
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2004

A book management system eLibrary A book management system eLibrary

Shanpeng Song

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Data Storage Systems Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Song, Shanpeng, "A book management system eLibrary" (2004). Theses Digitization Project. 31.
https://scholarworks.lib.csusb.edu/etd-project/31

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/31?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

A BOOK MANAGEMENT SYSTEM

ELIBRARY

A Project

Presented to tlie

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Shanpeng Song

December 2004

A BOOK MANAGEMENT SYSTEM --

ELIBRARY

A Project

Presented to the.

Faculty of.

California State University,

Sah Bernardino

by

Shanpeng, Song

December 2,004

Approved by:

Dr, Keith Schubert, Computer. Science

Dr. Owen Murphy 1

Dr. Kerstin Voigt

Date

ABSTRACT

As the number of books grows in one's book collection,

it would be convenient to have a software utility to manage

them. In this project, we propose a software system called

eLibrary to manage personal book collections. eLibraty is a

software application running on Microsoft®;^ ^

platforms. It stores book information in a local database;

book information can be easily added, deleted, updated or

searched in the book database. Most of the book's

information, such as book title, author, publisher and cover

picture, can be downloaded from the Internet; the user only

needs to input one or more ISBNs.

eLibrary has been released to the public as a freeware

application and it has gained much popularity among users.

Many software download sites have given it the highest five-

star award. A website (http://www.elibpro.com or

http://songstech.com) has been ■ set up for eLibrary, where

the users can download the latest version and obtain other

relevant information.

Ill

http:http://www.elibpro.com

ACKNOWLEDGMENTS

First of all, I would like to express my special thanks

to Dr. Keith Schubert, who has advised me in every aspect of

this project and encouraged me to complete the project of

highest value. I also express sincere thanks to Dr. Owen

Murphy and Dr. Kerstin Voigt, who gave me valuable

suggestions on this project.

I thank my wife and parents, who are happy with my

dream to pursue higher education.

The support of the National Science Foundation under

the award 9810708 is gratefully acknowledged.

IV

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGMENTS. iv

LIST OF FIGURES vii

CHAPTER ONE: INTRODUCTION

1.1 Introduction 1

1.2 Purpose of this Project...... 1

1.3 Software Features...................... 2

1.4 Organization of the Thesis........... 3

CHAPTER TWO: SOFTWARE REQUIREMENTS SPECIFICATION

2.1 Introduction. 4

2.1.1 Scope 4

2.2 Overall Description.... 4

2.2.1 Product Perspective........... 5

2.2.2 Product Functions. 7

2.2.3 User Characteristics......... 10

2.3 Specific Requirements..... .. 11

2.3.1 External Interface Requirements. 12

2.3.2 Functional Requirements 13

2.3.3 Performance Requirements 13

2.3.4 Software System Attributes.... 13

CHAPTER THREE: DESIGN AND IMPLEMENTATION

3.1 Design and Implementation Decisions........ . 14

3.1.1 Target Operating System. 14

3.1.2 Data File Format....| 14

i :i' . ■ ' ' . . . ' ■ ■

3.2 Database Design............................. 15

3.2.1 Database Schema. 15

3.2.2 Database Details....................... 17

3.3 Program Design and Implementation........... 23

3.3.1 System Architecture.................. 23

3.3.2 Program Details...................... 27

CHAPTER FOUR: DEPLOYMENT

4.1 System Requirements 37

4.2 installation..... 37

4.2.1 Installer....................... 37

4.2.2 Installation of eLibrary....... 38

CHAPTER FIVE: CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion.... 40

5.2 Future Directions. 41

APPENDIX: LIST OF SOURCE CODE FILES. 42

BIBLIOGRAPHY.. 47

VI

. : ? . FIGURES

Figure 1. Screenshot of the Prototype..

Figure 2. the Use Case Diagram..^ .. .

Figure 3. Database Schema

Figure 4..Information Retrieval Process

Figure 5. Information Display Process..

Figure 6. eLibrary Screenshot

Figure 7. Class Diagram of CeLibTreeView

Figure 8. Class Diagram of CeLibListView

:Figure 9. Class Diagram of CeLibHtmlView

Figure 10. eLibrary Installer..;.. v. .

. 6

^ ■ 8

. 16

. 24

. 26

28

. 31

r. ' 33

. 36

, 39

VI1

CHAPTER ONE .

. iNTRODUCTION

1.1,Introduction

Everybody has some books; some people may have a lot.

As the number of books grows in one's collection, it would

be convenient to have a software utility to manage them:

generate reports on the books currently in collection, keep

track of book loans, quickly find the books he or she needs

from the bookshelves, etc. Also, many books now include

their electronic version in CD-ROMs (normally in PDF or CHM

format), and some authors even offer free download of their

books (such as Bruce Eckel, the author of Thinking in C++)

[2]. Furthermore, researchers may have acquired a vast

collection of electronic research documents over the years,

thanks to the brganizations offering full-text download

(usually in PDF or PS formkt). People;also need an efficient

way to manage these electronic documents, since the file

names of these documents are often meaningless and therefore

it becomes extremely hard to find the exact one needed in a

collection of hundreds or thousands pf-electronic documents.

1.2 Purpose of this Project

The proposed book .m^ system is a software

application called eLibrary. The goal of this project is to

 1

build a full-featured, commercial-quality software package

to help people manage their books (either printed or

electronic).

1.3 Software Features

At the time of this writing, the latest version of

eLibrary is 1.0 RCl and it has the following features:

■ 	 Uses a tree structure to manage book categories. It

has a familiar Windows Explorer-like user interface

^ ■ Unlimited "Related Links" can be added for each book.

The "Links" can be URLs, eBook files on local hard

disk, or even folders

U 	Uses XML/XSL to display book details. Its content

template and display style are completely

configurable by the user

. Most of the book's information can be retrieved from

the web. It can submit queries online (Amazon.com)

by ISBN, or by a combination of book title, author

and/or publisher

■ 	 Multiple selection (using Ctrl, Shift or Mouse) is

supported in the book list window, and the book

detail window can update on the fly

■ 	 Sort on any column in the book list window

http:Amazon.com

■ WYSIWYG editor for books' "Description" and "Notes"

fields

■ Drag & Drop support

■ Search in the book collection

■ "Favorites" and "Reading List" support

■ Multi-language User Interface (MUI) support

■ Native Unicode support

■ Barcode scanners are supported.

1.4 Organization of the Thesis

This document is organized in five chapters: (1)

Introduction, (2) Software Requirements Specification, (3)

Design and Implementation, (4) Deployment and (5) Technology

Highlights, Conclusion and Future Development. The appendix

provides a list of source code files used in this software.

 ; , CHAPTER TWO,

SOFTWARE REQUIREMENTS SPECIFICATTON

2.1 Introduction

The scope of the project will be described in Section

2.1.1. Section 2.2 provides an overall description of the

product while Section 2.3 details the specific requirements.

2.1.1 Scope

The proposed book management system, eLibrary, is a

database program that helps people catalog their books. It

should be able to retrieve book information, such as book

title, author and cover pictures, from the Internet based on

ISBN or other information provided, so that the typing from

the users will be minimal. The product should provide a

friendly user interface; an average user should have no

problem using it without being specially trained.

2.2 Overall Description

Having so many books (many of them being ebooks), it

would be nice to have a software application to manage all

of them. eLibrary is such a software utility to manage the

user's personal book collection (both print books and

ebooks). Book information can be downloaded from the

Internet; what the, user needs to do is just enter one or

more ISBNs, or simply use a barcode scanner.

The book information should be stored "in e hatab

The user can work with an unlimited number of databases,

which means the user can split his or her book collection

into different catalogs.

2.2.1 Product Perspective

The product should be independent and totally self-

contained. It should not rely on any external libraries or

frameworks.

2.2.1.1 System Interfaces. The system will use HTTP to

retrieve book information from the Internet (such as

Amazon.com); the user verifies the retrieved information and

enters additional information; then the system stores all

the information to a local database.

2.2.1.2 User Interfaces. The system should provide an

easy-to-use user interface, using standard GUI elements such

as menus, toolbars, dialogs, shortcut keys etc. In addition,

a Multi-1anguage User Interface (MUI) framework should be

supported so that people from all around the world can

choose their preferred interface languages.

A prototype has been built to facilitate requirement

analysis. The following is a screenshot of the prototype:

http:Amazon.com

HI Boc^cworm
 O 0 © I
Ne Edit Wew Hdp

• ArtideColleGtion

BookCollection

ErComputerTiedinology

? Computer Networks

H- Operating Systems

SpedalEcfition Using Visuai C++,NEr Kate Gregory
■Thinlqngin C++j Voi. 2^P^acticaiProgramming,.. BruceEckek Chuck ...
Speoai Edition Using Visuai C++6 tCate Gregory

Que
Prentioe HaB
C^e

078972'4669
0130353132
0789715392

Is-t E-dilgfi; etStiian (AtyS TQQSj
Istediton {April 17^ 2002)
2nd edition {November/1,2003)
.1st edition {September 199S)

f > ••■■■Linux:

Mac OS

; !•■ Unix

! ? '•••• Windows • • •.
; ir; ProgrammingLanguages

. ■• Ada

i- •Basic C++ in a Nutshell
■ i- •C/C++ .
-•Delphi Front Cover ! Book 0etaiK r

;+i Economics &Management Author Ray LIschner
Publisher O'Reilly & Asssociates
Edition 1St Edition edition (April 20ft3)
URL http;// w»fw,amB2Qn.com/eKec/oh|do&/A.SI]N/«}596«302"98X

(^++

To-tha-point, authoritative, no-nonsense solutions have always been a trademark of O'ReiliY books. The In a Nutshell
books have earned a solid reputation in the Field as the well-thumbed references that sit beside the krjowledgeable
developer's keyboard. C++ in a Nutshell fives up to the In a Nutshell promise, C++ in a Nutshell is a lean, focused
reference that offers practical examples for the most important, most often used, aspects of C++.

Index s .7 , .ISBN aS96002S8X
In Collectiort Yes Pages 704 pages
* of copies 1 Price S39.9SiJJ

Done

Figure 1. Screenshot of the Prototype

2.2.1.3 Software Interfaces. The major software

interface in this system is the interface between the

program itself and the backend database. They will

communicate using SQL (Standard Query Language) for all

database operations.

2.2.1.4 Communication Interfaces. Communication

interfaces between this system and remote Internet servers

will be implemented with Hypertext Transfer Protocol (HTTP) .

2.2.1.5 Memory Constraints. The system does not have

any specific memory constraints. It should run adequately

fast on any personal computer that is capable of running the

operating system itself.

2.2.2 Product Functions

There are two different roles: normal users and power

users. In addition to what a normal user can do, a power

user can perform additional tasks which require certain

knowledge on:computer technology in general, The following

is the use case diagram showing the roles and the functions.

Brcjww Ifie Calteolian

/ Acid. C3f Ujpdai© Books

OoliB^aQr

«yses>:%

S^earcfi the Gollecion

«^yses»

«uses»

Backand Restore tli© Oats

/
\
U®r

Qfnataa New pataliaaa «usies>

<<yse^>

Opa^T an
<yses:>2!*

ExportDataas HiTML orXML

Sybmil:SQLto Ostaoase

Modify theDatabase Directly

Figure 2. the Use Case Diagram

websites; or export book information as XML so that it can

be used to exchange book information with other users.

2.2.2.9 Submit SQL to Database. The software should

provide a "Run SQL..." feature so that a user can submit SQL

statements to the database, which offers maximum flexibility

in manipulating the book information in an eLibrary

database. However, it requires the users to be acquainted

with SQL and a certain familiarity of eLibrary database

schema, so this feature is for advanced users only. The

eLibrary database schema should be provided with the

software so. that the users can refer to it when needed.

2.2.2.10 Modify the Database Directly. If needed, the

users should be able to modify the database directly,

without using eLibrary at all. It requires the user to be

acquainted with database concepts and the eLibrary database

schema, so this is also for advanced users only.

2.2.3 User Characteristics

There are two different users in the system: normal

users and power users. A normal user is expected to have an

average knowledge of how to operate a computer and use

computer software;, no special knowledge is required for

normal users. On the other hand, a power user is expected to

be familiar with common database concepts, SQL and the

eLibrary database schema.

10

http:2.2.2.10

2.3 Specific Requirements

The software shall have the following features:

♦ Be able to import and export data in XML format so

it would be easy to exchange data with other users

and other software applications;

♦ Export data as HTML and RTF (Rich Text Format) so

that the information can be used on websites or in

word processors;

♦ Be able to create as many subcategories as needed;

one item (book or article) can be in multiple

categories. For example, a book on computer network

security can be in both "Computer network" category

and "Information security" category;

♦ Be able; to backup and restore all the data;

♦ Help the user to keep track of the reading progress:

which books have been read, or the percentage which

has been finished for each individual book;

♦ Download book information from the web (such as

Amazon.com) by just entering one or more ISBNs, or

by a query on book title, author and publisher.

Typing from the users will be minimal;

♦ Support barcode scanners so that users don't have to

type ISBNs manually;

11

http:Amazon.com

♦ Support multi-language so that people from all

around the world can choose their preferred

interface languages;

♦ The view of entries will be fully user configurable,

based on XML/XSL or HTML template;

♦ Support powerful search capabilities;

♦ Records comprehensive loan histories and track

overdue books; borrowers' phone numbers and email

addresses will be kept in the database in case the

user needs to contact the borrowers;

■	 Produces detailed and customizable reports for

viewing or printing;

♦ User-friendly: GUI elements such as drag and drop,

context menus and wizards are supported;

♦ Utilize the services from other websites if possible,

such as NEC Research Institute CiteSeer

(http://citeseer.nj.nec.com or http://citeseer.org).

2.3.1 	External Interface Requirements

A graphical user interface shall be provided for the

users. After starting the system, the users can then create

a new database or open an existing database and do various

operations.

12

http:http://citeseer.org
http:http://citeseer.nj.nec.com

2.3.2 Functional Requirements

Validity checks should be done on all the inputs. In

case of abnormal situations, such as invalid input or

overflow, the system should exit gracefully after giving the

user an informative message box. Crashes should be avoided.

2.3.3 Performance Requirements

The system should run adequately fast on any personal

computer that is capable of running the operating system

itself.

2.3.4 Software System Attributes

2.3.4.1 Security. Since this system is targeted at end

users, the system itself does not have security issues.

2.3.4.2 Maintainability. The source code shall be

adequately commented; all documents in the Software process

shall be kept for maintenance purpose. The goal is to make

it easy to take over even for somebody who is totally new to

this project.

13

CHAPTER THREE

DESIGN AND IMPLEMENTATION

3.1 Design and Implementation Decisions

Before we actually start the design and implementation

process, a series of decisions have to be made first. For

example, what is the target operating system? How do we

store the data? And so on.

3.1.1 Target Operating System

According to a research conducted by IDC, Microsoft

Windows Operating systems still dominate the desktop

operating system market. Since eLibrary is targeted at end

users, obviously it should at least support the Windows

operating systems.

Ideally eLibrary is cross-platform, i.e. it would be

even better if it can run on different platforms. In that

case Java™ seems to be the only viable choice of programming

language. However, Java™ programs are compiled into byte

code (as opposed to machine code) and they run on top of the

Java™ Virtual Machine, which makes them significantly slower.

Thus we excluded this possibility.

3.1.2 Data File Format

We can design a new data file format for eLibrary from

scratch, or we can use a relational database to store the

data. There are two main advantages of using a relational

14

database: first, it is open and portable. Once the database

schema is known, the data contained in the database can be

easily used by other applications or ported to other

platforms. Second, data integrity can be enforced by a

database management system (DBMS). Therefore, we choose to

use a relational database to store the book information.

3.2 Database Design

3.2.1 Database Schema

Database design is an essential part of this project.

Based on the analysis, we designed the database fusing

PowerDesigner [7] from Sybase, Inc. PowerDesigner has been

one of the leading data modeling tools for years. It

supports Conceptual, Logical and Physical Data models, and

can check database models for potential errors. The

following diagram is the physical data model produced by

PowerDesigner:

15

BorrowerlD ilNTEOER <Dk>

feme Text{50)

Phone TestC2^J)

Email Text{5CI)

Fax T®ct{SO)

Motes MEMO

1 r

CatlO
iName

PajsntID

Nates

cat^:0?y

INTB3ER
Text(S€))

INTEGER

MEMO

<Dk>

<fk>

1

OpeTationDate DATETIME

FKjLOAM_REFEREMOE_BORROWER,

FKJBOOKjCAT_REFEREMCEjCA-rEGORY

loan;

BooklD INTEGER <Dk.fk1.>

Bow^mve^lD INTEGER <ffe2> ;bs:ok_ca;t:^>ory'

GhecicGutDate DATETIME

D^ueDflts DATETIME

Retu:rn:Da.tB DATETIME

LcanNot^ MEMO

FHULQAM REFERENCE BOOK

linfe

iBooklD INTEGER <Dk.fk>

OnklD INTEGER <Dk>

:Nam)e Text{50)

Path Text(255)

Mates MEMO

fhuliMI^REFEREMCE^OOK

fkj:ategqry_referemce categdry

BooklD INTEGER <Dk.fkT>

CatID INTEGER <Dk.fk2>

BooklD

Title

Subtitle

Author

URL

EdiltlOP:

ReleaseDsite

ISBN

PageGount

Dimension

BoclcSIze

PurchassDate

FK_BOOKLCA-nREFEREMCE BOOK

i 1

book.

INTEGER <Dk>

T!®d{2i55)

Te3d{255)

Text{2555

Text{25b5.

TextCSQ)

DATETIME

TsxtpOJ

INTEGER

T^fgO)

REAL

DATETIME

PurchasePrice GURRENGY

LIstPrlcs GURRENGY

Am-azoniPrloe GURRENGY

CurrentPage INTEGER

AmazonRatlng; REAL

Mu;mDfRevle'!i%s INTEGER

Mis^Ratlng INTEGER

UsErTsxtl TextpSb^

UserTexiS

Eboc-kOnly YESMO

PublisherlD IT^TEGER <tk1>

LanguagslO^ INTEGER <tk2> ■

BlndlnglD INTEGER <1kS>

ExtrastD INTEGER <fk4>

FormatiO INTEGER <fk5>

Store!D IMTEGER <icS>

Location!D IMTEGER <f&7>

StstusID IMTEGER <fkS>

OesGriptlon: iMemo

Motes ;Msmo

FrontCbver Text{2CI)

Ba;dcCover Text{2CI)

OperationBate DATETIME

original

BooklD INTEGER <Clik.fk1,>

Title Text(255)

Subtitle Text{2&5)

Author Text(2&5)

URL Text{25.5),

Edition; T€xt{50J

RelsaseDats DATETIME

ISBN Text{2D)

PageGouint INTEGER

PublisherlD INTEGER <fk2>

LanguagelD INTEGER <1k3>

Notes MEMO

ORiGIMALjREFEREMCE iBOOKPUBL

fc-DolpuibilsheT

PublisherlD INTEGER. <jjk>

feme Text{6'D)

Website TextflSQ)

Motes MEMO

FIOORIGINAL^REFEREMOE BOOKLAMG

FK_DRIGIMAL_REFEREMGE_,BOOK

FK_BOOK_REFERENCE_BOOKPUB

FK_BOOhLREFEREMGE_BOOKBIND

FK_BOOK_REFERENGE_,BOOKEXTR

FHLBOOK_REFERE.NGE_BOOKFORM:

FK_BOOK_REFEREMGEJBOOKSTOR

FK_BOOK_REFERENCEjBOOKLOCA

FK_BOQK^REFERENGE BODKSTAT

bDoklangiiage

l^RQuaaelD INTEGER <Dk>

Name Text(20)

Notes MEMO

. boGkbl:n.d;lng:

andinalD INTEGER <ok>

Mame TextptJ;)

Motes MEMO

bockexbas

ExtrasID INTEGER <Dk>

Name TextpO)

Notes MEMO

bookformat

FormatiO INTEGER. <t3k.>

Mame Text|20)

Motes MEMO

bookstore

StorelD INTEGER. <Dk>

Name Text{2t3J

W^itKsite TexttiaO)

Motes iMEMO

booklocatlon

LocationID INTEGER. <Dk>

Name Text{100|i

Notes MEMO

feo-!±Sta:tUS

StatusID INTEGER <Dk^

Name Te>ct|5€i)

Motes MEMO

Figure 3. Database Schema

16

http:Retu:rn:Da.tB

The database schema contains 15 tables, and it is

normalized to meet the 3NF.

3.2.2 Database Details

Since eLibrary is targeted at the Windows operating

system and to be used in a single-user environment,

Microsoft Access seems to be the most obvious choice for

database management system. Microsoft Access uses the

Microsoft Jet Engine. Being fast and efficient, it is the

perfect solution for eLibrary to store its data.

3.2.2.1 The "book" Table. This table stores information

about a particular book. It has 35 fields, as follows:

BookID: primary key. It denotes the ID of a book.

Title: book's main title.

Subtitle: book's sub-title.

Author: store the authors.

URL: book's URL on the Internet.

Edition: book's edition information.

ReleaseDate: release date.

ISBN: International Standard Book Number.

PageCount: Number of pages.

Dimension: book's dimension information.

BookSize: size for ebooks (in megabytes).

PurchaseDate: purchase date.

PurchasePrice: purchase price.

17

ListPrice: list price.

AmazonPrice: price on Amazon.com.

CurrentPage: to help the user to keep track of his or

her reading progress.

AmazonRating: rating oh Amazon.com.

NumOfReviews: number of reviews on Amazon.com.

MyRating: the user's own rating.

UserTextl: user-defined text field.

UserText2: user-defined text field.

EbookOnly: denotes if the user only has the book's

ebook (no print book in collection).

PublisherlD: foreign key. Publisher's ID.

LanguagelD: foreign key. ID of the book's language.

BindingiD; foreign key. ID of the book's binding.

ExtrasID: foreign key. ID of the book's extras.

FormatID: foreign key. ID of the book's ebook format

(such as PDF, CHM etc).

StorelD: foreign key. ID of the store where the book is

purchased.

LocationID: foreign key. ID of the location where the

book is stored.

StatusID: foreign key. ID of the book's status (such as

"In collection", "Wish list" etc).

Description: book's description or abstract.

18

http:Amazon.com
http:Amazon.com
http:Amazon.com

Notes: user's notes about this book.

FrontCover: the file name of the book's front cover

picture.

BackCover: the file name of ths book's back cover

picture.

OperationDate: when this book's information is last

updated.

3.2.2.2 The "original" Table. This table stores the

original information about a particular book, in case the

book is translated from another language. It has 12 fields,

as follows:

BookID: primary key. It denotes the ID of a book.

Title: book's main title.

Subtitle: book's sub-title.

Author: store the authors:

URL: book's URL on the Internet.

Edition: book's edition information.

ReleaseDate: release date.

ISBN: International Standard Book Number.

PageCount: Number of pages.

Dimension: book's dimension information.

PublisherlD: foreign key. Publisher's ID.

LanguagelD: foreign key. ID of the book's language.

Notes: user's notes about this book.

19

3.2.2.3 The "link" Table. This table stores the

"related links" of a book. A "related link" can be the

author's website or any other related URLs, or an ebook file

or folder located on the user's hard drive. Unlimited number

of links can be added for one book.

The "link" table has 5 fields, as follows:

BookID: primary key. The ID of the book.

LinkID: primary key. The ID of the link.

Name: name of the link, such as "author's website".

Path: path of the link. For example,

"http://www.BruceEckel.com" or "G:\ebooks\mybook.pdf".

Notes: user's notes about this link.

3.2.2.4 The "category" Table. Users can define their

own category and the category information is stored in this

table. It has the following 5 fields:

CatlD: primary key. The ID of the category.

Name: name of the category.

ParentID: the ID of this category's parent category.

For the root category, this field is NULL.

Notes: user's notes about this category.

OperationDate: when this category's information is last

updated.

3.2.2.5 The "book category" Table. This table acts as a

bridge between the "book" table and the "category" table.

20

http:http://www.BruceEckel.com

Its sole purpose is to turn an mm relationship into two Im

relationships. It is this table that allows us to store one

book in multiple categories. For example, a book on "Network

Security" can be in both "Computer Networks" category and

"Information Security" category.

The "book_category" table only has two fields:

BookID: primary key. The ID of the book.

CatID: primary key. The ID of the category.

3.2.2.6 The "borrower" Table. The "borrower" table is

to keep borrowers' information. It has the following 6

fields:

BorrowerlD: primary key. The ID of the borrower.

Name: borrower's name.

Phone: borrower's phone number.

Email: borrower's email address.

Fax: borrower's fax number.

Notes: user's notes about this borrower.

3.2.2.7 The: "loan" Table. This table is used to keep

track of book loans. It has 6 fields, as follows:

BookID: primary key. The ID of the book.

BorrowerlD: primary key. The ID of the borrower.

CheckoutDate: checkout date.

DueDate: due date.

ReturnDate: the actual return date.

21:

: LoanNotes: user's notes about this loan.

3.2.2.8 The lookup Tables. There are eight lookup

tables in the database. Their schema consists of an

Identification (ID) field, a "name" field and a "notes"■

filed. The "name" field defines the value of the ID, and the

"notes" field can keep a user's notes for a particular item.

For some table, there is' an extra filed called "website".

For example, in the "bookpublisher" table, the "website"

field records the publisher's website.

These lookup tables are populated with pre-defined data

when the system is setup. Additional records can be added

later. / . ■' "■'if'-' '

The eight lookup tables in the eLibrary database are as

follows: ■ . ■ .'/

Bookpublisher: publisher information.

Booklanguage: language information.

Bookbinding: binding information, such as "Hardcover"

or 	"Paperback". ;

Bookextras: some books have extras, such as a "CD-ROM"

or "Floppy Disk".

Bookformat: file format of ebook files, such as "CHM"

or "PDF" . 	 \

Bookstore: stores where the book is purchased. For

example, "Amazon.com" or "Borders".

http:Amazon.com

Booklocation: locations where the book is stored, such

as "My big book shelf".

Bookstatus: book status, such as "In collection" or

"For.sale",

3.3 Program Design and Implementation

3.3.1 System Architecture

Information retrieval and information display are two

fundamental components of eLibrary.

3.3.1.1 Information Retrieval. Amazon.com's web

services [1] offer software developers the opportunity to

integrate Amazon.com features and content directly into

other websites or desktop applications using either SOAP or

XML over HTTP. This project will use XML over HTTP to

retrieve book , information (such as book title, author,

publisher, price etc) from Amazon so that the users don't

have to type them manually. eLibrary will query online by

one or more ISBNs, or by a combination of book title, author

and/or publisher. The architecture is shown below.

23

http:Amazon.com

DataCbse

3.Save

Internet) 	1-Query

2.Book Info(XML)

User	 Amazon.com Web Service

Figure 4. Informatidii Retrieval,Proeess

Thtrde steps are involved in the inforrnation retrieval,

pro.cess':, , '

1. 	 eLibrary sends the uset's query term (such: as

an ISBN) to Amazon.com web service;

2. 	 eLibrary receives the response from Amazon.com.

The data is in XML format,• eLibra,ry parses the

XML received and display the data;

3. 	 The user makes necessary modifications to the

data and enters additional information, and

eLibrary saves the data to a local database.

eLibrary uses Microsoft XML Core Services (MSXML) [6]

to parse the XML data returned from Amazon.com. MSXML is an

XML parser. It allows developers to build high-performance

24

http:Amazon.com
http:Amazon.com
http:Amazon.com
http:Amazon.com

XML-based applications that provide a high degree of

interoperability with other applications that adhere to the

XML 1.0 standard.

3.3.1.2 Information Display. When the user browses

through his or her book collection, book information is

displayed as HTML. There are also three steps inyolved in

the information display process, as shown by the following

25

Data 3ase

1. Generate XML

XML

2.Transform XMLto

—ApplyXSLT->

HTML

HTML

Apply CSS-> 3.Display HTML

s

User

Figure 5. Information Display Process

26

1. 	 The book information is retrieved from the

local database, and an XML string containing

the book information is generated;

2. 	 The XML string is transformed into an HTML

string by applying an external XSLT style

sheet;

3. 	 The HTML string is displayed on the user's

screen, after applying an external CSS style

sheet.

eLibrary uses Microsoft ActiveX Data Objects (ADO) [4]

as a data access method to retrieve information from the

database. ADO enables the application to access and

manipulate data from a variety of sources through an OLE DB

provider. Its primary benefits are ease of use, high speed,

low memory overhead, and a small disk footprint.

3.3.2 Program Details

Microsoft Visual C++ .Net 2003 [5] with MFC (Microsoft

Foundation Class) [3] is used as the primary development

tool in developing eLibrary. Visual C++ has been one of the

most powerful tools for developing Windows-based

applications. It offers many features that make writing and

maintaining complex code easier and safer. eLibrary is a

standard Windows program. Just like many other Windows

27

programs, it 	has a menu bar, a tool bar, a client area, and

a status bar, as seen in the following figure.

file Edtt Vievii! Tools. Help

y ji. w

Book Coilection Utie Author PubMier K

Computer Technology
 ^C++Gotchas;AvoidtftgCommonProblenw... StephenC. Dewhurst Addison-WesJe,., 0; 2. Book List
Database %C++inaNutdie9 RayLtschrter O^ReiySAssoc..,. OE: Window

C-! Programm'tfig Languages ^"ftsnfeighC++;, Volume 1: IntrodidkMi fc., Bruce Eckel F^«iiiceHaB 01 (List View)' ^ #lRSI€/C+-tr
lava

Visual Baste
Viajal C++ Thinidnciin C++, Volume lilntroducSon tuStandard C++ (2nd

Sapbng Languages
ASP td(tion)(Apr 15, 2000)
JSP

Author ' Bruce Eckid lii

Software Engineeiihg
 IDalo' Apr |5, 2000

Management St Economics
 Binding Paperback
Favontes

Pub{<ib.!lier Prentice Half
Reading List 3. Book Details Window
Language EnglishSearchR^Jts (HTML View)

AllBo.d(s:

/■

Cisrs'as CD"Rom

RecydeBin Select Ai

s Print...

ContentTemplate

Disj^y Style

FuHy and beefed up ynith plenty of o save AsHTM,., rd C+hi the n^Gtri+S:
edition of Brupo Eckel's Thinidn^ in C+ ■*«" Vo/ome / is «	 his rich (and
sometimes daunting) programming language, filled wf Save As XM... atient,
knowledgeable style.

1, Category
The effective presentation, along with dozens of helpful code examples, make this book a standout. TheWindow text first sets the stage for using C++ with a tour of what object-oriented programming is all about, as well

(Tree View)	 as the software design life cycle. The author then delves into every aspect of C++, from basic keywords
and programming principles to more advanced topics, tike function and operator overloading, viHual
inheritance, exception handling, namespaces, and templates. C++ is a complex language, and the author
covers a lot of ground using today's Standard C++, but without getting bogged down in excessive detail.

Refreshojn^tdisf^ay	 3boote,'isel^d

Figure 6. eLibrary Screenshot

The client area is divided into three panes: the left

side Gategory Window, the top-right Book List Window and the

bottom-right Book Details Window. There is a separate

context menu 	associated with each window.

3.3.2.1 The Category Window. The category window uses a

tree structure to display all the categories in a database.

28

When the user clicks a category in the Book Category window,

the Book List window displays a list of books in the current

selected category. eLibrary defines two kinds of categories:

normal categories and system categories. The user can add,

delete or update a normal category, but cannot modify system

categories. Currently there are six system categories:

1. 	 Root category (CatID = 1): The root of all

categories.

2. 	 Favorites (CatTD = 2): Contains the user's

favorite books.

3. 	 Search Results (CatID = 3): When the user

performs a: search operation, the search

results (a list of books) will be put in this

category. ,

4. 	 Reading List (CatID = 4): The user can add

books that he or she is currently reading to

this category so that those books could be

easily found.

5. 	 All Books (CatID '= 5): When the user clicks

this category in the Book Category window, the

Book List window will display all the books in

the database.

6. Recycle Bin (CatID r = 6): Contains deleted

books. The user can still recover deleted

29

books from the Recycle Bin by Drag & Drop or

clipboard operations (Copy & Paste).

The C++ class associated with the Book Category window

is CeLibTreeView, which is inherited from CTreeView.

CTreeView wraps a "tree view control". MFC's CTreeView class

enables programmers to create views similar to the one

featured in the left pane of Windows Explorer. Tree views

display treelike structures containing items composed of

text and images. Items can have subitems, and collections of

subitems, or siibtrees, and can be expanded and collapsed to

display and hide the information contained therein. Tree

views are ideal for depicting data that's inherently

hierarchical, such as the directory structure of a hard disk.

Figure 7 shows the class diagram of CeLibTreeView.

30

CeLibTreeView

+classCeLibTreeView:CRuntimeClass

#m_pTreeCtrl: CTreeCtrl *

#m_ilTree: CImageList

#nn_oleDropTarget: COIeDropTarget

#m_hCurrentltem : HTREEITEM

#m_hDropTarget: HTREEITEM

#m_hDragltem : HTREEITEM

#m_nFormatCategory:DINT

#m_nFormatBook:DINT

#m_hFavorites: HTREEITEM

#m_hSearchResults:HTREEITEM

#m_hReadingList: HTREEITEM

#m_hAIIBool<s:HTREEITEM

#m_hRecycleBin :HTREEITEM

#CeLibTreeView()

+GetDocument():CeLlbDoc*

+PopulateTree()

+SaveData(in pDataObject: COIeDataObject*,in bDnD : BOOL):BOOL

+Selectltem(in nltem : int): BOOL

+PreCreateWindow(inout cs:CREATESTRUCT):BOOL

#OnlnitialUpdate()

CeLibTreeViewO

+AssertValid()

+Dump(inout dc:GDumpContext)

#AddSubTree(in strCurrentID ; CString, in hCurrentTreeltem : HTREEITEM)

#GetHandleByCatlD(in nCatID : long):HTREEITEM

#GetNextltem(in hitem : HTREEITEM):HTREEITEM

#CopyBranGh(in htiBranch :HTREEITEM,in htiNewParent: HTREEITEM,in htiAfter: HTREEITEM =TVLSORT): HTREEITEM

#Copyltem(in hItem : HTREEITEM,in htiNewParent: HTREEITEM,in htiAfter: HTREEITEM =TVLSORT):HTREEITEM

+OnCreate(in IpCreateStruct:LPCREATESTRUOT): int

+OnTvnSelchanged(in pNMHDR: NMHDR*,in pResult: LRESULT*); void

+OnContextMenu(in pWnd : CWnd*,in point: CPoint): void

+OnNMRcliGk(in pNMHDR: NMHDR*,in pResult:LRESULT*): void

+OnTreeAddsubGategory(): void ^

+OnTreeDelGategory(): void

+OnTreeProperties(): void

+OnUpdateTreeAddsubGategory(in pCmdUl : CCmdUl*): void

+OnUpdateTreeDelGategory(in pCmdUl:CCmdUl*):void

+OnUpdateTreeProperties(in pCmdUl ; CCmdUr): void

OnDragEnter(in pDataObjeot: GOIeOataObjeot*, in dwKeyState ; DWORD,in point: GPoint):DROPEFFEGT

+OnDragOver(in pDataObjeot: GOIeDataObjeot*, in dwKeyState:DWORD,in point: CPoint):DROPEFFEGT

+OnDragLeave()

+OnDrop(in pDataObjeot: GOIeDataObjeot*, in dropEffeot: DROPEFFEGT,in point: GPoint):BOOL

+OnTvnBegindrag(in pNMHDR:NMHDR*,in pResult: LRESULT*):void

+OnEditGut{): void

+OnEditPaste(): void

OnUpdateEditGut(in pGmdUl:GGmdUl*): void

OnUpdateEditPaste(in pGmdUl:GGmdUl*):void

Figure 7. Class Diagram of CeLibTreeView

3.3.2.2 The Book List Window. The Book List window

displays a list of books in a particular category. When the

user selects one or more items in the Book List window, it

sends a message to the Book Details window and the Book

31 ■ '

Details window will refresh itself so that the user can see

detailed information about the selected book(s).

The C++ class associated with the Book List window is

CeLibListView, which is inherited from CListView. The

CListView class encapsulates the functionality of a "list

view control", which displays a collection of items each

consisting of an icon (from an image list) and a label. List

views are similar to tree views in that they provide a

powerful infrastructure for presenting complex collections

of data to the user. But whereas tree views are ideal for

depicting hierarchical relationships, list views are best

suited for presenting "flat" collections of data, such as

lists of file names. Like items in a tree view, items in a

list view can include both text and images. In addition,

items can have text-only subitems containing additional

information about the associated items. The subitems are

visible when the control is in "report" mode, which is one

of four presentation styles that a list view supports. The

other presentation styles are large icon mode, small icon

mode, and list mode. eLibrary mainly uses the "report" mode.

Figure 8 shows the class diagram of CeLibListView.

32

CeLibListView

+ciassCeLibListView: CRuntimeClass

#m_pListCtrl: CListCtrl *

#m_ilList: CImageList

#bRefreshHtmlNeeded :BOOL

#m_Sortlnfo:Sortlnfo

#m_ColSortGUI: CHeaderColSortMark

#CeLibListView()

#~CeLibListView()

#PreCreateWindow(inoutcs:CREATESTRUCT): BOOL

#RefreshBooklDArray()

#DeleteSelectedBooks()

#CompareListltems(in IParamI :LPARAM.in IParam2: LPARAM.in IParamSort:LPARAM^:int

+GetDocument(): CeLibDoc'

+AssertValid()

+Dump(inout dc:CDumpContext)

+Refresh()

+OnCreate(in IpCreateStruct: LPCREATESTRUCT):int

+OnTinner(in nlDEvent: DINT):void

+OnLvnColumnclick(in pNMHDR : NMHDR*,in pResuit:LRESULT*): void

+OnContextMenu(in pWnd :OWnd*,in point: CPoint): void

+OnLvnltemchanged(in pNMHDR: NMHDR*,in pResult: LRESULT*): void

+OnListAddnewbook(): void

+OnListDeietebook(): void

+OnListProperties(): void

+OnEditSelectAII(): void

+OnUpdateListAddnewbook(in pCmdUi:CCmdUr):void

+OnUpdateListDeietebook(in pCmdUl:CCmdUr): void

+OnUpdateListProperties(in pCmdUl ; CCmdUi*): void

+OnUpdateEditSelectAII(in pCmdUi:COmdUr):void

+OnNMDblclk(in pNMHDR: NMHDR*,in pResult: LRESULT*):void

+OnEditCut(): void

+OnUpdateEditCut(in pCmdUi:CCmdUr):void

+OnLvnBegindrag(in pNMHDR: NMHDR*,in pResult; LRESULT*):void

+OnEditCopy(): void

+OnUpdateEditCopy(in pCmdUl :CCmdUi*): void

+OnEditPaste():void

+OnUpdateEditPaste(in pCmdUl:CCmdUr):void

+OnSendtoFavorites(): void

+OnSendtoReadinglist(): void

+OnSendtoSearchresults(): void

+OnUpdateSendtoFavorites(in pCmdUl :CCmdUr): void

+OnUpdateSendtoReadinglist(in pCmdUl : CCmdUi*): void

+OnUpdateSendtoSearchresults(in pCmdUl :CCmdUi*): void

Figure 8. Class Diagram of CeLibListView

3.3.2.3 The Book Details Window. The Book Details

window displays detailed information of the selected book(s).

33

It uses an external XSL file to its content (what to

display, what not to display, etcX. In eLibrary interface,

an XSL file is caiied a "content template", which resides' in

the "Styles" directory. eLibrery supports^^^ ^ ^ ^ ^^^u^ to 100

different content templates/ and'the uSex:can switch content

template at any time. ,

, The Book Details windbw also external./GSS file

to control its display style (font, color etc). The CSS

files should be put in the '^Styles/CSS" directory. Again,

eLibrary supports up to 100 different display styles, and

the user can switch display style at any time.

The C++ class associated with the Book Details window

is CeLibHtmlView, which is inherited from CHtmlView.

CHtmlView is one of MFC's most powerful new classes, which

converts the WebBrowser control that's the heart and soul of

Microsoft Internet Explorer into a full-fledged MFC view.

CHtmlView displays HTML documents. The developer provides a

URL, which can reference a document on the Internet, oh an

intranet, or even on a local hard disk, and CHtmlView

displays the document the same way Internet Explorer

displays it, CHtmlView is also an Active Document container,

which means it can be used to display documents created by

Microsoft Word, Microsoft Excel, and other Active Document

servers. It can even display the contents of folders on a

34 ■

hard disk — just like Internet Explorer. Since CHtmlView

derives most of its functionality from the WebBrowser

control, and because the WebBrowser control is part of

Internet Explorer, an application that uses CHtmlView can be

run only on systems equipped with Internet Explorer 4.0 or

later.

The following diagram is the : class diagram of

CeLibHtmlView.

35

CeLibHtmlView

+classCeLibHtmlView:CRuhtimeClass

#m_strHtml: CString

#m_strXML:CString

#m_nCurrentCSS:int

#m_nGurrentXSL:int

#m_pStyleSheet:IHTMLStyleSheet*

#CeLibHtmlView()

#~CeLibHtmIView()

#GenerateXML():BOOL

#GenerateHtmiO:BOOL

#GenerateXMLNode(in strNodeName: CString, in strData:CString); CString

#SetHtml(in str: CString):BOOL

#OnShowContextMenu(in dwID:DWORD,in ppt:POINT*,in pcmdlarget: lUnknown*,in pdispObject: IDispatch*): HRESULT

#AssertValid()

#Dump(inout do:CDumpContext)

#DbDataExchange(in pDX:CDataExchange*)

+GetDoGument():CeLibDoc*

+RefreshDisplay(in bRefreshCSS: bool=false)

+GetCurrentXSL(): int

+SaveHtml():BOOL

+SaveXML():BOOL

+OnlnitialUpdate()

+OnStatusTextChange(in IpszText:LPCTSTR)

+OnCreate(in IpCreateStruct: LPCREATESTRUCT): int

+OnHtmlSaveashtml(): void

+OnHtmlSaveasxml():void

+OnUpdateHtmlSaveashtml(in pCmdUl : CCmdUl*):void

+OnUpdateHtmlSaveasxml(in pCmdUl: CCmdUl*):void

+OnEditSeleGtAII(): void

+OnHtmlRefresh(): void

+OnUpdateHtmlRefresh(in pCmdUl:CCmdUl*):void >

+OnCSSChanged(in nID : UINT): void

+OnXSLChanged(in nID : UINT): void

+OnUpdateCSSChanged(in pCmdUl: CCmdUl*): void ■
+OnUpdateXSLChanged(in pCmdUl ; CCmdUl*);void

+OnUpdateFil0Print(in pCmdUl:CCmdUl*):void

+OnUpdateEditSeleGtAII(in pCmdUl:CCmdUl*):void

+OnUpdateFilePrintpreview(in pCmdUl:CCmdUl*): void

+OnFilePrintpreview(): void

+OnFi!ePagesetup(): void

+OnDoGumentComplete(iri IpszURL:LPCTSTR)

Figure 9. Class Diagram of CeLibHtmlView

36

CHAPTER FOUR

DEPLOYMENT

4.1 System Requirements

eLibrary has no special requirements on hardware. It

shoiild run adequately fast on any personal computer that ih

capable of running the Windows operating system itself.

On the software side, eLibrary is able to run on all

major Win32 platforms, from Windows 98 to the latest Windows

XP and Windows 2003. However, since eLibrary uses MSXML to

handle XML parsing, Internet Explorer 5.0 or higher should

be installed on the destination computer. Nowadays most of

the personal computers running Windows operating systems

have Internet Explorer 6.0 installed, so it is safe to say

that this is a reasonable requirement.

4.2 Installation

4.2.1 Installer .

An installer is the first experience of a user with the

application. Slow or unsuccessful software installations are

among the most irritating computer problems. A quick and

user friendly installer is therefore an essential part of

the software product.

37

eLibrary uses NSIS to create an installer. NSIS

(Nullsoft Scriptable Install System) is a tool that allows

developers to create professional installers for Windows. It

is released under an open source license and is completely

free for any use.

NSIS can create Windows installers that are capable of

installing, uninstalling, setting system settings,

extracting files, etc. Because NSIS is based on script

files, developers can use it to create both simple and

advanced installers. Howeyer, NSIS is only a "script

compiler"; it does not come with any script/dialog editors.

HM NIS Edit is a free visual environment for NSIS. It makes

creating and maintaining NSIS install scripts quick and easy.

So we use HM NIS Edit to generate an install script; then

use NSIS to compile the install script and produce our

installer.

4.2.2 Installation of eLibrary

With the eLibrary installer, it is very easy to install

eLibrary. Just execute the installer and follow the

instructions. All the necessary files will be extracted from

the installer and copied to the specified directory.

38

Chocise Cbi^pofij^s

Choose which featuresofeLlbrary 1.0 RClyou wantto install.

install. Click Ne^tto continue.

Selectcomponents to install: ;

A sample eUbrary;

hi Sample Database
 database that you can

play with.

Spacerequired;:; ^

Songs tachnobgies. Inc.

< Back j Next> Cancel

Figure 10, eLlbrary Installer

39

CHAPTER FIVE ; .

CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion

eLibrary is a book management software application that

runs on Microsoft Windows platforms. It uses a relational

database to store the book information; the data contained

in the database can be easily used by other applications.

Using tree structure to manage book categories, eLibrary has

a familiar Windows Explorer-like user interface. It can

download book information from the Internet automatically;

the user only need to type the ISBN or simply uses his or

her barcode scanner. eLibrary uses XML/XSL to display book

details; the content template and display style are

completely configurable by the user. eLibrary is a complete

solution for people who wish to build their own personal

electronic libraries.

Six beta versions have been released to the public, and

the first non-beta version (VI.0 RCl) of eLibrary was

released on April 23, 2004. It has gained much popularity

among the users since its initial release. Thousands of

people have downloaded eLibrary and many of them are using

it on a regular basis. In addition, it has been submitted to

some software download sites and many sites have given it

the highest five-star award.

40

 . 5.2 Future Directions

Due to , time constraints, some features are not

implemented yet and will be implemented in the near future.

Loan management: to keep track of book loans. The

database already has the corresponding tables reserved for

loan management, but the functionality is not implemented in

the program yet.

Plug-in support: plug-ins are optional software

additions that enhance and/or add functionality to the main

software application. With plug-in support, capable users

and developers can develop their own eLibrary plug-ins, and

the whole user community can benefit from that. (eLibrary

will communicate with plug-ins via XML. For example, a plug-

in that imports BibTex will read a BibTex file and generate

an eLibrary XML stream based on the file content. When

eLibrary receives the XML stream, it saves the information

to database. The eLibrary XML definition is available online

at http://forum.songstech.com/viewthread.php?tid=35.)

Help file and website improvements: the help file is

still not very complete; also, the eLibrary homepage

(http://songstech.com or http://www.eLibPro.com) need to be

re-designed so that it can provide more relevant information

for the users.

41

http:http://www.eLibPro.com
http:http://songstech.com
http://forum.songstech.com/viewthread.php?tid=35

APPENDIX

LIST OF SOURCE CODE FILES

42

The following is a list of source code files, in

alphabetical order:

AddBookDlg.cpp

AddBookDlg.h

AlphalmageList.cpp

AlphalmageList.h

AlphaToolBar.cpp

AlphaToolBar.h

BasicSearchDlg.cpp

BasicSearchDlg.h

BatchQueryDlg.cpp

BatchQueryDlg.h

BookBasicPage.cpp

BookBasicPage.h

BookCoversPage.cpp

BookCoversPage.h

BookDescriptionPage.cpp

BookDescriptionPage.h

Bookinfo.cpp

Bookinfo.h

BookLink.h

BookLinksPage.cpp

BookLinksPage.h

BookNotesPage.cpp

43

BookNotesPage.h

BookPersonalPage.cpp

BookPersonalPage.h

BookProperties.cpp

BookProperties.h

CategoryGeneralPage.cpp

Category-GeneralPage.h

CategoryProperties.cpp

CategoryProperties.h

eLib.cpp

eLib.h

eLibDoc.cpp

eLibDoc.h

eLibHtmlEditor.cpp

eLibHtmlEditor.h

eLibHtmlView.cpp

eLibHtmlView.h

eLibListView.cpp

eLibListView.h

eLibTreeView.cpp

eLibTreeView.h

explorer.cpp

explorer.h

HeaderColSortMark.cpp

44

HeaderColSortMark.h

HyperLink.cpp

HyperLink.h

InputSQLDlg.cpp

InputSQLDlg.h

LinkGeneralPage.cpp

LinkGeneralPage.h

LinkProperties.cpp

LihfcProperties.li

MainFrm.cpp

MainFrm.h . •

MenuBar.cpp ,

MenuBar.h

cpp

,h

OpenDlgEx.cpp

OpenDlgEx.h

Options.cpp

Options.h

OptionsDefaultPage.cpp

OptionsDefaultPage.h

OptionsUIPage.cpp

OptionsUIPage.h

PictureEx.cpp

45

PictureEx.h

Registry.cpp

Registry.h

Resource.h

stdafx.cpp

stdafx.h

utils.cpp

utils.h

46

BIBLIOGRAPHY

[1] Amazon Web Services, http://www.amazon.com/webservices

[2] Bruce Eckel's MindView, Inc. http://www.BruceEckel.com/

[3] Jeff Prosise. Programming Windows With MFC, 2nd ed.
Microsoft Press, 1999.

[4] Microsoft ActiveX Data Objects.
http://www.microsoft.com/ado

[5] Microsoft Visual C++, http://msdn.microsoft.com/visualc

[6] Microsoft XML SDK. http://www.microsoft.com/xml

[7] Sybase PowerDesigner. http://sybase.com/powerdesigner

47

	A book management system eLibrary
	Recommended Citation

