS vs. NewS: 

The average total questioning cost to reach a TLC was 344.23 for NewS, compared to 411.17 for CRS. 
NewS asiked 9.9 questions on average to reach a TLC, while CRS asked 12.1. But the two strategies had similar 
costs pel UOA asked (Cost/Que). That implies that the power of saving cost by NewS, comparing to CRS, resides 
in selecting more relevant UOAs to ask, rather than lower-cost UOAs. 

CRS and NewS had similar capacities of selecting low-cost UOAs. But NewS was better in selecting 
fewer and more relevant questions, which made its total cost of deriving a TLC (TCost) lower. That verifies our 
hypothesiis that replacing the PH-UOA-set by the propagation-UOA-set can reduce the wastes by asking fewer 
questions. 

(2) BCS and WRS vs. NewS: 

(2.a) BCS and WRS asked much more questions. To reaeh a TLC, BCS asked 23.6, WRS asked 57.9, while 
NewS asked only 9.9 questions; 

(2.b) 13CS and WRS cost much more to reach a TLC. To reach a TLC, it cost BCS 4,535.17, WRS 11,605.77, 
and NewS only 344.23. 

Comparing to BCS and WRS, NewS was able to not only choose fewer UOAs, but also avoid high cost 
questions and pick up lower cost questions. 

(3) In the experiments, 90% of UOAs cost 1-100 (with average at 50), 10% of UOAs cost 1,001-2,000 (with 
average at 1,500), uniformly distributed in each range. So, the overall expected cost per question was 
1,500* 10%+50*90%= 195. 

Look at the average Cost/Que (cost per UOA asked) for each strategy: 
WRS: 200.29; BCS: 192.49; 
CRS: 33.97; NewS: 34.93. 

(3 ,a) WIS and BCS were running around the overall expected cost, 195, per question. That was because neither 
strategy considers the cost in the process of picking up a question. 
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(3.b) CRS and NewS were running at the average cost per question significantly lower than 195, and even lower 
than 50 that is the expected questioning cost for the group of 90% low-cost questions. That was because both 
strategies not only managed to avoid the 10% high-cost questions, but also were able to select the lower-cost 
questions within the group of 90% low-cost questions. 

(4) BCS vs. WRS 

Although both WRS and BCS are strategies of randomness, WRS cost much more to reach a TLC than 
BCS (11,605.77 vs 4,535.17). That was because WRS did not use the concept of UOA-set at all, whereas BCS 
selected questions from an 'implicit' UOA-set, so that WRS asked more questions (57.9) than BCS (23.6), though 
the cost per question of WRS was similar to that of BCS. 

There was no explicit procedure in the BCS strategy to select a UOA-set, but BCS did identify a UOA-set 
implicitly before picking up a UOA, since a UOA identified by the backward chaining procedure in BCS must be in 
some UOA-set. However, such a UOA-set was pick up in BCS randomly. In this sense, BCS could be named as 
'random UOA-set IG strategy'. 

(5) CPU time: 

The total CPU time to reach a TLC on average is the sum of average logical inference time and average 
inference-guiding time, i.e., total CPU time = (avg. Inffime) + (avg. IGTime). For each of the four strategies, the 
total CPU time was: 

WRS: 42.164 seconds; BCS: 17.648 seconds; 
CRS: 9.055 seconds; NewS: 8.083 seconds. 

CRS and NewS used substantially less time overall to reach a TLC. The main reason was the number of questions. 
All the four strategies used a same inference procedure - JW algorithm. The difference of total inference times 
(InfTime) among the four strategies, therefore, reflected the difference in number of questions asked (since after 
each question is asked, inference procedure is applied to see whether a TLC is reached). 

The CPU times for inference-guiding (IGTime) were relatively small comparing to the total CPU times: 
WRS: 0.379 seconds; BCS: 0.934 seconds; 
CRS: 0.550 seconds; NewS: 0.792 seconds. 

They were the CPU times for selecting UGAs to ask about. Note that, in terms of complications of IG 
procedure, the four strategies are ranked as NewS, CRS, BCS, WRS, from the most complieated to the simplest. 
WRS used least time in UOA selection since the selection procedure was extremely simple, even though the number 
of questions selected was the highest among the four methods. CRS and NewS took shorter time in UOA selection 
because number of questions needed was small by CRS or NewS, even though the IG procedures of CRS and NewS 
were more complicated than BCS. NewS took longer time than CRS because the complication of the IG procedure, 
even though NewS asked fewer questions. 
(6) Total CPU time vs. total process time. 

Table 1 records only the CPU times for inference and inference-guiding. But it usually takes an intelligent 
agent much more time to derive a TLC. The time of acquiring the value of the selected UOA from an information 
source is not coimted in Table 1. Let us define the total process time (TFT) as the sum of total CPU time and the 
data acquisition time. The total CPU time is the 'on-line' time, while the data acquisition time is the 'off-line' time. 
In most cases, the ofT-line time is much longer than the on-line time. And the data acquisition time is proportional 
to number questions asked. So, taking the off-line time of acquiring data into account, the new strategy NewS 
would be even better and more efficient than the other three strategies since NewS asked fewest questions to reach a 
TLC. 

(7) There seems no pattern that shows the advantages of NewS over CRS in terms of the size of a knowledge base. 
But the advantages of NewS over WRS and BCS were more significant as number of UOAs getting larger. It could 
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be exiplaiiied as that when number of UOAs was getting larger, there were more choices in UOA selection, therefore 
a better cliiance for a lower-cost question to be selected by NewS. 

(8) In summary, NewS was the most economical method in terms of cost of reaching a TLC, and the time to reach a 
TLC by NewS was faster than those by the other three current IG strategies, especially when the off-line time of 
acquiring data was taken into account. 

MANAGERIAL IMPLICATIONS AND APPLICATIONS 

Since the intelligent agents and intelligent systems have many applications in management, the improved new 
IG approeich has managerial implications by making those intelligent systems smarter in figuring out the key missing data 
and reaching the conclusion quickly and economically. Here are examples of managerial circumstances in which the 
new IG approach can be applied. 

(a) Systeims for consulting and management decision support: A good IG strategy is required for such systems to 
keep asking relevant and to-the-point questions, keep avoiding silly and irrelevant ones, and provide professional 
advices. 

(b) Systems for training / education: A training/ education intelligent system should be trainee/student-centered. 
The new IG approaches makes the system know quickly about individual trainees / students by asking a few 
questions. 

(c) Intelligent systems for problem-diagnosing or trouble-shooting for management, especially for emergency 
management: IG is essential to quickly and economically diagnose where the 'trouble' is, and get the problem 
solved. 

(d) Real-time control systems in aircrafts, space crafts, atomic reactors, and chemical processes: In case some 
unexpected situation occurs, the new IG approach helps obtain key relevant information about what happens and 
how to react in short time. 

(e) Intelligent searching in a huge database: The new IG approach helps narrow down the searching domain, when 
matching an inexact piece of information or a blurred image in a huge database. 

(f) Distributed database systems: The new IG approach helps the central database management system to figure out 
which sub-systems should be called and what information should be asked in response to an information request of 
inter-system optimization. 

(g) Intelligent agents: Since an intelligent agent is an intelligent system capable of independent actions, a good IG 
approach is essential for every movement / action by quickly making judgment on the situation and determining 
what to do. 

CONCLUSION 

Inference-guiding is very important for the efficiency and effectiveness of an intelligent agent. Searching 
for the 0]3timal solution in the IG problem, however, is computationally hard. The new IG approach presented in 
this paper, NewS, applies the concept of the propagation-UOA-set directly on the original propositional system, and 
is more effective and economical in selecting key missing data than the three existing strategies in our 
computational experiments. 

The new IG approach makes the intelligent systems in management more intelligent when the given data 
are not sufficient to reach a conclusion. Management may benefit from the new IG approach by receiving more 
effective decision supports of the intelligent systems. 
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Further research on inference-guiding includes developing more accurate criteria for selecting the UOA-set 
and UOA, integrating uncertainties of knowledge and data into IG approaches, and exploring inference-guiding on 
other knowledge base structures such as the Bayesian network [Russell et al. (2003)]. 
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