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ABSTRACT 

 

Current industries data’s are stored in relation structures. In usual approach to mine these data, 

we often use to join several relations to form a single relation using foreign key links, which is 

known as flatten.  Flatten may cause troubles such as time consuming, data redundancy and 

statistical skew on data. Hence, the critical issues arise that how to mine data directly on 

numerous relations. The solution of the given issue is the approach called multi-relational data 

mining (MRDM). Other issues are irrelevant or redundant attributes in a relation may not make 

contribution to classification accuracy. Thus, feature selection is an essential data pre-

processing step in multi-relational data mining. By filtering out irrelevant or redundant features 

from relations for data mining, we improve classification accuracy, achieve good time 

performance, and improve comprehensibility of the models. We had proposed the entropy based 

feature selection method for Multi-relational Naïve Bayesian Classifier. We have use method 

InfoDist and Pearson’s Correlation parameters, which will be used to filter out irrelevant and 

redundant features from the multi-relational database and will enhance classification accuracy. 

We analyzed our algorithm over PKDD financial dataset and achieved the better accuracy 

compare to the existing features selection methods. 

 

INTRODUCTION 

 

The term data mining refers to the extraction of valuable knowledge from large amounts of data. 

Data mining is the process of discovering knowledge from data. With the massive quantity of 

data stored in repositories, it is progressively more significant to develop powerful analysis and 

decision making tool for the extraction of interesting knowledge. The task of classification is 

concerned with predicting the value of one field from the values of other field. The target field is 

called the class. The other fields are called attributes. Propositional machine learning algorithms 

assume the input data is represented in a simple attribute-value format. Most existing data 

mining algorithms (including algorithms for classification, clustering, association analysis, 

outlier detection, etc.) work on single tables. For example, a typical classification algorithm (e.g., 

C4.5 or SVM) works on a table containing many tuples, each of which has a class label, and a 
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value on each attribute in the table. In recent years, there has been growing interest in multi-

relational classification research and application, which address the difficulties in dealing with 

large relation search space, complex relationships between relations, and a daunting number of 

attributes involved. Most structured data is stored in relational databases, which is stored in 

multiple relations by their characters. Conventionally, many classification approaches can only 

be applied to a single relation. When performing these approaches on multi-relational data, it 

often requires transferring data into a single table by flattening and feature construction, which is 

known as Propositionalization. However, many of these methods are heuristic, so flatten may 

cause some problems such as time consuming and statistical skew on data. Multi-relational data 

mining (MRDM) has been successfully applied in a variety of areas, such as marketing, sales, 

finance, fraud detection, and natural sciences. Multi-Relational data mining looks for patterns 

that involve multiple relations in a relational database, its main difference with traditional data 

mining approaches is that it does not need to transform the data into a single table, it learns from 

the data in its original form preserving its structure and incorporating such structure into the 

learning process.  

 

RELATIONAL DATABASES 

 

A relational database is a collection of tables called relations, each of which is assign a unique 

name. Each relation consists of a set of attributes and stores a large set of tuples. Every tuple in a 

relational table represents an object which is used to identifying by a unique key to describe by a 

set of attribute values. Often one uses a semantic model to represent relational databases, 

allowing one to describe and design the database without having to pay attention to the physical 

database. Such a model is often referred to as a database scheme. One of the most common 

models is the Entity-Relationship (ER) model (Figure 1).  

 

A relational database typically consists of several tables (relations) and not just one table. A 

schema for a relational databases describe a set of entities DB = {E1, E2, …, En}, and set of 

relationships between entities. Each row in a relation is a tuple. Each relation has at least one 

primary key attributes. The other attributes are either descriptive attributes or foreign key 

attributes. Foreign key attributes link to primary key attribute of other relations. A relational 

database contains multiple interconnected relations, each of which represents a certain kind of 

objects or a type of relationships. A relational database consists of a set of named tables, often 

referred to as relations that individually behave as the single table that is the subject of 

Propositional Data Mining. Data structures more complex than a single record are implemented 

by relating pairs of tables through so-called foreign key relations. Such a relation specifies how 

certain columns in one table can be used to look up information in corresponding columns in the 

other table, thus relating sets of records in the two tables.  
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Figure1.  The schema of a financial database (from PKDD CUP 1999). 

 
 

SEMENTIC RELATIONSHIP GRAPH 

For a classification task in a multi-relational database, there is usually one table containing the 

class label attribute. We call this table as target table, and call the class label attribute as target 

attribute. Apart from the target table, there are usually many other tables linked to the target 

table directly or indirectly through arbitrarily long chains of joins. In order to represent this kind 

of relationship between tables, we use a graph, which is called a semantic relationship graph. 

Semantic Relationship Graph is kind of similar to ER diagram, which usually can be 

automatically generated from those common commercial database systems. 

Definition: (Semantic Relationship Graph) Semantic Relationship Graph is a directed acyclic 

graph SRG (V, E, W), where V is a set of vertices, each of which corresponding to a table in the 

database. E is a set of directed edges, and an edge (v, w) means table w can be linked to table v 

by directly joining these two tables. W is a set of attributes, each of which links two tables. We 

call this kind of attribute link attribute.  

Each edge of the semantic relationship graph represents one of the following two relationships 

between tables v and w:  

(1) Primary-key to foreign-key relationship, indicating that table w contains foreign-

key referring to primary-key in table v.  

(2) Foreign-key to primary-key relationship, indicating that table v contains foreign-

key referring to primary-key in table w.  

 

The reason we define a directed graph instead of undirected graph is that we need to start from 

the target table and link other tables with the target table step by step. We can also relax the 

constraints of semantic relationship graph by allowing the existence of cycle. If so, in order to 

avoid the iteration doing too many times, we can also set a parameter to control the iteration 

times. In the following sections, we only regard SRG as an acyclic graph. SRG facilitates the 

process of virtually joining the relations and acts just like road maps for the entire algorithm. 

One example of SRG for a financial database from PKDD CUP99 is given in Figure 2.  
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Figure 2.  Semantic relationship graph for the financial database from PKDD CUP99. 

 
 

TUPLE ID PROPAGATION 

Tuple ID propagation is a method for virtually joining non-target relations with the target 

relation. It is flexible and efficient method and it avoids the high cost of physical join. Suppose 

the primary key of the target relation is an attribute of integers, which represent the IDs of the 

target tuples. We use the ID of each target tuple to represent that tuple. This process takes only 

small amount of time and space compared to the physical joins used by the existing classifiers 

and it will boost up the effectiveness of the multi-relational classification techniques. Tuple ID 

propagation approach reveal to search in the relational database and which is observed that less 

costly than physical joins in both time and space.  

Definition: ID propagation. Suppose we have relation R1 and R2, which can be joined by 

attributes R1.A and R2.A. Each tuple in R1 is associated with some IDs in the target relation. For 

each tuple t in R2, we set t’s IDs to be the union of {u’s ID  u R1,u.A=t.A}. 

 

FEATURE SELECTION PROCESS 

 

With the creation of huge databases and the consequent requirements for good machine learning 

techniques, new problem arise and novel approaches to feature selection are demand. Feature 

selection plays an important role in classification. Feature selection is an important 

preprocessing step to machine learning. It selects an effective subset from the original features 

according to a certain criterion so that it can improve the performance of later data processing, 

such as classification and clustering.  In real-world applications, there are many irrelevant and 

redundant attributes in relations of relational database, in which are little contribution to 

classification accuracy. Hence, feature selection is an essential data processing step in multi-

relational data mining. By applying feature selection techniques, we can improve classification 

accuracy, achieve good time performance, and enhance comprehensibility of the models. 

Feature selection reduces the number of features, removes irrelevant, redundant, or noisy data, 

and brings the immediate effects for applications: speeding up a data mining algorithm, 

improving mining performance such as predictive accuracy and result comprehensibility.In fact, 

feature selection techniques have been widely employed in a variety of applications, such as 

genomic analysis, information retrieval, and text categorization. 

  

Feature selection is a process that selects a subset of original features. The optimality of a feature 

subset is measured by an evaluation criterion. As the dimensionality of a domain expands, the 
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number of features N increases. Finding an optimal feature subset is usually intractable and many 

problems related to feature selection have been shown to be NP-hard. 

Feature selection algorithms designed with different evaluation criteria broadly fall into two 

categories: the filter model and the wrapper model.  

Filter Model: The filter model relies on general characteristics of the data to evaluate and select 

feature subsets without involving any mining algorithm.  

Wrapper Model: The wrapper model requires one predetermined mining algorithm and uses its 

performance as the evaluation criterion. It searches for features better suited to the mining 

algorithm aiming to improve mining performance, but it also tends to be more computationally 

expensive than the filter model. 

Feature selection is defined by many authors by looking at it from various angles. But as 

expected, many of those are similar in intuition and/or content. The following lists those that are 

conceptually different and cover a range of definitions. 

 

(1) Find the minimally sized feature subset that is necessary and sufficient to the 

target concept.  

(2) Select a subset of M features from a set of N features, M <N, such that the 

value of a criterion function is optimized over all subsets of size M.  

(3) The aim of feature selection is to choose a subset of features for improving 

prediction accuracy or decreasing the size of the structure without 

significantly decreasing prediction accuracy of the classifier built using only 

the selected features.  

(4) The goal of feature selection is to select a small subset such that the resulting 

class distribution, given only the values for the selected features, is as close as 

possible to the original class distribution given all feature values. 

Feature selection attempts to select the minimally sized subset of features according to the 

following criteria. The criteria can be:  

 

(1) The classification accuracy does not significantly decrease; and 

(2) The resulting class distribution, given only the values for the selected 

features, is as close as possible to the original class distribution, given all 

features. 
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Figure 3.  Feature selection process. 

 

Table 1.  Analysis of feature selection method. 

Feature selection 

method 

Author Name and 

year of publication 

Description Drawback 

Feature and Relation 

Selection (FARS) 

Hu, Liu, He & Du 

(2008) 

Evaluated by using table 

symmetrical uncertainty 

(TSU) which is symmetrical 

uncertainty (SU) value 

between relation and class. 

(over multi-relational dataset) 

Discrete values 

are not handled 

Feature Selection 

using InfoDist 

Sha, Qiu, & Zhou 

(2007) 

Evaluated by InfoDist which 

based on information theory.  

Discrete values 

are not handled 

Wilk’s Lambda 

criterion method 

Ouardighi, Akadi, & 

Aboutajdine (2007) 

Evaluated by a statistical 

value used in discriminant 

analysis. 

Insufficient to 

improve the 

classifier 

performances 

only by relevance 

criterion. 

MR
2 

feature selection 

method 

Unler, Murat, & 

Chinnam (2007) 

This method uses InfoDist 

and Pearson Correlation to 

calculate the relevant features 

(over multi-relational dataset) 

Cutoff value is 

hard to decide 

 

 

Fast Correlation Based 

Filter (FCBF) 

Yu & Liu(2003) Evaluated by information 

gain combines optimal subset 

and feature relevance weight 

method. 

Discrete values 

are not handled  

OUR PROPOSED ENTROPY BASED FEATURE SELECTION ALGORITHM 

In feature selection, first we use InfoDist to evaluate the distance between feature and class 

label. If a feature xi has less distance d(xi,C) with the class label C, we thought it is more 

relevant to the class label. We define a cutoff distance based on standard deviation. These 

features with distance larger than mean distance plus cutoff value are regarded as irrelevant and 

are removed.  In experiment, we observe the effect to classification accuracy with respective 
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to different cutoff values. 

Second, we use Pearson’s correlation to evaluate the correlation between features. Two 

features with high correlation are redundant each other. We select the minimum redundancy 

features according to the correlation between the features. We select three different feature sets 

according to InfoDist distances and Pearson’s correlations for our experiments. The three 

selection methods are described as follows: 

(1) Maximum relevant feature set (MaxRel): We use cutoff value to discard irrelevant 

features from the sorted InfoDist feature list. These features which have the smallest 

Pearson’s correlation with respective to each feature in the remaining feature list are 

appended in the selection feature list with duplicates eliminated. 

(2) Minimum redundancy feature set (MinRed): We discard irrelevant features from the 

sorted InfoDist feature list using cutoff value as in maximum relevant feature set. 

The fea ture  which has the smallest Pearson’s correlation with the listed feature is put 

immediate following the listed feature included in the selection list. The selected 

feature lists are primary based on less redundancy between features. 

InfoDist calculation 

InfoDist is based on information theory. The main concept of information theory  is  entropy, 

 which  measures  the  expected  uncertainty  or  the  amount  of information provided by a  

certain event. The entropy of a random variable X is defined as follows: 

                (1) 

, where P(X=x) is the prior probability of x. 

Entropy H(Y |X) of a random variable Y given X is defined as follows: 

                (2) 

Mutual information is a measure of how much the probability distribution for a random 

variable changes when the value of another random variable is known. The mutual 

information between two random variables X and Y is defined in the following: 

                    (3) 

InfoDist adopt the conditional entropy to measure the relevance between a feature and the class 

label. The distance, d(X, C), of a feature and the class label is evaluated by 

d(X, C) = H(X|C) + H(C|X)                                      (4) 
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Pearson’s correlation calculation 

We adopt Pearson’s correlation to measure the redundancy between features. If variables X and 

Y are continuous, the correlation is calculated by formula defined in the following: 

                                   (5) 

 

If X is a discrete feature with k values, and Y is a continuous feature. The correlation is 

calculated by formula defined in the following: 

                         (6) 

 

W here Xbi is a binary feature that takes value 1 when X has value xi; otherwise, 0. If variables X 

and Y are both discrete, the correlation is calculated by formula defined in the following: 

                     (7) 

There are two types of methods to deal with multiple relations by Naive Bayes. One is to 

convert multiple relations into a single relation; and the other is to deal with each relation 

directly. We prefer the latter method because the advantages of MRDM.  

Now, we need to extend the above formula of classification to deal with multiple relations. We 

assume that t is the target relation, and s is non-target relation that can be joined with the 

relation t. Assume the relation t has n attributes and the relation s has m attributes. For a tuple 

x in the relation t: x=(x1, x2,………..,xn), there are p tuples in the relation s which can be joined 

with the tuple x. These p tuples are (yk1, yk2,……..,ykp), where each tuple yki is represented by 

r attributes: yki=(yki1,yki2,……..,ykir). Then, the class label of the tuple x can be predicted 

according to the following formula: 

   (8) 

In order to make the above expression operational, we should find a feasible way to specify the 

probability distribution for each attribute and compute the associated conditional probabilities. In 

our algorithm, we adopt the tuple ID propagation method to virtually join relations along each 

path and collect the required information for computation. To guide the search within the relation 

space, a Semantic Relationship Graph is also constructed to represent and summarize the 

relationships between various relations in the database. 



Entropy Based Feature Selection   V. B. Vaghela, K. H. Vandra & N. K. Modi 

© International Information Management Association, Inc.  2014 21          ISSN:  1543-5962-Printed Copy       ISSN:  1941-6679-On-line Copy 

By virtual join, tuple ids are propagated from the target relation to the non-target relations. The 

semantic relationships between relations remain unchanged. The storage space is cheaper than 

physical join. In feature selection, first we use InfoDist to evaluate the distance between 

feature and class label. If a feature x i has less distance d(xi,C) with the class label C, we 

consider it is more relevant to the class label. We define a cutoff distance based on standard 

deviation. These features with distance larger than mean distance plus cutoff value are regarded 

as irrelevant and are removed. Second, we use Pearson’s correlation,  to evaluate the 

correlation between features. Two features with high correlation are redundant to each other. 

We select the minimum redundancy features according to the correlation between the features. 

Thus, feature which have the smallest Pearson’s correlation with respective to each feature in 

the remaining feature list are appended in the selection feature list with duplicates eliminated. 

We select three different feature sets according to InfoDist distances and Pearson’s correlations 

for our experiments. As a result, the best candidate features are produced to improve 

classification accuracy. Then these selected features are subjected for Multi-relational Naïve 

Bayes classification. 

ENTROPY BASED FEATURE SELECTION ALGORITHM 

The symbols and functions referred to the algorithm is as follows: 

(1) D, Relational database 

(2) M, Target table 

(3) Ri (1, 2 …n) Association tables 

(4) FeatureCount_Ri, Count of number of features in a table Ri 

(5) Function CreateRelationGraph (G) is generating a relation diagram. 

(6) Function Propagate (Ri, M) means to transmit the class label to The table Ri from 

the target table M; 

(7) Function InfoDist (Aj, C) means to calculate the InfoDist of the feature Aj w.r.t 

class label C, in a respective table. 

(8) Function PerCorr (Aj, C) means to calculate the Pearson’s Correlation of the 

feature Aj w.r.t other features in a table. 

(9)  Aj, Feature of the table  

(10) C, Class label  

The algorithm is as follows: 

 

Input: Target table M, contingency tables Ri (i=1, 2 …n) 

Output: SRi, Set of selected attributes for each table 

 

Method 

(1) CreateRelationGraph (G); 

(2) Propagate (Ri, M); 

(3) For k=0 to 3 do 

 (i) Set cutoff value 

(ii) For each table Ri do 

  (a) For j=0 to FeatureCount_Ri do 

   InfoDist_value[j] ←InfoDist (Aj, C); 
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        End For 

  (b) Sort values of InfoDist_value[j] in ascending order; 

(c) Discard the InfoDist values which are larger than cutoff value, and select the 

remaining respective InfoDist value features in set SRi; 

(d) For j=0 to FeatureCount_Ri do 

   PerCorr_value[j] ←PerCorr (Aj); 

        End For 

  (e) Sort values of PerCorr_value in ascending order; 

(f) Feature which has the smallest Pearson’s correlation v a l u e  with 

respective to each feature in the remaining feature list are appended in the 

selection feature list SRi, with duplicates eliminated. 

End For 

End For 

EXPERIMENTS, RESULTS AND DISCUSSION 

For our experimental study we had used the well-known relational database PKDD Financial 

dataset as describe the Figure 1. Loan table is the target table and other table is consider as a non-

target table for our work. 

Table 2.  PKDD Financial dataset description. 

Relation No. of Objects Description 

 

Account 4500 describes static characteristics of an 

account 

Client 5369 describes characteristics of a client 

Disposition 5369 relates together a client with an 

account 

Order 6471 describes characteristics of a payment 

order 

Transaction 1056320 describes one transaction on an 

account 

Loan 682 describes a loan granted for a given 

account 

Card 892 describes a credit card issued to an 

account 

District 77 describes demographic characteristics 

of a district 

Table 3 describes the performance comparisions of the existing feature selection with our 

proposed alogortihm Entropy based feature selection classifier. We had used the accuracy as our 

comparision parameter and we achieve the better accuracy compared to the existing methods.  
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Table 3. Performance comparisions of entropy based feature selection classifier with 

existing feature selection based classifier. 

Data Set Classifier Accuracy 

(%) 

PKDD 

Financial 

dataset 

FARS 83 

Multi-relational Naïve Bayes Classifier with 

MR
2 

feature selection and wrapper method 

89 

Entropy based feature selection classifier 91 

 

Table 4 describes the performance comparisions of the existing multi-relational classifiers 

(without feature selection approach). Still we are able to achieve the better performance compare 

to the existing methods on PKDD financial datasets. 

Table 4. Performance comparisions  of entropy based feature selection classifier with 

existing multi-relational classifier.  

Data Set Classifier Accuracy (%) 

PKDD 

Financial 

dataset 

FOIL 71.5 

TILDE 81.3 

Graph-NB 85.25 

CrossMine 89.8 

Entropy based feature selection classifier 91 

 

For calculating the classification accuracy we develop four join paths according to dataset 

relationships. Each path starts from Loan target table and follows Account table to branch paths. 

For easy reference, we call joins paths as OrderPath, TransPath, CardPath and ClientPath. 

 

OrderPath->Loan, Account, Order 

TransPath->Loan Account, Transaction 

CardPath->Loan, Account, Disposition, Card 

ClientPath-> Loan, Account, Disposition, Client  
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Figure 7. Performance comparisons of entropy based feature selection classifier  with 

existing feature selection based classifier. 

 

 
 

 

Figure 8. Performance comparisons of entropy based feature selection classifier with 

existing multi-relational classifier. 

 
 

 

CONCLUSION AND FUTURE WORK 

 

We proposed a entropy based feature selection method which having MaxRel feature selection 

method with Multi-relational Naïve Bayes classifier. Our proposed entropy based feature 

selection for mmulti-relational naive bayesian classifier improve the classification accuracy and 

enhance comprehensibility of the models. In pre-processing step, feature selection is done to 

select relevant features by using InfoDist values and remove redundancy features by using 

Pearson’s correlation. In filter step, we select fewer relevant features in feature pool with respect 

to cut-off value. The experimental result shows that the our proposed classifier is effective in 

respect to the classification accuracy. For the future work, we can apply our proposed classifier 

to the more relational dataset to measure the performance of our classifier.  
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