Symbolic Logic

Tony Roy

Follow this and additional works at: https://scholarworks.lib.csusb.edu/books

Part of the Logic and Foundations Commons, and the Philosophy Commons

Recommended Citation

https://scholarworks.lib.csusb.edu/books/1

This Book is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.
Symbolic Logic
An Accessible Introduction to Serious Mathematical Logic

Tony Roy

version 8.1*

July 19, 2019

*build.3247
Preface

There is, I think, a gap between what many students learn in their first course in formal logic, and what they are expected to know for their second. While courses in mathematical logic with metalogical components often cast only the barest glance at mathematical induction or even the very idea of reasoning from definitions, a first course may also leave these untreated, and fail explicitly to lay down the definitions upon which the second course is based. The aim of this text is to integrate material from these courses and, in particular, to make serious mathematical logic accessible to students I teach. The first parts introduce classical symbolic logic as appropriate for beginning students; the last parts build to Gödel’s completeness and incompleteness results. A distinctive feature of the last section is a complete development of Gödel’s second incompleteness theorem.

Accessibility, in this case, includes components which serve to locate this text among others: First, assumptions about background knowledge are minimal. I do not assume particular content about computer science, or about mathematics much beyond high school algebra. Officially, everything is introduced from the ground up. No doubt, the material requires a certain sophistication—which one might acquire from other courses in critical reasoning, mathematics or computer science. But the requirement does not extend to particular contents from any of these areas.

Second, I aim to build skills, and to keep conceptual distance for different applications of ‘so’ relatively short. Authors of books that are completely correct and precise may assume skills and require readers to recognize connections not fully explicit. It may be that this accounts for some of the reputed difficulty of the material. The results are often elegant. But this can exclude a class of students capable of grasping and benefiting from the material, if only it is adequately explained. Thus I attempt explanations and examples to put the student at every stage in a position to understand the next. In some cases, I attempt this by introducing relatively concrete methods for reasoning. The methods are, no doubt, tedious or unnecessary for the experienced logician. However, I have found that they are valued by students, insofar as students
are presented with an occasion for success. These methods are not meant to wash over or substitute for understanding details, but rather to expose and clarify them. Clarity, beauty and power come, I think, by getting at details, rather than burying or ignoring them.

Third, the discussion is ruthlessly directed at core results. Results may be rendered inaccessible to students, who have many constraints on their time and schedules, simply because the results would come up in, say, a second course rather than a first. My idea is to exclude side topics and problems, and to go directly after (what I see as) the core. One manifestation is the way definitions and results from earlier sections feed into ones that follow. Thus simple integration is a benefit. Another is the way predicate logic with identity is introduced as a whole in part I. Though it is possible to isolate sentential logic from the first parts of chapter 2 through chapter 7, and so to use the text for separate treatments of sentential and predicate logic, the guiding idea is to avoid repetition that would be associated with independent treatments for sentential logic, or perhaps monadic predicate logic, the full predicate logic, and predicate logic with identity.

Also (though it may suggest I am not so ruthless about extraneous material as I would like to think), I try to offer some perspective about what is accomplished along the way. Some of this is explicit. Some is by organization. And the text may be of particular interest to those who have, or desire, an exposure to natural deduction in formal logic. In this case, accessibility arises from the nature of the system. In the first part, I introduce both axiomatic and natural derivation systems; and in part III, show how they are related.

There are different ways to organize a course around this text. Chapters locate and order material conceptually. But in a given context the conceptual order may be other than the preferred pedagogical order, and content may be taken in different ways. For students who are likely to to complete the whole, a straightforward option is to proceed sequentially through the text from beginning to end (but postponing chapter 3 until after chapter 6). Taken as wholes, part II depends on part I; parts III and IV on parts I and II. At the level of whole chapters, dependencies are as in the box below. At a more fine-grained level one might construct a sequence, like one I have regularly offered, as follows:

- **informal notions**: chapter 1
- **sentential logic**: first parts of chapters 2, 4, 5, 6
- **predicate logic**: latter parts of chapters 2, 4, 5, 6
- **transitional**: chapters 3, 7, first parts of 8
- **advanced topics**: metalogic: 8.3, part III; and/or incompleteness: 8.4, part IV
For predicate logic I have preferred to cover material in the order 2, 6, 4, 5 to convey a sense of the formal language “by immersion” prior to chapters 4 and 5. Thus the text is compatible with different course organizations—and may (should) be customized to your own needs!

Chapter dependencies. Though there are cross references throughout, the following represent reasonable sequences for study.

The relation between chapter 6 and chapter 3 is pedagogical rather than logical, and might be ignored for students with sufficient technical background.

A remark about chapter 7 especially for the instructor: By a formally restricted system for reasoning with semantic definitions, chapter 7 aims to leverage derivation skills from earlier chapters to informal reasoning with definitions. I have had a difficult time convincing instructors to try this material—and even been told flatly that these skills “cannot be taught.” In my experience, this is false (and when I have been able to convince others to try the chapter, they have quickly seen its value). Perhaps the difficulty is just that the strategy is unfamiliar. Of course, if one is presented with students whose mathematical sophistication is sufficient for advanced work, it is not necessary. But if, as is often the case especially for students in philosophy, one obtains one’s mathematical sophistication from courses in logic, this chapter is an
important part of the bridge from earlier material to later. Additionally, the chapter is an important “takeaway” even for students who will not continue to later material. The chapter closes an open question from chapter 4—how it is possible to demonstrate quantificational validity. But further, the ability to reason closely with definitions is a skill from which students in (sentential or) predicate logic, even though they never go on to formalize another sentence or do another derivation, will benefit both in philosophy and more generally.

Another remark about the (long) sections 13.3, 13.4 and 13.5. These develop in PA the “derivability conditions” for Gödel’s second incompleteness theorem. They are perhaps for enthusiasts. Still, in my experience many students are enthusiasts and, especially from an introduction, benefit by seeing how the conditions are derived. There are different ways to treat the sections. One might work through them in some detail. However, even if you decide to pass them by, there is an advantage having a panorama at which to wave and say “thus it is accomplished!”

Naturally, results in this book are not innovative. If there is anything original, it is in presentation. Even here, I am greatly indebted to others, especially perhaps Bergmann, Moor and Nelson, The Logic Book, Mendelson, Introduction to Mathematical Logic, and Smith, An Introduction to Gödel’s Theorems. I thank my first logic teacher, G.J. Mattey, who communicated to me his love for the material. And I thank especially my colleagues John Mumma and Darcy Otto for many helpful comments. Hannah Baehr and Catlin Andrade provided comments and some of the answers to exercises. In addition I have received helpful feedback from Ramachandran Venkataraman and Steve Johnson, along with students in different logic classes at CSUSB. I welcome comments, and expect that your suggestions and comments will make it better still.

This text evolved over a number of years starting modestly from notes originally provided as a supplement to other texts. It is now long (!) and perhaps best conceived in separate volumes for Parts I and II and then Parts III and IV. With the addition of chapter 11 it is now complete. Answers to selected exercises are available at https://tonyroyphilosophy.net/symbolic-logic/. Most of the text is reasonably stable, though I continue tinkering, especially on more recent parts.

I think this is fascinating material, and consider it great reward when students respond “cool!” as they sometimes do. I hope you will have that response more than once along the way.

T.R.
Summer 2019
Contents

Preface ... i

Contents .. v

Quick Reference Guides viii

I The Elements: Four Notions of Validity 1

1 Logical Validity and Soundness 5
 1.1 Consistent Stories 6
 1.2 The Definitions 12
 1.3 Some Consequences 24

2 Formal Languages 32
 2.1 Introductory 32
 2.2 Sentential Languages 34
 2.3 Quantificational Languages 48

3 Axiomatic Deduction 70
 3.1 General ... 71
 3.2 Sentential ... 75
 3.3 Quantificational 83
 3.4 Application: PA 91

4 Semantics ... 100
 4.1 Sentential ... 100
 4.2 Quantificational 117
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Translation</td>
<td>142</td>
</tr>
<tr>
<td>5.1</td>
<td>General</td>
<td>142</td>
</tr>
<tr>
<td>5.2</td>
<td>Sentential</td>
<td>144</td>
</tr>
<tr>
<td>5.3</td>
<td>Quantificational</td>
<td>174</td>
</tr>
<tr>
<td>6</td>
<td>Natural Deduction</td>
<td>212</td>
</tr>
<tr>
<td>6.1</td>
<td>General</td>
<td>212</td>
</tr>
<tr>
<td>6.2</td>
<td>Sentential</td>
<td>222</td>
</tr>
<tr>
<td>6.3</td>
<td>Quantificational</td>
<td>285</td>
</tr>
<tr>
<td>6.4</td>
<td>Applications: Q and PA</td>
<td>323</td>
</tr>
</tbody>
</table>

II Transition: Reasoning About Logic | 339 |

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Direct Semantic Reasoning</td>
<td>341</td>
</tr>
<tr>
<td>7.1</td>
<td>General</td>
<td>342</td>
</tr>
<tr>
<td>7.2</td>
<td>Sentential</td>
<td>345</td>
</tr>
<tr>
<td>7.3</td>
<td>Quantificational</td>
<td>361</td>
</tr>
<tr>
<td>8</td>
<td>Mathematical Induction</td>
<td>389</td>
</tr>
<tr>
<td>8.1</td>
<td>General Characterization</td>
<td>389</td>
</tr>
<tr>
<td>8.2</td>
<td>Preliminary Examples</td>
<td>395</td>
</tr>
<tr>
<td>8.3</td>
<td>Further Examples (for Part III)</td>
<td>409</td>
</tr>
<tr>
<td>8.4</td>
<td>Additional Examples (for Part IV)</td>
<td>418</td>
</tr>
</tbody>
</table>

III Classical Metalogic: ŠSoundness and ČCompleteness | 433 |

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Preliminary Results</td>
<td>436</td>
</tr>
<tr>
<td>9.1</td>
<td>Semantic Validity Implies Logical Validity</td>
<td>436</td>
</tr>
<tr>
<td>9.2</td>
<td>Validity in AD Implies Validity in ND</td>
<td>441</td>
</tr>
<tr>
<td>9.3</td>
<td>Validity in ND Implies Validity in AD</td>
<td>448</td>
</tr>
<tr>
<td>9.4</td>
<td>Extending to ND+</td>
<td>470</td>
</tr>
<tr>
<td>10</td>
<td>Main Results</td>
<td>476</td>
</tr>
<tr>
<td>10.1</td>
<td>ŠSoundness</td>
<td>477</td>
</tr>
<tr>
<td>10.2</td>
<td>Sentential ČCompleteness</td>
<td>484</td>
</tr>
<tr>
<td>10.3</td>
<td>Quantificational ČCompleteness: Basic Version</td>
<td>495</td>
</tr>
<tr>
<td>10.4</td>
<td>Quantificational ČCompleteness: Full Version</td>
<td>510</td>
</tr>
</tbody>
</table>
CONTENTS

11 More Main Results 526
 11.1 Expressive Completeness 526
 11.2 Unique Readability .. 531
 11.3 Independence .. 534
 11.4 Beginning Model Theory 538

IV Logic and Arithmetic: Incompleteness and Computability 595

12 Recursive Functions and Q 599
 12.1 Recursive Functions .. 601
 12.2 Expressing Recursive Functions 609
 12.3 Capturing Recursive Functions 623
 12.4 More Recursive Functions 640
 12.5 Essential Results ... 661

13 Gödel’s Theorems 676
 13.1 Gödel’s First Theorem 676
 13.2 Gödel’s Second Theorem: Overview 682
 13.3 The Derivability Conditions: Background 689
 13.4 The Second Condition: □(P → Q) → (□P → □Q) 732
 13.5 The Third Condition: □P → □□P 759
 13.6 Reflections on the Theorem 782

14 Logic and Computability 794
 14.1 Turing Computable Functions 794
 14.2 Essential Results .. 808
 14.3 Church’s Thesis .. 815

Concluding Remarks 837

Bibliography 839

Index 844
Quick Reference Guides

Negation and Quantity .. 22
Countability ... 36
Parts of a Formula .. 41
More on Countability ... 51
Grammar Quick Reference .. 65
AD Quick Reference .. 90
Peano Arithmetic (AD) .. 99
Semantics Quick Reference (Sentential) 116
Basic Notions of Set Theory ... 119
Semantics Quick Reference (quantificational) 140
Definitions for Translation ... 149
Cause and Conditional .. 169
Definitions for Auxiliary Assumptions 221
NDs Quick Reference ... 244
NDs+ Quick Reference ... 281
ND Quick Reference ... 315
ND+ Quick Reference ... 321
\(\mathcal{L}_{\text{sat}} \) Reference ... 325
Robinson and Peano Arithmetic (ND) .. 337
Metalinguistic Quick Reference (sentential) 357
Metalinguistic Quick Reference (quantificational) 379
On the Semantics of Variables .. 380
Theorems of Chapter 7 .. 386
Induction Schemes ... 396
First Theorems of Chapter 8 ... 418
Final Theorems of Chapter 8 .. 432
Theorems of Chapter 9 .. 475
Some Arithmetic Relevant to Gödel Numbering 489
Quick Reference Guides

More Arithmetic Relevant to Gödel Numbering ... 501
Theorems of Chapter 10 ... 525
First Theorems of Chapter 11 ... 550
Final Theorems of Chapter 11 ... 594
The Recursion Theorem ... 606
Arithmetic for the Beta Function .. 619
Sigma-1 and Pi-1 Formulas ... 627
First Results of Chapter 12 ... 662
Final Results of Chapter 12 ... 675
Additional Theorems of PA ... 688
First Theorems of Chapter 13 ... 702
Font Conventions ... 731
Second Theorems of Chapter 13 ... 760
Substitution Vectors ... 772
Final Theorems of Chapter 13 ... 793
Simple Time Dilation ... 819
Enumerating Primitive Recursive Functions ... 823
Theorems of Chapter 14 ... 834
Part I

The Elements: Four Notions of Validity
Symbolic logic is a tool for argument evaluation. In this part of the text we introduce the basic elements of that tool. Those parts are represented in the following diagram.

The starting point is ordinary arguments. Such arguments come in various forms and contexts—from politics and ordinary living, to mathematics and philosophy. Here is a classic, simple case.

(A) All humans are mortal.
Socrates is a human.
Socrates is mortal.

This argument has premises listed above a line, with a conclusion listed below. The premises are supposed to demonstrate the conclusion. Here is another case which may seem less simple.

(B) If the maid did it, then it was done with a revolver only if it was done in the parlor. But if the butler is innocent, then the maid did it unless it was done in the parlor. The maid did it only if it was done with a revolver, while the butler is guilty if it did happen in the parlor. So the butler is guilty.

It is fun to think about this; from the given evidence, it follows that the butler did it! Here is an argument that is both controversial and significant.
There is evil. If god is good, then there is no evil unless god has morally sufficient reasons for allowing it. If god is both omnipotent and omniscient, then god does not have morally sufficient reasons for allowing evil. So god is not good, omnipotent and omniscient.

A being is omnipotent if it is all-powerful, and omniscient if all-knowing. This is a version of the famous “problem of evil” for traditional theism. It matters whether the conclusion is true! Roughly, an argument is good if it does what it is supposed to do, if its premises demonstrate the conclusion, and bad if they do not. So a theist (someone who believes in god) may want to hold that (C) is a bad argument, but an atheist (someone who does not believe in god) that it is good.

We begin in chapter 1 with an account of success for ordinary arguments (the leftmost box). So we say what it is for an argument to be good or bad. This introduces us to the fundamental notions of logical validity and logical soundness. These will be our core concepts for argument evaluation. But just as it is one thing to know what integrity is, and another to know whether someone has it, so it is one thing to know what logical validity and logical soundness are, and another to know whether arguments have them. In some cases, it may be obvious. But others are not so clear—as, for example, cases (B) or (C) above, along with complex arguments in mathematics and philosophy. Thus symbolic logic is introduced as a sort of machine or tool to identify validity and soundness.

This machine begins with certain symbolic representations of ordinary arguments (the box second from the left). That is why it is symbolic logic. We introduce these representations in chapter 2, and translate from ordinary arguments to the symbolic representations in chapter 5. Once arguments have this symbolic representation, there are different methods of operating upon them.

An account of truth and validity is developed for the symbolic representations in chapter 4 and chapter 7 (the upper box). On this account, truth and validity are associated with clearly defined criteria for their evaluation. And validity from this upper box implies logical validity for the ordinary arguments that are symbolically represented. Thus we obtain clearly defined criteria to identify the logical validity of arguments we care about. Evaluation of validity for the butler and evil cases is entirely routine given the methods from chapter 2, chapter 4 and chapter 5—though the soundness of (C) will remain controversial!

Accounts for proof and validity are developed for the symbolic representations in chapter 3 and chapter 6 (the lower box). Again, on this account, proof and validity are associated with clearly defined criteria for their evaluation. And validity from the lower box implies logical validity for the ordinary arguments that are symbolically represented. The result is another well-defined approach to the identification of
logical validity. Evaluation of validity for the butler and evil cases is entirely routine given the methods from, say, chapter 2, chapter 3 and chapter 5, or alternatively, chapter 2, chapter 5 and chapter 6—though, again, the soundness of (C) will remain controversial.

These, then, are the elements of our logical “machine”—we start with the fundamental notion of logical validity; then there are symbolic representations of ordinary reasonings, along with approaches to evaluation from truth and validity, and from proof and validity. These elements are developed in this part. In later parts we turn to thinking about how these parts work together (the right-hand box). In particular, we begin thinking how to reason about logic (part II), demonstrate that the same arguments come out valid by the truth method and by the proof method (part III), and establish limits on application of logic and computing to arithmetic (part IV). But first we have to say what the elements are. And that is the task we set ourselves in this part.
Chapter 1

Logical Validity and Soundness

We have said that symbolic logic is a tool or machine for the identification of argument goodness. In this chapter we begin, not with the machine, but with an account of this “argument goodness” that the machinery is supposed to identify. In particular, we introduce the notions of logical validity and logical soundness.

An argument is made up of sentences one of which is taken to be supported by the others.

AR An argument is some sentences, one of which (the conclusion) is taken to be supported by the remaining sentences (the premises).

(Important definitions are often offset and given a short name as above; then there may be appeal to the definition by its name, in this case, ‘AR’.) So an argument has premises which are taken to support a conclusion. Such support is often indicated by words or phrases of the sort, ‘so’, ‘it follows’, ‘therefore’, or the like. We will typically represent arguments in standard form with premises listed as complete sentences above a line, and the conclusion under. Roughly, an argument is good if the premises do what they are taken to do, if they actually support the conclusion. An argument is bad if they do not accomplish what they are taken to do, if they do not actually support the conclusion.

Logical validity and soundness correspond to different ways an argument can go wrong. Consider the following two arguments:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Premises</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>Only citizens can vote</td>
<td>Hannah can vote</td>
</tr>
<tr>
<td></td>
<td>Hannah is a citizen</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>All citizens can vote</td>
<td>Hannah can vote</td>
</tr>
<tr>
<td></td>
<td>Hannah is a citizen</td>
<td></td>
</tr>
</tbody>
</table>
The line divides premises from conclusion, indicating that the premises are supposed to support the conclusion. Thus these are arguments. But these arguments go wrong in different ways. The premises of argument (A) are true; as a matter of fact, only citizens can vote, and Hannah (my daughter) is a citizen. But she cannot vote; she is not old enough. So the conclusion is false. Thus, in argument (A), the relation between the premises and the conclusion is defective. Even though the premises are true, there is no guarantee that the conclusion is true as well. We will say that this argument is logically invalid. In contrast, argument (B) is logically valid. If its premises were true, the conclusion would be true as well. So the relation between the premises and conclusion is not defective. The problem with this argument is that the premises are not true—not all citizens can vote. So argument (B) is defective, but in a different way. We will say that it is logically unsound.

The task of this chapter is to define and explain these notions of logical validity and soundness. I begin with some preliminary notions in section 1.1, then turn to official definitions of logical validity and soundness (section 1.2), and finally to some consequences of the definitions (section 1.3).

1.1 Consistent Stories

Given a certain notion of a possible or consistent story, it is easy to state definitions for logical validity and soundness. So I begin by identifying the kind of stories that matter. Then we will be in a position to state the definitions, and apply them in some simple cases.

Let us begin with the observation that there are different sorts of possibility. Consider, say, “Hannah could make it in the WNBA.” This seems true. She is reasonably athletic, and if she were to devote herself to basketball over the next few years, she might very well make it in the WNBA. But wait! Hannah is only a kid—she rarely gets the ball even to the rim from the top of the key—so there is no way she could make it in the WNBA. So we have said both that she could and that she could not make it. But this cannot be right. What is going on? Here is a plausible explanation: Different sorts of possibility are involved. When we hold fixed current abilities, we are inclined to say there is no way she could make it. When we hold fixed only general physical characteristics, and allow for development, it is natural to say that she might. Similarly, I sometimes ask students if it is possible to drive the 60 miles from our campus in San Bernardino to Los Angeles in 30 minutes. From natural assumptions about Los Angeles traffic, law enforcement, and the like, most say it is not. But some, under different assumptions, allow that it can be done! In
each example, the scope of what is possible varies with whatever constraints are in
play: the weaker the constraints, the broader the range of what is possible. In ordinary
contexts, constraints are understood—so when you ask a friend if she can make it to
your party in thirty minutes, rocketships and jet cars are not an option. That is how
we manage to communicate.

The sort of possibility we are interested in is very broad, and constraints are
correspondingly weak. We will allow that a story is possible or consistent so long as
it involves no internal contradiction. A story is impossible when it collapses from
within. For this it may help to think about the way you respond to ordinary fiction.
Consider, say, J.K. Rowling’s *Harry Potter and the Prisoner of Azkaban* (much loved
by my youngest daughter). Harry and his friend Hermione are at wizarding school.
Hermione acquires a “time turner” which allows time travel, and uses it in order to
take classes that are offered at the same time. Such devices are no part of the actual
world, but they fit into the wizarding world of Harry Potter. So far, then, the story
does not contradict itself. So you go along.

At one stage, though, Harry is at a lakeshore under attack by a bunch of fearsome
“dementors.” His attempts to save himself appear to have failed when a figure across
the lake drives the dementors away. But the figure who saves Harry is Harry himself
who has come back from the future. Somehow, then, as often happens in these stories,
the past depends on the future, at the same time as the future depends on the past:
Harry is saved only insofar as he comes back from the future, but he comes back from
the future only insofar as he is saved. This, rather than the time travel itself, generates
an internal conflict. The story makes it the case that you cannot have Harry’s rescue
apart from his return, and cannot have Harry’s return apart from his rescue. This
might make sense if time were always repeating in an eternal loop. But, according to
the story, there were times before the rescue and after the return. So the story faces
internal collapse. Notice: the objection does not have anything to do with the way
things actually are—with existence of time turners or the like; it has rather to do with
the way the story hangs together internally.\(^1\) Similarly, we want to ask whether stories
hold together internally. If a story holds together internally, it counts for our purposes
as consistent and possible. If a story does not hold together, it is not consistent or

\(^1\)In more consistent cases of time travel (in fiction) time seems to move on different paths so that
after yesterday and today, there is another yesterday and another today. So time does not return to the
very point at which it first turns back. In the trouble cases, time seems to move in a sort of “loop” so that
a point on the path to today (this very day) goes through tomorrow. With this in mind, it is interesting to
think about say, the *Terminator* (1984, 1991) and *Back to the Future* (1985, 1989, 1990) films along with,
maybe more consistent, *Groundhog Day* (1993). Even if I am wrong, and the Potter story is internally
consistent, the overall point should be clear. And it should be clear that I am not saying anything serious
about time travel.
CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS

possible.

In some cases, stories may be consistent with things we know are true in the real world. Thus Hannah could grow up to play in the WNBA. There is nothing about our world that rules this out. But stories may remain consistent though they do not fit with what we know to be true in the real world. Here are cases of time travel and the like. Stories become inconsistent when they collapse internally—as when a story says that some time both can and cannot happen apart from another.

As with a movie or novel, we can say that different things are true or false in our stories. In *Harry Potter* it is true that Harry and Hermione travel through time with a timer turner, but false that they go through time in a DeLorean (as in the *Back to the Future* films). In the real world, of course, it is false that there are time turners, and false that DeLoreans go through time. Officially, a complete story is always *maximal* in the sense that any sentence is either true or false in it. A story is *inconsistent* when it makes some sentence both true and false. Since, ordinarily, we do not describe every detail of what is true and what is false when we tell a story, what we tell is only part of a maximal story. In practice, however, it will be sufficient for us merely to give or fill in whatever details are relevant in a particular context.

But there are a couple of cases where we cannot say when sentences are true or false in a story. The first is when stories we tell do not fill in relevant details. In *The Wizard of Oz*, (first Frank Baum story, 1900; film, 1939) it is true that Dorothy wears red shoes. But neither the movie nor the book have anything to say about whether she likes Twinkies. By themselves, then, neither the book nor the movie give us enough information to tell whether “Dorothy likes Twinkies” is true or false in the story. Similarly, there is a problem when stories are inconsistent. Suppose according to some story,

(a) All dogs can fly
(b) Fido is a dog
(c) Fido cannot fly

Given (a), all dogs fly; but from (b) and (c), it seems that not all dogs fly. Given (b), Fido is a dog; but from (a) and (c) it seems that Fido is not a dog. Given (c), Fido cannot fly; but from (a) and (b) it seems that Fido can fly. The problem is not that inconsistent stories say too little, but rather that they say too much. When a story is inconsistent, we will refuse to say that it makes any sentence (simply) true or false.\(^2\)

\(^2\)The intuitive picture developed above should be sufficient for our purposes. However, we are on the verge of vexed issues. For further discussion, you may want to check out the vast literature on “possible worlds.” Contributions of my own include the introductory article, “Modality,” in *The Continuum Companion to Metaphysics*.

It will be helpful to consider some examples of consistent and inconsistent stories:

(a) The real story, “Everything is as it actually is.” Since no contradiction is actually true, this story involves no contradiction; so it is internally consistent and possible.

(b) “All dogs can fly: over the years, dogs have developed extraordinarily large and muscular ears; with these ears, dogs can fly.” It is bizarre, but not obviously inconsistent. If we allow the consistency of stories according to which monkeys fly, as in *The Wizard of Oz*, or elephants fly, as in *Dumbo* (animated film, 1941), then we should allow that this story is consistent as well.

(c) “All dogs can fly, but my dog Fido cannot; Fido’s ear was injured while he was chasing a helicopter, and he cannot fly.” This is not internally consistent. If all dogs can fly and Fido is a dog, then Fido can fly. You might think that Fido retains a sort of flying nature—just because Fido remains a dog. In evaluating internal consistency, however, we require that meanings remain the same.

If “can fly” means “is able to fly” then in the story it is true that Fido cannot fly, but not true that all dogs can fly (since Fido cannot). If “can fly” means “has a flying nature” then in the story it is true that all dogs can fly, but not true that Fido cannot (because he remains a dog). The only way to keep both ‘all dogs fly’ and ‘Fido cannot fly’ true is to switch the sense of “can fly” from one use to another. So long as “can fly” means the same in each use, the story is sure to fall apart insofar as it says both that Fido is and is not that sort of thing.

(d) “Germany won WWII; the United States never entered the war; after a long and gallant struggle, England and the rest of Europe surrendered.” It did not happen; but the story does not contradict itself. For our purposes, then, it counts as possible.

(e) “$1 + 1 = 3$; the numerals ‘2’ and ‘3’ are switched (the numerals are ‘1’, ‘3’, ‘2’, ‘4’, ‘5’, ‘6’, ‘7’, . . .); so that one and one are three.” This story does not hang together. Of course numerals can be switched—so that people would correctly say, ‘$1 + 1 = 3$’. But this does not make it the case that one and one are three! We tell stories in our own language (imagine that you are describing a foreign-language film in English). Take a language like English except that ‘fly’ means ‘bark’; and consider a movie where dogs are ordinary, so that people in the movie correctly assert, in their language, ‘dogs fly’. But changing the words people use to describe a situation does not change the situation. It would be a mistake to tell a friend, in English, that you
saw a movie in which there were flying dogs. Similarly, according to our story, people correctly assert, in their language, ‘1 + 1 = 3’. But it is a mistake to say in English (as our story does), that this makes one and one equal to three.\footnote{Some authors prefer talk of “possible worlds,” “possible situations” or the like to that of consistent stories. It is conceptually simpler to stick with stories, as I have, than to have situations and distinct descriptions of them. However, it is worth recognizing that our consistent stories are or describe possible situations, so that the one notion matches up directly with the others.}

As you approach the following exercises, note that answers to problems indicated by star are available at https://tonyroyphilosophy.net/symbolic-logic/. It is essential to success that you work a significant body of exercises successfully and independently. So do not neglect exercises!

E1.1. Say whether each of the following stories is internally consistent or inconsistent. In either case, explain why.

*a. Smoking cigarettes greatly increases the risk of lung cancer, although most people who smoke cigarettes do not get lung cancer.

b. Joe is taller than Mary, but Mary is taller than Joe.

*c. Abortion is always morally wrong, though abortion is morally right in order to save a woman’s life.

d. Mildred is Dr. Saunders’s daughter, although Dr. Saunders is not Mildred’s father.

e. No rabbits are nearsighted, though some rabbits wear glasses.

f. Ray got an ‘A’ on the final exam in both Phil 200 and Phil 192. But he got a ‘C’ on the final exam in Phil 192.

g. Barack Obama was never president of the United States, although Michelle is president right now.

h. Egypt, with about 100 million people is the most populous country in Africa, and Africa contains the most populous country in the world. But the United States has over 200 million people.

*i. The death star is a weapon more powerful than that in any galaxy, though there is, in a galaxy far, far away, a weapon more powerful than it.

j. Luke and the Rebellion valiantly battled the evil Empire, only to be defeated. The story ends there.
E1.2. For each of the following, (i) say whether the sentence is true or false in the real world and then (ii) say, if you can, whether the sentence is true or false according to the accompanying story. In each case, explain your answers. Do not forget about contexts where we refuse to say whether sentences are simply true or false. The first problem is worked as an example.

a. Sentence: Aaron Burr was never a president of the United States.
 Story: Aaron Burr was the first president of the United States, however he turned traitor and was impeached and then executed.
 (i) It is true in the real world that Aaron Burr was never a president of the United States. (ii) But the story makes the sentence false, since the story says Burr was the first president.

b. Sentence: In 2006, there were still buffalo.

*c. Sentence: After overrunning Phoenix in early 2006, a herd of buffalo overran Newark, New Jersey.

d. Sentence: There has been an all-out nuclear war.
 Story: After the all-out nuclear war, John Connor organized the Resistance against the machines—who had taken over the world for themselves.

*e. Sentence: Jack Nicholson has swum the Atlantic.
 Story: No human being has swum the Atlantic. Jack Nicholson and Bill Clinton and you are all human beings, and at least one of you swam all the way across.

f. Sentence: Some people have died as a result of nuclear explosions.
 Story: As a result of a nuclear blast that wiped out most of this continent, you have been dead for over a year.

*g. Sentence: Your instructor is not a human being.
 Story: No beings from other planets have ever made it to this country. However, your instructor made it to this country from another planet.

h. Sentence: Lassie is both a television and movie star.
CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS

Story: Dogs have super-big ears and have learned to fly. Indeed, all dogs can fly. Among the many dogs are Lassie and Rin Tin Tin.

*i. Sentence: The Yugo is the most expensive car in the world.
 Story: Jaguar and Rolls Royce are expensive cars. But the Yugo is more expensive than either of them.

j. Sentence: Lassie is a bird who has learned to fly.
 Story: Dogs have super-big ears and have learned to fly. Indeed, all dogs can fly. Among the many dogs are Lassie and Rin Tin Tin.

1.2 The Definitions

The definition of logical validity depends on what is true and false in consistent stories. The definition of soundness builds directly on the definition of validity. Note: in offering these definitions, I stipulate the way the terms are to be used; there is no attempt to say how they are used in ordinary conversation; rather, we say what they will mean for us in this context.

LV An argument is logically valid if and only if (iff) there is no consistent story in which all the premises are true and the conclusion is false.

LS An argument is logically sound iff it is logically valid and all of its premises are true in the real world.

Observe that logical validity has entirely to do with what is true and false in consistent stories. Only with logical soundness is validity combined with premises true in the real world.

Logical (deductive) validity and soundness are to be distinguished from inductive validity and soundness or success. For the inductive case, it is natural to focus on the plausibility or the probability of stories—where an argument is relatively strong when stories that make the premises true and conclusion false are relatively implausible. Logical (deductive) validity and soundness are thus a sort of limiting case, where stories that make premises true and conclusion false are not merely implausible, but impossible. In a deductive argument, conclusions are supposed to be guaranteed; in an inductive argument, conclusions are merely supposed to be made probable or plausible. For mathematical logic, we set the inductive case to the side, and focus on the deductive.
Also, do not confuse truth with validity and soundness. A sentence is true in the real world when it correctly represents how things are in the real world, and true in a story when it correctly represents how things are in the story. An argument is valid when there is no consistent story that makes the premises true and conclusion false, and sound when it is valid and all its premises are true in the real world. The definitions for validity and soundness depend on truth and falsity for the premises and conclusion in stories and then in the real world. But but truth and falsity do not even apply to arguments: just as it is a “category” mistake to say that the number three is tall or short, so it is a mistake to say that an argument is true or false.4

1.2.1 Invalidity

It will be easiest to begin thinking about invalidity. From the definition, if an argument is logically valid, there is no consistent story that makes the premises true and conclusion false. So to show that an argument is invalid, it is enough to produce even one consistent story that makes premises true and conclusion false. Perhaps there are stories that result in other combinations of true and false for the premises and conclusion; this does not matter for the definition. However, if there is even one story that makes premises true and conclusion false then, by definition, the argument is not logically valid—and if it is not valid, by definition, it is not logically sound.

We can work through this reasoning by means of a simple invalidity test. Given an argument, this test has the following four stages.

1. List the premises and negation of the conclusion.
2. Produce a consistent story in which the statements from (a) are all true.
3. Apply the definition of validity.
4. Apply the definition of soundness.

We begin by considering what needs to be done to show invalidity. Then we do it. Finally we apply the definitions to get the results. For a simple example, consider the following argument,

\[(D)\]

Eating brussels sprouts results in good health

Ophelia has good health

Ophelia has been eating brussels sprouts

4From an introduction to philosophy of language, one might wonder (with good reason) whether the proper bearers of truth are sentences rather than, say, propositions. This question is not relevant to the simple point made above.
The definition of validity has to do with whether there are consistent stories in which the premises are true and the conclusion false. Thus, in the first stage, we simply write down what would be the case in a story of this sort.

a. List premises and negation of conclusion.

In any story with the premises true and conclusion false,
1. Eating brussels sprouts results in good health
2. Ophelia has good health
3. Ophelia has not been eating brussels sprouts

Observe that the conclusion is reversed! At this stage we are not giving an argument. Rather we merely list what is the case when the premises are true and conclusion false. Thus there is no line between premises and the last sentence, insofar as there is no suggestion of support. It is easy enough to repeat the premises for (1) and (2). Then for (3) we say what is required for the conclusion to be false. Thus, “Ophelia has been eating brussels sprouts” is false if Ophelia has not been eating brussels sprouts. I return to this point below, but that is enough for now.

An argument is invalid if there is even one consistent story that makes the premises true and the conclusion false. Thus, to show invalidity, it is enough to produce a consistent story that makes the premises true and conclusion false.

b. Produce a consistent story in which the statements from (a) are all true.

Story: Eating brussels sprouts results in good health, but eating spinach does so as well; Ophelia is in good health but has been eating spinach, not brussels sprouts.

For the statements listed in (a): the story satisfies (1) insofar as eating brussels sprouts results in good health; (2) is satisfied since Ophelia is in good health; and (3) is satisfied since Ophelia has not been eating brussels sprouts. The story explains how she manages to maintain her health without eating brussels sprouts. The story explains how she manages to maintain her health without eating brussels sprouts, and so the consistency of (1)–(3) together. The story does not have to be true—and, of course, many different stories will do. All that matters is that there is a consistent story in which the premises of the original argument are true, and the conclusion is false.

Producing a story that makes the premises true and conclusion false is the creative part. What remains is to apply the definitions of validity and soundness. By LV, an argument is logically valid only if there is no consistent story in which the premises are true and the conclusion is false. So if, as we have demonstrated, there is such a story, the argument cannot be logically valid.
c. Apply the definition of validity. This is a consistent story that makes the premises true and the conclusion false; thus, by definition, the argument is not logically valid.

By LS, for an argument to be sound, it must have its premises true in the real world and be logically valid. Thus if an argument fails to be logically valid, it automatically fails to be logically sound.

d. Apply the definition of soundness. Since the argument is not logically valid, by definition, it is not logically sound.

Given an argument, the definition of validity depends on stories that make the premises true and the conclusion false. Thus, in step (a) we simply list claims required of any such story. To show invalidity, in step (b), we produce a consistent story that satisfies each of those claims. Then in steps (c) and (d) we apply the definitions to get the final results.

It may be helpful to think of stories as a sort of “wedge” to pry the premises of an argument off its conclusion. We pry the premises off the conclusion if there is a consistent way to make the premises true and the conclusion not. If it is possible to insert such a wedge between the premises and conclusion, then a defect is exposed in the way premises are connected to the conclusion. Observe that the flexibility we allow in consistent stories (with flying dogs and the like) corresponds directly to the strength of the required connection between premises and conclusion. If the connection is sufficient to resist all such attempts to wedge the premises off the conclusion, then it is significant indeed. Observe also that our method reflects what we did with argument (A) at the beginning of the chapter: Faced with the premises that only citizens can vote and Hannah is a citizen, it was natural to worry that she might be underage and so cannot vote. But this is precisely to produce a story that makes the premises true and conclusion false. Thus our method is not “strange” or “foreign”! Rather, it makes explicit what has seemed natural from the start.

Here is another example of our method. Though the argument may seem on its face not to be a very good one, we can expose its failure by our methods—in fact, again, our method may formalize or make rigorous a way you very naturally think about cases of this sort. Here is the argument,

I shall run for president
I shall be one of the most powerful men on earth

To show that the argument is invalid, we turn to our standard procedure.
a. In any story with the premise true and conclusion false,
 1. I shall run for president
 2. I shall not be one of the most powerful men on earth

b. Story: I do run for president, but get no financing and gain no votes; I lose the election. In the process, I lose my job as a professor and end up begging for scraps outside a Domino’s Pizza restaurant. I fail to become one of the most powerful men on earth.

c. This is a consistent story that makes the premise true and the conclusion false; thus, by definition, the argument is not logically valid.

d. Since the argument is not logically valid, by definition, it is not logically sound.

This story forces a wedge between the premise and the conclusion. Thus we use the definition of validity to explain why the conclusion does not properly follow from the premises. It is, perhaps, obvious that running for president is not enough to make me one of the most powerful men on earth. Our method forces us to be very explicit about why: running for president leaves open the option of losing, so that the premise does not force the conclusion. Once you get used to it, then, our method may appear as a natural approach to arguments.

If you follow this method for showing invalidity, the place where you are most likely to go wrong is stage (b), telling stories where the premises are true and the conclusion false. Be sure that your story is consistent, and that it verifies each of the claims from stage (a). If you do this, you will be fine.

E1.3. Use our invalidity test to show that each of the following arguments is not logically valid, and so not logically sound. Understand terms in their most natural sense.

*a. If Joe works hard, then he will get an ‘A’
 Joe will get an ‘A’
 Joe works hard

b. Harry had his heart ripped out by a government agent
 Harry is dead

c. Everyone who loves logic is happy
 Jane does not love logic
 Jane is not happy*
d. Our car will not run unless it has gasoline
 Our car has gasoline

 Our car will run

e. Only citizens can vote
 Hannah is a citizen

 Hannah can vote

1.2.2 Validity

Suppose I assert that no student at California State University San Bernardino is from Beverly Hills, and attempt to prove it by standing in front of the library and buttonholing students to ask if they are from Beverly Hills—I do this for a week and never find anyone from Beverly Hills. Is the claim that no CSUSB student is from Beverly Hills thereby proved? Of course not, for there may be students I never meet. Similarly, failure to find a story to make the premises true and conclusion false does not show that there is not one—for all we know, there might be some story we have not thought of yet. So, to show validity, we need another approach. If we could show that every story which makes the premises true and conclusion false is inconsistent, then we could be sure that no consistent story makes the premises true and conclusion false—and so, from the definition of validity, we could conclude that the argument is valid. Again, we can work through this by means of a procedure, this time a validity test.

VT a. List the premises and negation of the conclusion.
 b. Expose the inconsistency of such a story.
 c. Apply the definition of validity.
 d. Apply the definition of soundness.

In this case, we begin in just the same way. The key difference arises at stage (b). For an example, consider this argument.

(F) No car is a person
 My mother is a person

 My mother is not a car

Since LV has to do with stories where the premises are true and the conclusion false, as before, we begin by listing the premises together with the negation of the conclusion.
CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS

a. List premises and negation of conclusion.

In any story with the premises true and conclusion false,
1. No car is a person
2. My mother is a person
3. My mother is a car

Any story where “My mother is not a car” is false, is one where my mother is a car (perhaps along the lines of the 1965 TV series, My Mother the Car).

For invalidity, we would produce a consistent story in which (1)–(3) are all true. In this case, to show that the argument is valid, we show that this cannot be done. That is, we show that no story that makes each of (1)–(3) true is a consistent story.

b. Expose the inconsistency of such a story.

In any such story,
Given (1) and (3),
4. My mother is not a person
Given (2) and (4),
5. My mother is and is not a person

The reasoning should be clear if you focus just on the specified lines. Given (1) and (3), if no car is a person and my mother is a car, then my mother is not a person. But then my mother is a person from (2) and not a person from (4). So we have our goal: any story with (1)–(3) as members contradicts itself and therefore is not consistent. Observe that we could have reached this result in other ways. For example, we might have reasoned from (1) and (2) that (4'), my mother is not a car; and then from (3) and (4') to the result that (5') my mother is and is not a car. Either way, an inconsistency is exposed. Thus, as before, there are different options for this creative part.

Now we are ready to apply the definitions of logical validity and soundness. First,

c. Apply the definition of validity.

So no consistent story makes the premises true and conclusion false; so by definition, the argument is logically valid.

For the invalidity test, we produce a consistent story that “hits the target” from stage (a) to show that the argument is invalid. For the validity test, we show that any attempt to hit the target from stage (a) must collapse into inconsistency: no consistent story includes each of the elements from stage (a) so that there is no consistent story in which the premises are true and the conclusion false. So by application of LV the argument is logically valid.

Given that the argument is logically valid, LS makes logical soundness depend on whether the premises are true in the real world. Suppose we think the premises of our argument are in fact true. Then,
d. Apply the definition of soundness. In the real world no car is a person and my mother is a person, so all the premises are true; so since the argument is also logically valid, by definition, it is logically sound.

Observe that LS requires for logical soundness that an argument is logically valid and that its premises are true in the real world. Thus we are no longer thinking about merely possible stories. Soundness depends on the way things are in the real world. And we do not say anything at this stage about claims other than the premises of the original argument. Thus we do not make any claim about the truth or falsity of the conclusion, “my mother is not a car.” Rather, the observations have entirely to do with the two premises, “no car is a person” and “my mother is a person.” When an argument is valid and the premises are true in the real world, by LS, it is logically sound.

But it will not always be the case that a valid argument has true premises. Say My Mother the Car is (surprisingly) a documentary about a person reincarnated as a car (the premise of the show) and therefore a true account of some car that is a person. Then some cars are persons and the first premise is false; so you would have to respond as follows,

\[d' \]
Since in the real world some cars are persons, the first premise is not true. So, though the argument is logically valid, by definition it is not logically sound.

Another option is that you are in doubt about reincarnation into cars, and in particular about whether some cars are persons. In this case you might respond as follows,

\[d'' \]
Although in the real world my mother is a person, I cannot say whether no car is a person; so I cannot say whether the first premise is true. So though the argument is logically valid, I cannot say whether it is logically sound.

So once we decide that an argument is valid, for soundness there are three options:

(i) You are in a position to identify all of the premises as true in the real world. In this case, you should do so, and apply the definition for the result that the argument is logically sound.

(ii) You are in a position to say that one or more of the premises is false in the real world. In this case, you should do so, and apply the definition for the result that the argument is not logically sound.
(iii) You cannot identify any premise as false, but neither can you identify them all as true. In this case, you should explain the situation and apply the definition for the result that you are not in a position to say whether the argument is logically sound.

So given a valid argument, there remains a substantive question about soundness. In some cases, as for example (C) on page 3, this can be the most controversial part.

Again, given an argument, we say in step (a) what would be the case in any story that makes the premises true and the conclusion false. Then, at step (b), instead of finding a consistent story in which the premises are true and conclusion false, we show that there is no such thing. Steps (c) and (d) apply the definitions for the final results. Observe that only one method can be correctly applied in a given case. If we can produce a consistent story according to which the premises are true and the conclusion is false, then it is not the case that no consistent story makes the premises true and the conclusion false. Similarly, if no consistent story makes the premises true and the conclusion false, then we will not be able to produce a consistent story that makes the premises true and the conclusion false.

For showing validity, the most difficult steps are (a) and (b), where we say what happens in every story where the premises true and the conclusion false. For an example, consider the following argument.

\[(G)\]

All collies can fly
All collies are dogs
All dogs can fly

It is invalid. We can easily tell a story that makes the premises true and the conclusion false—say one where collies fly but dachshunds do not. Suppose, however, that we proceed with the validity test as follows,

a. In any story with the premises true and conclusion false,
 1. All collies can fly
 2. All collies are dogs
 3. No dogs can fly

b. In any such story,
 Given (1) and (2),
 4. Some dogs can fly
 Given (3) and (4),
 5. Some dogs can and cannot fly
c. So no consistent story makes the premises true and conclusion false; so by definition, the argument is logically valid.

d. Since in the real world collies cannot fly, the first premise is not true. So, though the argument is logically valid, by definition it is not logically sound.

The reasoning at (b), (c) and (d) is correct. Any story with (1)–(3) is inconsistent. But something is wrong. (Can you see what?) There is a mistake at (a): It is not the case that every story that makes the premises true and conclusion false includes (3). The negation of “All dogs can fly” is not “No dogs can fly,” but rather, “Not all dogs can fly” (or “Some dogs cannot fly”). All it takes to falsify the claim that all dogs fly is some dog that does not. Thus, for example, all it takes to falsify the claim that everyone in your class will get an ‘A’ is one person who does not (on this, see the extended discussion on page 22). So for argument (G) we have indeed shown that every story of a certain sort is inconsistent, but have not shown that every story which makes the premises true and conclusion false is inconsistent. In fact, as we have seen, there are consistent stories that make the premises true and conclusion false.

Similarly, in step (b) it is easy to get confused if you consider too much information at once. Ordinarily, if you focus on sentences singly or in pairs, it will be clear what must be the case in every story including those sentences. It does not matter which sentences you consider in what order, so long as in the end, you reach a contradiction according to which something is and is not so.

So far, we have seen our procedures applied in contexts where it is given ahead of time whether an argument is valid or invalid. But not all situations are so simple. In the ordinary case, it is not given whether an argument is valid or invalid. In this case, there is no magic way to say ahead of time which of our two tests, IT or VT applies. The only thing to do is to try one way—if it works, fine. If it does not, try the other. It is perhaps most natural to begin by looking for stories to pry the premises off the conclusion. If you can find a consistent story to make the premises true and conclusion false, the argument is invalid. If you cannot find any such story, you may begin to suspect that the argument is valid. This suspicion does not itself amount to a demonstration of validity. But you might try to turn your suspicion into such a demonstration by attempting the validity method. Again, if one procedure works, the other better not!

E1.4. Use our validity procedure to show that each of the following is logically valid, and decide (if you can) whether it is logically sound.
Negation and Quantity

In general you want to be careful about negations. To negate any claim \(\mathcal{P} \) it is always correct to write simply, it is not the case that \(\mathcal{P} \). So ‘it is not the case that all dogs can fly’ negates ‘all dogs can fly’. You may choose this approach for conclusions in the first step of our procedures. At some stage, however, you will need to understand what the negation comes to. It is easy enough to see that, My mother is a car and My mother is not a car negate one another. However, there are cases where caution is required. This is particularly the case with terms involving quantities.

Say the conclusion of your argument is, ‘there are at least ten apples in the basket’. Clearly a story according to which there are, say, three apples in the basket makes this conclusion false. However, there are other ways to make the conclusion false—as if there are two apples or seven. Any of these are fine for showing invalidity.

But when you show that an argument is valid, you must show that any story that makes the premises true and conclusion false is inconsistent. So it is not sufficient to show that stories with (the premises true and) three apples in the basket contradict. Rather, you need to show that any story that includes the premises and fewer than ten apples fails. Thus in step (a) of our procedure we always say what is so in every story that makes the premises true and conclusion false. So in (a) you would have the premises and, ‘there are fewer than ten apples in the basket’.

If a statement is included in some range of consistent stories, then its negation says what is so in all the others—all the ones where it is not so.

That is why the negation of ‘there are at least ten’ is ‘there are fewer than ten’.

The same point applies with other quantities. Consider some grade examples: First, if a professor says, “everyone will not get an ‘A’,” she says something disastrous—nobody in your class will get an ‘A’. In order too deny it, to show that she is wrong, all you need is at least one person that gets an ‘A’. In contrast, if she says, “someone will not get an ‘A’,” she says only what you expect from the start—that not everyone will get an ‘A’. To deny this, you would need that everyone gets an ‘A’. Thus the following pairs negate one another.

Everyone will not get an ‘A’ and Someone will get an ‘A’
Someone will not get an ‘A’ and Everyone will get an ‘A’

It is difficult to give rules to cover all the cases. The best is just to think about what you are saying, perhaps with reference to examples like these.
*a. If Bill is president, then Hillary is first lady
 Hillary is not first lady

 Bill is not president

b. Only fools find love
 Elvis was no fool

 Elvis did not find love

c. If there is a good and omnipotent god, then there is no evil
 There is evil

 There is no good and omnipotent god

d. All sparrows are birds
 All birds fly

 All sparrows fly

e. All citizens can vote
 Hannah is a citizen

 Hannah can vote

E1.5. Use our procedures to say whether the following are logically valid or invalid, and sound or unsound. Hint: You may have to do some experimenting to decide whether the arguments are logically valid or invalid—and so decide which procedure applies.

 a. If Bill is president, then Hillary is first lady
 Bill is president

 Hillary is first lady

b. Most professors are insane
 TR is a professor

 TR is insane

 *c. Some dogs have red hair
 Some dogs have long hair

 Some dogs have long, red hair
d. If you do not strike the match, then it does not light
 The match lights
 You strike the match

e. Shaq is taller than Kobe
 Kobe is at least as tall as TR
 Kobe is taller than TR

1.3 Some Consequences

We now know what logical validity and soundness are, and should be able to identify them in simple cases. Still, it is one thing to know what validity and soundness are, and another to know why they matter. So in this section I turn to some consequences of the definitions.

1.3.1 Soundness and Truth

First, a consequence we want: The conclusion of every sound argument is true in the real world. Observe that this is not part of what we require to show that an argument is sound. LS requires just that an argument is valid and that its premises are true. However it is a consequence of validity plus true premises that the conclusion is true as well.

\[
sound \implies \text{valid} + \text{true premises} \implies \text{true conclusion}
\]

By themselves, neither validity nor true premises guarantee a true conclusion. However, taken together they do. To see this, consider a two-premise argument. Say the real story describes the real world; so the sentences of the real story are all true in the real world. Then in the real story, the premises and conclusion of our argument must fall into one of the following combinations of true and false:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
T & T & T & F & T & F & F & F \\
T & T & F & T & F & T & F & F \\
T & F & T & T & F & T & F & F \\
\end{array}
\]

These are all the combinations of T and F. Say the premises are true in the real story; this leaves open that the real story has the conclusion true as in (1) or false as in (2); so the conclusion of an argument with true premises may or may not be true in the
real world. Say the argument is logically valid; then no consistent story makes the premises true and the conclusion false; but the real story is a consistent story; so we can be sure that the real story does not result in combination (2); again, though, this leaves open any of the other combinations and so that the the conclusion of a valid argument may or may not be true in the real world. Now say the argument is sound; then it is valid and all its premises are true in the real world; again, since it is valid, the real story does not result in combination (2); and since the premises of a sound argument are true in the real world, we can be sure that the premises do not fall into any of the combinations (3)–(8); (1) is the only combination left: in the real story, and so in the real world, the conclusion of a sound argument is true. And not only in this case but in general, if an argument is sound then its conclusion is true in the real world: Since a sound argument is valid, there is no consistent story where its premises are true and the conclusion is false, and since the premises really are true, the conclusion has to be true as well. Put another way, if an argument is sound, its premises are true in the real story; but then if the conclusion is false, the real story has the premises true and conclusion false—and the argument is not valid. So if an argument is sound, if it is valid and its premises are true, its conclusion must be true.

Note again: we do not need that the conclusion is true in the real world in order to decide that an argument is sound; saying that the conclusion is true is no part of our procedure for validity or soundness. Rather, by discovering that an argument is logically valid and that its premises are true, we establish that it is sound; this gives us the result that its conclusion therefore is true. And that is just what we want.

1.3.2 Validity and Form

It is worth observing a connection between what we have done and argument form. Some of the arguments we have seen so far are of the same general form. Thus both of the arguments on the left have the form on the right.

(H)	If Joe works hard, then he will get an ‘A’
	Joe works hard
	Joe will get an ‘A’

| If Hannah is a citizen then she can vote |
| Hannah is a citizen |
| Hannah can vote |

| If P then Q |
| P |
| Q |

As it turns out, all arguments of this form are valid. In contrast, the following arguments with the indicated form are not.
CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS

There are stories where, say, Joe cheats for the ‘A’, or Hannah is a citizen but not old enough to vote. In these cases, there is some way to obtain condition \(Q \) other than by having \(P \)—this is what the stories bring out. And, generally, it is often possible to characterize arguments by their forms, where a form is valid iff every instance of it is logically valid. Thus the form (H) above is valid, and (I) is not.

In chapters to come, we take advantage of certain very general formal or structural features of arguments to identify ones that are valid and ones that are invalid. For now, though, it is worth noting that some presentations of critical reasoning (which you may or may not have encountered), take advantage of patterns like those above, listing typical ones that are valid, and typical ones that are not (for example, Cederblom and Paulsen, Critical Reasoning). A student may then identify valid and invalid arguments insofar as they match the listed forms. This approach has the advantage of simplicity—and one may go quickly to applications of the logical notions for concrete cases. But the approach is limited to application of listed forms, and so to a very narrow range of arguments. In contrast, our approach based on definition LV has application to arbitrary arguments. Further, a mere listing of valid forms does not explain their relation to truth, where the definition is directly connected. Finally, for our logical machine, within a certain range we shall develop an account of validity for quite arbitrary forms. So we are pursuing a general account or theory of validity that goes well beyond the mere lists of these other more traditional approaches.\(^5\)

1.3.3 Relevance

Another consequence seems less welcome. Consider the following argument.

\[
\begin{align*}
\text{If Joe works hard then he will get an ‘A’} \\
\text{Joe will get an ‘A’} \\
\text{Joe works hard}
\end{align*}
\]

\[
\begin{align*}
\text{If Hannah can vote, then she is a citizen} \\
\text{Hannah is a citizen} \\
\text{Hannah can vote}
\end{align*}
\]

\[\text{If } P \text{ then } Q \]

\[Q \]

\[P \]

It is natural to think that the premises are not connected to the conclusion in the right way—for the premises have nothing to do with the conclusion—and that this argument

\[^5\text{Some authors introduce a notion of formal validity (maybe in the place of logical validity as above) such that an argument is formally valid iff it has some valid form. As above, if an argument is formally valid, it is logically valid. So if our logical machine is adequate to identify formal validity, it identifies logical validity as well.}\]
therefore should not be logically valid. But if it is not valid, by definition, there is a consistent story that makes the premises true and the conclusion false. And in this case there is no such story, for no consistent story makes the premises true. Thus, by definition, this argument is logically valid. The procedure applies in a straightforward way. Thus,

a. In any story that makes the premises true and conclusion false,
 1. Snow is white
 2. Snow is not white
 3. Some dogs cannot fly

b. In any such story,
 Given (1) and (2),
 4. Snow is and is not white

c. So no consistent story makes the premises true and conclusion false; so by definition, the argument is logically valid.

d. Since in the real world snow is white, the second premise is not true. So, though the argument is logically valid, by definition it is not logically sound.

This seems bad! Intuitively, there is something wrong with the argument. But, on our official definition, it is logically valid. One might rest content with the observation that, even though the argument is logically valid, it is not logically sound. But this does not remove the general worry. For this argument,

(K)
There are fish in the sea

Nothing is round and not round

has all the problems of the other and is logically sound as well. (Why?) One might, on the basis of examples of this sort, decide to reject the (classical) account of validity with which we have been working. Some do just this.\(^6\) But, for now, let us see what can be said in defense of the classical approach. (And the classical approach is, no doubt, the approach you have seen or will see in any standard course on critical thinking or logic.)

\(^6\) Especially the so-called “relevance” logicians. For an introduction, see Graham Priest, *Non-Classical Logics*. But his text presumes mastery of material corresponding to part I and part II (or at least part I with chapter 7) of this one. So the non-classical approaches develop or build on the classical one developed here.
As a first line of defense, one might observe that the conclusion of every sound argument is true and ask, “What more do you want?” We use arguments to demonstrate the truth of conclusions. And nothing we have said suggests that sound arguments do not have true conclusions: An argument whose premises are inconsistent is sure to be unsound. And an argument whose conclusion cannot be false is sure to have a true conclusion. So soundness may seem sufficient for our purposes. Even though we accept that there remains something about argument goodness that soundness leaves behind, we can insist that soundness is useful as an intellectual tool. Whenever it is the truth or falsity of a conclusion that matters, we can profitably employ the classical notions.

But one might go further, and dispute even the suggestion that there is something about argument goodness that soundness leaves behind. Consider the following two argument forms.

\[
\begin{align*}
\text{(ds) } & \quad P \text{ or } Q, \text{ not-}P \\
\text{(add) } & \quad P \\
\hline
\end{align*}
\]

According to ds (disjunctive syllogism), if you are given that \(P \text{ or } Q\) and that not-\(P\), you can conclude that \(Q\). If you have cake or ice cream, and you do not have cake, you have ice cream; if you are in California or New York, and you are not in California, you are in New York; and so forth. Thus ds seems hard to deny. And similarly for add (addition). Where ‘or’ means ‘one or the other or both’, when you are given that \(P\), you can be sure that \(P \text{ or anything}\). Say you have cake, then you have cake or ice cream, cake or brussels sprouts, and so forth; if grass is green, then grass is green or pigs have wings, grass is green or dogs fly, and so forth.

Return now to our problematic argument. As we have seen, it is valid according to the classical definition LV. We get a similar result when we apply the ds and add principles.

\begin{enumerate}
\item Snow is white \hspace{1cm} \text{premise}
\item Snow is not white \hspace{1cm} \text{premise}
\item Snow is white or all dogs can fly \hspace{1cm} \text{from 1 and add}
\item All dogs can fly \hspace{1cm} \text{from 2 and 3 and ds}
\end{enumerate}

If snow is white, then snow is white or anything. So snow is white or dogs fly. So we use line 1 with add to get line 3. But if snow is white or dogs fly, and snow is not white, then dogs fly. So we use lines 2 and 3 with ds to reach the final result. So our principles ds and add go hand in hand with the classical definition of validity. The argument is valid on the classical account; and with these principles, we can move from the premises to the conclusion. If we want to reject the validity of this argument,
we will have to reject not only the classical notion of validity, but also one of our principles ds or add. And it is not obvious that one of the principles should go. If we decide to retain both ds and add then, seemingly, the classical definition of validity should stay as well. If we have intuitions according to which ds and add should stay, and also that the definition of validity should go, we have conflicting intuitions. Thus our intuitions might, at least, be sensibly resolved in the classical direction.

These issues are complex, and a subject for further discussion. For now, it is enough for us to treat the classical approach as a useful tool: It is useful in contexts where what we care about is whether conclusions are true. And alternate approaches to validity typically develop or modify the classical approach. So it is natural to begin where we are, with the classical account. At any rate, this discussion constitutes a sort of acid test: If you understand the validity of the “snow is white” and “fish in the sea” arguments (J) and (K), you are doing well—you understand how the definition of validity works, with its results that may or may not now seem controversial. If you do not see what is going on in those cases, then you have not yet understood how the definitions work and should return to section 1.2 with these cases in mind.

E1.6. Use our procedures to say whether the following are logically valid or invalid, and sound or unsound. Hint: You may have to do some experimenting to decide whether the arguments are logically valid or invalid—and so decide which procedure applies.

a. Bob is over six feet tall
 Bob is under six feet tall

 Bob is disfigured

b. Marilyn is not over six feet tall
 Marilyn is not under six feet tall

 Marilyn is not in the WNBA

c. There are fish in the sea

 Nothing is round and not round

*d. Cheerios are square
 Chex are round

 There is no round square
E1.7. Respond to each of the following.

a. Create another argument of the same form as the first set of examples (H) from section 1.3.2, and then use our regular procedures to decide whether it is logically valid and sound. Is the result what you expect? Explain.

b. Create another argument of the same form as the second set of examples (I) from section 1.3.2, and then use our regular procedures to decide whether it is logically valid and sound. Is the result what you expect? Explain.

E1.8. Which of the following are true, and which are false? In each case, explain your answers, with reference to the relevant definitions. The first is worked as an example.

a. A logically valid argument is always logically sound.
 False. An argument is sound iff it is logically valid and all of its premises are true in the real world. Thus an argument might be valid but fail to be sound if one or more of its premises is false in the real world.

b. A logically sound argument is always logically valid.
 True

c. If the conclusion of an argument is true in the real world, then the argument must be logically valid.
 True.

d. If the premises and conclusion of an argument are true in the real world, then the argument must be logically sound.
 True.

e. If a premise of an argument is false in the real world, then the argument cannot be logically valid.
 True.

f. If an argument is logically valid, then its conclusion is true in the real world.
 True.

g. If an argument is logically sound, then its conclusion is true in the real world.
 True.

h. If an argument has contradictory premises (its premises are true in no consistent story), then it cannot be logically valid.
*i. If the conclusion of an argument cannot be false (is false in no consistent story), then the argument is logically valid.

j. The premises of every logically valid argument are relevant to its conclusion.

E1.9. For each of the following concepts, explain in an essay of about two pages, so that (high-school age) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples of your own construction (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. Logical validity

b. Logical soundness

E1.10. Do you think we should accept the classical account of validity? In an essay of about two pages, explain your position, with special reference to difficulties raised in section 1.3.3.
Chapter 2

Formal Languages

Having said in chapter 1 what validity and soundness are, we now turn to our logical machine. As depicted in the picture of elements for symbolic logic on page 2, this machine begins with symbolic representations of ordinary reasoning. In this chapter we introduce the formal languages by introducing their grammar. After some brief introductory remarks in section 2.1, the chapter divides into sections that introduce grammar for a sentential language L_s (section 2.2), and then the grammar for an extended quantificational language L_q (section 2.3).

2.1 Introductory

There are different ways to introduce a formal language. It is natural to introduce expressions of a new language in relation to expressions of one that is already familiar. Thus, a standard course in a foreign language is likely to present vocabulary lists of the sort,

\begin{align*}
\text{chou:} & \quad \text{cabbage} \\
\text{petit:} & \quad \text{small} \\
\vdots
\end{align*}

But the terms of a foreign language are not originally defined by such lists. Rather French, in this case, has conventions of its own such that sometimes ‘chou’ corresponds to ‘cabbage’ and sometimes it does not. It is not a legitimate criticism of a Frenchman who refers to his sweetheart as \textit{mon petit chou} to observe that she is no cabbage! Though it is possible to use such correlations to introduce the conventions of a new language, it is also possible to introduce a language “as itself”—the way a native speaker learns it. In this case, one avoids the danger of importing conventions
and patterns from one language onto the other. Similarly, the expressions of a formal language might be introduced in correlation with expressions of, say, English. But this runs the risk of obscuring just what the official definitions accomplish. Since we will be concerned extensively with what follows from the definitions, it is best to introduce our languages in their “pure” forms.

In this chapter, we develop the grammar of our formal languages. Consider the following algebraic expressions,

\[a + b = c \quad a + c \]

Until we know what numbers are assigned to the terms (as \(a = 1, b = 2, c = 3 \)), we cannot evaluate the first for truth or falsity. Still, we can say that it is capable of truth and falsity in a way that the other is not: the first is grammatical and the second is not. We shall be able to evaluate the grammar of formal languages in a similar way. Though, eventually, our goal is to represent ordinary reasonings in a formal language, we do not have to know what the language represents in order to decide if a sentence is grammatically correct. Or, again, just as a computer can check the spelling and grammar of English without reference to meaning, so we can introduce the vocabulary and grammar of our formal languages without reference to what their expressions mean or what makes them true. The grammar, taken alone, is completely straightforward. Taken this way, we work directly from the definitions, without “pollution” from associations with English or whatever.

So we want the definitions. Even so, it may be helpful to offer some hints that foreshadow how things will go. Do not take these as defining anything! Still, it is nice to have a sense of how it fits together. Consider some simple sentences of an ordinary language, say, ‘The butler is guilty’ and ‘The maid is guilty’. It will be convenient to introduce capital letters corresponding to these, say, \(B \) and \(M \). Such sentences may combine to form ones that are more complex as, ‘It is not the case that the butler is guilty’ or ‘If the butler is guilty, then the maid is guilty’. We shall find it convenient to express these, ‘\(\sim \)the butler is guilty’ and ‘The butler is guilty \(\rightarrow \) the maid is guilty’, with operators \(\sim \) and \(\rightarrow \). Putting these together we get, \(\sim B \) and \(B \rightarrow M \). Operators may be combined in obvious ways so that \(B \rightarrow \sim M \) says that if the butler is guilty then the maid is not. And so forth. We shall see that incredibly complex expressions of this sort are possible!

In this case, simple sentences, ‘The butler is guilty’ and ‘The maid is guilty’ are “atoms” and complex sentences are built out of them. This is characteristic of the sentential languages to be considered in section 2.2. For the quantificational languages of section 2.3, certain sentence parts are taken as atoms. So quantificational languages expose structure beyond that for the sentential case. Perhaps, though, this
will be enough to give you a glimpse of the overall strategy and aims for the formal languages of which we are about to introduce the grammar.

2.2 Sentential Languages

Just as algebra or English have their own vocabulary or symbols and then grammatical rules for the way the vocabulary is combined, so our formal language has its own vocabulary and then grammatical rules for the way the vocabulary is combined. In this section we introduce the vocabulary for a sentential language, introduce the grammatical rules, and conclude with some discussion of abbreviations for official expressions.

2.2.1 Vocabulary

We begin, then, with the vocabulary. In this section, we say which symbols are included in the language, and introduce some conventions for talking about the symbols.

For any sentential language \mathcal{L}, vocabulary includes,

VC

(p) Punctuation symbols: ()

(o) Operator symbols: $\sim \rightarrow$

(s) A non-empty countable collection of sentence letters

And that is all. \sim is *tilde* and \rightarrow is *arrow*.\(^1\) In order to fully specify the vocabulary of any particular sentential language, we need to identify its sentence letters—so far as definition VC goes, different languages may differ in their collections of sentence letters. The only constraint on such specifications is that the collections of sentence letters be non-empty and countable. A collection is *non-empty* iff it has at least one member. So any sentential language has at least one sentence letter. A collection is *countable* iff its members can be matched one-to-one with all (or some) of the non-negative integers. Thus we might let the sentence letters be $A, B \ldots Z$, where these correlate with the integers $1 \ldots 26$. Or we might let there be infinitely many sentence letters, $S_0, S_1, S_2 \ldots$ where the letters are correlated with the integers by their subscripts.

\(^1\)Sometimes sentential languages are introduced with different symbols, for example, \neg for \sim, or \supset for \rightarrow. It should be easy to convert between presentations of the different sorts. And sometimes sentential languages include operators in addition to \sim and \rightarrow (for example, $\lor, \land, \leftrightarrow$). Such symbols will be introduced in due time—but as abbreviations for complex official expressions.
So there is room for different sentential languages. Having made this point, though, we immediately focus on a standard sentential language \mathcal{L}_s whose sentence letters are Roman italics $A \ldots Z$ with or without positive integer subscripts. Thus,

\[
A \quad B \quad K \quad Z
\]

are sentence letters of \mathcal{L}_s. Similarly,

\[
A_1 \quad B_3 \quad K_7 \quad Z_{23}
\]

are sentence letters of \mathcal{L}_s. We will not use the subscripts very often, but they do guarantee that we never run out of sentence letters. Perhaps surprisingly, as described in the box on page 36 (and E2.2), these letters too can be correlated with the non-negative integers. Official sentences of \mathcal{L}_s are built out of this vocabulary.

To proceed, we need some conventions for talking about expressions of a language like \mathcal{L}_s. Here, \mathcal{L}_s is an object language—the thing we want to talk about, and we require conventions for the metalanguage—for talking about the object language. In general, for any formal object language \mathcal{L}, an expression is a sequence of one or more elements of its vocabulary. Thus $(A \rightarrow B)$ is an expression of \mathcal{L}_s, but $(A \bullet B)$ is not. (What is the difference?) We shall use script characters $\mathcal{A} \ldots \mathcal{Z}$ as variables that range over expressions. ‘$\bar{\sim}$’, ‘\rightarrow’, ‘(’, and ‘)’ represent themselves. Concatenated or joined symbols in the metalanguage represent the concatenation of the symbols they represent.

To see how this works, think of metalinguistic expressions as “mapping” to object-language ones. Thus, for example, where \mathcal{S} represents an arbitrary sentence letter, $\sim \mathcal{S}$ may represent any of, $\sim A$, $\sim B$, or $\sim Z$. But $\sim (A \rightarrow B)$ is not of that form, for it does not consist of a tilde followed by a sentence letter. With \mathcal{S} restricted to sentence letters, there is a straightforward map from $\sim \mathcal{S}$ onto $\sim A$, $\sim B$, or $\sim Z$, but not from $\sim \mathcal{S}$ onto $\sim (A \rightarrow B)$.

\[
\begin{array}{cccc}
\sim \mathcal{S} & \sim \mathcal{S} & \sim \mathcal{S} & \sim \mathcal{S} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\sim A & \sim B & \sim Z & \sim (A \rightarrow B) \\
\end{array}
\]

In the first three cases, \sim maps to itself, and \mathcal{S} to a sentence letter. In the last case there is no map. We might try mapping \mathcal{S} to A or B; but this would leave the rest of the expression unmatched. While $\sim (A \rightarrow B)$ is not of the form $\sim \mathcal{S}$, if we let \mathcal{P} represent any arbitrary expression, then $\sim (A \rightarrow B)$ is of the form $\sim \mathcal{P}$, for it consists of a tilde followed by an expression of some sort. An object-language expression has some metalinguistic form just when there is a complete map from the metalinguistic form to it.
Countability

To see the full range of languages which are allowed under VC, observe how multiple infinite series of sentence letters may satisfy the countability constraint. Thus, for example, suppose we have two series of sentence letters, $A_0, A_1 \ldots$ and $B_0, B_1 \ldots$. These can be correlated with the non-negative integers as follows,

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>B_0</td>
<td>A_1</td>
<td>B_1</td>
<td>A_2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

For any non-negative integer n, A_n is matched with $2n$, and B_n with $2n + 1$. So each sentence letter is matched with some non-negative integer; so the sentence letters are countable. If there are three series, they may be correlated,

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>B_0</td>
<td>C_0</td>
<td>A_1</td>
<td>B_1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

so that every sentence letter is matched to some non-negative integer. And similarly for any finite number of series. And there might be 26 such series, as for our language X_4.

In fact even this is not the most general case. If there are infinitely many series of sentence letters, we can still line them up and correlate them with the non-negative integers. Here is one way to proceed. Order the letters as follows,

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>A_1</td>
<td>A_2</td>
<td>A_3</td>
<td>\ldots</td>
</tr>
<tr>
<td>B_0</td>
<td>B_1</td>
<td>B_2</td>
<td>B_3</td>
<td>\ldots</td>
</tr>
<tr>
<td>C_0</td>
<td>C_1</td>
<td>C_2</td>
<td>C_3</td>
<td>\ldots</td>
</tr>
<tr>
<td>D_0</td>
<td>D_1</td>
<td>D_2</td>
<td>D_3</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

so that any letter appears somewhere along the arrows. Then following the arrows, match them accordingly with the non-negative integers,

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>A_1</td>
<td>B_0</td>
<td>C_0</td>
<td>B_1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

so that, again, any sentence letter is matched with some non-negative integer. It may seem odd that we can line symbols up like this, but it is hard to dispute that we have done so. Thus we may say that VC is compatible with a wide variety of specifications, but also that all legitimate specifications have something in common: If a collection is countable, it is possible to sort its members into a series with a first member, a second member, and so forth.
Say \mathcal{P} represents any arbitrary expression. Then by similar reasoning, $(A \rightarrow B) \rightarrow (A \rightarrow B)$ is of the form $\mathcal{P} \rightarrow \mathcal{P}$.

(B) \[
\begin{array}{c}
\mathcal{P} \rightarrow \mathcal{P} \\
\downarrow \\
(A \rightarrow B) \rightarrow (A \rightarrow B)
\end{array}
\]

In this case, \mathcal{P} maps to all of $(A \rightarrow B)$ and \rightarrow to itself. A constraint on our maps is that the use of the metavariables $A \ldots Z$ must be consistent within a given map. Thus $(A \rightarrow B) \rightarrow (B \rightarrow B)$ is not of the form $\mathcal{P} \rightarrow \mathcal{P}$.

(C) \[
\begin{array}{c}
\mathcal{P} \rightarrow \mathcal{P} \\
\downarrow \\
(A \rightarrow B) \rightarrow (B \rightarrow B)
\end{array}
\] \quad \text{or} \quad \begin{array}{c}
\mathcal{P} \rightarrow \mathcal{P} \\
\downarrow \\
(A \rightarrow B) \rightarrow (B \rightarrow B)
\end{array}
\]

We are free to associate \mathcal{P} with whatever we want. However, within a given map, once \mathcal{P} is associated with some expression, we have to use it consistently within that map.

Observe again that $\neg \mathcal{S}$ and $\mathcal{P} \rightarrow \mathcal{P}$ are not expressions of \mathcal{L}_4. Rather, we use them to talk about expressions of \mathcal{L}_4. And it is important to see how we can use the metalanguage to make claims about a range of expressions all at once. Given that $\neg A$, $\neg B$ and $\neg Z$ are all of the form $\neg \mathcal{S}$, when we make some claim about expressions of the form $\neg \mathcal{S}$, we say something about each of them—but not about $\neg (A \rightarrow B)$. Similarly, if we make some claim about expressions of the form $\mathcal{P} \rightarrow \mathcal{P}$, we say something with application to a range of expressions. In the next section, for the specification of formulas, we use the metalanguage in just this way.

E2.1. Assuming that \mathcal{S} may represent any sentence letter, and \mathcal{P} any arbitrary expression of \mathcal{L}_4, use maps to determine whether each of the following expressions is (i) of the form $(\mathcal{S} \rightarrow \neg \mathcal{P})$ and then (ii) whether it is of the form $(\mathcal{P} \rightarrow \neg \mathcal{P})$.

In each case, explain your answers.

a. $(A \rightarrow \neg A)$

b. $(A \rightarrow \neg (R \rightarrow \neg Z))$

c. $(\neg A \rightarrow \neg (R \rightarrow \neg Z))$

d. $((R \rightarrow \neg Z) \rightarrow \neg (R \rightarrow \neg Z))$
E2.2. On the pattern of examples from the countability guide on page 36, show that the sentence letters of \(L_s \) are countable—that is, that they can be correlated with the non-negative integers. On the scheme you produce, what numbers correlate with \(A, B_1 \) and \(C_{10} \)? Hint: Supposing that \(A \) without subscript is like \(A_0 \), for any subscript \(n \), you should be able to produce a formula for the position of \(A_n \), and similarly for \(B_n, C_n \) and the like. Then it will be easy to find the position of any letter, even if the question is about, say, \(L_{125} \).

2.2.2 Formulas

We are now in a position to say which expressions of a sentential language are its grammatical formulas and sentences. The specification itself is easy. We will spend a bit more time explaining how it works. For a given sentential language \(\mathcal{L} \),

\[
\text{FR (s) If } S \text{ is a sentence letter, then } S \text{ is a formula.}
\]

\[
\text{(\sim)} \quad \text{If } P \text{ is a formula, then } \sim P \text{ is a formula.}
\]

\[
\text{(\rightarrow)} \quad \text{If } P \text{ and } Q \text{ are formulas, then } (P \rightarrow Q) \text{ is a formula.}
\]

\[
\text{(CL) Any formula may be formed by repeated application of these rules.}
\]

And we simply identify the formulas with the sentences. For any sentential language \(\mathcal{L} \), an expression is a sentence iff it is a formula.

\text{FR} \text{ is a first example of a recursive definition. Such definitions always build from the parts to the whole. Frequently we can use “tree” diagrams to see how they work. Thus, for example, by repeated applications of the definition, } \sim(A \rightarrow (\sim B \rightarrow A)) \text{ is a formula and sentence of } \mathcal{L}_s.
By \(\text{FR}(s) \), the sentence letters, \(A \), \(B \) and \(A \) are formulas; given this, clauses \(\text{FR}(\sim) \) and \(\text{FR}(\to) \) let us conclude that other, more complex, expressions are formulas as well. Notice that, in the definition, \(\mathcal{P} \) and \(\mathcal{Q} \) may be any expressions that are formulas: By \(\text{FR}(\sim) \), if \(B \) is a formula, then tilde followed by \(B \) is a formula; but similarly, if \(\sim B \) and \(A \) are formulas, then an opening parenthesis followed by \(\sim B \), followed by \(\to \) followed by \(A \) and then a closing parenthesis is a formula; and so forth as on the tree above. You should follow through each step very carefully. In contrast, \((A\sim B) \) for example, is not a formula. \(A \) is a formula and \(B \) is a formula; but there is no way to put them together, by the definition, without \(\to \) in between.

A recursive definition always involves some “basic” starting elements, in this case, sentence letters. These occur across the top row of our tree. Other elements are constructed, by the definition, out of ones that come before. The last, closure, clause tells us that any formula is built this way. To demonstrate that an expression is a formula and a sentence, it is sufficient to construct it, according to the definition, on a tree. If an expression is not a formula, there will be no way to construct it according to the rules.

Here are a couple of last examples which emphasize the point that you must maintain and respect parentheses in the way you construct a formula. Thus consider,
And compare it with,

\[A \rightarrow B \]

These are formulas by \(\text{FR}(s) \)

\(\sim A \)

Since \(A \) is a formula, this is a formula by \(\text{FR}(\sim) \)

\(\sim A \rightarrow B \)

Since \(\sim A \) and \(B \) are formulas, this is a formula by \(\text{FR}(\rightarrow) \)

Once you have \((A \rightarrow B) \) as in the first case, the only way to apply \(\text{FR}(\sim) \) puts the tilde on the outside. To get the tilde inside the parentheses, by the rules it has to go on first, as in the second case. The significance of this point emerges immediately below.

It will be helpful to have some additional definitions, each of which may be introduced in relation to the trees. First, for any formula \(P \), each formula which appears in the tree for \(P \) including \(P \) itself is a subformula of \(P \). Thus \(\sim(A \rightarrow B) \) has subformulas,

\[A \quad B \quad (A \rightarrow B) \quad \sim(A \rightarrow B) \]

In contrast, \(\sim A \rightarrow B \) has subformulas,

\[A \quad B \quad \sim A \quad (\sim A \rightarrow B) \]

So it matters for the subformulas how the tree is built. The immediate subformulas of a formula \(P \) are the subformulas to which \(P \) is directly connected by lines. Thus \(\sim(A \rightarrow B) \) has one immediate subformula, \((A \rightarrow B) \); \((\sim A \rightarrow B) \) has two, \(\sim A \) and \(B \). The atomic subformulas of a formula \(P \) are the sentence letters that appear across the top row of its tree. Thus both \(\sim(A \rightarrow B) \) and \((\sim A \rightarrow B) \) have \(A \) and \(B \) as their atomic subformulas. Finally, the main operator of a formula \(P \) is the last operator added in its tree. Thus \(\sim \) is the main operator of \(\sim(A \rightarrow B) \), and \(\rightarrow \) is the main operator of \((\sim A \rightarrow B) \). So, again, it matters how the tree is built. We sometimes speak of a formula by means of its main operator: A formula of the form \(\sim P \) is a negation; a formula of the form \((P \rightarrow Q) \) is a (material) conditional, where \(P \) is the antecedent of the conditional and \(Q \) is the consequent. Because it operates on the two immediate subformulas, \(\rightarrow \) is a binary operator; because it has just one \(\sim \) is unary.

E2.3. For each of the following expressions, demonstrate that it is a formula and a sentence of \(\mathcal{L}_4 \) with a tree. Then on the tree (i) bracket all the subformulas, (ii) box the immediate subformula(s), (iii) star the atomic subformulas, and (iv) circle the main operator. A first case for \(((\sim A \rightarrow B) \rightarrow A) \) is worked as an example.
E2.4. Explain why the following expressions are not formulas or sentences of \mathcal{L}_3. Hint: you may find that an attempted tree will help you see what is wrong.

a. $(A \supset B)$

*b. $(P \rightarrow Q)$

Parts of a Formula

The parts of a formula are here defined in relation to its tree.

SB Each formula which appears in the tree for formula P including P itself is a *subformula* of P.

IS The *immediate* subformulas of a formula P are the subformulas to which P is directly connected by lines.

AS The *atomic* subformulas of a formula P are the sentence letters that appear across the top row of its tree.

MO The *main operator* of a formula P is the last operator added in its tree.
c. \((\sim B)\)

d. \((A \rightarrow \sim B \rightarrow C)\)

e. \(((A \rightarrow B) \rightarrow (A \rightarrow C) \rightarrow D)\)

E2.5. For each of the following expressions, determine whether it is a formula and sentence of \(L_s\). If it is, show it on a tree, and exhibit its parts as in E2.3. If it is not, explain why as in E2.4.

* a. \((\sim((A \rightarrow B) \rightarrow (\sim(A \rightarrow B) \rightarrow A))\)

b. \((\sim A \rightarrow B \rightarrow (\sim (A \rightarrow B) \rightarrow A))\)

c. \((\sim (A \rightarrow B) \rightarrow (\sim (A \rightarrow B) \rightarrow A))\)

d. \((\sim \sim (\sim \sim A \rightarrow \sim \sim A))\)

e. \(((\sim (A \rightarrow B) \rightarrow (\sim C \rightarrow D)) \rightarrow (\sim (E \rightarrow F) \rightarrow G))\)

2.2.3 Abbreviations

We have completed the official grammar for our sentential languages. So far, the languages are relatively simple. When we turn to reasoning about logic (in later parts), it will be good to have our languages as simple as we can. However, for applications of logic it will be advantageous to have additional expressions which, though redundant with expressions of the language already introduced, simplify the work. I begin by introducing these additional expressions, and then turn to the question about how to understand the redundancy.

Abbreviating. As may already be obvious, formulas of a sentential language like \(L_s\) can get complicated quickly. Abbreviated forms give us ways to manipulate official expressions without undue pain. First, for any formulas \(P\) and \(Q\),

\[
\begin{align*}
\text{AB} & \quad (\lor) \quad (P \lor Q) \text{ abbreviates } (\sim P \rightarrow Q) \\
& \quad (\land) \quad (P \land Q) \text{ abbreviates } (P \rightarrow \sim Q) \\
& \quad (\leftrightarrow) \quad (P \leftrightarrow Q) \text{ abbreviates } ((P \rightarrow Q) \rightarrow (Q \rightarrow P))
\end{align*}
\]
The last of these is easier than it looks; I say something about this below. ∨ is **wedge**, ∧ is **caret**, and → is **double arrow**. An expression of the form \(P \lor Q \) is a **disjunction** with \(P \) and \(Q \) as **disjuncts**; it has the standard reading, \((P \ or \ Q) \). An expression of the form \(P \land Q \) is a **conjunction** with \(P \) and \(Q \) as **conjuncts**; it has the standard reading, \((P \ and \ Q) \). An expression of the form \(P \leftrightarrow Q \) is a **(material) biconditional**; it has the standard reading, \((P \iff Q) \).

Again, we do not use ordinary English to define our symbols. All the same, this should suggest how the extra operators extend the range of what we are able to say in a natural way.

With the abbreviations, we are in a position to introduce derived clauses for FR. Suppose \(P \) and \(Q \) are formulas; then by \(FR(\sim) \), \(\sim P \) is a formula; so by \(FR(\rightarrow) \), \((\sim P \rightarrow Q) \) is a formula; but this is just to say that \((P \lor Q) \) is a formula. And similarly in the other cases. (If you are confused by such reasoning, work it out on a tree.) Thus we arrive at the following conditions.

\[
FR' \quad (\lor) \quad \text{If} \ P \text{ and } Q \text{ are formulas, then } (P \lor Q) \text{ is a formula.}
\]

\[
FR' \quad (\land) \quad \text{If} \ P \text{ and } Q \text{ are formulas, then } (P \land Q) \text{ is a formula.}
\]

\[
FR' \quad (\leftrightarrow) \quad \text{If} \ P \text{ and } Q \text{ are formulas, then } (P \leftrightarrow Q) \text{ is a formula.}
\]

Once FR is extended in this way, the additional conditions may be applied directly in trees. Thus, for example, if \(P \) is a formula and \(Q \) is a formula, we can safely move in a tree to the conclusion that \((P \lor Q) \) is a formula by \(FR'('\lor') \). Similarly, for a more complex case, \(((A \leftrightarrow B) \land (\sim A \lor B)) \) is a formula.

In a derived sense, expressions with the new symbols have **subformulas**, **atomic subformulas**, **immediate subformulas**, and **main operator** all as before. Thus, with notation from exercises, with bracket for subformulas, star for atomic subformulas, box

\[\text{2Common alternatives are } \& \text{ for } \land, \text{ and } = \text{ for } \leftrightarrow.\]
for immediate subformulas and circle for main operator, on the diagram immediately above,

\[
\begin{array}{c}
\text{(H)}
\end{array}
\]

These are formulas by FR(s)

This is a formula by FR'(\otimes)

In the derived sense, \((A \iff B) \land (\neg A \lor B)\) has immediate subformulas \((A \iff B)\) and \((\neg A \lor B)\), and main operator \(\land\).

Return to the case of \((P \iff Q)\) and observe that it can be thought of as based on a simple abbreviation of the sort we expect. That is, \(((P \rightarrow Q) \land (Q \rightarrow P))\) is of the sort \((A \land B)\); so by AB(\land), it abbreviates \(\sim(A \rightarrow \sim B)\); but with \((P \rightarrow Q)\) for \(A\) and \((Q \rightarrow P)\) for \(B\), this is just, \(\sim((P \rightarrow Q) \rightarrow \sim(Q \rightarrow P))\) as in AB(\leftrightarrow). So you may think of \((P \iff Q)\) as an abbreviation of \(((P \rightarrow Q) \land (Q \rightarrow P))\), which in turn abbreviates the more complex \(\sim((P \rightarrow Q) \rightarrow \sim(Q \rightarrow P))\). This is what we expect: a double arrow is like an arrow going from \(P\) to \(Q\) and an arrow going from \(Q\) to \(P\).

A couple of additional abbreviations concern parentheses. First, it is sometimes convenient to use a pair of square brackets \([\]\) in place of parentheses \((\)\). This is purely for visual convenience; for example \(((()())())\) may be more difficult to absorb than \(((())())\). Second, if the very last step of a tree for some formula \(P\) is justified by FR(\(\rightarrow\)), FR'(\(\land\)), FR'(\(\lor\)), or FR'(\(\otimes\)), we feel free to abbreviate \(P\) with the outermost set of parentheses or brackets dropped. Again, this is purely for visual convenience. Thus, for example, we might write, \(A \rightarrow (B \rightarrow C)\) in place of \((A \rightarrow (B \rightarrow C))\).

As it turns out, where \(A, B,\) and \(C\) are formulas, there is a difference between \(((A \rightarrow B) \rightarrow C)\) and \((A \rightarrow (B \rightarrow C))\), insofar as the main operator shifts from one case to the other. In \((A \rightarrow B \rightarrow C)\), however, it is not clear which arrow should be the main operator. That is why we do not count the latter as a grammatical formula or sentence. Similarly there is a difference between \(\sim(A \rightarrow B)\) and \((\sim A \rightarrow B)\); again, the main operator shifts. However, there is no room for ambiguity when we drop just an outermost pair of parentheses and write \((A \rightarrow B) \rightarrow C\) for \(((A \rightarrow B) \rightarrow C)\); and similarly when we write \(A \rightarrow (B \rightarrow C)\) for \((A \rightarrow (B \rightarrow C))\). The same reasoning applies for abbreviations with \(\land, \lor,\) or \(\otimes\). So dropping outermost parentheses counts as a legitimate abbreviation.
An expression which uses the extra operators, square brackets, or drops outermost parentheses is a formula just insofar as it is a sort of shorthand for an official formula which does not. But we will not usually distinguish between the shorthand expressions and official formulas. Thus, again, the new conditions may be applied directly in trees and, for example, the following is a legitimate tree to demonstrate that $A \lor ([A \rightarrow B] \land B)$ is a formula.

\[
\begin{array}{c}
A & A & B & B \\
& [A \rightarrow B] & \\
& ([A \rightarrow B] \land B) & \\
& A \lor ([A \rightarrow B] \land B) & \\
\end{array}
\]

So we use our extra conditions for FR', introduce square brackets instead of parentheses, and drop parentheses in the very last step. Remember that the only case where you can omit parentheses is if they would have been added in the very last step of the tree. So long as we do not distinguish between shorthand expressions and official formulas, we regard a tree of this sort as sufficient to demonstrate that an expression is a formula and a sentence.

Unabbreviating. As we have suggested, there is a certain tension between the advantages of a simple language, and one that is more complex. When a language is simple, it is easier to reason about; when it has additional resources, it is easier to use. Expressions with \land, \lor and \leftrightarrow are redundant with expressions that do not have them—though it is easier to work with a language that has \land, \lor and \leftrightarrow than with one that does not (something like reciting the Pledge of Allegiance in English, and then in Morse code; you can do it in either, but it is easier in the former). If all we wanted was a simple language to reason about, we would forget about the extra operators. If all we wanted was a language easy to use, we would forget about keeping the language simple. To have the advantages of both, we have adopted the position that expressions with the extra operators *abbreviate*, or are a shorthand for, expressions of the original language. It will be convenient to work with abbreviations in many contexts. But when it comes to reasoning about the language, we set the abbreviations to the side and focus on the official language itself.
For this to work, we have to be able to undo abbreviations when required. It is, of course, easy enough to substitute parentheses back for square brackets, or to replace outermost dropped parentheses. For formulas with the extra operators, it is always possible to work through trees, using \(AB \) to replace formulas with unabbreviated forms, one operator at a time. Consider an example.

\[
\begin{align*}
& (A \leftrightarrow B) \\
& \sim A \\
& \sim ((A \rightarrow B) \rightarrow \sim (B \rightarrow A)) \\
& \sim A \\
& \sim ((A \rightarrow B) \rightarrow \sim (B \rightarrow A)) \rightarrow \sim ((\sim A \rightarrow B)) \\
\end{align*}
\]

The tree on the left is \((G) \) from above. The tree on the right uses \(AB \) to “unpack” each of the expressions on the left. Atomics remain as before. Then, at each stage, given an unabbreviated version of the parts, we give an unabbreviated version of the whole. First, \((A \leftrightarrow B) \) abbreviates \(\sim ((A \rightarrow B) \rightarrow \sim (B \rightarrow A)) \); this is a simple application of \(AB(\leftrightarrow) \). \(\sim A \) is not an abbreviation and so remains as before. From \(AB(\lor) \), \((\mathcal{P} \lor Q) \) abbreviates \(\sim \mathcal{P} \rightarrow Q \) so \(\sim A \lor B \) abbreviates tilda the left disjunct, arrow the right (so that we get two tildes). For the final result, we combine the input formulas according to the unabbreviated form for \(\land \). It is more a bookkeeping problem than anything: There is one formula \(\mathcal{P} \) that is \((A \leftrightarrow B) \), another \(Q \) that is \((\sim A \lor B) \); these are combined into \((\mathcal{P} \land Q) \) and so, by \(AB(\land) \), into \(\sim (\mathcal{P} \rightarrow \sim Q) \). You should be able to see that this is just what we have done. There is a tilda and a parenthesis; then the \(\mathcal{P} \); then an arrow and a tilda; then the \(Q \), and a closing parenthesis. Not only is the abbreviation more compact but, as we shall see, there is a corresponding advantage when it comes to grasping what an expression says.

Here is a another example, this time from \((I) \). In this case, we replace also square brackets and restore dropped outer parentheses.
In the right hand tree, we reintroduce parentheses for the square brackets. Similarly, we apply \(AB(\land) \) and \(AB(\lor) \) to unpack shorthand symbols. And outer parentheses are reintroduced at the very last step. Thus \(A \lor ([A \rightarrow B] \land B) \) is a shorthand for the unabbreviated expression, \((\sim A \rightarrow \sim((A \rightarrow B) \rightarrow \sim B))\).

Observe that these right-hand trees are not ones of the sort you would use directly to show that an expression is a formula by \(FR \). \(FR \) does not let you move directly from that \((A \rightarrow B) \) is a formula and \(B \) is a formula, to the result that \(\sim((A \rightarrow B) \rightarrow \sim B) \) is a formula as just above. Of course, if \((A \rightarrow B) \) and \(B \) are formulas, then \(\sim((A \rightarrow B) \rightarrow \sim B) \) is a formula, and nothing stops a tree to show it. This is the point of our derived clauses for \(FR' \). In fact, this is a good check on your unabbreviations: If the result is not a formula, you have made a mistake. But you should not think of trees as on the right as involving application of \(FR \). Rather they are unabbreviating trees, with application of \(AB \) to shorthand expressions from trees as on the left. The combination of a formula constructed with \(FR' \) and then unabbreviated by \(AB \) always results in an expression that meets all the requirements from \(FR \).

E2.6. For each of the following expressions, demonstrate that it is a formula and a sentence of \(\mathcal{L}_4 \) with a tree. Then on the tree (i) bracket all the subformulas, (ii) box the immediate subformula(s), (iii) star the atomic subformulas, and (iv) circle the main operator.

* \(a. \ \ (A \land B) \rightarrow C \)

b. \(\sim([A \rightarrow \sim K_{14}] \lor C_3) \)

c. \(B \rightarrow (\sim A \leftrightarrow B) \)

d. \((B \rightarrow A) \land (C \lor A) \)

e. \((A \lor \sim B) \leftrightarrow (C \land A) \)
*E2.7. For each of the formulas in E2.6a–e, produce an unabbreviating tree to find
the unabbreviated expression it represents.

*E2.8. For each of the unabbreviated expressions from E2.7a–e, produce a complete
tree to show by direct application of FR that it is an official formula.

E2.9. In the text, we introduced derived clauses to FR by reasoning as follows,
“Suppose \(\mathcal{P} \) and \(\mathcal{Q} \) are formulas; then by FR(\(\sim \)), \(\sim \mathcal{P} \) is a formula; so by FR(\(\rightarrow \)),
(\(\sim \mathcal{P} \rightarrow \mathcal{Q} \)) is a formula; but this is just to say that (\(\mathcal{P} \lor \mathcal{Q} \)) is a formula. And
similarly in the other cases” (page 43). Supposing that \(\mathcal{P} \) and \(\mathcal{Q} \) are formulas,
produce the similar reasoning to show that (\(\mathcal{P} \land \mathcal{Q} \)) and (\(\mathcal{P} \leftrightarrow \mathcal{Q} \)) are formulas.
Hint: Again, it may help to think about trees.

E2.10. For each of the following concepts, explain in an essay of about two pages,
so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii) where
the concept applies, and (iv) where it does not. Your essay should exhibit an
understanding of methods from the text.

a. The vocabulary for a sentential language, and use of the metalanguage.

b. A formula of a sentential language.

c. The parts of a formula.

d. The abbreviation and unabbreviation for an official formula of a sentential
language.

2.3 Quantificational Languages

The methods by which we define the grammar of a quantificational language are very
much the same as for a sentential language. Of course, in the quantificational case,
additional expressive power is associated with additional complications. We will
introduce a class of terms before we get to the formulas, and there will be a distinction
between formulas and sentences. As before, however, there is the vocabulary and
then the grammatical elements. After introducing the vocabulary, we build to terms,
formulas, and sentences. The chapter concludes with some discussion of abbreviations, and of a particular language with which we shall be concerned later in the text.

Here is a brief intuitive picture: At the start of section 2.2 we introduced ‘The butler is guilty’ and ‘The maid is guilty’ as atoms for sentential languages, and the rest of the section went on to fill out that picture. For the quantificational languages of this section, our atoms are certain sentence parts. Thus we introduce a class of individual terms which work to pick out objects. In the simplest case, we might introduce \(b \) and \(m \) to pick out the butler and the maid. Similarly, we introduce a class of predicate expressions as \((x \text{ is guilty}) \) and \((x \text{ killed } y) \) indicating them by capitals as \(G^1 \) or \(K^2 \) (with the superscript to indicate the number of object places). Then \(G^1 b \) says that the butler is guilty, and \(K^2 bm \) that the butler killed the maid. We shall read \(\forall x G^1 x \) to say for any thing \(x \), it is guilty—\(that \ everything \) is guilty. (The upside-down ‘A’ for all is the universal quantifier.) As indicated by this reading, the variable \(x \) works very much like a pronoun in ordinary language. And, of course, our notions may be combined. Thus, \(\forall x G^1 x \land K^2 bm \) says that everything is guilty and the butler killed the maid. Thus we expose structure buried in sentence letters from before. Of course we have so-far done nothing to define quantificational languages. But this should give you a picture of the direction in which we aim to go.

2.3.1 Vocabulary

We begin by specifying the vocabulary or symbols of our quantificational languages. For now, do not worry about what the symbols mean or how they are used. Our task is to identify the symbols and give some conventions for talking about them. For any quantificational language \(\mathcal{L} \) the vocabulary consists of,

- **VC** (p) Punctuation symbols: ()
- (o) Operator symbols: \(\sim, \rightarrow, \forall \)
- (v) A non-empty countable collection of variable symbols
- (s) A possibly-empty countable collection of sentence letters
- (c) A possibly-empty countable collection of constant symbols
- (f) For any integer \(n \geq 1 \), a possibly-empty countable collection of \(n \)-place function symbols
- (r) For any integer \(n \geq 1 \), a possibly-empty countable collection of \(n \)-place relation symbols
Unless otherwise noted, ‘=’ is always included among the 2-place relation symbols, and the variable symbols are $i \ldots z$ with or without positive integer subscripts. Notice that all the punctuation symbols, operator symbols and sentence letters remain from before (except that the collection of sentence letters may be empty). There is one new operator symbol, with the new variable symbols, constant symbols, function symbols, and relation symbols.

In order to fully specify the vocabulary of any particular language, we need to specify its variable symbols, sentence letters, constant symbols, function symbols, and relation symbols. Our general definition VC leaves room for languages with different collections of these symbols. As before, the requirement that the collections be countable is compatible with multiple series; for example, there may be sentence letters $A, A_1, A_2, \ldots, B, B_1, B_2, \ldots$ (where we may think of the unsubscripted letter as with an implicit subscript zero). So, again VC is compatible with a wide variety of specifications, but legitimate specifications always require that variable symbols, sentence letters, constant symbols, function symbols, and relation symbols can be sorted into series with a first member, a second member, and so forth.

As a sample for these specifications, we shall adopt a generic quantificational language L_q which includes the standard variables, the equality symbol ‘=’ and,

Sentence letters: uppercase Roman italics $A \ldots Z$ with or without positive integer subscripts

Constant symbols: lowercase Roman italics $a \ldots h$ with or without positive integer subscripts

Function symbols: for any integer $n \geq 1$, superscripted lowercase Roman italics $a^n \ldots z^n$ with or without positive integer subscripts

Relation symbols: for any integer $n \geq 1$, superscripted uppercase Roman italics $A^n \ldots Z^n$ with or without positive integer subscripts.

Observe that constant symbols and variable symbols partition the lowercase alphabet: $a \ldots h$ for constants, and $i \ldots z$ for variables. Constant and variable symbols are
CHAPTER 2. FORMAL LANGUAGES

More on Countability

Given what was said on page 36, one might think that every collection is countable. However, this is not so. This amazing and simple result was proved by G. Cantor in 1873. Consider the collection which includes every countably infinite series of digits 0 through 9 (or, if you like, decimal representations of real numbers between 0 and 1). Suppose that the members of this collection can be correlated one-to-one with the non-negative integers. Then there is some list,

\[
0 = a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ldots \\
1 = b_0 \ b_1 \ b_2 \ b_3 \ b_4 \ldots \\
2 = c_0 \ c_1 \ c_2 \ c_3 \ c_4 \ldots \\
3 = d_0 \ d_1 \ d_2 \ d_3 \ d_4 \ldots \\
4 = e_0 \ e_1 \ e_2 \ e_3 \ e_4 \ldots \\
\]

and so forth, which matches each series of digits with a non-negative integer. For any digit \(x \), say \(x' \) is the digit after it in the standard ordering (where 0 follows 9).

Now consider the digits along the diagonal, \(a_0, b_1, c_2, d_3, e_4 \ldots \) and ask: does the series \(a'_0, b'_1, c'_2, d'_3, e'_4 \ldots \) appear anywhere in the list? It cannot be the first member, because \(a_0 \neq a'_0 \); it cannot be the second, because \(b_1 \neq b'_1 \), and similarly for every member. So \(a'_1, b'_2, c'_3, d'_4, e'_5 \ldots \) does not appear in the list. So we have failed to match all the infinite series of digits with non-negative integers—and similarly for any attempt! So the collection which contains every countably infinite series of digits is not countable.

As an example, consider the following attempt to line up the non-negative integers with the series of digits:

\[
0 = \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ldots \\
1 = \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ldots \\
2 = \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ldots \\
3 = \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ldots \\
4 = \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ldots \\
5 = \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ldots \\
6 = \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ 6 \ldots \\
7 = \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ldots \\
8 = \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ 8 \ldots \\
9 = \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ldots \\
10 = \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ldots \\
11 = \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ldots \\
12 = \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \ 1 \ldots \\
13 = \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ 3 \ 1 \ldots \\
\]

and so forth. For each non-negative integer, repeat its digits, except that for “duplicate” cases—1 and 11, 2 and 22, 12 and 1212—prefix enough 0s so that no later series duplicates an earlier one. Then, by the above method, from the diagonal,

\[
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \ 2 \ 2 \ 2 \ 4 \ldots \\
\]

cannot appear anywhere on the list. And similarly, any list has some missing series.
distinguished from function symbols by superscripts; similarly sentence letters are dis-
tinguished from relation symbols by superscripts. Function symbols with a superscript
1 \((a^1 \ldots z^1)\) are one-place function symbols; function symbols with a superscript 2
\((a^2 \ldots z^2)\) are two-place function symbols; and so forth. Similarly, relation symbols
with a superscript 1 \((A^1 \ldots Z^1)\) are one-place relation symbols; relation symbols with
a superscript 2 \((A^2 \ldots Z^2)\) are two-place relation symbols; and so forth. Subscripts
merely guarantee that we never run out of symbols of the different types. Notice that
superscripts and subscripts suffice to distinguish all the different symbols from one
another. Thus for example \(A\) and \(A^1\) are different symbols—one a sentence letter,
and the other a one-place relation symbol; \(A^1, A^1_1\) and \(A^2\) are distinct as well—the
first two are one-place relation symbols, distinguished by the subscript; the latter
is a completely distinct two-place relation symbol. In practice, again, we will not
see subscripts very often. (And we shall even find ways to abbreviate away some
superscripts.)

The metalanguage works very much as before. We use script letters \(A \ldots Z\)
and \(a \ldots z\) to represent expressions of an object language like \(L_q\). Again, ‘~’, ‘→’,
‘∀’, ‘≡’, ‘(’, and ‘)’ represent themselves. And concatenated or joined symbols of
the metalanguage represent the concatenation of the symbols they represent. As
before, the metalanguage lets us make general claims about ranges of expressions
all at once. Thus, where \(x\) is a variable, \(∀x\) is a universal \(x\)-quantifier. Here, ‘∀x’
is not an expression of an object language like \(L_q\) (Why?) Rather, we have said of
object language expressions that \(∀x\) is a universal \(x\)-quantifier, \(∀y_2\) is a universal
\(y_2\)-quantifier, and so forth. In the metalinguistic expression, ‘∀’ stands for itself, and
‘\(x\)’ for the arbitrary variable. Again, as in section 2.2.1, it may help to use maps to see
whether an expression is of a given form. Thus given that \(x\) maps to any variable, \(∀x\)
and \(∀y\) are of the form \(∀x\), but \(∀c\) and \(∀f^1z\) are not.

\[
\begin{array}{c}
∀x \\
∀x \\
∀x \\
∀x \\
∀x \\
\end{array}
\]

In the leftmost two cases, \(∀\) maps to itself, and \(x\) to a variable. In the next, ‘\(c\)’ is a
constant so there is no variable to which \(x\) can map. In the rightmost case, there is a
variable \(z\) in the object expression, but if \(x\) is mapped to it, the function symbol \(f^1\) is
left unmatched. So the rightmost two expressions are not of the form \(∀x\).

E2.11. Assuming that \(R^1\) may represent any one-place relation symbol, \(h^2\) any
two-place function symbol, \(x\) any variable, and \(c\) any constant of \(L_q\), use
maps to determine whether each of the following expressions is (i) of the form, $\forall x (R^1 x \rightarrow R^1 c)$ and then (ii) of the form, $\forall x (R^1 x \rightarrow R^1 h^2 x c)$.

*a. $\forall k (A^1 k \rightarrow A^1 d)$

b. $\forall h (J^1 h \rightarrow J^1 b)$

c. $\forall w (S^1 w \rightarrow S^1 g^2 wb)$

d. $\forall w (S^1 w \rightarrow S^1 c^2 xc)$

e. $\forall v L^1 v \rightarrow L^1 yh^2$

2.3.2 Terms

With the vocabulary of a language in place, we can turn to specification of its grammatical expressions. For this, in the quantificational case, we begin with *terms*.

TR

(v) If t is a variable x, then t is a *term*.

(c) If t is a constant c, then t is a *term*.

(f) If h^n is an n-place function symbol and $t_1 \ldots t_n$ are n terms, then $h^n t_1 \ldots t_n$ is a term.

(CL) Any term may be formed by repeated application of these rules.

TR is another example of a recursive definition. As before, we can use tree diagrams to see how it works. This time, basic elements are constants and variables. Complex elements are put together by clause (f). Thus, for example, $f^1 g^2 h^1 xc$ is a term of L_q.

```
                    x  c
                   /    \
            x       h^1 x
                    /   (M)
           g^2 h^1 xc
              /   (M)
        f^1 g^2 h^1 xc
```

Superscripts of a function symbol indicate the number of places that take terms. Thus x is a term, and h^1 followed by x to form $h^1 x$ is another term. But then, given that
CHAPTER 2. FORMAL LANGUAGES

h^1x and c are terms, g^2 followed by h^1x and then c is another term. And so forth. Just as a formula is made up of operator symbols and other formulas, so a complex term is made of function symbols and other terms.

Observe that terms constructed at any stage of the tree are the units or wholes for stages that follow—and any contributing term must appear at some stage of the tree. Thus in the last stage, f^1 is followed by the one term g^2h^1xc. In contrast, neither h^1xc nor f^1h^1xc are terms—in each case, the problem is that the one-place function symbol is followed by two terms: x and c are terms, and h^1x and c are terms, but a one-place function symbol followed by two terms does not form a term. And similarly, g^2h^1x and g^2c are not terms—the function symbol g^2 must be followed by a pair of terms to form a new term. You will find that there is always only one way to build a term on a tree.

Here is another example.

\[
\begin{array}{c}
\text{(N)} \\
\begin{array}{c}
 x \\
 f^4xh^1c \\
 h^1c \\
 z \\
 c \\
 x \\
\end{array}
\end{array}
\]

these are terms by TR(v), TR(c), TR(v), and TR(v)

since c is a term, this is a term by TR(f)

given the four input terms, this is a term by TR(f)

Again, there is always just one way to build a term by the definition. If you are confused about the makeup of a term, build it on a tree, and all will be revealed. To demonstrate that an expression is a term, it is sufficient to construct it, according to the definition, on such a tree. If an expression is not a term, there will be no way to construct it according to the rules.

E2.12. For each of the following expressions, demonstrate that it is a term of L_q with a tree.

a. f^1c

b. g^2yf^1c

c. h^3cf^1yx

d. $g^2h^3yf^1cx$

e. $h^3f^1xcg^2f^1za$
E2.13. Explain why the following expressions are not terms of L_q. Hint: you may find that an attempted tree will help you see what is wrong.

a. X

b. g^2

c. zc

d. $g^2 y f^1 x c$

e. $h^3 f^1 f^1 c g^2 f^1 z a$

E2.14. For each of the following expressions, determine whether it is a term of L_q; if it is, demonstrate with a tree; if not, explain why.

*a. $g^2 g^2 x y f^1 x$

*b. $h^3 c f^2 y x$

c. $f^1 g^2 x h^3 y f^2 y c$

d. $f^1 g^2 x h^3 y f^1 y c$

e. $h^3 g^2 f^1 x c g^2 f^1 z a f^1 b$

2.3.3 Formulas

With the terms in place, we are ready for the central notion of a formula. Again, the definition is recursive.

FR

(s) If S is a sentence letter, then S is a formula.

(r) If R^n is an n-place relation symbol and $t_1 \ldots t_n$ are n terms, then $R^n t_1 \ldots t_n$ is a formula.

(~) If P is a formula, then $\neg P$ is a formula.

(→) If P and Q are formulas, then $(P \rightarrow Q)$ is a formula.

(∀) If P is a formula and x is a variable, then $\forall x P$ is a formula.

(CL) Any formula can be formed by repeated application of these rules.
Again, we can use trees to see how it works. In this case, FR(r) depends on which expressions are terms. So it is natural to split the diagram into two, with applications of TR above a division, and FR below. Then, for example, \(\forall x (A^1 f^1 x \rightarrow \sim \forall y B^2 cy) \) is a formula.

By now, the basic strategy should be clear. We construct terms by TR just as before. Given that \(f^1 x \) is a term, FR(r) gives us that \(A^1 f^1 x \) is a formula, for it consists of a one-place relation symbol followed by a single term; and given that \(c \) and \(y \) are terms, FR(r) gives us that \(B^2 cy \) is a formula, for it consists of a two-place relation symbol followed by two terms. From the latter, by FR(\(\sim \)), \(\sim \forall y B^2 cy \) is a formula. Then FR(\(\rightarrow \)) and FR(\(\forall \)) work just as before. The final step is another application of FR(\(\forall \)).

Here is another example. By the following tree, \(\forall x \sim (L \rightarrow \forall y B^3 f^1 y c x) \) is a formula of \(\mathcal{L}_q \).
The basic formulas appear in the top row of the formula part of the diagram. L is a sentence letter. So it does not require any terms to be a formula. B^3 is a three-place relation symbol, so by FR(r) it takes three terms to make a formula. After that, other formulas are constructed out of ones that come before.

If an expression is not a formula, then there is no way to construct it by the rules. Thus, for example, (A^1x) is not a formula of \mathcal{L}_q. A^1x is a formula; but the only way parentheses are introduced is in association with \rightarrow; the parentheses in (A^1x) are not introduced that way; so there is no way to construct it by the rules, and it is not a formula. Similarly, A^2x and A^2f^2xy are not formulas; in each case, the problem is that the two-place relation symbol is followed by just one term. You should be clear about these in your own mind, particularly for the second case.

Before turning to the official notion of a sentence, we introduce some additional definitions, each directly related to the trees—and to notions you have seen before. First, where ‘\rightarrow’, ‘\sim’, and any $\forall x$ is an operator, a formula’s main operator is the last operator added in its tree. Second, every formula in the formula portion of a diagram for \mathcal{P}, including \mathcal{P} itself, is a subformula of \mathcal{P}. Notice that terms are not formulas, and so are not subformulas. An immediate subformula of \mathcal{P} is a subformula to which \mathcal{P} is directly connected by lines. A subformula is atomic iff it contains no operators and so appears in the top line of the formula part of the tree. Thus on the diagram immediately above, with notation from exercises before—bracket for
subformulas, star for atomic subformulas, box for immediate subformulas and circle for main operator,

The main operator is $\forall x$, and the immediate subformula is $\sim (L \rightarrow \forall y B^3 f^1 y c x)$. The atomic subformulas are the most basic formulas. Given this, everything is as one would expect from before. In general, if P and Q are some formulas and x is a variable, then the main operator of $\forall x P$ is the quantifier, and the immediate subformula is P; the main operator of $\sim P$ is the tilde, and the immediate subformula is P; the main operator of $(P \rightarrow Q)$ is the arrow, and the immediate subformulas are P and Q—for you would build these formulas by getting P, or P and Q, and then adding the quantifier, tilde, or arrow as the last operator. Insofar as they operate on a single immediate subformula, quantifiers and tilde are unary operators, while \rightarrow is binary.

Now if a formula includes an operator, that operator’s scope is just the subformula in which the operator first appears. Using underlines to indicate quantifier scope,
A variable x is *bound* iff it appears in the scope of an x-quantifier, and a variable is *free* iff it is not bound. In the above diagram, each variable is bound. The x-quantifier binds both instances of x; the y-quantifier binds both instances of y; and the z-quantifier binds both instances of z. In $\forall x R^2 xy$, however, both instances of x are bound, but the y is free. Finally, an expression is a *sentence* iff it is a formula and it has no free variables. To determine whether an expression is a sentence, use a tree to see if it is a formula. If it is a formula, use underlines to check whether any variable x has an instance that falls outside the scope of an x-quantifier. If it is a formula, and there is no such instance, then the expression is a sentence. From the above diagram, $\forall z (A^1 z \rightarrow \forall y \forall x B^2 xy)$ is a formula and a sentence. But as follows, $\forall y (\sim Q^1 x \rightarrow \forall x = x y)$ is not.
Recall that ‘=’ is a two-place relation symbol. The expression has a tree, so it is a formula. The x-quantifier binds the last two instances of x, and the y-quantifier binds both instances of y. But the first instance of x is free. Since it has a free variable, although it is a formula, $\forall y(\sim Q^1 x \rightarrow \forall x=xy)$ is not a sentence. Notice that $\forall x R^2 a x$, for example, is a sentence, as the only variable is x (a being a constant) and all the instances of x are bound.

E2.15. For each of the following expressions, (i) Demonstrate that it is a formula of \mathcal{L}_q with a tree. (ii) On the tree bracket all the subformulas, box the immediate subformulas, star the atomic subformulas, circle the main operator, and indicate quantifier scope with underlines. Then (iii) say whether the formula is a sentence, and if it is not, explain why.

a. $H^1 x$

*b. $(A^1 x \rightarrow B^2 c f^1 x)$

c. $\forall x(\sim=xc \rightarrow A^1 g^2 ay)$

d. $\sim\forall x(B^2 xc \rightarrow \forall y \sim A^1 g^2 ay)$

e. $(S \rightarrow \sim(\forall w B^2 f^1 wh^1 a \rightarrow \sim\forall z(H^1 w \rightarrow B^2 za)))$

E2.16. Explain why the following expressions are not formulas or sentences of \mathcal{L}_q.

Hint: You may find that an attempted tree will help you see what is wrong.

a. H^1
b. g^2ax

*c. $\forall x B^2xg^2ax$

d. $\sim(\sim\forall aA^1a \rightarrow (S \rightarrow \sim B^2zg^2xa))$

e. $\forall x(Dax \rightarrow \forall z\sim K^2zg^2xa)$

E2.17. For each of the following expressions, determine whether it is a formula and a sentence of \mathcal{L}_q. If it is a formula, show it on a tree, and exhibit its parts as in E2.15. If it fails one or both, explain why.

a. $\sim(L \rightarrow \sim V)$

b. $\forall x (\sim L \rightarrow K^1h^3xb)$

c. $\forall z\forall w(\forall xR^2wx \rightarrow \sim K^2zw) \rightarrow \sim M^2zz$

*d. $\forall z(L^1z \rightarrow (\forall wR^2wf^3axw \rightarrow \forall wR^2f^3azww))$

e. $\sim((\forall w)B^2f^1wh^1a \rightarrow \sim(\forall z)(H^1w \rightarrow B^2za))$

2.3.4 Abbreviations

That is all there is to the official grammar. Having introduced the official grammar, though, it is nice to have in hand some abbreviated versions for official expressions. Abbreviated forms give us ways to manipulate official expressions without undue pain. First, for any variable x and formulas P and Q,

$\text{AB} \begin{array}{l}
\forall \ (P \lor Q) \text{ abbreviates } (\sim P \rightarrow Q) \\
\land \ (P \land Q) \text{ abbreviates } \sim(P \rightarrow \sim Q) \\
\leftrightarrow \ (P \leftrightarrow Q) \text{ abbreviates } \sim((P \rightarrow Q) \rightarrow \sim(Q \rightarrow P)) \\
\exists \ x \ P \text{ abbreviates } \forall x \sim P
\end{array}$

The first three are as from AB. The last is new. For any variable x, an expression of the form $\exists x \ P$ is an existential quantifier. $\exists x \ P$ is read, ‘there exists an x such that P’.

As before, these abbreviations make possible derived clauses to FR. Suppose P is a formula; then by FR(\sim), $\sim P$ is a formula; so by FR(\forall), $\forall x \sim P$ is a formula; so by FR(\sim) again, $\sim \forall x \sim P$ is a formula; but this is just to say that $\exists x \ P$ is a formula. With results from before, we are thus given,
(\land) If \(\mathcal{P} \) and \(\mathcal{Q} \) are formulas, then \((\mathcal{P} \land \mathcal{Q}) \) is a formula.

(\lor) If \(\mathcal{P} \) and \(\mathcal{Q} \) are formulas, then \((\mathcal{P} \lor \mathcal{Q}) \) is a formula.

(\iff) If \(\mathcal{P} \) and \(\mathcal{Q} \) are formulas, then \((\mathcal{P} \iff \mathcal{Q}) \) is a formula.

(\exists) If \(\mathcal{P} \) is a formula and \(x \) is a variable, then \(\exists x \mathcal{P} \) is a formula.

The first three are from before. The last is new. And, as before, we can incorporate these conditions directly into trees for formulas. Thus \(\exists x (~A^1 x \land \exists y A^2 y x) \) is a formula.

In a derived sense, we carry over additional definitions from before. Thus, where operators include the derived symbols \(\land, \lor, \iff \) and \(\exists x \), the main operator is the last operator added in its tree, subformulas are all the formulas in the formula part of a tree, atomic subformulas are the ones in the upper row of the formula part, and immediate subformulas are the one(s) to which a formula is directly connected by lines. Thus the main operator of \(\exists x (~A^1 x \land \exists y A^2 y x) \) is the leftmost existential quantifier and the immediate subformula is \((~A^1 x \land \exists y A^2 y x) \). In addition, a variable is in the scope of an existential quantifier iff it would be in the scope of the unabbreviated universal one. So it is possible to discover whether an expression is a sentence directly from diagrams of this sort. Thus, as indicated by underlines, \(\exists x (~A^1 x \land \exists y A^2 y x) \) is a sentence.

To see what it is an abbreviation for, we can reconstruct the formula on an unabbreviating tree, one operator at a time.
First the existential quantifier is replaced by the unabbreviated form. Then, where P and Q are joined by $\text{FR}^0(\land)$ to form $(P \land Q)$, the corresponding unabbreviated expressions are combined into the unabbreviated form, $\sim(P \rightarrow \sim Q)$. At the last step the existential quantifier is replaced again. So $\exists x(\sim A^1_x \land \exists y A^2_y xx)$ abbreviates $\forall x \sim(\sim A^1_x \rightarrow \sim \forall y \sim A^2_y xy)$. Again, abbreviations are nice! Notice that the resultant expression is a formula and a sentence, as it should be.

As before, it is sometimes convenient to use a pair of square brackets $[]$ in place of parentheses $()$. And if the very last step of a tree for some formula is justified by $\text{FR}^0(\rightarrow), \text{FR}^0(\lor), \text{FR}^0(\land)$, or $\text{FR}^0(\leftrightarrow)$, we may abbreviate that formula with the outermost set of parentheses or brackets dropped. In addition, for terms t_1 and t_2 we will frequently represent the formula $=t_1 t_2$ as $(t_1 = t_2)$. Notice the extra parentheses. This lets us see the equality symbol in its more usual “infix” form. When there is no danger of confusion, we will sometimes omit the parentheses and write, $t_1 D t_2$. Also, where there is no potential for confusion, we sometimes omit superscripts. Thus in \mathcal{L}_q we might omit superscripts on relation symbols—simply assuming that the terms following a relation symbol give its correct number of places. Thus Ax abbreviates A^1_x; Axy abbreviates $A^2 xy$; $Axf^1 y$ abbreviates $A^2 xf^1 y$; and so forth. Notice that Ax and Axy, for example, involve different relation symbols.

In formulas of \mathcal{L}_q, sentence letters are distinguished from relation symbols insofar as relation symbols are followed immediately by terms, where sentence letters are not. Notice, however, that we cannot drop superscripts on function symbols in \mathcal{L}_q—thus, even given that f and g are function symbols rather than constants, apart from superscripts, there is no way to distinguish the terms in, say, $Afx y z w$.

As a final example, $\exists y \sim(c = y) \lor \forall x Rxf^2 x d$ is a formula and a sentence.
The abbreviation drops a superscript, uses the infix notation for equality, uses the existential quantifier and wedge, and drops outermost parentheses. As before, the right-hand diagram is not a direct demonstration that $(\sim \forall y \sim \sim = c y \rightarrow \forall x R^2 x f^2 x d)$ is a sentence. However, it unpacks the abbreviation and we know that the result is an official sentence insofar as the left-hand tree, with its application of derived rules, tells us that $\exists y (c = y) \vee \forall x R x f^2 x d$ is an abbreviation of formula and a sentence, and the right-hand diagram tells us what that expression is.

E2.18. For each of the following expressions, (i) Demonstrate that it is a formula of \mathcal{L}_q with a tree. (ii) On the tree bracket all the subformulas, box the immediate subformulas, star the atomic subformulas, circle the main operator, and indicate quantifier scope with underlines. Then (iii) say whether the formula is a sentence, and if it is not, explain why.

a. $(A \rightarrow \sim B) \leftrightarrow (A \land C)$

b. $\exists x F x \land \forall y G x y$

c. $\exists x A f^1 g^2 a h^3 z w f^1 x \lor S$

d. $\forall x \forall y \forall z [(x = y) \land (y = z)] \rightarrow (x = z))$

e. $\exists y [c = y \land \forall x R x f^1 x y]$
Grammar Quick Reference

VC
- (p) Punctuation symbols: ()
- (o) Operator symbols: ~ → ∀
- (v) A non-empty countable collection of variable symbols
- (s) A possibly-empty countable collection of sentence letters
- (c) A possibly-empty countable collection of constant symbols
- (f) For any integer \(n \geq 1 \), a possibly-empty countable collection of \(n \)-place function symbols
- (r) For any integer \(n \geq 1 \), a possibly-empty countable collection of \(n \)-place relation symbols

TR
- (v) If \(t \) is a variable \(x \), then \(t \) is a term.
- (c) If \(t \) is a constant \(c \), then \(t \) is a term.
- (f) If \(h^n \) is a \(n \)-place function symbol and \(t_1 \ldots t_n \) are \(n \) terms, then \(h^n t_1 \ldots t_n \) is a term.

FR
- (v) If \(S \) is a sentence letter, then \(S \) is a formula.
- (r) If \(R^n \) is an \(n \)-place relation symbol and \(t_1 \ldots t_n \) are \(n \) terms, \(R^n t_1 \ldots t_n \) is a formula.
- (c) If \(P \) is a formula, then \(P \) is a formula.
- (f) If \(P \) and \(Q \) are formulas, then \(P \rightarrow Q \) is a formula.
- (∀) If \(P \) is a formula and \(x \) is a variable, then \(\forall x. P \) is a formula.

CL Any term may be formed by repeated application of these rules.

An operator’s scope includes just the formula in which it is introduced; a variable \(x \) is free iff it is not in the scope of an \(x \)-quantifier; an expression is a sentence iff it is a formula with no free variables.

Subformulas are all the formulas in the tree; atomic subformulas appear in the top row; immediate subformulas are the ones to which a formula is directly connected by lines; the main operator is the last operator added.

AB
- (v) \((P \lor Q)\) abbreviates \(\neg P \rightarrow Q\)
- (∧) \((P \land Q)\) abbreviates \(\neg(P \rightarrow \neg Q)\)
- (↔) \((P \leftrightarrow Q)\) abbreviates \(\neg((P \rightarrow Q) \land \neg(Q \rightarrow P))\)
- (∃) \(\exists x. P\) abbreviates \(\forall x. \neg P\)

FR’
- (v) If \(P \) and \(Q \) are formulas, then \((P \land Q) \) is a formula.
- (v) If \(P \) and \(Q \) are formulas, then \((P \lor Q) \) is a formula.
- (↔) If \(P \) and \(Q \) are formulas, then \((P \leftrightarrow Q) \) is a formula.
- (∃) If \(P \) is a formula and \(x \) is a variable, then \(\exists x. P \) is a formula.

The generic language \(L_q \) includes the equality symbol ‘\(=\)’ along with,

- Variable symbols: \(i \ldots z \) with or without positive integer subscripts
- Sentence letters: \(A \ldots Z \) with or without positive integer subscripts
- Constant symbols: \(a \ldots h \) with or without positive integer subscripts
- Function symbols: for any \(n \geq 1 \), \(a^n \ldots z^n \) with or without positive integer subscripts
- Relation symbols: for any \(n \geq 1 \), \(A^n \ldots Z^n \) with or without positive integer subscripts.
E2.19. For each of the formulas in E2.18, produce an unabbreviating tree to find the unabbreviated expression it represents.

E2.20. For each of the unabbreviated expressions from E2.19, produce a complete tree to show by direct application of FR that it is an official formula. In each case, using underlines to indicate quantifier scope, is the expression a sentence? does this match with the result of E2.18?

2.3.5 Another Language

To emphasize the generality of our definitions VC, TR, and FR, let us introduce a language like one with which we will be much concerned later in the text. L_{NT} is like a minimal language we shall introduce later for number theory. Recall that VC leaves open what are the variable symbols, constant symbols, function symbols, sentence letters, and relation symbols of a quantificational language. So far, our generic language L_q fills these in by certain conventions. L_{NT} replaces these with the standard variables and,

- Constant symbol: \emptyset
- one-place function symbol: S
- two-place function symbols: $+, \times$
- two-place relation symbols: $=, <$

and that is all. Later we shall introduce a language like L_{NT} except without the $<$ symbol; for now, we leave it in. Notice that L_q uses capitals for sentence letters and lowercase for function symbols. But there is nothing sacred about this. Similarly, L_q indicates the number of places for function and relation symbols by superscripts, where in L_{NT} the number of places is simply built into the definition of the symbol. In fact, L_{NT} is an extremely simple language! Given the vocabulary, TR and FR apply in the usual way. Thus \emptyset, $S\emptyset$ and $SS\emptyset$ are terms—as is easy to see on a tree. And $<0SS\emptyset$ is an atomic formula.

As with our treatment for equality, for terms m and n, we often abbreviate official terms of the sort, $+mn$ and $\times mn$ as $(m + n)$ and $(m \times n)$; similarly, it is often convenient to abbreviate an atomic formula $<mn$ as $(m < n)$. And we will drop these parentheses when there is no danger of confusion. Officially, we have not said a word about what these expressions mean. It is natural, however, to think of them with
their usual meanings, with S the successor function—so that the successor of zero, $S\emptyset$ is one, the successor of the successor of zero $SS\emptyset$ is two, and so forth. But we do not need to think about that for now.

As an example, we show that $\forall x \forall y (x = y \rightarrow [(x + y) < (x + Sy)])$ is (an abbreviation of) a formula and a sentence.

And we can show what it abbreviates by unpacking the abbreviation in the usual way. This time, we need to pay attention to abbreviations in the terms as well as formulas.
The official (Polish) notation on the right may seem strange. But it follows the official definitions TR and FR. And it conveniently reduces the number of parentheses from the more typical infix presentation. (You may also be familiar with Polish notation for math from certain computer applications.) If you are comfortable with grammar and abbreviations for this language \mathcal{L}_{NT}, you are doing well with the grammar for our formal languages.

E2.21. For each of the following expressions, (i) Demonstrate that it is a formula of \mathcal{L}_{NT} with a tree. (ii) On the tree bracket all the subformulas, box the immediate subformulas, star the atomic subformulas, circle the main operator, and indicate quantifier scope with underlines. Then (iii) say whether the formula is a sentence, and if it is not, explain why.

a. $\sim[S\emptyset = (S\emptyset \times S\emptyset)]$

*b. $\exists x \forall y (x \times y = x)$

c. $\forall x [\sim(x = \emptyset) \rightarrow \exists y (y < x)]$

d. $\forall y [(x < y \lor x = y) \lor y < x]$

e. $\forall x \forall y \forall z [(x \times (y + z)) = ((x \times y) + (x \times z))]$
*E2.22. For each of the formulas in E2.21, produce an unabbreviating tree to find the unabbreviated expression it represents.

E2.23. For each of the following concepts, explain in an essay of about two pages, so that (high-school age) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples of your own construction (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. The vocabulary for a quantificational language and then for \mathcal{L}_q and $\mathcal{L}_{\neg q}$.

b. A formula and a sentence of a quantificational language.

c. An abbreviation for an official formula and sentence of a quantificational language.
Chapter 3

Axiomatic Deduction

We have not yet said what our sentences mean. This is just what we do in the next chapter. However, just as it is possible to do grammar without reference to meaning, so it is possible to do derivations without reference to meaning. Derivations are defined purely in relation to formula and sentence form. That is why it is crucial to show that derivations stand in important relations to validity and truth, as we do in part III. And that is why it is possible to do derivations without knowing what the expressions mean. In this chapter we develop an axiomatic derivation system without any reference to meaning and truth. Apart from relations to meaning and truth, derivations are perfectly well-defined—counting at least as a sort of puzzle or game with, perhaps, a related “thrill of victory” and “agony of defeat.” And as with a game, it is possible to build derivation skills to become a better player. Later, we will show how derivation games matter.1

Derivation systems are constructed for different purposes. Introductions to mathematical logic typically employ an axiomatic approach. We will see a natural deduction system in chapter 6. The advantage of axiomatic systems is their extreme simplicity. From a practical point of view, when we want to think about logic, it is convenient to have a relatively simple object to think about. Axiomatic systems have this advantage, though they can be relatively difficult to apply. The axiomatic approach makes it natural to build toward increasingly complex and powerful results. However, in the beginning at least, axiomatic derivations can be challenging!

We will introduce our system in stages: After some general remarks about what an axiom system is supposed to be in section 3.1, we will introduce the sentential

1This chapter is out of place. Having developed the grammar of our formal languages, a sensible course in mathematical logic will skip directly (or after section 3.1) to chapter 4 and return only after chapter 6. This chapter has its location to crystallize the point about form.
component of our system—the part with application to forms involving just \(\sim \) and \(\to \), and so to \(\lor \), \(\land \), and \(\leftrightarrow \) (section 3.2). After that, we will turn to the full system for forms with quantifiers and equality (section 3.3), and finally to a mathematical application (section 3.4).

3.1 General

Before turning to the derivations themselves, it will be helpful to make a point about the metalanguage and form. We are familiar with the idea that different formulas may be of the same form. Thus, for example, where \(\mathcal{P} \) and \(\mathcal{Q} \) are formulas, \(A \to B \) and \(A \to (B \lor C) \) are both of the form \(\mathcal{P} \to \mathcal{Q} \)—in the one case \(\mathcal{Q} \) maps to \(B \), and in the other to \((B \lor C) \). But, similarly, one form may map to another. Thus, for example, \(\mathcal{P} \to \mathcal{Q} \) maps to \(A \to (B \lor C) \).

\[
\mathcal{P} \to \mathcal{Q} \\
\downarrow \\
(A) \quad A \to (B \lor C) \\
(R \land S) \to ((R \land T) \lor U)
\]

And, by a sort of derived map, any formula of the form \(\mathcal{A} \to (B \lor C) \) is of the form \(\mathcal{P} \to \mathcal{Q} \) as well. In this chapter we frequently apply one form to another—depending on the fact that all formulas of one form are of another.

Given a formal language \(\mathcal{L} \), an axiomatic logic \(AL \) consists of two parts. There is a set of axioms and a set of rules. Different axiomatic logics result from different axioms and rules. For now, the set of axioms is just some privileged collection of formulas. A rule tells us that one formula follows from some others. One way to specify axioms and rules is by form. Thus, for example, modus ponens may be included among the rules.

\[
\text{MP} \quad \frac{\mathcal{P} \to \mathcal{Q}, \mathcal{P}}{\mathcal{Q}}
\]

According to this rule, for any formulas \(\mathcal{P} \) and \(\mathcal{Q} \), the formula \(\mathcal{Q} \) follows from \(\mathcal{P} \to \mathcal{Q} \) together with \(\mathcal{P} \). Thus, as applied to \(\mathcal{L}_4 \), \(B \) follows by MP from \(A \to B \) and \(A \); but also \((B \leftrightarrow D) \) follows from \((A \to B) \to (B \leftrightarrow D) \) and \((A \to B) \). And for a case put in the metalanguage, quite generally, a formula of the form \((A \land B) \) follows from \(A \to (A \land B) \) and \(A \)—for any formulas of the form \(A \to (A \land B) \) and \(A \) are of the forms \(\mathcal{P} \to \mathcal{Q} \) and \(\mathcal{P} \) as well. Axioms also may be specified by form. Thus, for
some language with formulas P and Q, a logic might include among its axioms all formulas of the forms,

\begin{align*}
\land 1 & \quad (P \land Q) \to P \\
\land 2 & \quad (P \land Q) \to Q \\
\land 3 & \quad P \to (Q \to (P \land Q))
\end{align*}

Then in \mathcal{L}_3,

\begin{align*}
(A \land B) & \to A, \\
(A \land A) & \to A \\
((A \to B) \land C) & \to (A \to B)
\end{align*}

are all axioms of form $\land 1$. So far, for a given axiomatic logic AL, there are no constraints on just which forms will be the axioms, and just which rules are included. The point is only that we specify an axiomatic logic when we specify some collection of axioms and rules.

Suppose we have specified some axioms and rules for an axiomatic logic AL. Then where Γ (Gamma) is a set of formulas—taken as the formal premises of an argument, \mathcal{A} (p) If P is a premise (a member of Γ), then P is a consequence in AL of Γ.

(a) If P is an axiom of AL, then P is a consequence in AL of Γ.

(r) If $Q_1 \ldots Q_n$ are consequences in AL of Γ, and there is a rule of AL such that P follows from $Q_1 \ldots Q_n$ by the rule, then P is a consequence in AL of Γ.

(\text{CL}) Any consequence in AL of Γ may be obtained by repeated application of these rules.

The first two clauses make premises and axioms consequences in AL of Γ. And if, say, MP is a rule of an AL and $P \to Q$ and P are consequences in AL of Γ, then by \mathcal{A} (r), Q is a consequence in AL of Γ as well. If P is a consequence in AL of some premises Γ, then the premises prove P in AL and equivalently the argument is valid in AL; in this case we write $\Gamma \vdash_{AL} P$. The \vdash symbol is the single turnstile (to contrast with a double turnstile \models from chapter 4). If $Q_1 \ldots Q_n$ are the members of Γ, we sometimes write $Q_1 \ldots Q_n \vdash_{AL} P$ in place of $\Gamma \vdash_{AL} P$. If Γ has no members at all and $\Gamma \vdash_{AL} P$, then P is a theorem of AL. In this case we simply write, $\vdash_{AL} P$.

Before turning to our official axiomatic system AD, it will be helpful to consider a preliminary example. Suppose an axiomatic derivation system AP has MP as its only rule, and just formulas of the forms $\land 1$, $\land 2$, and $\land 3$ as axioms. \mathcal{A} is a recursive definition like ones we have seen before. Thus nothing stops us from working out its consequences on trees. Thus we can show that $A \land (B \land C) \vdash_{AP} C \land B$ as follows,
For definition AV, the basic elements are the premises and axioms. These occur across the top row. Thus, reading from the left, the first form is an instance of \(\land 3 \). The second is of type \(\land 2 \). These are thus consequences of \(\Gamma \) by AV(a). The third is the premise. Thus it is a consequence by AV(p). Any formula of the form \((A \land (B \land C)) \rightarrow (B \land C) \) is of the form, \((P \land Q) \rightarrow Q \); so the fourth is of the type \(\land 2 \). And the last is of the type \(\land 1 \). So the final two are consequences by AV(a). After that, all the results are by MP, and so consequences by AV(r). Thus for example, in the first case, \((A \land (B \land C)) \rightarrow (B \land C) \) and \(A \land (B \land C) \) are of the sort \(P \rightarrow Q \) and \(P \), with \(A \land (B \land C) \) for \(P \) and \((B \land C) \) for \(Q \); thus \(B \land C \) follows from them by MP. So \(B \land C \) is a consequence in AP of \(\Gamma \) by AV(r). And similarly for the other consequences. Notice that applications of MP and of the axiom forms are independent from one use to the next. The expressions that count as \(P \) or \(Q \) must be consistent within a given application of the axiom or rule, but may vary from one application of the axiom or rule to the next. If you are familiar with another derivation system, perhaps the one from chapter 6, you may think of an axiom as a rule without inputs. Then the axiom applies to expressions of its form in the usual way.

These diagrams can get messy, and it is traditional to represent the same information as follows, using annotations to indicate relations among formulas.
Each of the forms (1)–(10) is a consequence of \(A \land (B \land C) \) in \(AP \). As indicated on the right, the first is a premise, and so a consequence by \(AV(p) \). The second is an axiom of the form \(\land 2 \), and so a consequence by \(AV(a) \). The third follows by MP from the forms on lines (2) and (1), and so is a consequence by \(AV(r) \). And so forth. Such a demonstration is an axiomatic derivation. This derivation contains the very same information as the tree diagram (B), only with geometric arrangement replaced by line numbers to indicate relations between forms. Observe that we might have accomplished the same end with a different arrangement of lines. For example, we might have listed all the axioms first, with applications of MP after. The important point is that in an axiomatic derivation, each line is either an axiom, a premise, or follows from previous lines by a rule. Just as a tree is sufficient to demonstrate that \(\vdash_{AL} P \), that \(P \) is a consequence of \(\vdash_{AL} \), so an axiomatic derivation is sufficient to show the same. In fact, we shall typically use derivations rather than trees to show that \(\Gamma \vdash_{AL} \mathcal{P} \).

Notice that we have been reasoning with sentence forms, and so have shown that a formula of the form \(C \land B \) follows in \(AP \) from one of the form \(A \land (B \land C) \). Given this, we freely appeal to results of one derivation in the process of doing another. Thus, if we were to encounter a formula of the form \(A \land (B \land C) \) in an \(AP \) derivation, we might simply cite the derivation (C) completed above, and move directly to the conclusion that \(C \land B \). The resultant derivation would be an abbreviation of an official one which includes each of the above steps to reach \(C \land B \). In this way, derivations remain manageable, and we are able to build toward results of increasing complexity. (Compare your high school experience of Euclidian geometry.) All of this should become more clear, as we turn to the official and complete axiomatic system, \(AD \).

E3.1. Where \(AP \) is as above with rule MP and axioms \(\land 1–\land 3 \), construct derivations to show each of the following.
3.2 Sentential

We begin by focusing on sentential forms, forms involving just ~ and → (and so ∧, ∨ and ↔). The sentential component of our official axiomatic logic AD tells us how to manipulate such forms, whether they be forms for expressions in a sentential language like L_s, or in a quantificational language like L_q. The sentential fragment of AD includes three forms for logical axioms, and one rule.

ADs

A1. $\mathcal{P} \rightarrow (\mathcal{Q} \rightarrow \mathcal{P})$

A2. $(\phi \rightarrow (\mathcal{P} \rightarrow \mathcal{Q})) \rightarrow ((\phi \rightarrow \mathcal{P}) \rightarrow (\phi \rightarrow \mathcal{Q}))$

A3. $(\neg \mathcal{Q} \rightarrow \neg \mathcal{P}) \rightarrow ((\neg \mathcal{Q} \rightarrow \mathcal{P}) \rightarrow \mathcal{Q})$

MP. \mathcal{Q} follows from $\mathcal{P} \rightarrow \mathcal{Q}$ and \mathcal{P}

We have already encountered MP. To take some cases to appear immediately below, the following are both of the sort A1.

$\mathcal{A} \rightarrow (\mathcal{A} \rightarrow \mathcal{A}) \quad (\mathcal{B} \rightarrow \mathcal{C}) \rightarrow [\mathcal{A} \rightarrow (\mathcal{B} \rightarrow \mathcal{C})]$

Observe that \mathcal{P} and \mathcal{Q} need not be different. You should be clear about these cases. Although MP is the only rule, we allow free movement between an expression and its abbreviated forms, with justification, “abv.” That is it! As above, $\Gamma \vdash_{ADs} \mathcal{P}$ just in
case \(P \) is a consequence of \(\Gamma \) in \(AD \). \(\Gamma \vdash_{ADs} P \) just in case there is an \(AD \) derivation of \(P \) from premises in \(\Gamma \).

The following is a series of derivations where, as we shall see, each may depend on ones from before. At first, do not worry so much about strategy, as about the mechanics of the system.

T3.1. \(\vdash_{ADs} A \rightarrow A \)

1. \((A \rightarrow ([A \rightarrow A] \rightarrow A)) \rightarrow ((A \rightarrow ([A \rightarrow A] \rightarrow A)) \rightarrow (A \rightarrow A))\)
 A2
2. \(A \rightarrow ([A \rightarrow A] \rightarrow A)\)
 A1
3. \((A \rightarrow [A \rightarrow A]) \rightarrow (A \rightarrow A)\)
 1.2 MP
4. \(A \rightarrow [A \rightarrow A]\)
 A1
5. \(A \rightarrow A\)
 3.4 MP

Line (1) is an axiom of the form A2 with \(A \) for \(\varnothing \), \(A \rightarrow A \) for \(P \), and \(A \) for \(Q \). Notice again that \(\varnothing \) and \(Q \) may be any formulas, so nothing prevents them from being the same. Line (2) is an axiom of the form A1 with \(A \rightarrow A \) for \(Q \). Similarly, line (4) is an axiom of form A1 with \(A \) in place of both \(P \) and \(Q \). The applications of MP should be straightforward.

T3.2. \(A \rightarrow B, B \rightarrow C \vdash_{ADs} A \rightarrow C \)

1. \([A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)]\)
 A2
2. \((B \rightarrow C) \rightarrow [A \rightarrow (B \rightarrow C)]\)
 A1
3. \(B \rightarrow C\)
 prem
4. \(A \rightarrow (B \rightarrow C)\)
 2.3 MP
5. \((A \rightarrow B) \rightarrow (A \rightarrow C)\)
 1.4 MP
6. \(A \rightarrow B\)
 prem
7. \(A \rightarrow C\)
 5.6 MP

Line (1) is an instance of A2 which gives us our goal with two applications of MP—that is, from (1), \(A \rightarrow C \) follows by MP if we have \(A \rightarrow (B \rightarrow C) \) and \(A \rightarrow B \). But the second of these is a premise, so the only real challenge is getting \(A \rightarrow (B \rightarrow C) \). But since \(B \rightarrow C \) is a premise, we can use A1 to get \textit{anything} arrow it—and that is just what we do on lines (2)–(4).

T3.3. \(A \rightarrow (B \rightarrow C) \vdash_{ADs} B \rightarrow (A \rightarrow C) \)

1. \([A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)]\)
 A2
2. \(A \rightarrow (B \rightarrow C)\)
 prem
3. \((A \rightarrow B) \rightarrow (A \rightarrow C)\)
 1.2 MP
4. \(B \rightarrow (A \rightarrow B)\)
 A1
5. \(B \rightarrow (A \rightarrow C)\)
 4.3 T3.2
In this case, the first four steps are very much like ones you have seen before. But the last is not. T3.2 lets us move from $A ! B$ and $B ! C$ to $A ! C$; it is a sort of transitivity or “chain” principle which lets us move from a first form to a last through some middle term. We have $B \rightarrow (A \rightarrow B)$ on line (4), and $(A \rightarrow B) \rightarrow (A \rightarrow C)$ on line (3). These are of the form to be inputs to T3.2—with B for A, $A \rightarrow B$ for B, and $A \rightarrow C$ for C. In this case, $A \rightarrow B$ is the middle term. So at line (5), we simply observe that lines (4) and (3), together with the reasoning from T3.2, give us the desired result.

T3.2 is an important principle, of significance comparable to MP for the way you think about derivations. If you have $X ! A$ and want A, it makes sense to go for X towards an application of MP. But if you have $A ! X$ and want $A ! B$, it makes sense to go for $X \rightarrow B$ toward an application of T3.2. And similarly if you have $X \rightarrow B$ and want $A \rightarrow B$, it makes sense to go for $A \rightarrow X$ for T3.2. At (3) of the above derivation we are in a situation of this latter sort, and so obtain (4).

What we have produced above is not an official derivation where each step is a premise, an axiom, or follows from previous lines by a rule. But we have produced an abbreviation of one. And nothing prevents us from unabbreviating by including the routine from T3.2 to produce a derivation in the official form. To see this, first observe that the derivation for T3.2 has its premises at lines (3) and (6), where lines with the corresponding forms in the derivation for T3.3 appear at (3) and (4). However, it is a simple matter to reorder the derivation for T3.2 so that it takes its premises from those same lines. Thus here is another demonstration for T3.2.

\[
\begin{align*}
3. & \quad B \rightarrow C \quad \text{prem} \\
4. & \quad A \rightarrow B \quad \text{prem} \\
5. & \quad A \rightarrow (B \rightarrow C) \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)] \quad \text{A2} \\
6. & \quad B \rightarrow (A \rightarrow C) \quad \text{A1} \\
7. & \quad A \rightarrow (B \rightarrow C) \quad 6,3 \text{ MP} \\
8. & \quad (A \rightarrow B) \rightarrow (A \rightarrow C) \quad 5,7 \text{ MP} \\
9. & \quad A \rightarrow C \quad 8,4 \text{ MP}
\end{align*}
\]

Compared to the original derivation for T3.2, all that is different is the order of a few lines, and corresponding line numbers. The reason for reordering the lines is for a merge of this derivation with the one for T3.3.

But now, although we are after expressions of the form $A \rightarrow B$ and $B \rightarrow C$, the actual expressions we want for T3.3 are $B \rightarrow (A \rightarrow B)$ and $(A \rightarrow B) \rightarrow (A \rightarrow C)$. But we can convert derivation (D) to one with those very forms by uniform substitution of B for every A; $(A \rightarrow B)$ for every B; and $(A \rightarrow C)$ for every C—that is, we apply our original map to the entire derivation (D). The result is as follows.
3. \((A \rightarrow B) \rightarrow (A \rightarrow C)\)
4. \(B \rightarrow (A \rightarrow B)\)
5. \([B \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))] \rightarrow [(B \rightarrow (A \rightarrow B)) \rightarrow (B \rightarrow (A \rightarrow C))]\) A2
(E) 6. \(((A \rightarrow B) \rightarrow (A \rightarrow C)) \rightarrow [B \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))]\) A1
7. \(B \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))\) 6.3 MP
8. \((B \rightarrow (A \rightarrow B)) \rightarrow (B \rightarrow (A \rightarrow C))\) 5.7 MP
9. \(B \rightarrow (A \rightarrow C)\) 8.4 MP

You should trace the parallel between derivations (D) and (E) all the way through. And you should verify that (E) is a derivation on its own. This is an application of the point that our derivation for T3.2 applies to any premises and conclusions of that form. The result is a direct demonstration that \(B \rightarrow (A \rightarrow B)\), \((A \rightarrow B) \rightarrow (A \rightarrow C)\) \(\vdash_{ADs}\) \(B \rightarrow (A \rightarrow C)\).

And now it is a simple matter to merge the lines from (E) into the derivation for T3.3 to produce a complete demonstration that \(A \rightarrow (B \rightarrow C)\) \(\vdash_{ADs}\) \(B \rightarrow (A \rightarrow C)\).

1. \([A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)]\) A2
2. \(A \rightarrow (B \rightarrow C)\) prem
3. \((A \rightarrow B) \rightarrow (A \rightarrow C)\) 1.2 MP
4. \(B \rightarrow (A \rightarrow B)\) A1
5. \([B \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))] \rightarrow [(B \rightarrow (A \rightarrow B)) \rightarrow (B \rightarrow (A \rightarrow C))]\) A2
6. \(((A \rightarrow B) \rightarrow (A \rightarrow C)) \rightarrow [B \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))]\) A1
7. \(B \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))\) 6.3 MP
8. \((B \rightarrow (A \rightarrow B)) \rightarrow (B \rightarrow (A \rightarrow C))\) 5.7 MP
9. \(B \rightarrow (A \rightarrow C)\) 8.4 MP

Lines (1)–(4) are the same as from the derivation for T3.3, and include what are the premises to (E). Lines (5)–(9) are the same as from (E). The result is a demonstration for T3.3 in which every line is a premise, an axiom, or follows from previous lines by MP. Again, you should follow each step. It is hard to believe that we could think up this last derivation—particularly at this early stage of our career. However, if we can produce the simpler derivation, we can be sure that this more complex one exists. Thus we can be sure that the final result is a consequence of the premise in AD. That is the point of our direct appeal to T3.2 in the original derivation of T3.3. And similarly in cases that follow. In general, we are always free to appeal to prior results in any derivation—so that our toolbox gets bigger at every stage.

T3.4. \(\vdash_{ADs}\) \((B \rightarrow C) \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)]\)

1. \([A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)]\) A2
2. \((B \rightarrow C) \rightarrow [A \rightarrow (B \rightarrow C)]\) A1
3. \((B \rightarrow C) \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)]\) 2.1 T3.2
Again we have an application of T3.2. In this case, the middle term (the \(B\) from T3.2 maps to \(A\). Once we see that the consequent of what we want is like the consequent of A2, we should be “inspired” by T3.2 to go for (2) as a link between the antecedent of what we want and antecedent of A2. As it turns out, this is easy to get as an instance of A1. It is helpful to say to yourself in words, what the various axioms and theorems do. Thus, given some \(P\), A1 yields anything arrow it. And T3.2 is a simple transitivity principle.

\[T3.5. \quad \vdash_{ADs} (A \rightarrow B) \rightarrow [(B \rightarrow C) \rightarrow (A \rightarrow C)] \]

1. \((B \rightarrow C) \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)]\) \quad T3.4
2. \((A \rightarrow B) \rightarrow [(B \rightarrow C) \rightarrow (A \rightarrow C)]\) \quad 1 T3.3

T3.5 is like T3.4 except that \(A \rightarrow B\) and \(B \rightarrow C\) switch places. But T3.3 precisely switches terms in those places—with \(B \rightarrow C\) for \(A\), \(A \rightarrow B\) for \(B\), and \(A \rightarrow C\) for \(C\). Again, often what is difficult about these derivations is “seeing” what you can do. Thus it is good to say to yourself in words what the different principles give you. Once you realize what T3.3 does, it is obvious that you have T3.5 immediately from T3.4.

\[T3.6. \quad \vdash_{ADs} (B, A \rightarrow (B \rightarrow C)) \quad \vdash_{ADs} A \rightarrow C \]

Hint: You can get this in the basic system using just A1 and A2. But you can get it in just four lines if you use T3.3.

\[T3.7. \quad \vdash_{ADs} (\neg A \rightarrow A) \rightarrow A \]

Hint: This follows in just three lines from A3, with an instance of T3.1.

\[T3.8. \quad \vdash_{ADs} (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B) \]

1. \((\neg B \rightarrow \neg A) \rightarrow [(\neg B \rightarrow A) \rightarrow B]\) \quad A3
2. \([A \rightarrow (\neg B \rightarrow A)] \rightarrow [(\neg B \rightarrow A) \rightarrow (A \rightarrow B)]\) \quad T3.5
3. \((\neg B \rightarrow A) \rightarrow (A \rightarrow B)\) \quad A1
4. \((\neg B \rightarrow A) \rightarrow (A \rightarrow B)\) \quad 2,3 MP
5. \((\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)\) \quad 1,4 T3.2

The idea behind this derivation is that the antecedent of A3 is the antecedent of our goal. So we can get the goal by T3.2 with (1) and (4). That is, given \((\neg B \rightarrow \neg A) \rightarrow X\), what we need to get the goal by an application of T3.2 is \(X \rightarrow (A \rightarrow B)\). But that is just what (4) is. The challenge is to get (4). Our strategy uses T3.5 with A1. This
derivation is not particularly easy to see. Here is another approach, which is not all that easy either.

\begin{itemize}
\item[1.] \((\sim B \rightarrow \sim A) \rightarrow [(\sim B \rightarrow A) \rightarrow B]\) \quad A3
\item[2.] \((\sim B \rightarrow A) \rightarrow [(\sim B \rightarrow \sim A) \rightarrow B]\) \quad 1 \ T3.3
\item[3.] \(A \rightarrow (\sim B \rightarrow A)\) \quad A1
\item[4.] \(A \rightarrow [(\sim B \rightarrow \sim A) \rightarrow B]\) \quad 3.2 \ T3.2
\item[5.] \((\sim B \rightarrow \sim A) \rightarrow (A \rightarrow B)\) \quad 4 \ T3.3
\end{itemize}

This derivation also begins with A3. The idea this time is to use T3.3 to “swing” \(\sim B \rightarrow A\) out, “replace” it by \(A\) with T3.2 and A1, and then use T3.3 to “swing” \(A\) back in.

T3.9. \(\vdash_{ADs} \sim A \rightarrow (A \rightarrow B)\)

Hint: You can do this in three lines with T3.8 and an instance of A1.

T3.10. \(\vdash_{ADs} \sim \sim A \rightarrow A\)

Hint: You can do this in three lines with instances of T3.7 and T3.9.

T3.11. \(\vdash_{ADs} A \rightarrow \sim \sim A\)

Hint: You can do this in three lines with instances of T3.8 and T3.10.

*T3.12. \(\vdash_{ADs} (A \rightarrow B) \rightarrow (\sim \sim A \rightarrow \sim \sim B)\)

Hint: Use T3.5 and T3.10 to get \((A \rightarrow B) \rightarrow (\sim \sim A \rightarrow B)\); then use T3.4 and T3.11 to get \((\sim \sim A \rightarrow B) \rightarrow (\sim \sim A \rightarrow \sim \sim B)\); the result follows easily by T3.2.

T3.13. \(\vdash_{ADs} (A \rightarrow B) \rightarrow (\sim B \rightarrow \sim A)\)

Hint: You can do this in three lines with instances of T3.8 and T3.12.

T3.14. \(\vdash_{ADs} (\sim A \rightarrow B) \rightarrow (\sim B \rightarrow A)\)

Hint: Use T3.4 and T3.10 to get \((\sim B \rightarrow \sim \sim A) \rightarrow (\sim B \rightarrow A)\); the result follows easily with an instance of T3.13.
T3.15. \(\vdash_{AD} (A \rightarrow \sim B) \rightarrow (B \rightarrow \sim A) \)

Hint: This time you will be able to use T3.5 and T3.11 with T3.13.

T3.16. \(\vdash_{ADs} (A \rightarrow B) \rightarrow [(\sim A \rightarrow B) \rightarrow B] \)

Hint: Use T3.13 and A3 to get \((A \rightarrow B) \rightarrow [(\sim B \rightarrow A) \rightarrow B]\); then use T3.5 and T3.14 to get \([(\sim B \rightarrow A) \rightarrow B] \rightarrow [(\sim A \rightarrow B) \rightarrow B]; the result follows easily by T3.2.

*T3.17. \(\vdash_{ADs} A \rightarrow [\sim B \rightarrow \sim (A \rightarrow B)] \)

Hint: Use instances of T3.1 and T3.3 to get \(A \rightarrow [(A \rightarrow B) \rightarrow B]\); then use T3.13 to “turn around” the consequent. This idea of deriving conditionals in “reversed” form, and then using T3.13 or T3.14 to turn them around, is frequently useful for getting tilde outside of a complex expression.

T3.18. \(\vdash_{ADs} A \rightarrow (A \lor B) \)

1. \(\sim A \rightarrow (A \rightarrow B) \) T3.9
2. \(A \rightarrow (\sim A \rightarrow B) \) 1 T3.3
3. \(A \rightarrow (A \lor B) \) 2 abv

We set as our goal the unabbreviated form. We have this at (2). Then, in the last line, simply observe that the goal abbreviates what has already been shown.

T3.19. \(\vdash_{ADs} A \rightarrow (B \lor A) \)

Hint: Go for \(A \rightarrow (\sim B \rightarrow A)\). Then, as above, you can get the desired result in one step by abv.

T3.20. \(\vdash_{ADs} (A \land B) \rightarrow B \)

T3.21. \(\vdash_{ADs} (A \land B) \rightarrow A \)

*T3.22. \(A \rightarrow (B \rightarrow C) \vdash_{ADs} (A \land B) \rightarrow C \)

T3.23. \((A \land B) \rightarrow C \vdash_{ADs} A \rightarrow (B \rightarrow C) \)
CHAPTER 3. AXIOMATIC DEDUCTION

T3.24. $A, A \leftrightarrow B \vdash_{AD} B$

Hint: $A \leftrightarrow B$ abbreviates the same thing as $(A \rightarrow B) \wedge (B \rightarrow A)$; you may thus move to this expression from $A \leftrightarrow B$ by abv.

T3.25. $B, A \leftrightarrow B \vdash_{AD} A$

T3.26. $\neg A, A \leftrightarrow B \vdash_{AD} \neg B$

T3.27. $\neg B, A \leftrightarrow B \vdash_{AD} \neg A$

*E3.2. Provide derivations for T3.6–T3.7, T3.9–T3.17, and T3.19–T3.27. As you are working these problems, you may find it helpful to refer to the AD summary on page 90.

E3.3. For each of the following, expand derivations to include all the steps from theorems. The result should be a derivation in which each step is either a premise an axiom, or follows from previous lines by a rule. Hint: it may be helpful to proceed in stages as for (D), (E) and then (F) above.

a. Expand your derivation for T3.7.

*b. Expand the above derivation for T3.4.

E3.4. Consider an axiomatic system A^* which takes \wedge and \neg as primitive operators, and treats $\mathcal{P} \rightarrow \mathcal{Q}$ as an abbreviation for $\neg(\mathcal{P} \wedge \neg \mathcal{Q})$. Forms for the axioms and rule are,

A^*

A1. $\mathcal{P} \rightarrow (\mathcal{P} \wedge \mathcal{P})$

A2. $(\mathcal{P} \wedge \mathcal{Q}) \rightarrow \mathcal{P}$

A3. $(\neg \mathcal{P} \rightarrow \mathcal{P}) \rightarrow [\neg(\mathcal{P} \wedge \mathcal{Q}) \rightarrow (\mathcal{Q} \wedge \neg \mathcal{P})]$

MP. $\neg(\mathcal{P} \wedge \neg \mathcal{Q}), \mathcal{P} \vdash_{A^*} \mathcal{Q}$ (so that $\mathcal{P} \rightarrow \mathcal{Q}, \mathcal{P} \vdash_{A^*} \mathcal{Q}$)
Provide derivations for each of the following, where derivations may appeal to any prior result (no matter what you have done).

\begin{itemize}
 \item[a.] \(A \rightarrow B, B \rightarrow C \vdash \neg A \rightarrow (\neg C \land A) \)
 \item[b.] \(\vdash \neg (\neg A \land A) \)
 \item[c.] \(\vdash \neg \neg A \rightarrow A \)
 \item[d.] \(\vdash \neg (A \land B) \rightarrow (B \land \neg A) \)
 \item[e.] \(\vdash \neg A \rightarrow \neg \neg A \)
 \item[f.] \(\vdash \neg (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A) \)
 \item[g.] \(\neg A \rightarrow \neg B \vdash \neg A \rightarrow B \)
 \item[h.] \(A \rightarrow B, B \rightarrow C, C \rightarrow D \vdash \neg A \rightarrow D \)
 \item[i.] \(A \rightarrow B, B \rightarrow C \rightarrow D \vdash \neg A \rightarrow \neg D \)
 \item[j.] \(\vdash \neg A \rightarrow A \)
 \item[k.] \(\vdash (A \land B) \rightarrow (B \land A) \)
 \item[l.] \(A \rightarrow B, B \rightarrow C \vdash \neg A \rightarrow \neg C \)
 \item[m.] \(\neg B \rightarrow \neg \neg B \)
 \item[n.] \(\neg B \rightarrow \neg B \vdash \neg \neg B \)
 \item[o.] \(\vdash (A \land B) \rightarrow B \)
 \item[p.] \(A \rightarrow B, C \rightarrow D \vdash (A \land C) \rightarrow (B \land D) \)
 \item[q.] \(B \rightarrow C \vdash (A \land B) \rightarrow (A \land C) \)
 \item[r.] \(A \rightarrow B, A \rightarrow C \vdash \neg A \rightarrow (B \land C) \)
 \item[s.] \(\vdash [(A \land B) \land C] \rightarrow [A \land (B \land C)] \)
 \item[t.] \(\vdash [A \land (B \land C)] \rightarrow [(A \land B) \land C] \)
 \item[u.] \(\vdash [A \rightarrow (B \rightarrow C)] \rightarrow [(A \land B) \rightarrow C] \)
 \item[v.] \(\vdash [(A \land B) \rightarrow C] \rightarrow [A \rightarrow (B \rightarrow C)] \)
 \item[w.] \(A \rightarrow (B \rightarrow C) \vdash \neg A \rightarrow B \rightarrow (A \rightarrow C) \)
 \item[x.] \(\vdash A \rightarrow B, A \rightarrow (B \rightarrow C) \vdash \neg A \rightarrow C \)
 \item[y.] \(\vdash [B \rightarrow (A \land B)] \)
 \item[z.] \(\vdash \neg A \rightarrow (B \rightarrow A) \)
\end{itemize}

Hints: (i): Apply (a) to the first two premises and (f) to the third; then recognize that you have the makings for an application of A3. (j): Apply A1, two instances of (h), and an instance of (i) to get \(A \rightarrow ((A \land A) \land (A \land A)) \); the result follows easily with A2 and (i). (m): \(\neg B \rightarrow \neg B \) is equivalent to \(\neg (\neg B \land \neg B) \); and \(\neg B \rightarrow (\neg B \land \neg B) \) is immediate from A1; you can turn this around by (f) to get \(\neg (\neg B \land \neg B) \rightarrow \neg \neg B \); then it is easy. (u): Use abv so that you are going for \(\neg [A \land \neg (B \land \neg C)] \rightarrow \neg [(A \land B) \land \neg C] \); plan on getting to this by (f); the proof then reduces to working from ((A \land B) \land \neg C). (v): Structure your proof very much as with (u). (x): Use (u) to set up a “chain” to which you can apply transitivity.

3.3 Quantificational

In this section we introduce the rule and axioms for quantifiers and equality. (A1)–(A3) and MP remain from before. There will be two axioms and one rule for manipulating quantifiers, and three axioms for features of equality.
3.3.1 Quantifiers

There are two axioms and one rule for quantified expressions. To state the new axioms, we need a couple of definitions. First, for any formula A, variable x, and term t, say A^x_t is A with all the free instances of x replaced by t. And say t is free for x in A iff all the variables in the replacing instances of t remain free after substitution in A^x_t.

Thus, for example, where A is $(\forall x Rxy \lor Px)$,

(H) $(\forall x Rxy \lor P x)^y_t$ is $\forall x Rxy \lor Py$

There are three instances of x in $\forall x Rxy \lor P x$, but only the last is free; so y is substituted only for that instance. Since the substituted y is free in the resultant expression, y is free for x in $\forall x Rxy \lor P x$. Similarly,

(I) $(\forall x (x = y) \lor Ryx)^{f^1}_{f^1 x}$ is $\forall x (x = f^1 x) \lor Rf^1 xx$

Both instances of y in $\forall x (x = y) \lor Ryx$ are free; so our substitution replaces both. But the x in the first instance of $f^1 x$ is bound upon substitution; so $f^1 x$ is not free for y in $\forall x (x = y) \lor Ryx$. Notice that if x is not free in A, then replacing every free instance of x in A with some term results in no change. So if x is not free in A, then A^x_t is A. Similarly, A^x_x is just A itself. Further, any variable x is sure to be free for itself in a formula A—if every free instance of variable x is “replaced” with x, then the replacing instances are sure to be free. And variable-free terms (like constants) are sure to be free for a variable x in a formula A. If a term has no variables, no variable in the replacing term is bound upon substitution for free instances of x.

Now we are ready for our axioms and rule. For the quantificational version of axiomatic derivation system ADq, we add axioms A4 and A5, and a rule Gen (Generalization) for the universal quantifier.

ADq The axioms and rule of ADs and,

A4. $\forall x \mathcal{P} \rightarrow \mathcal{P}^x_t$ —where t is free for x in \mathcal{P}

A5. $\forall x (\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\mathcal{P} \rightarrow \forall x \mathcal{Q})$ —where x is not free in \mathcal{P}

Gen. $\forall x \mathcal{P}$ follows from \mathcal{P}

A1, A2, A3 and MP remain from before. A4 is a conditional in which the antecedent is a quantified expression; the consequent drops the quantifier, and substitutes term t for each free instance of the quantified variable—subject to the constraint that the term t is free for the quantified variable in \mathcal{P}. Thus the first line below lists instances of A4 but the second does not.
CHAPTER 3. AXIOMATIC DEDUCTION

\[\forall x Rx \rightarrow R x \quad \forall x Rx \rightarrow R y \quad \forall x Rx \rightarrow Ra \quad \forall x Rx \rightarrow Rf^1z \quad \forall x \forall y Rxy \rightarrow \forall y Rzy \]

\[\forall x \forall y Rxy \rightarrow \forall y Ryy \quad \forall x \forall y Rxy \rightarrow \forall y Rf^1yy \]

One the first line, the consequents drop the (main) quantifier and substitute a term that is free for \(x \). On the second line, we drop the quantifier and substitute as before; but the substituted terms are not free; so the constraint on A4 is violated, and those formulas do not qualify as instances of the axiom.

A5 also comes with a constraint. Instances of A5 have antecedent \(\forall x (P \rightarrow Q) \) and consequent \(P \rightarrow \forall x Q \) so long as \(x \) is not free in \(P \). Thus the first cases below are instances of A5, where the last is not.

\[\forall x (Rx → Sx) → (Ry → ∀xSx) \quad \forall x (Ra → Sx) → (Ra → ∀xSx) \]

\[\forall x (Rx → Sx) → (Rx → ∀xSx) \]

(K)

In the first cases, the variable \(x \) is not free in \(P \). In the last, however, \(x \) is free in \(P \) so that it fails to be an instance of A5.

Gen is a new rule; it lets you move from a formula to its universal quantification. So, for example, by Gen you might move from \(Px \) to \(\forall x Px \) or from \(Ay \rightarrow By \) to \(Ay → Bx \). Continue to move freely between an expression and its abbreviated forms with justification, abv. That is it!

Because the axioms and rule from before remain available, nothing blocks reasoning with sentential forms as before. Thus, for example, \(\forall x Rx \rightarrow \forall x Rx \) and, more generally, \(\forall x A \rightarrow \forall x A \) are of the form \(A \rightarrow A \), and we might derive them by exactly the five steps for T3.1 above. Or we might just write them down with justification, T3.1. Similarly any theorem from the sentential fragment of AD is a theorem of the larger quantificational part. Here is a way to get \(\forall x Rx \rightarrow \forall x Rx \) without either A1 or A2.

\[\vdash_{ADq} \forall x Rx \rightarrow \forall x Rx \]

(L)

1. \(\forall x Rx \rightarrow Rx \) \hspace{1cm} A4
2. \(\forall x(\forall x Rx \rightarrow Rx) \) \hspace{1cm} 1 Gen
3. \(\forall x(\forall x Rx \rightarrow Rx) \rightarrow (\forall x Rx \rightarrow \forall x Rx) \) \hspace{1cm} A5
4. \(\forall x Rx \rightarrow \forall x Rx \) \hspace{1cm} 3,2 MP

The \(x \) is sure to be free for \(x \) in \(Rx \). So (1) is an instance of A4. And the only instances of \(x \) are bound in \(\forall x Rx \); so (3) satisfies the constraint on A5. The reasoning is similar in the more general case.

T3.28. \[\vdash_{ADq} \forall x A \rightarrow \forall v A^x_v \] —where \(v \) is not free in \(\forall x A \) but free for \(x \) in \(A \)
CHAPTER 3. AXIOMATIC DEDUCTION

The result of derivation (L) is an instance of this more general principle. The difference is that T3.28 makes room for variable exchange. Given the constraints, this derivation works for exactly the same reasons as before. If \(v \) is free for \(x \) in \(A \), then (1) is a straightforward instance of A4. And if \(v \) is not free in \(\forall x A \), the constraint on A5 is sure to be met. A simple instance of T3.28 in \(L \) is \(\forall x A \rightarrow \forall v (A \rightarrow A) \) if \(x \) is not the same as \(v \), \(\forall x A \rightarrow \forall v (A \rightarrow A) \) has sentential form, \(A \rightarrow B \).

T3.29. \(A \rightarrow B \models_{ADq} \forall x A \rightarrow \forall x B \) —where \(x \) is not free in \(A \)

1. \(A \rightarrow B \) \hspace{1cm} P
2. \(\forall x (A \rightarrow B) \) \hspace{1cm} 1 Gen
3. \(\forall x (A \rightarrow B) \rightarrow (A \rightarrow \forall x B) \) \hspace{1cm} A5
4. \(A \rightarrow \forall x B \) \hspace{1cm} 3.2 MP

From the restriction on the theorem, (3) is an instance of A5.\(^2\)

\(^*T3.30. \models_{ADq} A \rightarrow \exists x A \) —where \(t \) is free for \(x \) in \(A \)

Hint: As in sentential cases, show the unabbreviated form, \(A \rightarrow \sim \forall x \sim A \) and get the final result by abv. You should find \(\forall x \sim A \rightarrow \sim [A]_x \) to be a useful instance of A4. Notice that \(\sim [A]_x \) is the same expression as \(\sim [A]_x \), as all the replacements must go on inside the \(A \).

T3.31. \(\models_{ADq} \forall x (A \rightarrow B) \rightarrow (\exists x A \rightarrow B) \) —where \(x \) is not free in \(B \)

Hint: Go for an unabbreviated form, and then get the goal by abv. You will find it convenient to apply Gen and then A5 to \(\forall x (A \rightarrow B) \rightarrow (\sim B \rightarrow \sim A) \).

T3.32. \(A \rightarrow B \models_{ADq} \exists x A \rightarrow B \) —where \(x \) is not free in \(B \).

This is a simple application of T3.31.

\(^2\)The restriction on this theorem is related to one from chapter 6 according to which \(\forall \) I applies to variables not free in undischarded assumptions.
CHAPTER 3. AXIOMATIC DEDUCTION

With these few examples we complete our presentation the fragment of AD for both sentential operators and quantifiers. It remains to add axioms for equality.

*E3.5. Provide derivations for T3.30, T3.31 and T3.32, explaining in words for every step that has a restriction, how you know the restriction is met.

E3.6. Provide derivations to show each of the following.

* a. \(\forall x (Hx \rightarrow Rx), \forall yHy \vdash_{ADq} \forall zRz \)

b. \(\forall (Fy \rightarrow Gy) \vdash_{ADq} \exists zFz \rightarrow \exists xGx \)

*c. \(\vdash_{ADq} \exists x \forall yRx \rightarrow \forall y \exists xRxy \)

d. \(\forall y \forall (Fx \rightarrow By) \vdash_{ADq} \forall y (\exists Fx \rightarrow By) \)

e. \(\vdash_{ADq} \exists (Fx \rightarrow \forall yGy) \rightarrow \exists x \forall y(Fx \rightarrow Gy) \)

E3.7. Some systems have a rule like T3.29 with neither A5 nor Gen. Show that this is possible by providing derivations to show \(\vdash P \rightarrow \forall xP \) and, where \(x \) is not free in \(P \), \(\vdash \forall x(\forall xQ) \rightarrow (\forall x \rightarrow \forall xQ) \) with T3.29 but without A5 or Gen. Hint: For the first, where \(\top \) is any theorem without free variables, you will be able to obtain \(\top \rightarrow P \) and apply T3.29 to it. For the second consider uses of T3.22 and T3.23.

3.3.2 Equality

The full derivation system AD has the axioms and rule from ADs, the axioms and rule from ADq and three axioms governing equality. In this case, the axioms assert particularly simple, or basic, facts. For any variables \(x_1 \ldots x_n \) and \(y \), \(n \)-place function symbol \(h^n \) and \(n \)-place relation symbol \(R^n \),

AD The axioms and rules of ADq and,

A6. \((y = y) \)

A7. \((x_i = y) \rightarrow (h^n x_1 \ldots x_i \ldots x_n = h^n x_1 \ldots y \ldots x_n) \)

A8. \((x_i = y) \rightarrow (R^n x_1 \ldots x_i \ldots x_n \rightarrow R^n x_1 \ldots y \ldots x_n) \)
CHAPTER 3. AXIOMATIC DEDUCTION

From A6, \((x = x)\) and \((z = z)\) are axioms. Of course, these are abbreviations for \(\equiv_{xx}\) and \(\equiv_{zz}\). This should be straightforward. The others are complicated only by abstract presentation. For A7, \(h^n x_1 \ldots x_i \ldots x_n\) differs from \(h^n x_1 \ldots y \ldots x_n\) just in that variable \(x_i\) is replaced by variable \(y\). \(x_i\) may be any of the variables in \(x_1 \ldots x_n\). Thus, for example,

\[
(M) \quad (x = y) \rightarrow (f^1 x = f^1 y) \quad (x = y) \rightarrow (f^3 w x y = f^3 w y y)
\]

are simple examples of A7. In the one case, we have a “string” of one variables and replace the only member based on the equality. In the other case, the string is of three variables, and we replace the second. Similarly, \(R^n x_1 \ldots x_i \ldots x_n\) differs from \(R^n x_1 \ldots y \ldots x_n\) just in that variable \(x_i\) is replaced by \(y\). \(x_i\) may be any of the variables in \(x_1 \ldots x_n\). Thus, for example,

\[
(N) \quad (x = z) \rightarrow (A^1 x \rightarrow A^1 z) \quad (z = w) \rightarrow (A^2 x z \rightarrow A^2 x w)
\]

are simple examples of A8.

This completes the axioms and rules of our full derivation system \(AD\). As examples, let us begin with some fundamental principles of equality. Suppose that \(r, s\) and \(t\) are arbitrary terms.

T3.33. \(\vdash_{AD} (t = t)\) \(<\text{reflexivity of equality}\>

1. \(y = y\) A6
2. \(\forall y (y = y)\) 1 Gen
3. \(\forall y (y = y) \rightarrow (t = t)\) A4
4. \(t = t\) 3, 2 MP

Since \(y = y\) has no quantifiers, any term \(t\) is sure to be free for \(y\) in it. So (3) is sure to be an instance of A4. This theorem strengthens A6 insofar as the axiom applies only to variables, but the theorem has application to arbitrary terms. Thus \((z = z)\) is an instance of the axiom; \((z = z)\) remains an instance of the theorem, but \((f^2 x y = f^2 x y)\) is an instance of the theorem as well. We \(<\text{convert}\>\) variables to terms by Gen with A4 and MP. This pattern repeats in the following.

T3.34. \(\vdash_{AD} (t = s) \rightarrow (s = t)\) \(<\text{symmetry of equality}\>)
CHAPTER 3. AXIOMATIC DEDUCTION

1. \((x = y) \rightarrow [(x = x) \rightarrow (y = x)]\)
2. \((x = x)\)
3. \((x = y) \rightarrow (y = x)\)
4. \(\forall x[(x = y) \rightarrow (y = x)]\)
5. \(\forall x[(x = y) \rightarrow (y = x)] \rightarrow [(t = y) \rightarrow (y = t)]\)
6. \((t = y) \rightarrow (y = t)\)
7. \(\forall y[(t = y) \rightarrow (y = t)]\)
8. \(\forall y[(t = y) \rightarrow (y = t)] \rightarrow [(t = s) \rightarrow (s = t)]\)
9. \((t = s) \rightarrow (s = t)\)

In (1), \(x = x\) is (an abbreviation of an expression) of the form \(\mathcal{R}^2 xx\), and \(y = x\) is of that same form with the first instance of \(x\) replaced by \(y\). Thus (1) is an instance of A8. At line (3) we have symmetry expressed at the level of variables. Then the task is just to convert from variables to terms as before. Notice that, again, (5) and (8) are legitimate applications of A4 insofar as there are no quantifiers in the consequents. We choose \(y\) so that it is not free in \(t\)—that way we do not replace variables in \(t\) on (8).

\[\text{T3.35. } \vdash_{AD} (r = s) \rightarrow [(s = t) \rightarrow (r = t)] \quad \text{transitivity of equality}\]

Hint: Start with \((y = x) \rightarrow [(y = z) \rightarrow (x = z)]\) as an instance of A8—being sure that you see how it is an instance of A8. Then you can use T3.34 to get \((x = y) \rightarrow [(y = z) \rightarrow (x = z)]\), and all you have to do is convert from variables to terms as above.

\[\text{T3.36. } r = s, s = t \vdash_{AD} r = t\]

Hint: This is a mere recasting of T3.35 and follows directly from it.

\[\text{T3.37. } \vdash_{AD} (t_i = s) \rightarrow (h^n t_1 \ldots t_i \ldots t_n = h^n t_1 \ldots s \ldots t_n)\]

Hint: For any given instance of this theorem, you can start with \((x_i = y) \rightarrow (h^n x_1 \ldots x_i \ldots x_n = h^n x_1 \ldots y \ldots x_n)\) as an instance of A7. Then it is easy to convert \(x_1 \ldots x_n\) to \(t_1 \ldots t_n\), and \(y\) to \(s\).

\[\text{T3.38. } \vdash_{AD} (t_i = s) \rightarrow (\mathcal{R}^n t_1 \ldots t_i \ldots t_n = \mathcal{R}^n t_1 \ldots s \ldots t_n)\]

Hint: As for T3.37, for any given instance of this theorem, you can start with \((x_i = y) \rightarrow (\mathcal{R}^n x_1 \ldots x_i \ldots x_n = \mathcal{R}^n x_1 \ldots y \ldots x_n)\) as an instance of A8. Then it is easy to convert \(x_1 \ldots x_n\) to \(t_1 \ldots t_n\), and \(y\) to \(s\).
AD Quick Reference

AD

1. \(P \to (Q \to P) \)
2. \((\varnothing \to (P \to Q)) \to ((\varnothing \to P) \to (\varnothing \to Q)) \)
3. \((\neg Q \to \neg P) \to ((\neg Q \to P) \to Q) \)
4. \(\forall x \, P \to P[x\mapsto t] \quad \text{—where } t \text{ is free for } x \text{ in } P \)
5. \(\forall x \, P \to P \quad \text{—where } x \text{ is not free in } P \)
6. \((x = x) \)
7. \((x_i = y) \to (h^{n}x_1 \ldots x_i \ldots x_n = h^{n}x_1 \ldots y \ldots x_n) \)
8. \((x_i = y) \to (\forall x_i \ldots x_n \to \forall x_i \ldots y \ldots x_n) \)

MP. \(Q \) follows from \(P \to Q \) and \(P \)

Gen. \(\forall x \, P \) follows from \(P \)

T3.1	\(\vdash_{AD} A \to A \)
T3.2	\(A \to B, B \to C \vdash_{AD} A \to C \)
T3.3	\(A \to (B \to C) \vdash_{AD} B \to (A \to C) \)
T3.4	\(\vdash_{AD} (B \to C) \to [(A \to B) \to (A \to C)] \)
T3.5	\(\vdash_{AD} (A \to B) \to [(B \to C) \to (A \to C)] \)
T3.6	\(\vdash_{AD} (\neg A \to A) \to A \)
T3.7	\(\vdash_{AD} (\neg B \to \neg A) \to (A \to B) \)
T3.8	\(\vdash_{AD} (\neg A \to A) \to (A \to B) \)
T3.9	\(\vdash_{AD} \neg A \to (A \to B) \)
T3.10	\(\vdash_{AD} (\neg \neg A) \to A \)
T3.11	\(\vdash_{AD} \neg \neg A \to A \)
T3.12	\(\vdash_{AD} (A \to B) \to (\neg \neg A \to \neg \neg B) \)
T3.13	\(\vdash_{AD} (A \to B) \to (\neg B \to \neg A) \)
T3.14	\(\vdash_{AD} (\neg A \to B) \to (\neg B \to A) \)
T3.15	\(\vdash_{AD} (A \to \neg B) \to (B \to \neg A) \)
T3.16	\(\vdash_{AD} (A \to B) \to [(\neg A \to B) \to B] \)
T3.17	\(\vdash_{AD} A \to (\neg B \to (A \to B)) \)
T3.18	\(\vdash_{AD} A \to (A \lor B) \)
T3.19	\(\vdash_{AD} A \to (B \lor A) \)
T3.20	\(\vdash_{AD} (A \land B) \to B \)
T3.21	\(\vdash_{AD} (A \land B) \to A \)
T3.22	\(\vdash_{AD} (A \to B) \to (A \land B \to C) \)

*where \(v \) is not free in \(\forall x \, A \) but is free for \(x \) in \(A \) when \(t = \) free for \(x \) in \(A \) when \(x \) is not free in \(B \) when \(x \) is not free in \(B \) when \(t \) is free for \(x \) in \(A \)
We will see further examples for *AD* derivations and especially the equality axioms in the context of the extended application of the next section.

E3.8. Provide demonstrations for T3.35 and T3.36.

E3.9. Provide demonstrations for the following instances of T3.37 and T3.38. Then, in each case, say in words how you would go about showing the results for an arbitrary number of places.

a. \((f^1 x = g^2 y) \rightarrow (h^3 z f^1 x f^1 z = h^3 z g^2 y f^1 z)\)

b. \((s = t) \rightarrow (A r s \rightarrow A r t)\)

3.4 Application: PA

We turn now to a substantive application with which we shall be much concerned in part IV. If you have postponed this chapter to after chapter 6, then you have already encountered Peano Arithmetic. However, we may develop consequences of the Peano Axioms directly in *AD*. For this, \(\mathcal{L}_{ST}\) is a language like \(\mathcal{L}_{NT}\) introduced from section 2.3.5 but without the \(<\) symbol: There is the constant symbol \(\emptyset\), the function symbols \(S\), \(+\) and \(\times\), and the relation symbol \(=\). It is possible to treat \(x \leq y\) as an abbreviation for \(\exists v (v + x = y)\) and \(x < y\) as an abbreviation for \(\exists v (Sv + x) = y\). For all this, see the language of arithmetic reference, page 325. Officially, formulas of this language are so-far uninterpreted. It is natural, however, to think of them with their usual meanings, with \(\emptyset\) for zero, \(S\) the successor function, \(+\) the addition function, \(\times\) the multiplication function, and \(=\) the equality relation. But, again, we do not need to think about that for now.

We will say that a formula \(P\) is an *AD* theorem of Peano Arithmetic just in case \(P\) follows in *AD* given as premises the following axioms for Peano Arithmetic.\(^3\)

\[
\begin{align*}
\text{PA} & \quad 1. \sim(Sx = \emptyset) \\
& \quad 2. (Sx = Sy) \rightarrow (x = y) \\
& \quad 3. (x + \emptyset) = x
\end{align*}
\]

\(^3\)After the work of R. Dedekind and G. Peano. For historical discussion, see Wang, “The Axiomatization of Arithmetic. Observe that ‘theorem’ is context-relative. A theorem of Peano arithmetic which results only given PA1 - PA7 is not a theorem of *AD* just because it takes some of PA1–PA7 for its derivation.
4. \((x + Sy) = S(x + y)\)
5. \((x \times \emptyset) = \emptyset\)
6. \((x \times Sy) = [(x \times y) + x]\)
7. \([\mathcal{P} \wedge \forall x (\mathcal{P} \rightarrow \mathcal{P}_{Sx}^x)] \rightarrow \forall x \mathcal{P}\)

In the ordinary case we suppress mention of \(\text{PA}1–\text{PA}7\) as premises, and simply write \(\text{PA} \vdash_{\text{AD}} \mathcal{P}\) to indicate that \(\mathcal{P}\) is an \(\text{AD}\) theorem of Peano arithmetic—that there is an \(\text{AD}\) derivation of \(\mathcal{P}\) which may include appeal to any of \(\text{PA}1–\text{PA}7\).

The axioms set up basic arithmetic on the non-negative integers. Intuitively, \(\emptyset\) is not the successor of any non-negative integer (PA1); if the successor of \(x\) is the same as the successor of \(y\), then \(x\) is \(y\) (PA2); \(x\) plus \(\emptyset\) is equal to \(x\) (PA3); \(x\) plus one more than \(y\) is equal to one more than \(x\) plus \(y\) (PA4); \(x\) times \(\emptyset\) is equal to \(\emptyset\) (PA5); \(x\) times one more than \(y\) is equal to \(x\) times \(y\) plus \(x\) (PA6); and if \(\mathcal{P}\) applies to \(\emptyset\), and for any \(x\), if \(\mathcal{P}\) applies to \(x\), then it also applies to \(Sx\), then \(\mathcal{P}\) applies to every \(x\) (PA7). This last form represents the principle of mathematical induction. Strictly, it is an axiom schema insofar as indefinitely many formulas might be of that form.

Sometimes it is convenient to have the principle of mathematical induction in rule form.

T3.39. In \(\text{PA}\), \(\forall x \mathcal{P}\) follows from \(\mathcal{P}^x_{\emptyset}\) and \(\forall x (\mathcal{P} \rightarrow \mathcal{P}^x_{Sx})\) (a derived Ind)

1. \(\mathcal{P}^x_{\emptyset}\) \hspace{1cm} prem
2. \(\forall x (\mathcal{P} \rightarrow \mathcal{P}^x_{Sx})\) \hspace{1cm} prem
3. \([\mathcal{P}^x_{\emptyset} \wedge \forall x (\mathcal{P} \rightarrow \mathcal{P}^x_{Sx})] \rightarrow \forall x \mathcal{P}\) \hspace{1cm} \(\text{PA7}\)
4. \(\mathcal{P}^x_{\emptyset} \rightarrow [\forall x (\mathcal{P} \rightarrow \mathcal{P}^x_{Sx}) \rightarrow \forall x \mathcal{P}]\) \hspace{1cm} 3 T3.23
5. \(\forall x (\mathcal{P} \rightarrow \mathcal{P}^x_{Sx}) \rightarrow \forall x \mathcal{P}\) \hspace{1cm} 4,1 MP
6. \(\forall x \mathcal{P}\) \hspace{1cm} 5,2 MP

Observe the way we simply appeal to \(\text{PA}7\) at (3). Again, that we can do this is a consequence of our taking all the Peano Axioms as premises for the \(\text{AD}\) derivation. So if we were to encounter \(\mathcal{P}^x_{\emptyset}\) and \(\forall x (\mathcal{P} \rightarrow \mathcal{P}^x_{Sx})\) in a derivation with the axioms of \(\text{PA}\), we could safely move to the conclusion that \(\forall x \mathcal{P}\) by this derived rule Ind.

We will have much more to say about the principle of mathematical induction in part II. For now, it is enough to recognize its instances. Thus, for example, if \(\mathcal{P}\) is \(\neg(x = Sx)\), the corresponding instance of \(\text{PA}7\) would be,

(O) \(\neg(\emptyset = S\emptyset) \wedge \forall x (\neg(x = Sx) \rightarrow \neg(Sx = S(Sx))) \rightarrow \forall x \neg(x = Sx)\)

There is the formula with \(\emptyset\) substituted for \(x\), the formula itself, and the formula with \(Sx\) substituted for \(x\). If the entire antecedent is satisfied, then the formula
holds for every x. For the corresponding application of T3.39 you would need \(\sim(\emptyset = S\emptyset) \) and \(\forall x[\sim(x = Sx) \rightarrow \sim(Sx = SSx)] \) in order to move to the conclusion that \(\forall x(\sim(x = Sx)) \). You should track these examples through. The principle of mathematical induction turns out to be essential for deriving many general results.

As before, if a theorem is derived from some premises, we use the theorem in derivations that follow. Thus we build toward increasingly complex results. Let us start with some simple generalizations of the premises for application to arbitrary terms. The derivations all follow the Gen / A4 / MP pattern we have seen before.

\[T3.40. \quad \text{PA} \vdash_{AD} \sim(S t = \emptyset) \]

1. \(\sim(S x = \emptyset) \) \quad \text{PA1}
2. \(\forall x \sim(Sx = \emptyset) \) \quad 1 Gen
3. \(\forall x \sim(Sx = \emptyset) \rightarrow \sim(St = \emptyset) \) \quad A4
4. \(\sim(St = \emptyset) \) \quad 3, 2 MP

As usual, because there is no quantifier in the consequent, (3) is sure to satisfy the constraint on A4, no matter what t may be.

\[*T3.41. \quad \text{PA} \vdash_{AD} (St = S s) \rightarrow (t = s) \]

\[T3.42. \quad \text{PA} \vdash_{AD} (t + \emptyset) = t \]

corollary: \(\text{PA} \vdash_{AD} t = (t + \emptyset) \)

\[T3.43. \quad \text{PA} \vdash_{AD} (t + S s) = S(t + s) \]

corollary: \(\text{PA} \vdash_{AD} S(t + s) = (t + S s) \)

\[T3.44. \quad \text{PA} \vdash_{AD} (t \times \emptyset) = \emptyset \]

corollary: \(\text{PA} \vdash_{AD} \emptyset = (t \times \emptyset) \)

\[T3.45. \quad \text{PA} \vdash_{AD} (t \times S s) = [(t \times s) + t] \]

corollary: \(\text{PA} \vdash_{AD} [(t \times s) + t] = (t \times S s) \)
In each case, the corollary is immediate from the theorem with T3.34 and MP. We will not usually distinguish these theorems from their corollaries. And, in general, for any theorem $s = t$, we will generally assume the corollary $t = s$. Notice that t and s in these theorems may be any terms. Thus,

$$(P) \quad (x + \emptyset) = x \quad ((x \times y) + \emptyset) = (x \times y) \quad [(\emptyset + x) + \emptyset] = (\emptyset + x)$$

are all straightforward instances of T3.42.

Given this much, we are ready for a series of results which are much more interesting—for example, some general principles of commutativity and associativity. For a first application of Ind, let P be $[(\emptyset + x) = x]$; then P^\emptyset is $[(\emptyset + \emptyset) = \emptyset]$ and $P^x Sx$ is $[(\emptyset + Sx) = Sx]$.

T3.46. $PA \vdash_{AD} (\emptyset + t) = t$

1. $(\emptyset + \emptyset) = \emptyset$ T3.42
2. $[(\emptyset + x) = x] \rightarrow [S(\emptyset + x) = Sx]$ T3.37
3. $[S(\emptyset + x) = (\emptyset + Sx)]$ T3.43
4. $[S(\emptyset + x) = (\emptyset + Sx)] \rightarrow [(S(\emptyset + x) = Sx) \rightarrow ((\emptyset + Sx) = Sx)]$ T3.38
5. $(S(\emptyset + x) = Sx) \rightarrow ((\emptyset + Sx) = Sx)$ 4,3 MP
6. $[(\emptyset + x) = x] \rightarrow [(\emptyset + Sx) = Sx]$ 2,5 T3.2
7. $\forall x[(\emptyset + x) = x] \rightarrow [(\emptyset + Sx) = Sx)]$ 6 Gen
8. $\forall x[(\emptyset + x) = x]$ 1,7 Ind
9. $\forall x[(\emptyset + x) = x] \rightarrow [(\emptyset + t) = t]$ A4
10. $(\emptyset + t) = t$ 9,8 MP

The key to this derivation, and others like it, is bringing Ind into play. The basic strategy for the beginning and end of these arguments is always the same. In this case,

1. $(\emptyset + \emptyset) = \emptyset$ T3.42
2. $[(\emptyset + x) = x] \rightarrow [(\emptyset + Sx) = Sx]$:
3. \vdash
4. $[(\emptyset + x) = x] \rightarrow [(\emptyset + Sx) = Sx]$ 6 Gen
5. $\forall x[(\emptyset + x) = x]$ 1,7 Ind
6. $\forall x[(\emptyset + x) = x] \rightarrow [(\emptyset + t) = t]$ A4
7. $(\emptyset + t) = t$ 9,8 MP

The goal is automatic by A4 and MP once you have $\forall x[(\emptyset + x) = x]$ by Ind at (8). For this, you need P^x_\emptyset and $\forall x (P \rightarrow P^x Sx)$. We have P^x_\emptyset at (1) as an instance of T3.42—and P^x_\emptyset is almost always easy to get. $\forall x (P \rightarrow P^x Sx)$ is automatic by Gen from (6). So the real work is getting (6). Thus, once you see what is going on, the entire derivation for T3.46 boils down to lines (2)–(6). For this, begin by noticing that
the antecedent of what we want is like the antecedent of (2), and the consequent like what we want but for the equivalence in (3). Given this, it is a simple matter to apply T3.38 to switch the one term for the equivalent one we want.

T3.47. PA $\vdash_{AD} (St + \emptyset) = S(t + \emptyset)$
1. $(St + \emptyset) = St$ T3.42
2. $t = (t + \emptyset)$ T3.42
3. $[t = (t + \emptyset)] \rightarrow [St = S(t + \emptyset)]$ T3.37
4. $St = S(t + \emptyset)$ 3.2 MP
5. $(St + \emptyset) = S(t + \emptyset)$ 1.4 T3.36

This derivation has T3.42 at (1) with St for t. Line (2) is a straightforward version of T3.42. Then the key to the derivation is that the left side of (1) is like what we want, and the right side of (1) is like what we want but for the equality on (2). The goal then is to use T3.37 to switch the one term for the equivalent one. You should get used to this pattern of using T3.37 and T3.38 to substitute terms. This result forms the “zero-case” for the one that follows.

T3.48. PA $\vdash_{AD} (St + x) = S(t + x)$
1. $(St + \emptyset) = S(t + \emptyset)$ T3.47
2. $[St + x] = S(t + x)$ $[St + x] = SS(t + x)$] T3.37
3. $S(St + x) = (S(t + x))$ T3.43
4. $[(St + x) = SS(t + x)] \rightarrow [(St + x) = SS(t + x)]$ T3.38
5. $[S(St + x) = SS(t + x)] \rightarrow [(St + x) = SS(t + x)]$ 4.3 MP
6. $[(St + x) = S(t + x)] \rightarrow [(St + x) = SS(t + x)]$ 2.5 T3.2
7. $S(t + x) = (t + x)$ T3.43
8. $[(St + x) = (t + x)] \rightarrow [(St + x) = S(t + x)]$ T3.37
9. $S(t + x) = S(t + x)$ 8.7 MP
10. $[(St + x) = S(t + x)] \rightarrow [(St + x) = S(t + x)]$ T3.38
11. $[(St + x) = SS(t + x)] \rightarrow [(St + x) = SS(t + x)]$ T3.38
12. $[(St + x) = SS(t + x)] \rightarrow [(St + x) = SS(t + x)]$ 10.9 MP
13. $\forall x ((St + x) = S(t + x)] \rightarrow [(St + x) = SS(t + x)]$ 12 Gen
14. $\forall x ((St + x) = S(t + x)] \rightarrow [(St + x) = SS(t + x)]$ 6.11 T3.2
15. $\forall x ((St + x) = S(t + x)] \rightarrow [(St + x) = SS(t + x)]$ 1.13 Ind
16. $(St + x) = S(t + x)$ A4
17. $(St + x) = S(t + x)$ 15.14 MP

The idea behind this longish derivation is to bring Ind into play, where formula P is $[St + x] = S(t + x)$. For now, do not worry about how we identified this formula as P. Given this much, the following setup is automatic,
We have the zero-case from T3.47 on (1); the goal is automatic once we have the "work (just a bit) starting again with T3.43 to get the equivalence on (9)."

The pattern of this derivation is very much like ones we have seen before. Where equivalences on (5) and (9) to getting (12). We get this by substituting into the consequent of (4) by means of the consequent. The equivalence on (3) is a straightforward instance of T3.43. We had to right but for the equivalences on (3) and (9). We use T3.38 to substitute terms into the result on (12). For (12), the antecedent at (2) is what we want, and the consequent is commutativity of addition. We had to work (just a bit) starting again with T3.43 to get the equivalence on (9).

T3.49. \(\varphi \vdash_{AD} (t + s) = (s + t) \)

We have the zero-case from T3.47 on (1); the goal is automatic once we have the result on (12). For (12), the antecedent at (2) is what we want, and the consequent is right but for the equivalences on (3) and (9). We use T3.38 to substitute terms into the consequent. The equivalence on (3) is a straightforward instance of T3.43. We had to work (just a bit) starting again with T3.43 to get the equivalence on (9).

T3.49. \(\varphi \vdash_{AD} (t + s) = (s + t) \)

The pattern of this derivation is very much like ones we have seen before. Where \(\varphi \) is \((t + x) = (x + t) \) we have the zero-case at (3), and the derivation effectively reduces to getting (12). We get this by substituting into the consequent of (4) by means of the equivalences on (5) and (9).

T3.50. \(\varphi \vdash_{AD} ((r + s) + \emptyset) = (r + (s + \emptyset)) \)
CHAPTER 3. AXIOMATIC DEDUCTION

97

Hint: Begin with \((r + s) + \emptyset = (r + s)\) as an instance of T3.42. The derivation is then a matter of using T3.42 to replace \(s\) in the right-hand side with \((s + \emptyset)\).

*T3.51. PA \(\vdash_{AD} ((r + s) + t) = (r + (s + t))\) associativity of addition

Hint: For an application of Ind, let \(P\) be \(((r + s) + x) = (r + (s + x))\). Start with \([(r + s) + x] = (r + (s + x))] \rightarrow [(S((r + s) + x) = S(r + (s + x))]\) as an instance of T3.37, and substitute into the consequent as necessary by T3.43 to reach \([(r + s) + x] = (r + (s + x))] \rightarrow [(S(r + (s + x)) = (r + (s + Sx))]. The derivation is longish, but straightforward.

T3.52. PA \(\vdash_{AD} (\emptyset \times t) = \emptyset\)

Hint: For an application of Ind, let \(P\) be \((\emptyset \times x) = \emptyset\); then the derivation reduces to sowing \([(\emptyset \times x) = \emptyset] \rightarrow [(\emptyset \times Sx) = \emptyset]\). This is easy enough if you use T3.42 and T3.45 to show that \((\emptyset \times x) = (\emptyset \times Sx)\).

T3.53. PA \(\vdash_{AD} (S \times \emptyset) = ((t \times \emptyset) + \emptyset)\)

Hint: This does not require application of Ind.

*T3.54. PA \(\vdash_{AD} (S \times s) = ((t \times s) + \emptyset)\)

Hint: For an application of Ind, let \(P\) be \((S \times s) = ((t \times x) + Sx)\). The derivation reduces to getting \([(S \times x) = ((t \times x) + Sx)] \rightarrow [(S \times Sx) = ((t \times Sx) + Sx)]\). For this, you can start with \([(S \times x) = ((t \times x) + Sx)] \rightarrow [(S \times Sx) = ((t \times Sx) + Sx)]\) as an instance of T3.37, and substitute into the consequent. You may find it helpful to obtain \((x + S \times t) = (t + Sx)\) and from that \(((t \times x) + (x + S \times t)) = ((t \times Sx) + Sx)\) as a preliminary result.

T3.55. PA \(\vdash_{AD} (t \times s) = (s \times t)\) commutativity of multiplication

Hint: For an application of Ind, let \(P\) be \((x \times t) = (x \times t)\). You can start with \([(t \times x) = (x \times t)] \rightarrow [(S \times Sx) = ((t \times Sx) + Sx)]\) as an instance of T3.37, and substitute into the consequent.
We will stop here. With the derivation system ND of chapter 6, we obtain all these results and more. But that system is easier to manipulate than what we have so far in AD. Still, we have obtained some significant results! Perhaps you have heard from your mother’s knee that $a + b = b + a$. But this is a sweeping general claim of the sort that cannot ever have all its instances checked. We have derived it from the Peano axioms.

E3.11. For each of the following concepts, explain in an essay of about two pages, so that (high-school age) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples of your own construction (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. A consequence in a some axiomatic logic of Γ, and then a consequence in AD of Γ.

b. An AD theorem of Peano arithmetic.

c. Term t being free for variable x in formula \mathcal{A} along with the restrictions on A4 and A5.
Peano Arithmetic (AD)

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3.39</td>
<td>$\forall x \mathcal{P}$ follows in PA from $\mathcal{P}\emptyset^x$ and $\forall x (\mathcal{P} \rightarrow \mathcal{P}^x{Sx})$ (Ind)</td>
</tr>
<tr>
<td>T3.40</td>
<td>PA $\vdash_{AD} \sim(St = \emptyset)$</td>
</tr>
<tr>
<td>T3.41</td>
<td>PA $\vdash_{AD} (St = Sa) \rightarrow (t = s)$</td>
</tr>
<tr>
<td>T3.42</td>
<td>PA $\vdash_{AD} (t + \emptyset) = t$</td>
</tr>
<tr>
<td>T3.43</td>
<td>PA $\vdash_{AD} (t + Sa) = S(t + s)$</td>
</tr>
<tr>
<td>T3.44</td>
<td>PA $\vdash_{AD} (t \times \emptyset) = \emptyset$</td>
</tr>
<tr>
<td>T3.45</td>
<td>PA $\vdash_{AD} (t \times Sa) = [(t \times s) + t]$</td>
</tr>
<tr>
<td>T3.46</td>
<td>PA $\vdash_{AD} (\emptyset + t) = t$</td>
</tr>
<tr>
<td>T3.47</td>
<td>PA $\vdash_{AD} (St + \emptyset) = S(t + \emptyset)$</td>
</tr>
<tr>
<td>T3.48</td>
<td>PA $\vdash_{AD} (St + s) = S(t + s)$</td>
</tr>
<tr>
<td>T3.49</td>
<td>PA $\vdash_{AD} (t + s) = (s + t)$ \ (commutativity of addition)</td>
</tr>
<tr>
<td>T3.50</td>
<td>PA $\vdash_{AD} ((r + s) + \emptyset) = (r + (s + \emptyset))$</td>
</tr>
<tr>
<td>T3.51</td>
<td>PA $\vdash_{AD} ((r + s) + t) = (r + (s + t))$ \ (associativity of addition)</td>
</tr>
<tr>
<td>T3.52</td>
<td>PA $\vdash_{AD} (\emptyset \times t) = \emptyset$</td>
</tr>
<tr>
<td>T3.53</td>
<td>PA $\vdash_{AD} (St \times \emptyset) = ((t \times \emptyset) + \emptyset)$</td>
</tr>
<tr>
<td>T3.54</td>
<td>PA $\vdash_{AD} (St \times s) = ((t \times s) + s)$</td>
</tr>
<tr>
<td>T3.55</td>
<td>PA $\vdash_{AD} (t \times s) = (s \times t)$ \ (commutativity of multiplication)</td>
</tr>
</tbody>
</table>

Any theorem $t = s$ has corollary $s = t$.
Chapter 4

Semantics

Having introduced the grammar for our formal languages and even (if you did not skip the last chapter) done derivations in them, we need to say something about semantics—about the conditions under which their expressions are true and false. In addition to logical validity from chapter 1 and validity in AD from chapter 3, this will lead to a third, semantic notion of validity. Again, the discussion divides into the relatively simple sentential case (section 4.1), and then the full quantificational version (section 4.2). Recall that we are introducing formal languages in their “pure” form, apart from associations with ordinary language. Having discussed, in this chapter, conditions under which formal expressions are true and not, in the next chapter, we will finally turn to translation, and so to ways formal expressions are associated with ordinary ones.

4.1 Sentential

For any sentential or quantificational language, starting with a sentence and working up its tree, let us say that its basic sentences are the first sentences without a truth functional main operator. For a sentential language basic sentences are the sentence letters, as the atomics are precisely the first sentences without a truth functional operator. In the quantificational case, basic sentences may be more complex.\(^1\) In this section, we treat basic sentences as atomic. Our initial focus is on forms with just operators \(\sim\) and \(\rightarrow\). We begin with an account of the conditions under which sentences are true and not true, learn to apply that account in arbitrary conditions, and

\(^1\)Thus the basic sentences of \(A \land B\) are just the atomic subformulas \(A\) and \(B\). But \(Fa \land \exists x G x\) has atomic subformulas \(Fa\) and \(G x\), but basic sentences \(Fa\) and \(\exists x G x\) since the latter does not have a truth functional main operator.
CHAPTER 4. SEMANTICS

4.1.1 Interpretations and Truth

Sentences are true and false relative to an interpretation of basic sentences. In the sentential case, the notion of an interpretation is particularly simple. For any formal language \(\mathcal{L} \), a sentential interpretation assigns a truth value true or false, T or F, to each of its basic sentences. Thus, for \(\mathcal{L}_4 \) we might have interpretations \(I \) and \(J \).

<table>
<thead>
<tr>
<th>(I)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>...</td>
</tr>
</tbody>
</table>

(A)

<table>
<thead>
<tr>
<th>(J)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>...</td>
</tr>
</tbody>
</table>

When a sentence \(A \) is T on an interpretation \(I \), we write \(I[A] = T \), and when it is F, we write, \(I[A] = F \). Thus, in the above case, \(J[B] = T \) and \(J[C] = F \).

Truth for complex sentences depends on truth and falsity for their parts. In particular, for any interpretation \(I \),

\[
\text{ST} \quad (\sim) \quad \text{For any sentence } P, \ I[\sim P] = T \text{ iff } I[P] = F; \text{ otherwise } I[\sim P] = F. \\
\text{ST} \quad (\rightarrow) \quad \text{For any sentences } P \text{ and } Q, \ I[(P \rightarrow Q)] = T \text{ iff } I[P] = F \text{ or } I[Q] = T \text{ (or both); otherwise } I[(P \rightarrow Q)] = F.
\]

Thus a basic sentence is true or false depending on the interpretation. For complex sentences, \(\sim P \) is true iff \(P \) is not true; and \((P \rightarrow Q) \) is true iff \(P \) is not true or \(Q \) is. It is traditional to represent the information from \(\text{ST}(\sim) \) and \(\text{ST}(\rightarrow) \) in the following truth tables.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(\sim P)</th>
<th>(P \rightarrow Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

From \(\text{ST}(\sim) \), we have that if \(P \) is F then \(\sim P \) is T; and if \(P \) is T then \(\sim P \) is F. This is just the way to read table \(\text{T}(\sim) \) from left to right in the bottom row, and then the top row. Similarly, from \(\text{ST}(\rightarrow) \), we have that \(P \rightarrow Q \) is T in conditions represented by the first, third and fourth rows of \(\text{T}(\rightarrow) \). The only way for \(P \rightarrow Q \) to be F is when \(P \) is T and \(Q \) is F as in the second row.
ST works recursively. Whether a basic sentence is true comes directly from the interpretation; truth for other sentences depends on truth for their immediate subformulas—and can be read directly off the tables. As usual, we can use trees to see how it works. As we build a formula from its parts to the whole, so now we calculate truth from parts to the whole. Suppose \(I[A] = T, I[B] = F, \) and \(I[C] = F. \) Then \(I[\sim(A \rightarrow \sim B) \rightarrow C] = T. \)

The basic tree is the same as the one that shows \(\sim(A \rightarrow \sim B) \rightarrow C \) is a formula. From the interpretation, \(A \) is \(T, \) \(B \) is \(F, \) and \(C \) is \(F. \) These are across the top. Since \(B \) is \(F, \) from the bottom row of table \(T(\sim), \) \(\sim B \) is \(T. \) Since \(A \) is \(T \) and \(\sim B \) is \(T, \) reading across the top row of the table \(T(\rightarrow), \) \(A \rightarrow \sim B \) is \(T. \) And similarly, according to the tree, for the rest. You should carefully follow each step.

Here is the same formula considered on another interpretation. Where interpretation \(J \) is on page 101, \(J[\sim(A \rightarrow \sim B) \rightarrow C] = F. \)
This time, for both applications of $\text{ST}(\rightarrow)$, the antecedent is T and the consequent is F; thus we are working on the second row of table $\text{T}(\rightarrow)$, and the conditionals evaluate to F. Again, you should follow each step in the tree.

E4.1. Where the interpretation is J from page 101, with $J[A] = T$, $J[B] = T$ and $J[C] = F$, use trees to decide whether the following sentences of L_3 are T or F.

a. $\sim A$
b. $\sim \sim C$
c. $A \rightarrow C$
d. $C \rightarrow A$

e. $\sim (A \rightarrow A)$
f. $(\sim A \rightarrow A)$

g. $\sim (A \rightarrow \sim C) \rightarrow C$
h. $(\sim A \rightarrow C) \rightarrow C$

i. $(A \rightarrow \sim B) \rightarrow \sim (B \rightarrow \sim A)$
j. $(\sim B \rightarrow \sim A) \rightarrow (A \rightarrow \sim B)$

4.1.2 Arbitrary Interpretations

Sentences are true and false relative to an interpretation. But whether an argument is *semantically valid* depends on truth and falsity relative to *every* interpretation. As a first step toward determining semantic validity, in this section, we generalize the method of the last section to calculate truth values relative to arbitrary interpretations.

First, any complex sentence has a *finite* number of basic sentences as components. It is thus possible simply to *list* all the possible interpretations of those basic sentences. If an expression has just one basic sentence A, then on any interpretation whatsoever, that basic sentence must be T or F.

(D)

\[
\begin{array}{c|c}
A & \\
\hline
T & \\
F & \\
\end{array}
\]

If an expression has basic sentences A and B, then the possible interpretations of its basic sentences are,

(E)

\[
\begin{array}{c|c|c}
A & B & \\
\hline
T & T & \\
T & F & \\
F & T & \\
F & F & \\
\end{array}
\]

B can take its possible values, T and F when A is true, and B can take its possible values, T and F when A is false. And similarly, every time we add a basic sentence, we double the number of possible interpretations, so that n basic sentences always have 2^n possible interpretations. Thus the possible interpretations for three and four basic sentences are,
CHAPTER 4. SEMANTICS

Extra horizontal lines are added purely for visual convenience. There are $8 = 2^3$ combinations with three basic sentences and $16 = 2^4$ combinations with four. In general, to write down all the possible combinations for n basic sentences, begin by finding the total number $r = 2^n$ of combinations or rows. Then write down a column with half that many ($r/2$) T's and half that many ($r/2$) F's; then a column alternating half again as many ($r/4$) T's and F's; and a column alternating half again as many ($r/8$) T's and F's—continuing to the n^{th} column alternating groups of just one T and one F. Thus, for example, with four basic sentences, $r = 2^4 = 16$; so we begin with a column consisting of $r/2 = 8$ T's and $r/2 = 8$ F's; this is followed by a column alternating groups of 4 T's and 4 F's, a column alternating groups of 2 T's and 2 F's, and a column alternating groups of 1 T and 1 F. And similarly in other cases.

Given an expression involving, say, four basic sentences, we could imagine doing trees for each of the 16 possible interpretations. But, to exhibit truth values for each of the possible interpretations, we can reduce the amount of work a bit—or at least represent it in a relatively compact form. Suppose $l[A] = T$, $l[B] = F$, and $l[C] = F$, and consider a tree as in (B) from above, along with a “compressed” version of the same information.
In the table on the right, we begin by simply listing the interpretation we will consider in the left-hand part: A is T, B is F and C is F. Then, under each basic sentence, we put its truth value, and for each formula, we list its truth value under its main operator. Notice that the calculation must proceed precisely as it does in the tree. It is because B is F, that we put T under the second \sim. It is because A is T and $\sim B$ is T that we put a T under the first \rightarrow. It is because $(A \rightarrow \sim B)$ is T that we put F under the first \sim. And it is because $(A \rightarrow \sim B)$ is F and C is F that we put a T under the second \rightarrow. In effect, then, we work “down” through the tree, only in this compressed form. We might think of truth values from the tree as “squished” up into the one row. Because there is a T under its main operator, we conclude that the whole formula, $(A \rightarrow \sim B) \rightarrow C$ is T when $I[A] = T$, $I[B] = F$, and $I[C] = F$. In this way, we might conveniently calculate and represent the truth value of $(A \rightarrow \sim B) \rightarrow C$ for all eight of the possible interpretations of its basic sentences.

The emphasized column under the second \rightarrow indicates the truth value of $(A \rightarrow \sim B) \rightarrow C$ for each of the interpretations on the left—which is to say, for every possible interpretation of the three basic sentences. So the only way for $(A \rightarrow \sim B) \rightarrow C$ to be F is for C to be F, and A and B to be T. Our above tree (H) represents just the fourth row of this table.
In practice, it is easiest to work these truth tables “vertically.” For this, begin with the basic sentences in some standard order along with all their possible interpretations in the left-hand column. For L_4 let the standard order be alphanumeric ($A, A_1, A_2, \ldots, B, B_1, B_2, \ldots, C, \ldots$). And repeat truth values for basic sentences under their occurrences in the formula (this is not crucial, since truth values for basic sentences are already listed on the left; it will be up to you whether to repeat values for basic sentences). This is done in table (J) below.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$\sim (A \rightarrow \sim B) \rightarrow C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Now, given the values for B as in (J), we are in a position to calculate the values for $\sim B$; so get the $T(\sim)$ table in your mind, put your eye on the column under B in the formula (or on the left if you have decided not to repeat the values for B under its occurrence in the formula). Then fill in the column under the second \sim, reversing the values from under B. This is accomplished in (K). Given the values for A and $\sim B$, we are now in a position to calculate values for $A \rightarrow \sim B$; so get the $T(\rightarrow)$ table in your head, and put your eye on the columns under A and $\sim B$. Then fill in the column.

It is worth asking what happens if basic sentences are listed in some order other than alphanumeric.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

All the combinations are still listed, but their locations in a table change.

Each of the above tables lists all of the combinations for the basic sentences. But the first table has the interpretation I with $I[A] = T$ and $I[B] = F$ in the second row, where the second table has this combination in the third. Similarly, the tables exchange rows for the interpretation J with $J[A] = F$ and $J[B] = T$. As it turns out, the only real consequence of switching rows is that it becomes difficult to compare tables as, for example, with the Answers to Selected Exercises. And it may matter as part of the standard of correctness for exercises!
under the first \rightarrow, going with F only when A is T and $\sim B$ is F. This is accomplished in (L).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$\sim(A \rightarrow \sim B) \rightarrow C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Now we are ready to fill in the column under the first \sim. So get the $T(\sim)$ table in your head, and put your eye on the column under the first \rightarrow. The column is completed in table (M). And the table is finished as in (I) by completing the column under the last \rightarrow, based on the columns under the first \sim and under the C. Notice again, that the order in which you work the columns exactly parallels the order from the tree.

As another example, consider these tables for $\sim(B \rightarrow A)$, the first with truth values repeated under basic sentences, the second without.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$\sim(B \rightarrow A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

We complete the table as before. First, with our eye on the columns under B and A, we fill in the column under \rightarrow. Then, with our eye on that column, we complete the one under \sim. For this, first, notice that \sim is the main operator. You would not calculate $\sim B$ and then the arrow! Rather, your calculations move from the smaller parts to the larger; so the arrow comes first and then the tilde. Again, the order is the same as on a tree. Second, if you do not repeat values for basic formulas, be careful about $B \rightarrow A$; the leftmost column of table (O), under A, is the column for the consequent and the column immediately to its right, under B, is for the antecedent; in this case, then, the second row under arrow is T and the third is F. Though it is fine to omit columns under basic sentences, as they are already filled in on the left side, you should not skip other columns, as they are essential building blocks for the final result.

E4.2. For each of the following sentences of \mathcal{L}_A construct a truth table to determine its truth value for each of the possible interpretations of its basic sentences.

a. $\sim\sim A$
CHAPTER 4. SEMANTICS

4.1.3 Validity

As we have seen, sentences are true and false relative to an interpretation. For any interpretation, a complex sentence has some definite value. Consider an argument whose premises and conclusion are formal sentences. Perhaps the premises are $A \rightarrow B$ and A and the conclusion is B. Whether an argument is sententially valid depends on the truth and falsity of its premises and conclusion relative to every interpretation. Suppose a formal argument has premises $P_1 \ldots P_n$ and conclusion Q. Then,

$P_1 \ldots P_n$ sententially entail Q ($P_1 \ldots P_n \models_s Q$) iff there is no sentential interpretation I such that $I[P_1] = T$ and \ldots and $I[P_n] = T$ but $I[Q] = F$.

We can put this more generally as follows. Suppose Γ (Gamma) is a set of formulas—these are the premises. Say $I[\Gamma] = T$ iff $I[P] = T$ for each P in Γ. Then,

$SV\quad \Gamma$ sententially entails Q ($\Gamma \models_s Q$) iff there is no sentential interpretation I such that $I[\Gamma] = T$ but $I[Q] = F$.

Where the members of Γ are $P_1 \ldots P_n$, this says the same thing as before. Γ sententially entails Q when there is no sentential interpretation that makes each member of Γ true and Q false. If Γ sententially entails Q we say the argument whose premises are the members of Γ and conclusion is Q is sententially valid. Γ does not sententially entail Q ($\Gamma \not\models_s Q$) when there is some sentential interpretation on which
all the members of Γ are true, but Q is false. Notice the new double turnstile \Vdash for this semantic notion, in contrast to the single turnstile \vdash for derivations from chapter 3.

We can think of the premises as constraining the interpretations that matter: for validity it is just the interpretations where the members of Γ are all true on which the conclusion Q cannot be false. If Γ has no members then there are no constraints on relevant interpretations, and the conclusion is valid iff it is true on every interpretation. In the case where there are no premises, we simply write $\Vdash Q$, and if Q is valid it is a tautology.

Given that we are already in a position to exhibit truth values for arbitrary interpretations, it is a simple matter to determine whether an argument is sententially valid. Where the premises and conclusion of an argument include basic sentences $B_1 \ldots B_n$, begin by calculating the truth values of the premises and conclusion for each of the possible interpretations for $B_1 \ldots B_n$. Then look to see if any interpretation makes all the premises true but the conclusion false. If no interpretation makes the premises true and the conclusion not, then by SV, the argument is sententially valid. If some interpretation does make the premises true and the conclusion false, then it is not valid.

Thus, for example, suppose we want to know whether the following argument is sententially valid.

$$\neg A \rightarrow B \rightarrow C$$

(P)
\[B \]

\[C \]

By SV, the question is whether there is an interpretation that makes the premises true and the conclusion not. So we begin by calculating the values of the premises and conclusion for each of the possible interpretations of the basic sentences in the premises and conclusion.

<table>
<thead>
<tr>
<th>A B C</th>
<th>$(\neg A \rightarrow B) \rightarrow C$</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T T</td>
<td>T T T T T T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T F</td>
<td>T T F F T F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T T</td>
<td>T T T F F T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T F</td>
<td>T T F F F T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T F</td>
<td>T F T F F F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T F</td>
<td>T F F T F T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T F</td>
<td>T F F F T T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T F</td>
<td>T F F F F F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

Now we simply look to see whether any interpretation makes all the premises true but the conclusion not. Interpretations represented by the top row, ones that make A, B, and C all T, do not make the premises true and the conclusion not, because both
the premises and the conclusion come out true. In the second row, the conclusion is
false, but the first premise is false as well; so not all the premises are true and the
collection is false. In the third row, we do not have either all the premises true or the
collection false. In the fourth row, though the conclusion is false, the premises are
not true. In the fifth row, the premises are true, but the conclusion is not false. In the
sixth row, the first premise is not true, and in the seventh and eighth rows, the second
premise is not true. So no interpretation makes the premises true and the conclusion
false. So by SV, \(\sim A \neq B / C \), \(B \models C \). Notice that the only column that matters
for a complex formula is the one under its main operator—the one that gives the value
of the sentence for each of the interpretations; the other columns exist only to support
the calculation of the value of the whole.

In contrast, \(\sim[(B \rightarrow A) \rightarrow B] \neq \sim(A \rightarrow B) \). That is, an argument with
premise, \(\sim[(B \rightarrow A) \rightarrow B] \) and conclusion \(\sim(A \rightarrow B) \) is not sententially valid.

\[
\begin{array}{c|ccc|c}
A & B & \sim[(B \rightarrow A) \rightarrow B] & / & \sim(A \rightarrow B) \\
T & T & F & T & T \\
T & F & T & T & F \\
F & T & F & F & T \\
F & F & F & F & F \\
\end{array}
\]

(Q)

In the first row, the premise is \(F \). In the second, the conclusion is \(T \). In the third,
the premise is \(F \). However, in the last, the premise is \(T \), and the conclusion is \(F \). So
there are interpretations (any interpretation that makes \(A \) and \(B \) both \(F \)) that make the
premise \(T \) and the conclusion \(F \). So by SV, \(\sim[(B \rightarrow A) \rightarrow B] \neq \sim(A \rightarrow B) \), and
the argument is not sententially valid. All it takes is one interpretation that makes all
the premises \(T \) and the conclusion \(F \) to render an argument not sententially valid. Of
course, there might be more than one, but one is enough!

As a final example, consider table (I) for \(\sim(A \rightarrow \sim B) \rightarrow C \) on page 105 above.
From the table, there is an interpretation where the sentence is not true. Thus, by SV,
\(\neq \sim(A \rightarrow \sim B) \rightarrow C \). A sentence is valid only when it is true on every interpretation.
Since there is an interpretation on which it is not true, the sentence is not valid (not a
tautology).

Since all it takes to demonstrate invalidity is one interpretation on which all the
premises are true and the conclusion is false, we do not actually need an entire table to
demonstrate invalidity. You may decide to produce a whole truth table in order to find
an interpretation to demonstrate invalidity. But we can sometimes work “backward”
from what we are trying to show to an interpretation that does the job. Thus, for
example, to find the result from table (Q), we need an interpretation on which the
premise is \(T \) and the conclusion is \(F \). That is, we need a row like this,
In order for the premise to be T, the conditional in the brackets must be F. And in order for the conclusion to be F, the conditional must be T. So we can fill in this much.

Since there are three ways for an arrow to be T, there is not much to be done with the conclusion. But since the conditional in the premise is F, we know that its antecedent is T and consequent is F. So we have,

That is, if the conditional in the brackets is F, then \((B \rightarrow A)\) is T and \(B\) is F. But now we can fill in the information about \(B\) wherever it occurs. The result is as follows.

Since the first \(B\) in the premise is F, the first conditional in the premise is T irrespective of the assignment to \(A\). But, with \(B\) false, the only way for the conditional in the argument’s conclusion to be T is for \(A\) to be false as well. The result is our completed row.

And we have recovered the row that demonstrates invalidity—without doing the entire table. In this case, the full table had only four rows, and we might just as well have done the whole thing. However, when there are many rows, this “shortcut” approach can be attractive. A disadvantage is that sometimes it is not obvious just how to proceed. In this example each stage led to the next. At stage (S), there were three ways to make the conclusion true. We were able to proceed insofar as the premise forced the next step. But it might have been that neither the premise nor the conclusion forced a definite next stage. In this sort of case, you might decide to do the whole table, just so that you can grapple with all the different combinations in an orderly way.

Notice what happens when we try this approach with an argument that is not invalid. Returning to argument (P) above, suppose we try to find a row where the premises are T and the conclusion is F. That is, we set out to find a row like this,

Immediately, we are in a position to fill in values for \(B\) and \(C\).
Since the first premise is a true arrow with a false consequent, its antecedent \((\neg A \rightarrow B)\) must be \(F\). But this requires that \(\neg A\) be \(T\) and that \(B\) be \(F\).

And there is no way to set \(B\) to \(F\), as we have already seen that it has to be \(T\) in order to keep the second premise true—and no interpretation makes \(B\) both \(T\) and \(F\). At this stage, we know, in our hearts, that there is no way to make both of the premises true and the conclusion false. In part II we will turn this knowledge into an official mode of reasoning for validity. However, for now, let us consider a single row of a truth table (or a marked row of a full table) sufficient to demonstrate invalidity, but require a full table, exhibiting all the options, to show that an argument is sententially valid.

You may encounter odd situations where premises are never \(T\), where conclusions are never \(F\), or whatever. But if you stick to the definition, always asking whether there is any interpretation of the basic sentences that makes all the premises \(T\) and the conclusion \(F\), all will be well.

E4.3. For each of the following, use truth tables to decide whether the entailment claims hold. Notice that a couple of the tables are already done from E4.2.

* a. \(A \rightarrow \neg A \models \neg A\)

b. \(\neg A \rightarrow A \models \neg A\)

c. \(A \rightarrow B, \neg A \models \neg B\)

d. \(A \rightarrow B, \neg B \models \neg A\)

e. \(\neg(A \rightarrow \neg B) \models \neg B\)

f. \(\models C \rightarrow (A \rightarrow B)\)

g. \(\models [A \rightarrow (C \rightarrow B)] \rightarrow [(A \rightarrow C) \rightarrow (A \rightarrow B)]\)

h. \((A \rightarrow B) \rightarrow \neg(B \rightarrow A), \neg A, \neg B \models \neg(C \rightarrow C)\)

i. \(A \rightarrow \neg(B \rightarrow \neg C), B \rightarrow (\neg C \rightarrow D) \models A \rightarrow \neg(B \rightarrow \neg D)\)

j. \(\neg[(A \rightarrow \neg(B \rightarrow \neg C))] \rightarrow D], \neg D \rightarrow A \models C\)
4.1.4 Abbreviations

We turn finally to applications for our abbreviations. Consider, first, a truth table for \(P \rightarrow Q \), that is for \(\neg P \rightarrow Q \).

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(\neg \neg (P \rightarrow Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

so that

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

When \(P \) is T and \(Q \) is T, \(P \rightarrow Q \) is T; when \(P \) is T and \(Q \) is F, \(P \lor Q \) is T; and so forth. Thus, when \(P \) is T and \(Q \) is T, we know that \(P \lor Q \) is T, without going through all the steps to get there in the unabbreviated form. Just as when \(P \) is a formula and \(Q \) is a formula, we move directly to the conclusion that \(P \lor Q \) is a formula without explicitly working all the intervening steps, so if we know the truth value of \(P \) and the truth value of \(Q \), we can move in a tree by the above table to the truth value of \(P \lor Q \) without all the intervening steps. And similarly for the other abbreviating sentential operators. For \(\land \),

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(\neg (P \rightarrow \neg Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

so that

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

And for \(\leftrightarrow \),

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(\neg (P \rightarrow \neg (Q \rightarrow P)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

so that

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \leftrightarrow Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

As a help toward remembering these tables, notice that \(P \lor Q \) is T only when \(P \) is T and \(Q \) is T; and \(P \rightarrow Q \) is F only when \(P \) is T and \(Q \) is F; and \(P \leftrightarrow Q \) is T only when \(P \) and \(Q \) are the same and T when \(P \) and \(Q \) are different. We can think of these tables as representing derived additions \(T'(\lor) \), \(T'(\land) \), and \(T'(\leftrightarrow) \) to the definition for truth.

And nothing prevents direct application of the derived tables in trees. Suppose, for example, \(\models [A] = T, \models [B] = F \), and \(\models [C] = T \). Then \(\models (B \rightarrow A) \leftrightarrow [(A \land B) \lor \neg C] = F \).
We might get the same result by working through the full tree for the unabbreviated form. But there is no need. When \(A \) is \(T \) and \(B \) is \(F \), we know that \(\neg \) is \(F \); when \(\lor \) is \(F \) and \(C \) is \(F \), we know that \([A \land B] \lor C \) is \(F \); and so forth. Thus we move through the tree directly by the derived tables.

Similarly, we can work directly with abbreviated forms in truth tables.

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>((B \rightarrow A) \leftrightarrow [(A \land B) \lor \neg C])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

Tree \((Z)\) represents just the third row of this table. As before, we construct the table “vertically,” with tables for abbreviating operators in mind as appropriate.

Finally, given that we have tables for abbreviated forms, we can use them for evaluation of arguments with abbreviated forms. Thus, for example, \(A \leftrightarrow B, A \models A \land B \).

There are a couple of different ways tables for our operators can be understood: First, as we shall see in part III, it is possible to take tables for operators other than \(\sim \) and \(\rightarrow \) as basic, say, just \(T(\sim) \) and \(T(\lor) \), or just \(T(\sim) \) and \(T(\land) \), and then abbreviate \(\rightarrow \) in terms of them. Challenge: What expression involving just \(\sim \) and \(\lor \) has the same table as \(\rightarrow ? \) What expression involving just \(\sim \) and \(\land ? \) Another option is to introduce all five as basic. Then the task is not showing that the table for \(\lor \) is \(\text{TTTF} \)—that is given; rather we simply notice that \(P \lor Q \), say, is redundant with \(\sim P \rightarrow Q \). Again, our approach with \(\sim \) and \(\rightarrow \) basic has the advantage of preserving relative simplicity in the basic language (though other minimal approaches would do so as well).
CHAPTER 4. SEMANTICS

There is no row where each of the premises is true and the conclusion is false. So the argument is sententially valid. And, from either of the following rows,

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>((B \rightarrow A) \land (\sim C \lor D))</th>
<th>((A \leftrightarrow \sim D) \land (\sim D \rightarrow B))</th>
<th>(\sim B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

we may conclude that \((B \rightarrow A) \land (\sim C \lor D)\), \((A \leftrightarrow \sim D) \land (\sim D \rightarrow B)\) \(\not\models\) \(B\). In this case, the shortcut table is attractive relative to the full version with sixteen rows!

E4.4. For each of the following, use truth tables to decide whether the entailment claims hold.

a. \(A \lor \sim A\)

b. \(A \leftrightarrow [\sim A \leftrightarrow (A \land \sim A)], A \rightarrow \sim(A \leftrightarrow A) \models \sim A \rightarrow A\)

c. \(B \lor \sim C \models \sim B \rightarrow C\)

d. \(\sim(A \land \sim B) \models \sim A \lor B\)

e. \(\models \sim(A \leftrightarrow B) \leftrightarrow (A \land \sim B)\)

f. \(A \lor B, \sim C \rightarrow \sim A, \sim(B \land \sim C) \models \sim C\)

g. \(A \rightarrow (B \lor C), C \leftrightarrow B, \sim C \models \sim A\)

h. \(A \land (B \rightarrow C) \models (A \land B) \lor (A \land C)\)

i. \(A \lor (B \land \sim C), \sim(\sim B \lor C) \rightarrow \sim A \models \sim A \leftrightarrow (C \lor \sim B)\)

j. \(A \lor B, \sim D \rightarrow (C \lor A) \models B \leftrightarrow \sim C\)

E4.5. Complete the chart below to exhibit and explain step by step how to construct one or both rows from table (AC).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>((B \rightarrow A) \land (\sim C \lor D))</th>
<th>((A \leftrightarrow \sim D) \land (\sim D \rightarrow B))</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

1. \(\vdash \)

2. \(\models \)

- fill in values for \(B\)
Semantics Quick Reference (Sentential)

For any formal language \(\mathcal{L} \), starting with a sentence and working up its tree, the basic sentences are the first sentences without a truth functional main operator. A sentential interpretation assigns a truth value true or false, \(T \) or \(F \), to each basic sentence. Then for any interpretation \(I \),

\[
ST \quad (\sim) \text{ For any sentence } P, I[\sim P] = T \iff I[P] = F; \text{ otherwise } I[\sim P] = F.
\]

\[
(\rightarrow) \text{ For any sentences } P \text{ and } Q, I[(P \rightarrow Q)] = T \iff I[P] = F \text{ or } I[Q] = T \text{ (or both); otherwise } I[(P \rightarrow Q)] = F.
\]

And for abbreviated expressions,

\[
ST' \quad (\land) \text{ For any sentences } P \text{ and } Q, I[(P \land Q)] = T \iff I[P] = T \text{ and } I[Q] = T; \text{ otherwise } I[(P \land Q)] = F.
\]

\[
(\lor) \text{ For any sentences } P \text{ and } Q, I[(P \lor Q)] = T \iff I[P] = T \text{ or } I[Q] = T \text{ (or both); otherwise } I[(P \lor Q)] = F.
\]

\[
(\leftrightarrow) \text{ For any sentences } P \text{ and } Q, I[(P \leftrightarrow Q)] = T \iff I[P] = I[Q]; \text{ otherwise } I[(P \leftrightarrow Q)] = F.
\]

If \(\Gamma \) (Gamma) is a set of formulas, \(I[\Gamma] = T \iff I[P] = T \) for each \(P \) in \(\Gamma \). Then, where the members of \(\Gamma \) are the formal premises of an argument, and sentence \(P \) is its conclusion,

\[
SV \quad \Gamma \text{ sententially entails } P \text{ iff there is no sentential interpretation } I \text{ such that } I[\Gamma] = T \text{ but } I[P] = F.
\]

We treat a single row of a truth table (or a marked row of a full table) as sufficient to demonstrate invalidity, but require a full table, exhibiting all the options, to show that an argument is sententially valid.

E4.6. For each of the following, use truth tables to decide whether the entailment claims hold. Hint: the trick here is to identify the basic sentences. After that, everything proceeds in the usual way with truth values assigned to the basic sentences.

*a. \(\exists x Ax \rightarrow \exists x Bx, \sim \exists x Ax \models \exists x Bx \)

*b. \(\forall x Ax \rightarrow \sim \exists x (Ax \land \forall y By), \exists x (Ax \land \forall y By) \not\models \sim \forall x Ax \)
E4.7. For each of the following concepts, explain in an essay of about two pages, so that (high-school age) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples of your own construction (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. Sentential interpretations and truth for complex sentences.

b. Sentential validity.

4.2 Quantificational

Semantics for the quantificational case work along the same lines as the sentential one. Sentences are true or false relative to an interpretation; arguments are semantically valid when there is no interpretation on which the premises are true and the conclusion is not. But, corresponding to differences between sentential and quantificational languages, the notion of an interpretation differs. And we introduce a preliminary notion of a term assignment, along with a preliminary notion of satisfaction distinct from truth, before we get to truth and validity. Certain issues are put off for chapter 7 at the start of part II. However, we should be able to do enough to see how the definitions work. This time, we will say a bit more about connections to English, though it remains important to see the definitions for what they are, and we leave official discussion of translation to the next chapter.

4.2.1 Interpretations

Given a quantificational language \mathcal{L}, formulas are true relative to a quantificational interpretation. As in the sentential case, languages do not come associated with any interpretation. Rather, a language consists of symbols which may be interpreted in different ways. In the sentential case, interpretations assigned T or F to basic sentences—and the assignments were made in arbitrary ways. Now assignments are more complex, but remain arbitrary. In general,

Q1 A quantificational interpretation I of language \mathcal{L}, consists of a nonempty set U, the universe of the interpretation, along with,

(s) An assignment of a truth value $I[\delta]$ to each sentence letter δ of \mathcal{L}.

(c) An assignment of a member $I[c]$ of U to each constant symbol c of \mathcal{L}.
(r) An assignment of an n-place relation $I[R^n]$ on U to each n-place relation symbol R^n of L, where $I[=]$ is always assigned $\{o, o \mid o \in U\}$.

(f) An assignment of a total n-place function $I[h^n]$ from U^n to U, to each n-place function symbol h^n of L.

The notions of a function and a relation come from set theory, for which you might want to check out the set theory summary on page 119. Conceived literally and mathematically, these assignments are themselves functions from symbols in the language L to objects. Each sentence letter is associated with a truth value, T or F—this is no different than before. Each constant symbol is associated with some element of U. Each n-place relation symbol is associated with a subset of U^n—with a set whose members are of the sort $\langle a_1 \ldots a_n \rangle$ where $a_1 \ldots a_n$ are elements of U. Each n-place function symbol is associated with a set whose members are of the sort $\langle h \langle a_1 \ldots a_n \rangle, b \rangle$, where every $\langle a_1 \ldots a_n \rangle \in U^n$ is matched to a single $b \in U$. And where $U = \{a, b, c \ldots\}$, $I[=] = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \ldots\}$ Note the (slight) typographical difference between ‘$=$’ in the object language and ‘$=$’ we use to express the relation. U may be any non-empty set, and so need not be countable. Any such assignments count as a quantificational interpretation.

Intuitively, the universe contains whatever objects are under consideration in a given context. Thus one may ask whether “everyone” wants anchovies on their pizza, and have in mind some limited collection of individuals—not literally everyone in the world. Constant symbols work like proper names: Constant symbol a names the object $I[a]$ with which it is associated. So, for example, in L_q we might set $I[b]$ to Bill, and $I[h]$ to Hillary. Relation symbols are interpreted like predicates: Relation symbol R^n applies to the n-tuples with which it is associated. Thus in L_q, where U is the set of all people, we might set $I[H]$ to $\{o \mid o$ is happy$\}$ and $I[L]$ to $\{\langle m, n \rangle \mid m$ loves $n\}$. Then if Bill is happy, H applies to Bill, and if Bill loves Hillary, L applies to \langleBill, Hillary\rangle, though if she is mad enough about Monica, L might not apply to \langleHillary, Bill\rangle. Function symbols are used to pick out one object by means of other(s). Thus, when we say that Bill’s father is happy, we pick out an object (the father) by means of another (Bill). Similarly, function symbols are like “oblique” names which pick out objects in response to inputs. Such behavior is commonplace in mathematics when we say, for example that $3 + 3$ is even—and we are talking about 6. Thus we might assign $\{\langle m, n \rangle \mid n$ is the father of $m\}$ to one-place function symbol f and $\{\langle \langle m, n \rangle, o \rangle \mid m$ plus $n = o\}$ to two-place function symbol p.\[^2\]

\[^2\]Or $\{o \mid o$ is happy$\}$. As mentioned in the set theory guide, one-tuples are collapsed into their members.

\[^3\]It is possible to drop the (classical) assumptions that U is nonempty and that all assignments are
Basic Notions of Set Theory

I. A set is a thing that may have other things as elements or members. If \(m \) is a member of set \(s \) we write \(m \in s \). One set is identical to another iff their members are the same—so order is irrelevant. The members of a set may be specified by list: \{Sally, Bob, Jim\}, or by membership condition: \(\{o \mid o \text{ is a student at CSUSB}\} \); read, 'the set of all objects \(o \) such that \(o \) is a student at CSUSB'. Since sets are things, nothing prevents a set with other sets as members.

II. Like a set, an \(n \)-tuple is a thing with other things as elements or members. For any positive integer \(n \), an \(n \)-tuple has \(n \) elements, where order matters. 2-tuples are frequently referred to as “pairs.” An \(n \)-tuple may be specified by list: \(\langle \text{Sally, Bob, Jim} \rangle \), or by membership condition, ‘the first 5 people (taken in order) in line at the Bursar’s window’. Nothing prevents sets of \(n \)-tuples, as \(\{\langle m, n \rangle \mid m \text{ loves } n\} \); read, ‘the set of all \(m/n \) pairs such that the first member loves the second’. 1-tuples are frequently equated with their members. So, depending on context, \(\{\text{Sally, Bob, Jim}\} \) may be \(\{\langle \text{Sally} \rangle, \langle \text{Bob} \rangle, \langle \text{Jim} \rangle\} \).

III. Set \(r \) is a subset of set \(s \) iff every member of \(r \) is also a member of \(s \). If \(r \) is a subset of \(s \) we write \(r \subseteq s \). \(r \) is a proper subset of \(s \) \((r \subset s) \) iff \(r \subseteq s \) but \(r \neq s \). Thus, for example, the subsets of \(\{m, n, o\} \) are \(\{\}, \{m\}, \{n\}, \{o\}, \{m, n\}, \{m, o\}, \{n, o\}, \{m, n, o\} \). All but \(\{m, n, o\} \) are proper subsets of \(\{m, n, o\} \). Notice that the empty set \(\{\} \) \((\varnothing)\) is a subset of any set \(s \), for it is sure to be the case that any member of it is also a member of \(s \).

IV. The union of sets \(r \) and \(s \) is the set of all objects that are members of \(r \) or \(s \). Thus, if \(r = \{m, n\} \) and \(s = \{n, o\} \), then the union of \(r \) and \(s \), \((r \cup s) = \{m, n, o\} \). Given a larger collection of sets, \(s_1, s_2, \ldots \) the union of them all, \(\bigcup s_1, s_2 \ldots \) is the set of all objects that are members of \(s_1 \), or \(s_2 \), or Similarly, the intersection of sets \(r \) and \(s \) is the set of all objects that are members of \(r \) and \(s \). Thus the intersection of \(r \) and \(s \), \((r \cap s) = \{n\} \), and \(\bigcap s_1, s_2 \ldots \) is the set of all objects that are members of \(s_1 \), and \(s_2 \), and

V. Let \(s^n \) be the set of all \(n \)-tuples formed from members of \(s \). Then an \(n \)-place relation on set \(s \) is any subset of \(s^n \). Thus, for example, \(\{\langle m, n \rangle \mid m \text{ is married to } n\} \) is a subset of the pairs of people, and so is a \(2 \)-place relation on the set of people. An \(n \)-place function from \(r^n \) to \(s \) is a set of pairs whose first member is an element of \(r^n \) and whose second member is an element of \(s \)—restricted so that if \(\langle \langle m_1, \ldots, m_n \rangle, a \rangle \in f \) and \(\langle \langle m_1, \ldots, m_n \rangle, b \rangle \in f \) then \(a = b \); so no member of \(r^n \) is paired with more than one member of \(s \). Thus \(\langle \langle 1, 1 \rangle, 2 \rangle \) and \(\langle \langle 1, 2 \rangle, 3 \rangle \) might be members of an addition function. \(\langle \langle 1, 1 \rangle, 2 \rangle \) and \(\langle \langle 1, 1 \rangle, 3 \rangle \) could not be members of the same function. A total function from \(r^n \) to \(s \) is one that pairs each member of \(r^n \) with some member of \(s \). We think of the first element of these pairs as an input, and the second as the function’s output for that input. Thus if \(\langle \langle m, n \rangle, o \rangle \in f \) we say \(f(m, n) = o \).
For some examples of interpretations, let us return to the language $\mathcal{L}_{\mathcal{N}^T}$ from section 2.3.5. Recall that $\mathcal{L}_{\mathcal{N}^T}$ includes just constant symbol \emptyset; two-place relation symbols $<, =$; one-place function symbol S; and two-place function symbols \times and $+$. Given these symbols, terms and formulas are generated in the usual way. Where \mathbb{N} is the set $\{0, 1, 2, \ldots\}$ of natural numbers and the successor of any natural number is the number after it, the standard interpretation \bar{N} for $\mathcal{L}_{\mathcal{N}^T}$ has universe \mathbb{N} with,

$$\bar{N}$$

$$\bar{N}[0] = 0$$

$$\bar{N}[<] = \{ (m, n) \mid m, n \in \mathbb{N}, \text{ and } m \text{ is less than } n \}$$

$$\bar{N}[S] = \{ (m, n) \mid m, n \in \mathbb{N}, \text{ and } n \text{ is the successor of } m \}$$

$$\bar{N}[+] = \{ ((m, n), o) \mid m, n, o \in \mathbb{N}, \text{ and } m \text{ plus } n \text{ equals } o \}$$

$$\bar{N}[\times] = \{ ((m, n), o) \mid m, n, o \in \mathbb{N}, \text{ and } m \times n \text{ equals } o \}$$

where it is automatic from QI that $\bar{N}[=] = \{ (0, 0), (1, 1), (2, 2), \ldots \}$. These definitions work just as we expect. Thus,

$$\bar{N}[<] = \{ (0, 1), (0, 2), (0, 3), \ldots (1, 2), (1, 3) \ldots \}$$

$$\bar{N}[S] = \{ (0, 1), (1, 2), (2, 3) \ldots \}$$

$$\bar{N}[+] = \{ (0, 0), (0, 1), (0, 2), \ldots (1, 0), (1, 1), (1, 2), \ldots \}$$

$$\bar{N}[\times] = \{ (0, 0), (0, 1), (0, 2), 0, \ldots (1, 0), (1, 1), 1, \ldots \}$$

So $<$ is assigned a set of pairs; S a one-place total function, that is $\{ (0, 1), (1, 2), (2, 3) \ldots \}$ but with 1-tuples reduced to their members; and $+$ and \times are assigned two-place total functions. The standard interpretation represents the way you have understood these symbols since grade school.

But there is nothing sacred about this interpretation. Thus, for example, we might introduce an \mathfrak{l} with $U = \{ \text{Bill, Hill} \}$ and,

$$\begin{align*}
\mathfrak{l}[\emptyset] &= \text{Bill} \\
\mathfrak{l}[<] &= \{ \langle \text{Hill, Hill} \rangle, \langle \text{Hill, Bill} \rangle \} \\
\mathfrak{l}[S] &= \{ \langle \text{Bill, Bill} \rangle, \langle \text{Hill, Hill} \rangle \} \\
\mathfrak{l}[+] &= \{ \langle \langle \text{Bill, Bill} \rangle, \text{Hill} \rangle, \langle \langle \text{Bill, Hill} \rangle, \text{Hill} \rangle, \langle \langle \text{Hill, Bill} \rangle, \text{Hill} \rangle, \langle \langle \text{Hill, Hill} \rangle, \text{Hill} \rangle \} \\
\mathfrak{l}[\times] &= \{ \langle \langle \text{Bill, Bill} \rangle, \text{Bill} \rangle, \langle \langle \text{Bill, Hill} \rangle, \text{Bill} \rangle, \langle \langle \text{Hill, Bill} \rangle, \text{Bill} \rangle, \langle \langle \text{Hill, Hill} \rangle, \text{Bill} \rangle \}
\end{align*}$$

This assigns a member of the universe to the constant symbol; a set of pairs to the two-place relation symbol (where the interpretation of $=$ is automatic); a total 1-place function to S, and total 2-place functions to $+$ and \times. So it counts as an interpretation to members of U. Free logic does just this. With our classical approach as background, free logics are introduced in Priest, *Non-Classical Logics*. A possible application is to possible worlds where not every object exists at every world.
of $\mathcal{L}_{\mathcal{N}}$. Observe that a total n-place function on an m-membered universe has m^n members—so our 1-place function has $2^1 = 2$ members, and 2-place functions $2^2 = 4$ members.

It is frequently convenient to link assignments with bits of (relatively) ordinary language. This is a key to translation, as explored in the next chapter. But there is no requirement that we link up with ordinary language. All that is required is that we assign a member of U to each constant symbol, a subset of U^n to each n-place relation symbol, and a total function from U^n to U to each n-place function symbol. That is all that is required—and nothing beyond that is required in order to say what the function and predicate symbols “mean.” So I counts as a legitimate (though non-standard) interpretation of $\mathcal{L}_{\mathcal{N}}$. With a language like \mathcal{L}_q it is not always possible to specify assignments for all the symbols in the language. Even so, we can specify a partial interpretation—an interpretation for the symbols that matter in a given context.

E4.8. Suppose Bill and Hill have another child and (for reasons known only to them) name him Dill. Where $U = \{\text{Bill, Hill, Dill}\}$, give another interpretation J for $\mathcal{L}_{\mathcal{N}}$. Arrange your interpretation so that: (i) $J[\emptyset] \neq \text{Bill}$; (ii) there are exactly five pairs in $J[\langle \rangle]$; and (iii) for any m, $(\langle m, \text{Bill}, \text{Dill} \rangle)$ and $(\langle \text{Bill}, m, \text{Dill} \rangle)$ are in $J[\langle \rangle]$.

Include $J[=]$ in your account.

4.2.2 Term Assignments

For some language \mathcal{L}, say $U = \{o \mid o$ is a person$, \}$, one-place predicate H is assigned the set of happy people, and constant b is assigned Bill. Perhaps H applies to Bill. In this case, Hb comes out true. Intuitively, however, we cannot say that Hx is either true or false on this interpretation, precisely because there is no particular individual that x picks out—we do not know who is supposed to be happy. However we will be able to say that Hx is satisfied or not when the interpretation is supplemented with a variable (designation) assignment d associating each variable with some individual in U.

Given a language \mathcal{L} and interpretation I, a variable assignment d is a total function from the variables of \mathcal{L} to objects in the universe U. Conceived pictorially, where $U = \{o_1, o_2 \ldots\}$, d and e are variable assignments.

```
|   | i | j | k | l | m | n | o | p | ...
|---|---|---|---|---|---|---|---|---|---
| d |   |   |   |   |   |   |   |   |...
| o | o_1| o_2| o_3| o_4| o_5| o_6| o_7| o_8|...`
```
If d assigns o to x we write $d[x] = o$. So $d[k] = o_3$ and $e[k] = o_2$. Observe that the total function from variables to things assigns some element of U to every variable of L. But this leaves room for one thing assigned to different variables, and things assigned to no variable at all. For any assignment d, $d(x|o)$ is the assignment that is just like d except that x is assigned to o. Thus, $d(k|o_2) = e$. Similarly,

But before we get to satisfaction, we need the general notion of a term assignment. In general, a term contributes to a formula by picking out some member of the universe U—terms act something like names. We have seen that an interpretation l assigns a member $l[c]$ of U to each constant symbol c. And a variable assignment d assigns a member $d[x]$ to each variable x. But these are assignments just to “basic” terms. For function symbols an interpretation assigns, not individual members of U, but certain complex sets. Still an interpretation l supplemented by a variable assignment d is sufficient to associate a member $l[t]$ of U with any term t of L. Where $\langle \{a_1 \ldots a_n\}, b \rangle \in l[\cdot]^n$, let $l[\cdot]^n(\{a_1 \ldots a_n\}) = b$; that is, $l[\cdot]^n(\{a_1 \ldots a_n\})$ is the thing the function $l[\cdot]^n$ associates with input $\{a_1 \ldots a_n\}$. Thus, for example, $\mathbb{N}[\cdot]^1(1, 1) = 2$ and $l[\cdot]^1(\text{Bill, Hill}) = \text{Hill}$. Then for any interpretation l, variable assignment d, and term t,

(c) If c is a constant, then $l[d[c]] = l[c]$.

(v) If x is a variable, then $l[d[x]] = d[x]$.

(f) If h^n is a function symbol and $t_1 \ldots t_n$ are terms, then $l[d[h^n t_1 \ldots t_n]] = l[h^n](l[d[t_1]] \ldots l[d[t_n]])$.

The first two clauses take over assignments to constants and variables from l and d. The last clause is parallel to the one by which terms are formed. The assignment
to a complex term depends on assignments to the terms that are its parts with the
interpretation of the relevant function symbol. Again, the definition is recursive, and
we can see how it works on a tree—in this case, one with the very same shape as the
one by which we see that an expression is in fact a term. Say the interpretation of \(L_{NT} \)
is \(I \) as above, and \(d[x] = \text{Hill} \); then \(I_d[S(Sx \times \emptyset)] = \text{Bill} \).

\[
\begin{array}{c}
\text{By TA(v) and TA(c)} \\
\text{With the input, since (Hill, Hill) } \in I[S], \text{ by TA(f)} \\
\text{With the inputs, since ((Hill, Bill), Bill) } \in I[x], \text{ by TA(f)} \\
\text{With the input, since (Bill, Bill) } \in I[S], \text{ by TA(f)}
\end{array}
\]

As usual, basic elements occur in the top row. Other elements are fixed by ones that
come before. Perhaps the hard part about definition TA is just reading clause (f)—it
may be easier to apply in practice than to read. For a complex term, assignments
to terms that are the parts, together with the assignment to the function symbol
determine the assignment to the whole. And this is just what clause (f) says. For
practice, convince yourself that \(I_d[S(Sx \times \emptyset)] = \text{Hill} \); and where \(\bar{N} \) is as above
and \(d[x] = 1 \), that \(\bar{N}_d[S(Sx \times \emptyset)] = 1 \).

E4.9. For \(L_{NT} \) and interpretation \(\bar{N} \) as above on page 120, let \(d \) include,

\[
\begin{array}{cccc}
w & x & y & z \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1 & 2 & 3 & 4
\end{array}
\]

and use trees to determine each of the following.

* a. \(\bar{N}_d[+xS\emptyset] \)

b. \(\bar{N}_d[x + (SS\emptyset \times x)] \)

c. \(\bar{N}_d[w \times S(\emptyset + (y \times SSSz))] \)

* d. \(\bar{N}_d(x|4)[x + (SS\emptyset \times x)] \)

e. \(\bar{N}_d(x|1,w|2)[S(x \times (S\emptyset + Sw))] \)
E4.10. For \mathcal{L}_{N_T} and interpretation I as above on page 120, let d include,

\[
\begin{array}{cccc}
 w & x & y & z \\
 \downarrow & \downarrow & \downarrow & \downarrow \\
 \text{Bill} & \text{Hill} & \text{Hill} & \text{Hill}
\end{array}
\]

and use trees to determine each of the following.

* \(a. \quad I_d[x S]\)

\(b. \quad I_d[x + (S S \emptyset \times x)] \)

\(c. \quad I_d[w \times S(\emptyset + (y \times S S z))] \)

* \(d. \quad I_{d(x|\text{Bill})}[x + (S S \emptyset \times x)] \)

\(e. \quad I_{d(x|\text{Bill}, w|\text{Hill})}[S(x \times (S \emptyset + S w))] \)

E4.11. Consider your interpretation J for \mathcal{L}_{N_T} from E4.8. Supposing that $d[w] = \text{Bill}$, $d[y] = \text{Hill}$, and $d[z] = \text{Dill}$, determine $J_d[w \times S(\emptyset + (y \times S S S z))]$.

E4.12. For \mathcal{L}_q and an interpretation K with universe $U = \{\text{Amy}, \text{Bob}, \text{Chris}\}$ with,

\[
K[a] = \text{Amy} \\
K[c] = \text{Chris} \\
K[f^1] = \{(\text{Amy}, \text{Bob}), (\text{Bob}, \text{Chris}), (\text{Chris}, \text{Amy})\} \\
K[g^2] = \{(\langle \text{Amy}, \text{Amy}\rangle, \text{Amy}), (\langle \text{Amy}, \text{Bob}\rangle, \text{Bob}), (\langle \text{Bob}, \text{Bob}\rangle, \text{Bob}), (\langle \text{Bob}, \text{Chris}\rangle, \text{Chris}), (\langle \text{Chris}, \text{Bob}\rangle, \text{Bob}), (\langle \text{Chris}, \text{Chris}\rangle, \text{Chris})\}
\]

where $d(x) = \text{Bob}$, $d(y) = \text{Amy}$ and $d(z) = \text{Bob}$, use trees to determine each of the following,

\(a. \quad K_d[f^1 c] \)

* \(b. \quad K_d[g^2 y f^1 c] \)

\(c. \quad K_d[g^2 g^2 a x f^1 c] \)

\(d. \quad K_d(x|\text{Chris})[g^2 g^2 a x f^1 c] \)

\(e. \quad K_d(x|\text{Amy})[g^2 g^2 g^2 x y z g^2 f^1 a f^1 c] \)
4.2.3 Satisfaction

A term’s assignment depends on an interpretation supplemented by an assignment for variables, that is, on some d. Similarly, a formula’s satisfaction depends on both the interpretation and variable assignment. If a formula \mathcal{P} is satisfied on I supplemented with d, we write $I[d][\mathcal{P}] = S$; if \mathcal{P} is not satisfied on I with d, $I[d][\mathcal{P}] = N$. For any interpretation I with variable assignment d,

SF(s): If S is a sentence letter, then $I[d][S] = S$ iff $I[S] = T$; otherwise $I[d][S] = N$.

SF(r): If \mathcal{R}^n is an n-place relation symbol and $t_1 \ldots t_n$ are terms, $I[d][\mathcal{R}^n t_1 \ldots t_n] = S$ iff $I[d][\mathcal{R}^n t_1 \ldots t_n] \in I[\mathcal{R}^n]$; otherwise $I[d][\mathcal{R}^n t_1 \ldots t_n] = N$.

SF(\sim): If \mathcal{P} is a formula, then $I[d][\sim \mathcal{P}] = S$ iff $I[d][\mathcal{P}] = N$; otherwise $I[d][\sim \mathcal{P}] = N$.

SF(\rightarrow): If \mathcal{P} and \mathcal{Q} are formulas, then $I[d][\mathcal{P} \rightarrow \mathcal{Q}] = S$ iff $I[d][\mathcal{P}] = N$ or $I[d][\mathcal{Q}] = S$ (or both); otherwise $I[d][\mathcal{P} \rightarrow \mathcal{Q}] = N$.

SF(\forall): If \mathcal{P} is a formula and x is a variable, then $I[d][\forall x \mathcal{P}] = S$ iff for any $o \in U$, $I[d(o)][\mathcal{P}] = S$; otherwise $I[d][\forall x \mathcal{P}] = N$.

$\text{SF(s), SF(\sim) and SF(\rightarrow) are closely related to ST from before, though satisfaction applies now to any formulas and not only to sentences. Other clauses are new.}$

$\text{SF(s) and SF(r) determine satisfaction for atomic formulas. Satisfaction for other formulas depends on satisfaction of their immediate subformulas. First, the satisfaction of a sentence letter works just like truth before: If a sentence letter is true on an interpretation, then it is satisfied. Thus satisfaction for sentence letters depends only on the interpretation, and not at all on the variable assignment.}$

$\text{In contrast, to see if } \mathcal{R}^n t_1 \ldots t_n \text{ is satisfied, we find out which things are assigned to the terms. It is natural to think about this on a tree like the one by which we show that the expression is a formula. Thus given interpretation } I \text{ for } \mathcal{L}_{\forall} \text{ from page 120, consider } (x \times S\emptyset) < x; \text{ and compare cases with } d[x] = \text{Bill}, \text{ and } h[x] = \text{Hill}. \text{ It will be convenient to think about the expression in its unabbreviated form, } < x \times S\emptyset x. \text{ Assignment } d \text{ is worked out on the left, and } h \text{ on the right.}$
Above the dotted line, we calculate term assignments in the usual way. But \(< x S \emptyset x\) is a formula of the sort \(< t_1 t_2\). From diagram (AF), \(l_d[\times x S \emptyset] = \text{Hill}\), and \(l_d[x] = \text{Bill}\). So the assignments to \(t_1\) and \(t_2\) are Hill and Bill. Since (Hill, Bill) \(\in \ll< \rr\), by SF(r), \(l_d[\times x S \emptyset x] = S\). But from (AG), \(l_h[\times x S \emptyset] = \text{Bill}\), and \(l_h[x] = \text{Hill}\). And (Bill, Hill) \(\not\in \ll< \rr\), so by SF(r), \(l_h[\times x S \emptyset x] = N\). \(R^n t_1 \ldots t_n\) is satisfied just in case the \(n\)-tuple of the thing assigned to \(t_1\), and \(\ldots \) and the thing assigned to \(t_n\) is in the set assigned to the relation symbol. To decide if \(R^n t_1 \ldots t_n\) is satisfied, we find out what things are assigned to the term or terms, and then look to see whether the relevant ordered sequence is in the interpretation. The simplest sort of case is when there is just one term. \(l_d[R^1 t] = S\) just in case \(l_d[t] \in l_d[R^1]\). When there is more than one term, we look for the objects taken in order.

SF(\(\sim\)) and SF(\(\rightarrow\)) work just as before. And we could work out their consequences on trees or tables for satisfaction as before. In this case though, to accommodate quantifiers it will be convenient to turn the “trees” on their sides. For this, we begin by constructing the tree in the “forward direction,” from left to right, and then determine satisfaction the other way—from the branch tips back to the trunk. Where the members of \(U\) are \{\(m, n\ldots\}\), the branch conditions are as follows:

<table>
<thead>
<tr>
<th>Condition</th>
<th>(l_d[\mathcal{S}])</th>
<th>(l_d[R^n t_1 \ldots t_n])</th>
<th>(l_d[\sim \mathcal{P}])</th>
<th>(l_d[(\mathcal{P} \rightarrow \mathcal{Q})])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B(s))</td>
<td>does not branch</td>
<td>the tip is (S) if (l[\mathcal{S}] = T)</td>
<td>(l_d[\sim \mathcal{P}] \sim l_d[\mathcal{P}])</td>
<td>the trunk is (S) if the branch is (N)</td>
</tr>
<tr>
<td>(B(r))</td>
<td>branches only for terms</td>
<td>(l_d[R^n t_1 \ldots t_n] \in l[R^n])</td>
<td></td>
<td>the trunk is (S) if the top branch is (N) or the bottom branch is (S) (or both)</td>
</tr>
<tr>
<td>(B(\sim))</td>
<td>(l_d[R^n t_1 \ldots t_n])</td>
<td>(l_d[\mathcal{P}])</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(B(\rightarrow)\)
A formula branches according to its main operator. If it is atomic, it does not branch (or branches only for its terms). (AF) and (AG) are examples of branching for terms, only oriented vertically. If the main operator is \sim, a formula has just one branch; if its main operator is \rightarrow, it has two branches; and if its main operator is \forall it has as many branches as there are members of U. This last condition makes it impractical to construct these trees in all but the most simple cases—and impossible when U is infinite. Still, we can use them to see how the definitions work.

When there are no quantifiers, we should be able to recognize these trees as a mere “sideways” variant of ones we have seen before. Thus, consider an interpretation L with $U = \{\text{Bob}, \text{Sue}, \text{Jim}\}$ and,

\[
L[A] = T
\]
\[
L[B^1] = \{\text{Sue}\}
\]
\[
L[C^2] = \{\{\text{Bob, Sue}\}, \{\text{Sue, Jim}\}\}
\]

and variable assignment d such that $d[x] = \text{Bob}$. Then,

\[
(AH) \quad L_d[\sim A \rightarrow B x]^{(S)} \quad \Rightarrow \quad L_d[\neg A]^{(N)} \quad \sim \quad L_d[A]^{(S)}
\]

\[
\Rightarrow \quad L_d[B x]^{(N)} \quad \Rightarrow \quad x[\text{Bob}]
\]

The main operator at stage (1) is \rightarrow; so there are two branches. $B x$ on the bottom is atomic, so the formula branches no further—though we use TA to calculate the term assignment. On the top at (2), $\sim A$ has main operator \sim. So there is one branch. And we are done with the forward part of the tree. Given this, we can calculate satisfaction from the tips back toward the trunk. Since $L[A] = T$, by $B(s)$, the tip at (3) is S. And since this is S, by $B(\sim)$, the top formula at (2) is N. But since $L_d[x] = \text{Bob}$, and Bob $\not\in L[B]$, by $B(r)$, the bottom at (2) is N. And with both the top and bottom at (2) N, by $B(\rightarrow)$, the formula at (1) is S. So $L_d[\sim A \rightarrow B x] = S$. You should be able to recognize that the diagram (AH) rotated counterclockwise by 90 degrees would be...
a mere variant of diagrams we have seen before. And the branch conditions merely
implement the corresponding conditions from SF.

Things are more interesting when there are quantifiers. For a quantifier, there are
as many branches as there are members of U. Thus working with a “stripped down”
version of L that has $U = \{\text{Bob}\}$, consider $L_d[\forall y \sim C_{xy}]$. With just one thing in the
universe, the tree branches as follows,

$$
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
L_d[\forall y \sim C_{xy}]^{(S)} & & L_d[\forall y \sim C_{xy}]^{(S)} & \sim L_d[\forall y \sim C_{xy}]^{(S)} \\
\forall y L_d[\forall y \sim C_{xy}]^{(S)} & \sim & L_d[\forall y \sim C_{xy}]^{(S)} & : x^{[\text{Bob}]} \\
& & : y^{[\text{Bob}]} & \\
\end{array}
$$

The main operator at (1) is the universal quantifier. With one thing in U, there is the one
branch. Notice that the variable assignment d becomes $d^{(y)}{[\text{Bob}]}$. The main operator
at (2) is \sim. So there is the one branch, carrying forward the assignment $d^{(y)}{[\text{Bob}]}$. The formula at (3) is atomic, so the only branching is for the term assignment. Then,
in the backward direction, $L_d[\forall y \sim C_{xy}]^{(S)}$ still assigns Bob to x; and $L_d[\forall y \sim C_{xy}]^{(S)}$ assigns Bob to
y. Since $\{\text{Bob}, \text{Sue}\} \not\subseteq L[C^2]$, the branch at (3) is N; so the branch at (2) is S. And since all the branches for the universal quantifier are S, by $B(\forall)$, the formula at (1) is S.

But L was originally defined with $U = \{\text{Bob, Sue, Jim}\}$. In this case the quantifier
requires not one but three branches, and the tree is as follows.

$$
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
L_d[\forall y \sim C_{xy}]^{(S)} & & L_d[\forall y \sim C_{xy}]^{(S)} & \sim L_d[\forall y \sim C_{xy}]^{(S)} \\
\forall y L_d[\forall y \sim C_{xy}]^{(S)} & \sim & L_d[\forall y \sim C_{xy}]^{(S)} & : x^{[\text{Bob}]} \\
& & : y^{[\text{Sue}]} & \\
\end{array}
$$

Now there are three branches for the quantifier. Note the modification of d on
each branch, and the way the modified assignments carry forward and are used for
evaluation at the tips. $d^{(y)}{[\text{Sue}]}$, say, has the same assignment to x as d, but assigns
Sue to y. And similarly for the rest. This time, not all the branches for the universal
quantifier are S. So the formula at (1) is N. You should convince yourself that it is S
on h, where $h[x] = \text{Jim}$. And it would be S with assignment d as above, but formula
$\forall y \sim C_{xy}$.

(AK) on page 130 is an example for $\forall x[(Sx < x) \rightarrow \forall y(Sy + \emptyset = x)]$ using
interpretation I from page 120 and $L_{\forall \exists}$. This case should help you to see how all the
CHAPTER 4. SEMANTICS

parts fit together in a reasonably complex example. It turns out to be helpful to think about the formula in its unabbreviated form, $\forall x(\langle Sxx \rightarrow \forall y=+Sy\theta x \rangle)$. For this case notice especially how when multiple quantifiers come off, a variable assignment once modified is simply modified again for the new variable. If you follow through the details of this case by the definitions, you are doing well.

A word of advice: Once you have the idea, constructing these trees to determine satisfaction is a mechanical (and tedious) process. About the only way to go wrong or become confused is by skipping steps or modifying the form of trees. But, very often, skipping steps or modifying form does correlate with confusion. So it is best to stick with the official pattern—and so to follow the way it forces you through definitions SF and TA.

E4.13. Supplement interpretation K for E4.12 so that $U = \{\text{Amy, Bob, Chris}\}$ and,

- $K[a] = \text{Amy}$
- $K[c] = \text{Chris}$
- $K[f^1] = \{(\text{Amy, Bob}), (\text{Bob, Chris}), (\text{Chris, Amy})\}$
- $K[g^2] = \{(\text{Amy, Amy}), (\text{Amy, Bob}), (\text{Amy, Chris}), (\text{Bob, Bob}), (\text{Bob, Chris}), (\text{Bob, Bob}), (\text{Bob, Chris}), (\text{Chris, Chris})\}$
- $K[S] = T$
- $K[H^1] = \{\text{Amy, Bob}\}$
- $K[L^2] = \{\text{Amy, Amy}, (\text{Amy, Bob}), (\text{Amy, Chris}), (\text{Bob, Bob}), (\text{Bob, Chris})\}$

Where $d(x) = \text{Amy}$, $d(y) = \text{Bob}$, use trees to determine whether the following formulas are satisfied on K with d.

- a. Hx
- b. Lxa
- c. Hf^1y
- d. $\forall x Lyx$
- e. $\forall xLxg^2cx$
- f. $\sim\forall x (Hx \rightarrow \sim S)$
- g. $\forall y \sim \forall x Lyny$
- h. $\forall y \sim \forall x Lyny$
- i. $\forall x (Hf^1x \rightarrow Lxx)$
- j. $\forall x (Hx \rightarrow \sim \forall y \sim Lyny)$

E4.14. For the previous problem, what if anything changes with the variable assignment h where $h[x] = \text{Chris}$ and $h[y] = \text{Amy}$? Challenge: Explain why differences in the initial variable assignment cannot matter for the evaluation of (e)–(j).
CHAPTER 4. SEMANTICS

Forward: Since there are two objects in U, there are two branches for each quantifier. At stage (2), for the x-quantifier, d is modified for assignments to x, and at lower sections of (4) for the y-quantifier those assignments are modified again. The assignments to x and y are assigned to Bill and Hill, respectively. Then terms and formulas are calculated in the usual way. At (4), recall that terms and formulas are calculated in the usual way. At (5), recall that terms and formulas are calculated in the usual way. Branching for terms continues at stages (4) and (5) in the usual way.

Backward: For terms, apply the variable assignment from the corresponding atomic formula. So in the top at (5), with $d.x = \text{Bill}$ and $y = \text{Bill}$, both x and y are assigned to Bill. The assignment to y comes from the interpretation.

Then terms and formulas are calculated in the usual way. At (4), recall that terms and formulas are calculated in the usual way. Branching for terms continues at stages (4) and (5) in the usual way.
4.2.4 Truth and Validity

It is a short step from satisfaction to definitions for truth and validity. As we have seen, formulas are satisfied or not on an interpretation \(I \) together with a variable assignment \(d \). Given this, truth runs through satisfaction: a formula is true on an interpretation when it is satisfied relative to every variable assignment. As a consequence, truth is independent of the details of any particular assignment, and formulas are true and false relative just to an interpretation \(I \).

\[\text{TI} \quad \text{A formula } P \text{ is true on an interpretation } I \text{ iff with any } d \text{ for } I, l_d[P] = S. \ P \text{ is false on } I \text{ iff with any } d \text{ for } I, l_d[P] = N. \]

A formula is true on \(I \) just in case it is satisfied with every variable assignment for \(I \). From (AJ), then, we are already in a position to see that \(\forall y \sim C x y \) is not true on \(L \). For there is a variable assignment \(d \) on which it is \(N \). Neither is \(\forall y \sim C x y \) false on \(L \), insofar as it is satisfied when the assignment is \(h \). Since there is an assignment on which it is \(N \), it is not satisfied on every assignment, and so is not true. Since there is an assignment on which it is \(S \), it is not \(N \) on every assignment, and so is not false. In contrast, from (AK), \(\forall x[(S x < x) \rightarrow \forall y(S y + \emptyset = x)] \) is true on \(I \). For some variable assignment \(d \), the tree shows directly that \(l_d[\forall x[(S x < x) \rightarrow \forall y(S y + \emptyset = x)]] = S \). But the reasoning for the tree makes no assumptions whatsoever about \(d \). That is, with any variable assignment, we might have reasoned in just the same way to reach the conclusion that the formula is satisfied. Since it comes out satisfied no matter what the variable assignment may be, by TI, it is true.

In general, if a sentence is satisfied on some \(d \) for \(I \), then it is satisfied on every \(d \) for \(I \). We shall demonstrate this more formally in chapter 8. However, we are already in a position to see the basic idea: In a sentence, every variable is bound; so by the time you get to formulas without quantifiers at the tips of a tree, assignments are of the sort, \(d(x | m, y | n \ldots) \) for every variable in the formula; so satisfaction depends just on assignments that are set on the branch itself, and the initial \(d \) is irrelevant to satisfaction at the tips—and thus to evaluation of the formula as a whole. Adjustments to the assignment that occur within the tree override the original assignment so that that every starting \(d \) gives the same result. So if a sentence is satisfied on some \(d \) for \(I \), it is satisfied on every \(d \) for \(I \), and therefore true on \(I \). Similarly, if a sentence is \(N \) on some \(d \) for \(I \), it is \(N \) on every \(d \) for \(I \), and therefore false on \(I \).

In contrast, a formula with free variables may be sensitive to the initial variable assignment. If variable \(x \) is free in formula \(P \), then the value for \(x \) at a branch tip results from the original \(d[x] \) rather than by adjustments to the assignment that are set within the branch. Thus, in the ordinary case, \(H x \) is not true and not false: there
may be an assignment \(\mathbf{d} \) on which \(x \) is assigned an object in the interpretation of \(H \) so that \(Hx \) is satisfied, and an assignment \(\mathbf{h} \) on which \(x \) is assigned an object not in the interpretation of \(H \) so that \(Hx \) is not satisfied; in this case, \(Hx \) is neither true nor false. We have seen this pattern so far in examples and exercises: for formulas with free variables, there may be variable assignments where they are satisfied, and variable assignments where they are not. Therefore the formulas fail to be either true or false by TI. Sentences, on the other hand, are satisfied on every variable assignment if they are satisfied on any, and not satisfied on every assignment if they are not satisfied on any. Therefore the sentences from our examples and exercises come out either true or false.

But a word of caution is in order: Sentences are always true or false on an interpretation. And, in the ordinary case, formulas with free variables are neither true nor false. But this is not always so. \((x = x)\) is true on any \(I \). (Why?) Similarly, \(\mathcal{L}[Hx] = \mathcal{T} \) if \(\mathcal{L}[H] = \mathcal{U} \) and \(\mathcal{F} \) if \(\mathcal{L}[H] = \{\} \). And \(\sim \forall x (x = y) \) is true on any \(I \) with a \(\mathcal{U} \) that has more than one member. To see this, suppose for some \(I, \mathcal{U} = \{m, n \ldots\} \); then for an arbitrary \(\mathbf{d} \) the tree is as follows,

\[
\begin{array}{ll}
\hline
1 & 2 & 3 & 4 \\
\hline
\mathbf{d}[\forall x (x = y)] & \sim & \mathbf{d}[\forall x (x = y)] \\
\hline
\end{array}
\]

\[
\begin{array}{ll}
\hline
\vdash_{\forall x} \mathbf{d}[\forall x (x = y)] & \sim \mathbf{d}[\forall x (x = y)] \\
\hline
\end{array}
\]

No matter what \(\mathbf{d} \) is like, exactly one branch at (3) is \(\mathcal{S} \). If \(\mathbf{d}[y] = m \) then the top branch at (3) is \(\mathcal{S} \) and the rest are \(\mathcal{N} \). If \(\mathbf{d}[y] = n \) then the second branch at (3) is \(\mathcal{S} \) and the others are \(\mathcal{N} \). And so forth. So in this case where \(\mathcal{U} \) has more than one member, at least one branch is \(\mathcal{N} \) for any \(\mathbf{d} \). So the universally quantified expression is \(\mathcal{N} \) for any \(\mathbf{d} \), and the negation at (1) is \(\mathcal{S} \) for any \(\mathbf{d} \). So by TI it is true. So satisfaction for a formula may but need not be sensitive to the particular variable assignment under consideration. Again, though, a sentence is always true or false depending only on the interpretation. To show that a sentence is true, it is enough to show that it is satisfied on some \(\mathbf{d} \), from which it follows that it is satisfied on any. For a formula with free variables, the matter is more complex—though you can show that such a formula is not true by finding an assignment that makes it \(\mathcal{N} \), and not false by finding an assignment that makes it \(\mathcal{S} \).

Given the notion of truth, quantificational validity works very much as before. Where \(\mathcal{\Gamma} \) (Gamma) is a set of formulas, say \(\mathcal{L}[\mathcal{\Gamma}] = \mathcal{T} \) iff \(\mathcal{L}[[\mathcal{P}]] = \mathcal{T} \) for each formula
\(\mathcal{P} \in \Gamma \). Then for any formula \(\mathcal{P} \),

\[\forall \mathcal{Q} \in \Gamma \text{ quantificationally entails } \mathcal{P} \text{ iff there is no quantificational interpretation } I \text{ such that } I[\Gamma] = T \text{ but } I[\mathcal{P}] \neq T. \]

\(\Gamma \) quantificationally entails \(\mathcal{P} \) when there is no quantificational interpretation that makes the premises true and the conclusion not. If \(\Gamma \) quantificationally entails \(\mathcal{P} \) we write, \(\Gamma \models \mathcal{P} \), and say an argument whose premises are the members of \(\Gamma \) and conclusion is \(\mathcal{P} \) is quantificationally valid. \(\Gamma \) does not quantificationally entail \(\mathcal{P} \) (\(\Gamma \not\models \mathcal{P} \)) when there is some quantificational interpretation on which all the premises are true but the conclusion is not true (notice that there is a difference between being not true, and being false). As before, if \(Q_1 \ldots Q_n \) are the members of \(\Gamma \), we sometimes write \(Q_1 \ldots Q_n \models \mathcal{P} \) in place of \(\Gamma \models \mathcal{P} \). In the case where \(\Gamma \) is empty and there are no premises, we simply write \(\models \mathcal{P} \). If \(\models \mathcal{P} \), then \(\mathcal{P} \) is a tautology. Notice again the double turnstile \(\models \), in contrast to the single turnstile \(\vdash \) for derivations.

In the quantificational case, demonstrating semantic validity is problematic. In the sentential case, we could simply list all the ways a sentential interpretation could make basic sentences \(T \) or \(F \). In the quantificational case, it is not possible to list all interpretations. Consider just interpretations with universe \(\mathbb{N} \): the interpretation of a one-place relation symbol \(\mathcal{R} \) might be \(\{1\} \) or \(\{2\} \) or \(\{3\} \ldots \); it might be \(\{1, 2\} \) or \(\{1, 3\} \), or \(\{1, 3, 5 \ldots \} \), or whatever. There are infinitely many options for this one relation symbol—and so at least as many for quantificational interpretations in general. Similarly, when the universe is so large, by our methods, we cannot calculate even satisfaction and truth in arbitrary cases—for quantifiers would have an infinite number of branches. One might begin to suspect that there is no way to demonstrate semantic validity in the quantificational case. There is a way. And we respond to this concern in chapter 7.

For now, though, we rest content with demonstrating invalidity. To show that an argument is invalid, we do not need to consider all possible interpretations; it is enough to find one interpretation on which the premises are true and the conclusion is not. (Compare the invalidity format from chapter 1 and “shortcut” truth tables in this chapter.) An argument is quantificationally valid just in case there is no \(I \) on which its premises are true and its conclusion is not true. So to show that an argument is not quantificationally valid, it is sufficient to produce an interpretation that violates this condition—an interpretation on which its premises are true and conclusion is not. This should be enough at least to let us see how the definitions work, and we postpone the larger question about showing quantificational validity to later.

For now, then, our idea is to produce an interpretation, and then to use trees in order to show that the interpretation makes premises true but the conclusion not. Thus,
for example, for \mathcal{L}_q we can show that $\neg \forall x P x \not\equiv \neg P a$—that an argument with premise $\neg \forall x P x$ and conclusion $\neg P a$ is not quantificationally valid. To see this, consider an l with $U = \{1, 2\}$, $l[P] = \{1\}$, and $l[a] = 1$. Then $\neg \forall x P x$ is T on l.

\[
\begin{array}{c|c|c|c}
1 & 2 & 3 & 4 \\
\hline
l_d[\neg \forall x P x]^{(S)} & l_d[\forall x P x]^{(N)} & l_d[x(1)][P x]^N & \vdots \chi[1] \\
\hline
l_d[x(2)][P x]^N & \vdots \chi[2]
\end{array}
\]

$\neg \forall x P x$ is satisfied with this d for l; since it is a sentence it is satisfied with any d for l. So by TI it is true on l. But $\neg P a$ is not true on this l.

\[
\begin{array}{c|c|c|c}
1 & 2 & 3 \\
\hline
l_d[\neg P a]^{(N)} & l_d[P a]^{(S)} & \vdots a[1]
\end{array}
\]

By TA(c), $l_d[a] = l[a]$. So the assignment to a is 1 and the formula at (2) is satisfied, so that the formula at (1) is not. So by TI, $l[\neg P a] \neq T$. So there is an interpretation on which the premise is true and the conclusion is not; so $\neg \forall x P x \not\equiv \neg P a$, and the argument is not quantificationally valid. Notice that it is sufficient to show that the conclusion is not true—which is not always the same as showing that the conclusion is false.

Here is another example. We show that $\neg \forall x \neg P x$, $\neg \forall x \neg Q x \not\equiv \forall y (P y \rightarrow Q y)$. In general, to show that an argument is not quantificationally valid, you want to think “backward” to see what kind of interpretation you need to make the premises true but the conclusion not true. In this case, to make the conclusion false, we need something that is P but not Q; the premises are true if something is P and something Q. One way to do this is with an l that has $U = \{1, 2\}$ where $l[P] = \{1\}$ and $l[Q] = \{2\}$. Then the premises are true.

\[
\begin{array}{c|c|c|c|c}
1 & 2 & 3 & 4 & 5 \\
\hline
l_d[\neg \forall x \neg P x]^{(S)} & l_d[\forall x \neg P x]^{(N)} & l_d[x(1)][\neg P x]^N & l_d[x(1)][P x]^S & \vdots \chi[1] \\
\hline
l_d[x(2)][\neg P x]^S & l_d[x(2)][P x]^N & \vdots \chi[2]
\end{array}
\]
To make $\neg \forall x P x$ true, we require that there is at least one thing in $I \models P$. We accomplish this by putting 1 in its interpretation. This makes the top branch at stage (4) S; this makes the top branch at (3) N; so the quantifier at (2) is N and the formula at (1) comes out S. Since it is a sentence and satisfied on the arbitrary assignment, it is true. $\neg \forall x Q x$ is true for related reasons. For it to be true, we require at least one thing in $I \models Q$. This is accomplished by putting 2 in its interpretation. But this interpretation does not make the conclusion true.

The conclusion is not satisfied so long as something is in $I \models P$ but not in $I \models Q$. We accomplish this by making the thing in the interpretation of P different from the thing in the interpretation of Q. Since 1 is in $I \models P$ but not in $I \models Q$, there is an S/N pair at (3), so that the top branch at (2) is N and the formula at (1) is N. Since the formula is not satisfied, by TI it is not true. And since there is an interpretation on which the premises are true and the conclusion is not, by QV, the argument is not quantificationally valid.

To show that an argument is not quantificationally valid it is to your advantage to think of simple interpretations. Remember that U need only be non-empty. So it will often do to work with universes that have just one or two members. And the interpretation of a relation symbol might even be empty. It is often convenient to let the universe be some set of integers. If there is any interpretation that demonstrates invalidity, there is sure to be one whose universe is some set of integers—but we will get to this in part III.

E4.15. For language \mathcal{L}_q consider an interpretation I such that $U = \{1, 2\}$, and

$$I[\alpha] = 1$$
Use interpretation I and trees to show that (a) below is not quantificationally valid. Then demonstrate that each of the others is invalid on an interpretation I^* that modifies just one of the main parts of I. Hint: If you are having trouble finding the appropriate modified interpretation, try working out the trees on I, and think about what changes to the interpretation would have the results you want.

a. $Pa \not\equiv \forall x Px$

b. $Pa \land Pb \not\equiv \forall x Px$

c. $\forall x Px \not\equiv \sim Pa$

d. $\forall x Pf^1x \not\equiv \forall x Px$

e. $\forall x Px \rightarrow A \not\equiv \forall x (Px \rightarrow A)$

E4.16. Find interpretations and use trees to demonstrate each of the following. Be sure to explain why your interpretations and trees have the desired result.

*a. $\forall x (Qx \rightarrow Px) \not\equiv \forall x (Px \rightarrow Qx)$

b. $\forall x (Px \rightarrow Qx), \forall x (Rx \rightarrow \sim Px) \not\equiv \forall y (Ry \rightarrow Qy)$

c. $\sim \forall x Px \not\equiv \sim Pa$

d. $\sim \forall x Px \not\equiv \forall x \sim Px$

e. $\forall x Px \rightarrow \forall x Qx, Qb \not\equiv Pa \rightarrow \forall x Qx$

f. $\sim (A \rightarrow \forall x Px) \not\equiv \forall x (A \rightarrow \sim Px)$

g. $\forall x (Px \rightarrow Qx), \sim Qa \not\equiv \forall x \sim Px$

*h. $\sim \forall y \forall x Rx y \not\equiv \forall x \sim \forall y Rx y$

i. $\forall x \forall y (Rxy \rightarrow Ryx), \forall x \sim \forall y \sim Rxy \not\equiv \forall x Rx x$

j. $\forall x \forall y [y = f^1x \rightarrow \sim (x = f^1y)] \not\equiv \forall x (Px \rightarrow Pf^1x)$
4.2.5 Abbreviations

Finally, we turn to applications for abbreviations. Consider first a tree for \((P \land Q)\), that is for \(\neg(P \rightarrow \neg Q)\).

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array}
\]

\[
(AO) \quad \vdash \neg\![P \rightarrow \neg Q] \quad \vdash \neg\![P \rightarrow \neg Q] \quad \vdash \neg\![\neg Q] \quad \vdash \neg\![Q] \\
\]

The formula at (1) is satisfied iff the formula at (2) is not. But the formula at (2) is not satisfied iff the top at (3) is satisfied and the bottom is not satisfied. And the bottom at (3) is not satisfied iff the formula at (4) is satisfied. So the formula at (1) is satisfied iff \(P\) is satisfied and \(Q\) is satisfied. The only way for \((P \land Q)\) to be satisfied on some \(I\) and \(d\), is for \(P\) and \(Q\) both to be satisfied on that \(I\) and \(d\). If either \(P\) or \(Q\) is not satisfied, then \((P \land Q)\) is not satisfied. Reasoning similarly for \(\lor, \leftrightarrow,\) and \(\exists\), we get the following derived branch conditions.

\[
\begin{align*}
B(\land) \quad & I_d[(P \land Q)] \quad \vdash \neg\![P] \quad \vdash \neg\![Q] \\
& \text{the trunk is } S \text{ iff both branches are } S \\

B(\lor) \quad & I_d[(P \lor Q)] \quad \vdash \neg\![P] \quad \vdash \neg\![Q] \\
& \text{the trunk is } S \text{ iff at least one branch is } S \\

B(\leftrightarrow) \quad & I_d[(P \leftrightarrow Q)] \quad \vdash \neg\![P] \quad \vdash \neg\![Q] \\
& \text{the trunk is } S \text{ iff both branches are } S \text{ or both are } N \\

B(\exists) \quad & I_d[\exists x P] \quad \vdash \neg\![P(x)] \\
& \vdash \neg\![P(y)] \\
& \vdash \neg\![P(z)] \\
& \vdots \quad \text{one branch for each member of } U \\
& \text{The trunk is } S \text{ iff at least one branch is } S \\
\end{align*}
\]

The cases for \(\land, \lor,\) and \(\leftrightarrow\) work just as in the sentential case. For \(\exists\), consider a tree for \(\neg \forall x \neg P\), that is for \(\exists x P\).
CHAPTER 4. SEMANTICS

The formula at (1) is satisfied iff the formula at (2) is not. But the formula at (2) is not satisfied iff at least one of the branches at (3) is not satisfied. And for a branch at (3) to be not satisfied, the corresponding branch at (4) has to be satisfied. So $\exists x \mathcal{P}$ is satisfied on I with assignment d iff for some $o \in U$, \mathcal{P} is satisfied on I with $d(x|o)$; if there is no such $o \in U$, then $\exists x \mathcal{P}$ is N on I with d.

Given derived branch conditions, we can work directly with abbreviations in trees for determining satisfaction and truth. And the definition of validity applies in the usual way. Thus, for example, $\exists x P \land \exists x Q \not\equiv \exists x (P \land Q)$.

The existentials are satisfied because at least one branch is satisfied, and the conjunction because both branches are satisfied, according to derived conditions $B(\exists)$ and $B(\land)$. So the formula is satisfied, and because it is a sentence, is true. But the conclusion, $\exists x (P \land Q)$, is not true.
The conjunctions at (2) are not satisfied, in each case because not both branches at (3) are satisfied. And the existential at (1) requires that at least one branch at (2) be satisfied; since none is satisfied, the main formula $\exists x (P x \land Q x)$ is not satisfied, and so by TI not true. Since there is an interpretation on which the premise is true and the conclusion is not, by QV, $\exists x P x \land \exists x Q x \not\equiv \exists x (P x \land Q x)$. As we will see in the next chapter, the intuitive point is simple: just because something is P and something is Q, it does not follow that something is both P and Q. And this is just what our interpretation I illustrates.

E4.17. Produce interpretations to demonstrate each of the following. Use trees, with derived clauses as necessary, to demonstrate your results. Be sure to explain why your interpretations and trees have the results they do. Hint: In some cases, it may be convenient to produce only that part of the tree which is necessary for the result.

*a. $\exists x P x \not\equiv \forall y P y$

b. $\exists x P x \not\equiv \exists y (P y \land Q y)$

c. $\exists x P x \not\equiv \exists y P f^1 y$

d. $P a \rightarrow \forall x Q x \not\equiv \exists x P x \rightarrow \forall x Q x$

e. $\forall x \exists y R x y \not\equiv \exists y \forall x R x y$

f. $\forall x P x \leftrightarrow \forall x Q x$, $\exists x \exists y (P x \land Q y) \not\equiv \exists y (P y \leftrightarrow Q y)$

*g. $\forall x (\exists y R x y \leftrightarrow \neg A) \not\equiv \exists x R x x \lor A$

h. $\exists x (P x \land \exists y Q y) \not\equiv \exists x \forall y (P x \land Q y)$
Given a language \(\mathcal{L} \) and interpretation \(I \), a variable assignment \(d \) is a total function from the variables of \(\mathcal{L} \) to objects in the universe \(U \). Then for any interpretation \(I \), variable assignment \(d \), and term \(t \),

\[
\text{TA} \quad \begin{align*}
(c) & \text{ If } c \text{ is a constant, then } I[d][c] = I[c]. \\
(v) & \text{ If } x \text{ is a variable, then } I[d][x] = d[x]. \\
(f) & \text{ If } h^n \text{ is a function symbol and } t_1 \ldots t_n \text{ are terms, then } I[d][h^n t_1 \ldots t_n] = I[l][h^n](I[d][t_1], \ldots, I[d][t_n]).
\end{align*}
\]

For any interpretation \(I \) with variable assignment \(d \),

\[
\text{SF} \quad \begin{align*}
(s) & \text{ If } \delta \text{ is a sentence letter, then } I[d][\delta] = S \iff I[l][\delta] = T; \text{ otherwise } I[d][\delta] = N. \\
(r) & \text{ If } R^n \text{ is an } n\text{-place relation symbol and } t_1 \ldots t_n \text{ are terms, then } I[d][R^n t_1 \ldots t_n] = S \iff I[l][R^n t_1 \ldots t_n] \in I[l][R^n]; \text{ otherwise } I[d][R^n t_1 \ldots t_n] = N. \\
(\sim) & \text{ If } \mathcal{P} \text{ is a formula, then } I[d][\lnot \mathcal{P}] = S \iff I[l][\mathcal{P}] = N; \text{ otherwise } I[d][\lnot \mathcal{P}] = N. \\
(\to) & \text{ If } \mathcal{P} \text{ and } \mathcal{Q} \text{ are formulas, then } I[d][\mathcal{P} \to \mathcal{Q}] = S \iff I[l][\mathcal{P}] = N \text{ or } I[l][\mathcal{Q}] = S \text{ (or both); otherwise } I[d][\mathcal{P} \to \mathcal{Q}] = N. \\
(\forall) & \text{ If } \mathcal{P} \text{ is a formula and } x \text{ is a variable, then } I[d][\forall x \mathcal{P}] = S \iff \text{ for any } o \in U, I[d][\forall x \mathcal{P}] = S; \text{ otherwise } I[l][\forall x \mathcal{P}] = N.
\end{align*}
\]

\[
\text{SF'} \quad \begin{align*}
(\forall) & \text{ If } \mathcal{P} \text{ and } \mathcal{Q} \text{ are formulas, then } I[d][\mathcal{P} \land \mathcal{Q}] = S \iff I[l][\mathcal{P}] = S \text{ and } I[l][\mathcal{Q}] = S; \text{ otherwise } I[l][\mathcal{P} \land \mathcal{Q}] = N. \\
(\lor) & \text{ If } \mathcal{P} \text{ and } \mathcal{Q} \text{ are formulas, then } I[d][\mathcal{P} \lor \mathcal{Q}] = S \iff I[l][\mathcal{P}] = S \text{ or } I[l][\mathcal{Q}] = S \text{ (or both); otherwise } I[l][\mathcal{P} \lor \mathcal{Q}] = N. \\
(\leftrightarrow) & \text{ If } \mathcal{P} \text{ and } \mathcal{Q} \text{ are formulas, then } I[d][\mathcal{P} \iff \mathcal{Q}] = S \iff I[l][\mathcal{P}] = I[l][\mathcal{Q}]; \text{ otherwise } I[l][\mathcal{P} \iff \mathcal{Q}] = N. \\
(3) & \text{ If } \mathcal{P} \text{ is a formula and } x \text{ is a variable, then } I[d][\exists x \mathcal{P}] = S \iff \text{ for some } o \in U, I[d][\exists x \mathcal{P}] = S; \text{ otherwise } I[l][\exists x \mathcal{P}] = N.
\end{align*}
\]

\[
\text{TI} \quad \text{A formula } \mathcal{P} \text{ is true on an interpretation } l \iff \text{ with any } d \text{ for } l, I[d][\mathcal{P}] = S. \text{ } \mathcal{P} \text{ is false on } l \iff \text{ with any } d \text{ for } l, I[d][\mathcal{P}] = N.
\]

\[
\text{QV} \quad \Gamma \text{ quantificationally entails } \mathcal{P} \quad (\Gamma \models \mathcal{P}) \iff \text{ there is no quantificational interpretation } l \text{ such that } l[\Gamma] = T \text{ but } l[\mathcal{P}] \neq T.
\]

If \(\Gamma \models \mathcal{P} \), an argument whose premises are the members of \(\Gamma \) and conclusion is \(\mathcal{P} \) is quantificationally valid.
E4.18. Produce an interpretation to demonstrate each of the following (now in \(\mathcal{L}_{\infty} \)). Use trees to demonstrate your results. Be sure to explain why your interpretations and trees have the results they do. Hint: When there are no premises, all you need is an interpretation where the expression is not true. You need not use the standard interpretation. Again, in some cases, it may be convenient to produce only that part of the tree which is necessary for the result.

1. \(\forall x \forall y (P x \lor Q xy), \exists x P x \not\equiv \exists x \exists y Q xy \)
2. \(\exists x \exists y (x = y) \not\equiv \forall x \forall y \exists z[\sim(x = z) \land \sim(y = z)] \)
3. \(\forall x x^2 \not\equiv x^2 \)
4. \(\exists x \exists y xy, x^2 \not\equiv 0 \)
5. \(\forall x \forall y \exists z [(x < y \land y < z) \rightarrow x < z] \)

E4.19. On page 137 we say that reasoning similar to that for \(\land \) results in other branch conditions. Give the reasoning similar to that for \(\land \) and \(\exists \) to demonstrate from trees the conditions \(B(\lor) \) and \(B(\leftrightarrow) \).

E4.20. For each of the following concepts, explain in an essay of about two pages, so that (high-school age) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples of your own construction (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

1. Quantificational interpretations.
2. Term assignments, satisfaction and truth.
3. Quantificational validity.
Chapter 5

Translation

We have introduced logical validity from chapter 1, along with notions of semantic validity from chapter 4, and validity in an axiomatic derivation system from chapter 3. But logical validity applies to arguments expressed in ordinary language, where the other notions apply to arguments expressed in a formal language. Our guiding idea has been to use the formal notions with application to ordinary arguments via translation from ordinary language to the formal ones. It is to the translation task that we now turn. After some general discussion in section 5.1, we will take up issues specific to the sentential (section 5.2), and then the quantificational case (section 5.3).

5.1 General

As speakers of ordinary languages (at least English for those reading this book) we presumably have some understanding of the conditions under which ordinary language sentences are true and false. Similarly, we now have an understanding of the conditions under which sentences of our formal languages are true and false. This puts us in a position to recognize when the conditions under which ordinary sentences are true are the same as the conditions under which formal sentences are true. And that is what we want: Our goal is to translate the premises and conclusion of ordinary arguments into formal expressions that are true when the ordinary sentences are true, and false when the ordinary sentences are false. Insofar as validity has to do with conditions under which sentences are true and false, our translations should thus be an adequate basis for evaluations of validity.

We can put this point with greater precision. Formal sentences are true and false relative to interpretations. As we have seen, many different interpretations of a formal language are possible. In the sentential case, any sentence letter can be true or false—
so that there are \(2^n\) ways to interpret any \(n\) sentence letters. When we specify an interpretation, we select just one of the many available options. Thus, for example, we might set \(I[B] = T\) and \(I[H] = F\). But we might also specify an interpretation as follows,

\[
B: \text{Bill is happy} \quad (A) \\
H: \text{Hillary is happy}
\]

intending \(B\) to take the same truth value as ‘Bill is happy’ and \(H\) the same as ‘Hillary is happy’. In this case, the single specification might result in different interpretations, depending on how the world is: Depending on how Bill and Hillary are, the interpretation of \(B\) might be true or false, and similarly for \(H\). That is, specification \((A)\) is really a function from ways the world could be (from maximal and consistent stories) to interpretations of the sentence letters. It results in a specific or intended interpretation relative to any way the world could be. Thus, where \(\omega\) (omega) ranges over ways the world could be, \((A)\) is a function \(\ll{\omega}\) which results in an intended interpretation \(\ll{\omega}\[B\]\) corresponding to any such way—thus \(\ll{\omega}[B]\) is \(T\) if Bill is happy at \(\omega\) and \(F\) if he is not.

When we set out to translate some ordinary sentences into a formal language, we always begin by specifying an interpretation function. In the sentential case, this typically takes the form of a specification like \((A)\). Then for any way the world can be \(\omega\) there is an intended interpretation \(\ll{\omega}\) of the formal language. Given this, for an ordinary sentence \(A\), the aim is to produce a formal counterpart \(A'\) such that \(\ll{\omega}\[A'] = T\) iff the ordinary \(A\) is true at \(\omega\). This is the content of saying we want to produce formal expressions that “are true when the ordinary sentences are true, and false when the ordinary sentences are false.” In fact, we can turn this into a criterion of goodness for translation.

CG Given some ordinary sentence \(A\), a translation consisting of an interpretation function \(\ll\) and formal sentence \(A'\) is good iff it captures available sentential/quantificational structure and, where \(\omega\) is any way the world can be, \(\ll{\omega}[A'] = T\) iff \(A\) is true at \(\omega\).

If there is a collection of sentences, a translation is good given an \(\ll\) where each member \(A\) of the collection of sentences has an \(A'\) such that \(\ll{\omega}[A'] = T\) iff \(A\) is true at \(\omega\). Set aside the question of what it is to capture “available” sentential/quantificational structure, this will emerge as we proceed. For now, the point is simply that we want formal sentences to be true on intended interpretations when originals are true at corresponding worlds, and false on intended interpretations when originals are
false. CG says that this correspondence is necessary for goodness. And, supposing that sufficient structure is reflected, according to CG such correspondence is sufficient as well.

The situation might be pictured as follows. There is a specification II which results in an intended interpretation corresponding to any way the world can be. And corresponding to ordinary sentences P and Q there are formal sentences P' and Q'. Then with oval for worlds and box for interpretations built on them,

The interpretation function results in an intended interpretation corresponding to each world. The translation is good only if no matter how the world is, the values of P_0 and Q_0 on the intended interpretations match the values of P and Q at the corresponding worlds or stories.

The premises and conclusion of an argument are some sentences. So the translation of an argument is good iff the translation of the sentences that are its premises and conclusion is good. And good translations of arguments put us in a position to use our machinery to evaluate questions of validity. Of course, so far, this is an abstract description of what we are about to do. But it should give some orientation, and help you understand what is accomplished as we proceed.

5.2 Sentential

We begin with the sentential case. Again, the general idea is to recognize when the conditions under which ordinary sentences are true are the same as the conditions under which formal ones are true. Surprisingly perhaps, the hardest part is on the side of recognizing truth conditions in ordinary language. With this in mind, let us begin with some definitions whose application is to expressions of ordinary language; after that, we will turn to a procedure for translation, and to discussion of particular operators.
5.2.1 Some Definitions

In this section, we introduce a series of definitions whose application is to ordinary language. These definitions are not meant to compete with anything you have learned in English class. Rather, they are specific to our purposes. With the definitions under our belt, we will be able to say with some precision what we want to do.

First, a declarative sentence is a sentence which has a truth value. ‘Snow is white’ and ‘Snow is green’ are declarative sentences—the first true and the second false. ‘Study harder!’ and ‘Why study?’ are sentences, but not declarative sentences. Given this, a sentential operator is an expression containing “blanks” such that when the blanks are filled with declarative sentences, the result is a declarative sentence. In ordinary speech and writing, such blanks do not typically appear (!) however punctuation and expression typically fill the same role. Examples are,

John believes that ____
John heard that ____
It is not the case that ____
____ and ____

‘John believes that snow is white’, ‘John believes that snow is green’, and ‘John believes that dogs fly’ are all sentences—some more plausibly true than others. Still, ‘Snow is white’, ‘Snow is green’, and ‘Dogs fly’ are all declarative sentences, and when we put them in the blank of ‘John believes that ____’ the result is a declarative sentence, where the same would be so for any declarative sentence in the blank; so ‘John believes that ____’ is a sentential operator. Similarly, ‘Snow is white and dogs fly’ is a declarative sentence—a false one, since dogs do not fly. And, so long as we put declarative sentences in the blanks of ‘____ and ____’ the result is always a declarative sentence. So ‘____ and ____’ is a sentential operator. In contrast,

When ____
____ is white ____

are not sentential operators. Though ‘Snow is white’ is a declarative sentence, ‘When snow is white’ is an adverbial clause, not a declarative sentence. And, though ‘Dogs fly’ and ‘Snow is green’ are declarative sentences, ‘Dogs fly is white snow is green’ is ungrammatical nonsense. If you can think of even one case where putting declarative
sentences in the blanks of an expression does not result in a declarative sentence, then the expression is not a sentential operator. So these are not sentential operators.

Now, as in these examples, we can think of some declarative sentences as generated by the combination of sentential operators with other declarative sentences. Declarative sentences generated from other sentences by means of sentential operators are compound; all others are simple. Thus, for example, ‘Bob likes Mary’ and ‘Socrates is wise’ are simple sentences, they do not have a declarative sentence in the blank of any operator. In contrast, ‘John believes that Bob likes Mary’ and ‘Jim heard that John believes that Bob likes Mary’ are compound. The first has a simple sentence in the blank of ‘John believes that ____’. The second puts a compound in the blank of ‘Jim heard that ____’.

For cases like these, the main operator of a compound sentence is that operator not in the blank of any other operator. The main operator of ‘John believes that Bob likes Mary’ is ‘John believes that ____’. And the main operator of ‘Jim heard that John believes that Bob likes Mary’ is ‘Jim heard that ____’. The main operator of ‘It is not the case that Bob likes Sue and it is not the case that Sue likes Bob’ is ‘and ____’, for that is the operator not in the blank of any other. Notice that the main operator of a sentence need not be the first operator in the sentence. Observe also that operator structure may not be obvious. Thus, for example, ‘Jim heard that Bob likes Sue and Sue likes Jim’ is capable of different interpretations. It might be, ‘Jim heard that Bob likes Sue and Sue likes Jim’ with main operator, ‘Jim heard that ____’ and the compound, ‘Bob likes Sue and Sue likes Jim’ in its blank. But it might be ‘Jim heard that Bob likes Sue and Sue likes Jim’ with main operator, ‘____ and ____’. The question is what Jim heard, and what the ‘and’ joins. As suggested above, punctuation and expression often serve in ordinary language to disambiguate confusing cases. These questions of interpretation are not peculiar to our purposes! Rather they are the ordinary questions that might be asked about what one is saying. The underline structure serves to disambiguate claims, to make it very clear how the operators apply.

We shall want to identify the operator structure of sentences. When faced with a compound sentence, the best approach is start with the whole, rather than the parts. So begin with blank(s) for the main operator. Thus, as we have seen, the main operator of ‘It is not the case that Bob likes Sue, and it is not the case that Sue likes Bob’ is ‘____ and ____’. So begin with lines for that operator, ‘It is not the case that Bob likes Sue and it is not the case that Sue likes Bob’ (leaving space for lines above). Now focus on the sentence in one of the blanks, say the left; that sentence, ‘It is not the case that Bob likes Sue’ is a compound with main operator, ‘it is not the case that ____’. So add the underline for that operator, ‘It is not the case that Bob likes Sue and it is not the case that Sue likes Bob’. The sentence in the blank of ‘it is not the case that
‘is simple. So turn to the sentence in the right blank of the main operator. That sentence has main operator ‘it is not the case that _____’. So add an underline. In this way we end up with, ‘It is not the case that Bob likes Sue and it is not the case that Sue likes Bob’ where, again, the sentence in the last blank is simple. Thus a complex problem is reduced to ones that are progressively more simple. Perhaps this problem was obvious from the start. But this approach will serve you well as problems get more complex!

We come finally to the key notion of a truth functional operator. A sentential operator is truth functional iff any compound generated by it has its truth value wholly determined by the truth values of the sentences in its blanks. We will say that the truth value of a compound is “determined” by the truth values of sentences in blanks just in case there is no way to switch the truth value of the whole while keeping truth values of sentences in the blanks constant.

This leads to a test for truth functionality: We show that an operator is not truth functional, if we come up with some situation(s) where truth values of sentences in the blanks are the same, but the truth value of the resulting compounds are not. To take a simple case, consider ‘John believes that ____’. If things are pretty much as in the actual world, ‘Dogs fly’ and ‘There is a Santa’ are both false. But if John is a small child it may be that,

(B) John believes that Dogs fly There is a Santa

\[
\begin{array}{ccc}
F & T & F \\
John believes there is a Santa, but knows perfectly well that dogs do not fly. So the compound is false with one in the blank, and true with the other. Thus the truth value of the compound is not wholly determined by the truth value of the sentence in the blank. We have found a situation where sentences with the same truth value in the blank result in a different truth value for the whole. Thus ‘John believes that ____’ is not truth functional. We might make the same point with a pair of sentences that are true, say ‘Dogs bark’ and ‘There are infinitely many prime numbers’ (be clear in your mind about how this works).

As a second example, consider, ‘____ because ____’. Suppose ‘You are happy’, ‘You got a good grade’, ‘There are fish in the sea’ and ‘You woke up this morning’ are all true.

(C) You are happy because You got a good grade

\[
\begin{array}{ccc}
T & T/F & T \\
You are happy because you got a good grade is true, but ‘There are fish in the sea because you woke up this
morning’ is false. For perhaps getting a good grade makes you happy, but the fish in the sea have nothing to do with your waking up. Thus there are consistent situations or stories where sentences in the blanks have the same truth values, but the compounds do not. Thus, by the definition, ‘___ because ___’ is not a truth functional operator. To show that an operator is not truth functional it is sufficient to produce some situation of this sort: where truth values for sentences in the blanks match, but truth values for the compounds do not. Observe that in order to meet this condition it would be sufficient to find, say, a case where sentences in the first blank remain T, sentences in the second remain F but the value of the whole flips from T to F. To show that an operator is not truth functional, any matching combination that makes the whole switch value will do.

To show that an operator is truth functional, we need to show that no such cases are possible. For this, we show how the truth value of what is in the blank determines the truth value of the whole. As an example, consider first,

\[
\begin{array}{c|c}
F & T \\
T & F
\end{array}
\]

In this table, we represent the truth value of whatever is in the blank by the column under the blank, and the truth value for the whole by the column under the operator. If we put something true according to a consistent story into the blank, the resultant compound is sure to be false according to that story. Thus, for example, in the true story, ‘Snow is white’, ‘2 + 2 = 4’ and ‘Dogs bark’ are all true; correspondingly, ‘It is not the case that snow is white’, ‘It is not the case that 2 + 2 = 4’ and ‘It is not the case that dogs bark’ are all false. Similarly, if we put something false according to a story into the blank, the resultant compound is sure to be true according to the story. Thus, for example, in the true story, ‘Snow is green’ and ‘2 + 2 = 3’ are both false. Correspondingly, ‘It is not the case that snow is green’ and ‘It is not the case that 2 + 2 = 3’ are both true. It is no coincidence that the above table for ‘It is not the case that ___’ looks like the table for ~. We will return to this point shortly.

For a second example of a truth functional operator, consider ‘___ and ___’. This seems to have table,

\[
\begin{array}{c|c|c}
T & T & T \\
T & F & F \\
F & F & T \\
F & F & F
\end{array}
\]

Consider a situation where Bob and Sue each love themselves, but hate each other. Then Bob loves Bob and Sue loves Sue is true. But if at least one blank has a sentence
Definitions for Translation

DC A *declarative sentence* is a sentence which has a truth value.

SO A *sentential operator* is an expression containing “blanks” such that when the blanks are filled with declarative sentences, the result is a declarative sentence.

CS Declarative sentences generated from other sentences by means of sentential operators are *compound*; all others are *simple*.

MO The *main operator* of a compound sentence is that operator not in the blank of any other operator.

TF A sentential operator is *truth functional* iff any compound generated by it has its truth value wholly determined by the truth values of the sentences in its blanks.

To show that an operator is not truth functional it is sufficient to produce some situation where truth values for sentences in the blanks are constant, but truth values for the compounds are not.

To show that an operator is truth functional, it is sufficient to produce the table that shows how the truth values of the compound are fixed by truth values of the sentences in the blanks.

...that is false, the compound is false. Thus, for example, in that situation, Bob loves Bob and Sue loves Bob is false; Bob loves Sue and Sue loves Sue is false; and Bob loves Sue and Sue loves Bob is false. For a compound, ‘_____ and _____’ to be true, the sentences in both blanks have to be true. And if they are both true, the compound is itself true. So the operator is truth functional. Again, it is no coincidence that the table looks so much like the table for ∧. To show that an operator is truth functional, it is sufficient to produce the table that shows how the truth values of the compound are fixed by the truth values of the sentences in the blanks.

For an interesting sort of case, consider the operator ‘According to every consistent story _____’, and the following attempted table,

\[
\begin{array}{c|c|c}
\text{According to every consistent story} & ? & T \\
\hline
F & F & F \\
\end{array}
\]

(On some accounts, this operator works like ‘Necessarily _____’). Say we put some sentence \(\mathcal{P} \) that is false according to a consistent story into the blank. Then since \(\mathcal{P} \) is false according to that very story, it is not the case that \(\mathcal{P} \) according to every consistent story—and the compound is sure to be false. So we fill in the bottom row under the operator as above. So far, so good. But consider ‘Dogs bark’ and ‘2 + 2 = 4’.

...
Both are true according to the true story. But only the second is true according to every consistent story—we can tell stories where ‘Dogs bark’ is true and where it is false, but ‘2 + 2 = 4’ is true in every consistent story. So the compound is false with the first in the blank, true with the second. So ‘According to every consistent story _____’ is therefore not a truth functional operator. The truth value of the compound is not wholly determined by the truth value of the sentence in the blank. Similarly, it is natural to think that ‘____ because ____’ is false whenever one of the sentences in its blanks is false. It cannot be true that \(\mathcal{P} \) because \(\mathcal{Q} \) if not-\(\mathcal{P} \), and it cannot be true that \(\mathcal{P} \) because \(\mathcal{Q} \) if not-\(\mathcal{Q} \). If you are not happy, then it cannot be that you are happy because you understand the material; and if you do not understand the material, it cannot be that you are happy because you understand the material. So far, then, the table for ‘____ because ____’ is like the table for ‘____ and ____’.

\[
\begin{array}{|c|c|c|}
\hline
\text{because} & \text{T} & \text{T} \\
\hline
\text{T} & \text{T} & \text{F} \\
\text{F} & \text{F} & \text{T} \\
\text{F} & \text{F} & \text{F} \\
\hline
\end{array}
\]

(G)

However, as we saw just above, in contrast to ‘____ and ____’, compounds generated by ‘____ because ____’ may or may not be true when sentences in the blanks are both true. So, although ‘____ and ____’ is truth functional, ‘____ because ____’ is not.

Thus the question is whether we can complete a table of the above sort: If there is a way to complete the table, the operator is truth functional. The test to show an operator is not truth functional simply finds some case to show that such a table cannot be completed.

E5.1. For each of the following, (i) say whether it is simple or compound. If the sentence is compound, (ii) use underlines to exhibit its operator structure, and (iii) say what is its main operator.

*a. Bob likes Mary.

b. Jim believes that Bob likes Mary.

c. It is not the case that Bob likes Mary.

d. Jane heard that it is not the case that Bob likes Mary.

e. Jane heard that Jim believes that it is not the case that Bob likes Mary.

f. Voldemort is very powerful, but it is not the case that Voldemort kills Harry at birth.
g. Harry likes his godfather and Harry likes Dumbledore, but it is not the case that Harry likes his uncle.

*h. Hermoine believes that studying is good and Hermoine studies hard, but Ron believes studying is good and it is not the case that Ron studies hard.

i. Malfoy believes mudbloods are scum, but it is not the case that mudbloods are scum; and Malfoy is a dork.

j. Harry believes that Voldemort is evil and Hermoine believes that Voldemort is evil, but it is not the case that Bellatrix believes that Voldemort is evil.

E5.2. Which of the following operators are truth functional and which are not? If the operator is truth functional, display the relevant table; if it is not, give cases that flip the value of the compound, with the value in the blanks constant.

*a. It is a fact that ____

b. Elmore believes that ____

*c. ____ but ____

d. According to some consistent story ____

e. Although ____ , ____

*f. It is always the case that ____

g. Sometimes it is the case that ____

h. ____ therefore ____

i. ____ however ____

j. Either ____ or ____ (or both)

5.2.2 Parse Trees

We are now ready to outline a procedure for translation into our formal sentential language. In the end, you will often be able to see how translations should go and to write them down without going through all the official steps. However, the procedure should get you thinking in the right direction, and remain useful for complex cases. To translate some ordinary sentences \(P_1, \ldots, P_n \) the basic translation procedure is,
TP (1) Convert the ordinary $P_1 \ldots P_n$ into corresponding ordinary equivalents exposing truth functional and operator structure.

(2) Generate a “parse tree” for each of $P_1 \ldots P_n$ and specify the interpretation function II by assigning sentence letters to sentences at the bottom nodes.

(3) Using sentence letters from II and equivalent formal expressions, construct a parallel tree that translates each node from the parse tree to generate a formal P'_i for each P_i.

For now at least, the idea behind step (1) is simple: Sometimes all you need to do is expose operator structure by introducing underlines. In complex cases, this can be difficult! But we know how to do this. Sometimes, however, truth functional structure does not lie on the surface. Ordinary sentences are equivalent when they are true and false in exactly the same consistent stories. And we want ordinary equivalents exposing truth functional structure. Suppose P is a sentence of the sort,

(H) Bob is not happy

Is this a truth functional compound? Not officially. There is no declarative sentence in the blank of a sentential operator; so it is not compound; so it is not a truth functional compound. But one might think that (H) is short for,

(I) It is not the case that Bob is happy

which is a truth functional compound. At least (H) and (I) are equivalent in the sense that they are true and false in the same consistent stories. Similarly, ‘Bob and Carol are happy’ is not a compound of the sort we have described, because ‘Bob’ is not a declarative sentence. However, it is a short step from this sentence to the equivalent, ‘Bob is happy and Carol is happy’ which is an official truth functional compound. As we shall see, in some cases, this step can be more complex. But let us leave it at that for now.

Moving to step (2), in a parse tree we begin with sentences constructed as in step (1). If a sentence has a truth functional main operator, then it branches downward for the sentence(s) in its blanks. If these have truth functional main operators, they branch for the sentences in their blanks; and so forth, until sentences are simple or have non-truth functional main operators. Then we construct the interpretation function II by assigning a distinct sentence letter to each distinct sentence at a bottom node from a tree for the original $P_1 \ldots P_n$.

Some simple examples should make this clear. Say we want to translate a collection of four sentences.

1. Bob is happy
2. Carol is not happy

3. Bob is healthy and Carol is not

4. Bob is happy and John believes that Carol is not healthy

The first is a simple sentence. Thus there is nothing to be done at step (1). And since there is no main operator, there is no branching and the sentence itself is a completed parse tree. The tree is just,

\[(J) \text{ Bob is happy} \]

Insofar as the simple sentence is a complete branch of the tree, it counts as a bottom node of its tree. It is not yet assigned a sentence letter, so we assign it one. \(B_1: \text{ Bob is happy} \). We select this letter to remind us of the assignment.

As it stands, the second sentence is not a truth functional compound. Thus in the first stage, ‘Carol is not happy’ is expanded to the equivalent, ‘It is not the case that Carol is happy’. In this case, there is a main operator; since it is truth functional, the tree has some structure.

\[(K) \text{ It is not the case that Carol is happy} \]

\[(J) \text{ Bob is happy} \]

\[(K) \text{ It is not the case that Carol is happy} \]

\[(J) \text{ Bob is happy} \]

\[(K) \text{ It is not the case that Carol is happy} \]

\[(J) \text{ Bob is happy} \]

\[(K) \text{ It is not the case that Carol is happy} \]

\[(J) \text{ Bob is happy} \]

\[(K) \text{ It is not the case that Carol is happy} \]

\[(J) \text{ Bob is healthy and it is not the case that Carol is healthy} \]

\[(L) \text{ Bob is healthy} \]

\[(L) \text{ it is not the case that Carol is healthy} \]

\[(L) \text{ Carol is healthy} \]

The main operator is truth functional. So there is a branch for each of the sentences in its blanks. Observe that underlines continue to reflect the structure of these sentences (so we “lift” the sentences from their blanks with structure intact). On the left, ‘Bob is healthy’ has no main operator, so it does not branch. On the right, ‘it is not the case that Carol is healthy’ has a truth functional main operator, and so branches. At
bottom, we end up with ‘Bob is healthy’ and ‘Carol is healthy’. Neither has a letter, so we assign them ones. \(B_2 \): Bob is healthy; \(C_2 \): Carol is healthy.

The final sentence is equivalent to, Bob is happy and John believes it is not the case that Carol is healthy. It has a truth functional main operator. So there is a structured tree.

\[
\text{Bob is happy and John believes it is not the case that Carol is healthy}
\]

On the left, ‘Bob is happy’ is simple. On the right, ‘John believes it is not the case that Carol is healthy’ is complex. But its main operator is not truth functional. So it \textit{does not branch}. We only branch for sentences in the blanks of truth functional main operators. Given this, we proceed in the usual way. ‘Bob is happy’ already has a letter. The other does not; so we give it one. \(J \): John believes it is not the case that Carol is healthy.

And that is all. We have now compiled an interpretation function,

\[
\begin{align*}
B_1 &: \text{Bob is happy} \\
C_1 &: \text{Carol is happy} \\
B_2 &: \text{Bob is healthy} \\
C_2 &: \text{Carol is healthy} \\
J &: \text{John believes it is not the case that Carol is healthy}
\end{align*}
\]

Of course, we might have chosen different letters. All that matters is that we have a distinct letter for each distinct sentence. For any way the world can be, our interpretation function yields an interpretation on which a sentence letter is true when its assigned sentence is true in that world, and false when its assigned sentence is false. In the last case, there is a compulsion to think that we can somehow get down to the simple sentence ‘Carol is healthy’. But resist temptation! A non-truth functional operator “seals off” that upon which it operates, and forces us to treat the compound as a unit. We do not automatically assign sentence letters to simple sentences, but rather to parts that are not truth functional compounds. Simple sentences fit this description. But so do compounds with non-truth functional main operators.

E5.3. Use our method to expose truth functional structure and produce parse trees for each of the following. Use your trees to produce an interpretation function for the sentences. Hint: pay attention to punctuation as a guide to structure.
a. Bingo is spotted, and Spot can play bingo.

b. Bingo is not spotted, and Spot cannot play bingo.

c. Bingo is spotted, and believes that Spot cannot play bingo.

d. It is not the case that: Bingo is spotted and Spot can play bingo.

e. It is not the case that: Bingo is not spotted and Spot cannot play bingo.

E5.4. Use our method to expose truth functional structure and produce parse trees for each of the following. Use your trees to produce an interpretation function for the sentences.

*a. People have rights and dogs have rights, but rocks do not.

b. It is not the case that: rocks have rights, but people do not.

c. Aliens believe that rocks have rights, but it is not the case that people believe it.

d. Aliens landed in Roswell NM in 1947, and live underground but not in my backyard.

e. Rocks do not have rights and aliens do not have rights, but people and dogs do.

5.2.3 Formal Sentences

Now we are ready for step (3) of the translation procedure TP. Our aim is to generate translations by constructing a parallel tree where the force of ordinary truth functional operators is captured by equivalent formal expressions. An ordinary truth functional operator has a table. Similarly, our formal expressions have tables. An ordinary truth functional operator is equivalent to some formal expression containing blanks just in case their tables are the same. Thus ‘~____’ is equivalent to ‘it is not the case that ____’. They are equivalent insofar as in each case, the whole has the opposite truth value of what is in the blank. Similarly, ‘____ ∧ ____’ is equivalent to ‘____ and ____’. In either case, when sentences in the blanks are both T the whole is T, and in other cases, the whole is F. Of course, the complex ‘~(____ → ~____)’ takes the same values as the ‘____ ∧ ____’ that abbreviates it. So different formal expressions may be equivalent to a given ordinary one.
To see how this works, let us return to the sample sentences from above. Again, the idea is to generate a parallel tree. We begin by using the sentence letters from our interpretation function for the bottom nodes. The case is particularly simple when the tree has no structure. ‘Bob is happy’ had a simple unstructured tree, and we assigned it a sentence letter directly. Thus our original and parallel trees are,

\[(N) \quad \text{Bob is happy} \quad B_1\]

So for a simple sentence, we simply read off the final translation from the interpretation function. So much for the first sentence.

As we have seen, the second sentence is equivalent to ‘It is not the case that Carol is happy’ with a parse tree as on the left below. We begin the parallel tree on the other side.

\[\text{It is not the case that Carol is happy}\]

\[\begin{array}{c|c}
\hline
\text{It is not the case that Carol is happy} & \text{F} \\
\text{Carol is happy} & \text{T} \\
\text{F} & \text{T} \\
\text{T} & \text{F} \\
\hline
\end{array}\]

We know how to translate the bottom node. But now we want to capture the force of the truth functional operator with some equivalent formal expression. For this, we need a formal expression containing blanks whose table mirrors the table for the sentential operator in question. In this case, ‘\(~\)’ works fine. That is, we have,

\[\begin{array}{c|c}
\hline
\text{It is not the case that Carol is happy} & \text{F} \\
\text{Carol is happy} & \text{T} \\
\text{F} & \text{T} \\
\text{T} & \text{F} \\
\hline
\end{array}\]

In each case, when the expression in the blank is T, the whole is F, and when the expression in the blank is F, the whole is T. So ‘\(~\)’ is sufficient as a translation of ‘It is not the case that ____’. Other formal expressions might do just as well. Thus, for example, we might go with, ‘\(\sim\)’. The table for this is the same as the table for ‘\(~\)’. But it is hard to see why we would do this with \(\sim\) so close at hand. Now the idea is to apply the equivalent operator to the already translated expression from the blank. But this is easy to do. Thus we complete the parallel tree as follows.

\[\begin{array}{c|c}
\hline
\text{It is not the case that Carol is happy} & \sim C_1 \\
\text{Carol is happy} & C_1 \\
\hline
\end{array}\]

The result is the completed translation, \(\sim C_1\).
The third sentence has a parse tree as on the left, and resultant parallel tree as on the right. As usual, we begin with sentence letters from the interpretation function for the bottom nodes.

\[
\text{Bob is healthy and it is not the case that Carol is healthy} \quad (B_2 \land \sim C_2)
\]

\[
(P) \quad \begin{array}{c}
\text{Bob is healthy} \\
\text{it is not the case that Carol is healthy}
\end{array} \quad \begin{array}{c}
B_2 \\
\sim C_2
\end{array}
\]

\[
\text{Carol is healthy} \quad C_2
\]

Given translations for the bottom nodes, we work our way through the tree, applying equivalent operators to translations already obtained. As we have seen, a natural translation of ‘it is not the case that _____’ is ‘\(\sim \)’. Thus, working up from ‘Carol is healthy’, our parallel to ‘it is not the case that Carol is healthy’ is \(\sim C_2\). But now we have translations for both of the blanks of ‘_____ and _____’. As we have seen, this has the same table as ‘(_____ \& _____)’. So that is our translation. Again, other expressions might do. In particular, \(\land\) is an abbreviation with the same table as ‘\(\sim (_____ \rightarrow \sim _____)\)’. In each case, the whole is true when the sentences in both blanks are true, and otherwise false. Since this is the same as for ‘_____ and _____’, either would do as a translation. But again, the simplest thing is to go with ‘(_____ \& _____)’. Thus the final result is \((B_2 \land \sim C_2)\). With the alternate translation for the main operator, the result would have been \(\sim (B_2 \rightarrow \sim C_2)\). Observe that the parallel tree is an upside-down version of the (by now quite familiar) tree by which we would show that the expression is a sentence.

Our last sentence is equivalent to, Bob is happy and John believes it is not the case that Carol is healthy. Given what we have done, the parallel tree should be easy to construct.

\[
\text{Bob is happy and John believes it is not the case that Carol is healthy} \quad (B_1 \land J)
\]

\[
(Q) \quad \begin{array}{c}
\text{Bob is happy} \\
\text{John believes it is not the case that Carol is healthy}
\end{array} \quad \begin{array}{c}
B_1 \\
J
\end{array}
\]

Given that the tree ‘bottoms out’ on both ‘Bob is happy’ and ‘John believes it is not the case that Carol is healthy’ the only operator to translate is the main operator ‘_____ and _____’. And we have just seen how to deal with that. The result is the completed translation, \((B_1 \land J)\).

Again, once you become familiar with this procedure the full method with trees may become tedious—and we will often want to set it to the side. But notice: the
method breeds good habits! And the method puts us in a position to translate complex expressions, even ones that are so complex that we can barely grasp what they are saying. Beginning with the main operator, we break expressions down from complex parts to ones that are simpler. Then we construct translations, one operator at a time, where each step is manageable.

Also, we should be able to see why the method results in good translations: Consider some situation with its corresponding intended interpretation. Truth values for basic parts are the same just by the specification of the interpretation function. And given that operators are equivalent, truth values for parts built out of them must be the same as well, all the way up to the truth value of the whole. We satisfy the first part of our criterion CG insofar as the way we break down sentences in parse trees forces us to capture all the truth functional structure there is to be captured.

For a last example, consider, ‘Bob is happy and Bob is healthy and Carol is happy and Carol is healthy’. This is true only if ‘Bob is happy’, ‘Bob is healthy’, ‘Carol is happy’, and ‘Carol is healthy’ are all true. But the method may apply in different ways. We might, at step one, treat the sentence as a complex expression involving multiple uses of ‘___ and ___’; perhaps something like,

(R) **Bob is happy and Bob is healthy and Carol is happy and Carol is healthy**

In this case, there is a straightforward move from the ordinary operators to formal ones in the final step. That is, the situation is as follows.

Bob is happy and Bob is healthy and Carol is happy and Carol is healthy

\[(B_1 \land B_2) \land (C_1 \land C_2)\]

So we use multiple applications of our standard caret operator. But we might have treated the sentence as something like,

(S) **Bob is happy and Bob is healthy and Carol is happy and Carol is healthy**

involving a single four-blank operator, ‘___ and ___ and ___ and ____’, which yields true only when sentences in all its blanks are true. We have not seen anything like this before, but nothing stops a tree with four branches all at once. In this case, we would begin,
Bob is happy and Bob is healthy and Carol is happy and Carol is healthy

But now, we need an equivalent formal expression with four blanks that is true when sentences in all the blanks are true and otherwise false. Here is something that would do: ‘((____ ∧ ____) ∧ (____ ∧ ____))’. On either of these approaches, then, the result is (((B₁ ∧ B₂) ∧ (C₁ ∧ C₂))). Other options might result in something like (((B₁ ∧ B₂) ∧ C₁) ∧ C₂). In this way, there is room for shifting burden between steps one and three. Such shifting explains how step (1) can be more complex than it was initially represented to be. Choices about expanding truth functional structure in the initial stage may matter for what are the equivalent operators at the end. And the case exhibits how there are options for different, equally good, translations of the same ordinary expressions. What matters for CG is that resultant expressions capture available structure and be true when the originals are true and false when the originals are false. In most cases, one translation will be more natural than others, and it is good form to strive for natural translations. If there had been a comma so that the original sentence was, ‘Bob is happy and Bob is healthy, and Carol is happy and Carol is healthy’ it would have been most natural to go for an account along the lines of (R). And it is crazy to use, say, ‘∼∼∼∼∼∼’ when ‘∼∼∼∼’ will do as well.

*E5.5. Construct parallel trees to complete the translation of the sentences from E5.3 and E5.4. Hint: you will not need any operators other than ‘∼’ and ‘∧’.

E5.6. Use our method to translate each of the following. That is, generate parse trees with an interpretation function for all the sentences, and then parallel trees to produce formal equivalents.

a. Plato and Aristotle were great philosophers, but Ayn Rand was not.

b. Plato was a great philosopher and everything Plato said was true, but Ayn Rand was not a great philosopher and not everything she said was true.

*c. It is not the case that: everything Plato, and Aristotle, and Ayn Rand said was true.

d. Plato was a great philosopher but not everything he said was true, and Aristotle was a great philosopher but not everything he said was true.
e. Not everyone agrees that Ayn Rand was not a great philosopher, and not everyone thinks that not everything she said was true.

E5.7. Use our method to translate each of the following. That is, generate parse trees with an interpretation function for all the sentences, and then parallel trees to produce formal equivalents.

a. Bob and Sue and Jim will pass the class.
b. Sue will pass the class, but it is not the case that: Bob will pass and Jim will pass.
c. It is not the case that: Bob will pass the class and Sue will not.
d. Jim will not pass the class, but it is not the case that: Bob will not pass and Sue will not pass.
e. It is not the case that: Jim will pass and not pass; and it is not the case that: Sue will pass and not pass.

5.2.4 And, Or, Not

Our idea has been to recognize when truth conditions for ordinary and formal sentences are the same. As we have seen, this turns out to require recognizing when tables for ordinary operators are equivalent to ones for formal expressions. We have had a lot to say about ‘it is not the case that’ and ‘and’. We now turn to a more general treatment. We will not be able to provide a complete menu of ordinary operators. Rather, we will see that some uses of some ordinary operators can be appropriately translated by our symbols. We should be able to discuss enough cases for you to see how to approach others on a case-by-case basis. The discussion is organized around our operators, \(\sim\), \(\land\), \(\lor\), \(\rightarrow\) and \(\leftrightarrow\), taken in that order.

First, as we have seen, ‘It is not the case that ____’ has the same table as \(\sim\). And various ordinary expressions may be equivalent to expressions involving this operator. Thus, ‘Bob is not married’ and ‘Bob is unmarried’ might be understood as equivalent to ‘It is not the case that Bob is married’. Given this, we might assign a sentence letter, say, \(M\) to ‘Bob is married’ and translate \(\sim M\). But the second case calls for comment. By comparison, consider, ‘Bob is unlucky’. Given what we have done, it is natural to treat ‘Bob is unlucky’ as equivalent to ‘It is not the case that Bob is lucky’; assign \(L\) to ‘Bob is lucky’; and translate \(\sim L\). But this is not obviously right. Consider three situations: (i) Bob goes to Las Vegas with $1,000, and comes away with $1,000,000.
(ii) Bob goes to Las Vegas with $1,000, and comes away with $100, having seen a show and had a good time. (iii) Bob goes to Las Vegas with $1,000, falls into a manhole on his way into the casino, and has his money stolen by a light-fingered thief on the way down. In the first case he is lucky; in the third, unlucky. But, in the second, one might want to say that he was neither lucky nor unlucky.

(i) Bob is lucky
(ii) Bob is neither lucky nor unlucky
(iii) Bob is unlucky

\[
\begin{align*}
\text{If this is right, ‘Bob is unlucky’ is not equivalent to ‘It is not the case that Bob is lucky’—for it is not the case that Bob is lucky in both situations (ii) and (iii). Thus we might have to assign ‘Bob is lucky’ one letter, and ‘Bob is unlucky’ another.\footnote{Or so we have to do in the context of our logic where T and F are the only truth values. Another option is to allow three values so that the one letter might be T, F or neither. It is possible to proceed on this basis—though the two valued (classical) approach has the virtue of relative simplicity. With the classical approach as background, some such alternatives are developed in Priest, \textit{Non-Classical Logics.}}
\end{align*}
\]

Decisions about this sort of thing may depend heavily on context, and assumptions which are in the background of conversation. We will ordinarily assume contexts where there is no “neutral” state—so that being unlucky is not being lucky, and similarly in other cases.

Second, as we have seen, ‘_____ and _____’ has the same table as \land. As you may recall from E5.2, another common operator that works this way is ‘_____ but _____’. Consider, for example, ‘Bob likes Mary but Mary likes Jim’. Suppose Bob does like Mary and Mary does like Jim; then the compound sentence is true. Suppose one of the simples is false, Bob does not like Mary or Mary does not like Jim; then the compound is false. Thus ‘_____ but _____’ has the table,

\[
\begin{array}{ccc}
\text{but} & \text{T} & \text{T} \\
\text{T} & \text{T} & \text{T} \\
\text{T} & \text{F} & \text{F} \\
\text{F} & \text{F} & \text{T} \\
\text{F} & \text{F} & \text{F} \\
\end{array}
\]

and so has the same table as \land. So, in this case, we might assign B to ‘Bob likes Mary’ M to ‘Mary likes Jim’, and translate, $(B \land M)$. Of course, the ordinary expression ‘but’ carries a sense of opposition that ‘and’ does not. Our point is not that ‘and’ and ‘but’ somehow mean the same, but rather that compounds formed by means of them have the same truth function. Another common operator with this table is ‘Although _____, _____’. You should convince yourself that this is so, and be able to find other ordinary terms that work just the same way.
CHAPTER 5. TRANSLATION

Once again, however, there is room for caution in some cases. Consider, for example, ‘Bob took a shower and got dressed’. Given what we have done, it is natural to treat this as equivalent to ‘Bob took a shower and Bob got dressed’; assign letters S and D; and translate $(S \land D)$. But this is not obviously right. Suppose Bob gets dressed, but then realizes that he is late for a date and forgot to shower, so he jumps in the shower fully clothed, and air-dries on the way. Then it is true that Bob took a shower, and true that Bob got dressed. But is it true that Bob took a shower and got dressed? If not—because the order is wrong—our translation $(S \land D)$ might be true when the original sentence is not. Again, decisions about this sort of thing depend heavily upon context and background assumptions. And there may be a distinction between what is said and what is conversationally implied in a given context. Perhaps what was said corresponds to the table, so that our translation is right, though there are certain assumptions typically made in conversation that go beyond. But we need not get into this. Our point is not that the ordinary ‘and’ always works like our operator \land; rather the point is that some (indeed, many) ordinary uses are rightly regarded as having the same table. Again, we will ordinarily assume a context where ‘and’, ‘but’ and the like have tables that correspond to \land.

The operator which is most naturally associated with \lor is ‘_____ or _____’. In this case, there is room for caution from the start. Consider first a restaurant menu which says that you will get soup or you will get salad with your dinner. This is naturally understood as ‘you will get soup or you will get salad’ where the sentential operator is ‘_____ or _____’. In this case, the table would seem to be,

\[
\begin{array}{ccc}
T & F & T \\
T & T & F \\
F & T & T \\
F & F & F
\end{array}
\]

\[(U)\]

\[\begin{array}{ccc}
T & F & T \\
T & T & F \\
F & T & T \\
F & F & F
\end{array}\]

The ability to make this point is an important byproduct of our having introduced the formal operators “as themselves.” Where \land and the like are introduced as being direct translations of ordinary operators, a natural reaction to cases of this sort—a reaction had even by some professional logicians and philosophers—is that “the table is wrong.” But this is mistaken! \land has its own significance, which may or may not agree with the shifting meaning of ordinary terms. The situation is no different than for translation across ordinary languages, where terms may or may not have uniform equivalents.

But now one may feel a certain tension with our account of what it is for an operator to be truth functional—for there seem to be contexts where the truth value of sentences in the blanks does not determine the truth value of the whole, even for a purportedly truth functional operator like ‘_____ and ______’. However, we want to distinguish different senses in which an operator may be used (or an ambiguity, as between a bank of a river, and a bank where you deposit money), so that when an operator is used with just one sense it has some definite truth function.
The compound is true if you get soup, true if you get salad, but not if you get neither or both. None of our operators has this table.

But contrast this case with one where a professor promises either to give you an ‘A’ on a paper, or to give you very good comments so that you will know what went wrong. Suppose the professor gets excited about your paper, giving you both an ‘A’ and comments. Presumably, she did not break her promise! That is, in this case, we seem to have, ‘I will give you an ‘A’ or I will give you comments’ with the table,

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

(V)

The professor breaks her word just in case she gives you a low grade without comments. This table is identical to the table for ∨. For another case, suppose you set out to buy a power saw, and say to your friend ‘I will go to Home Depot or I will go Lowes’. You go to Home Depot, do not find what you want, so go to Lowes and make your purchase. When your friend later asks where you went, and you say you went to both, he or she will not say you lied (!) when you said where you were going—for your statement required only that you would try at least one of those places.

The grading and shopping cases represent the so-called “inclusive” use of ‘or’—including the case when both components are T; the menu uses the “exclusive” use of ‘or’—excluding the case when both are T. Ordinarily, we will assume that ‘or’ is used in its inclusive sense, and so is translated directly by ∨.\(^3\) Another operator that works this way is ‘_____ unless _____’. Again, there are exclusive and inclusive senses—which you should be able to see by considering restaurant and shopping examples: ‘you will get soup unless you will get salad’ and ‘I will go to Home Depot unless I will go to Lowes’. And again, we will ordinarily assume that the inclusive sense is intended. For the exclusive cases, we can generate the table by means of complex expressions. Thus, for example \((\mathcal{P} \leftrightarrow \sim \mathcal{Q})\) does the job. You should convince yourself that this is so.

Observe that ‘either _____ or _____’ has the same table as ‘_____ or _____’; and ‘both _____ and _____’ the same as ‘_____ and _____’. So one might think that ‘either’ and ‘both’ have no real role. They do however serve a sort of “bracketing” function: Consider ‘neither Bob likes Sue nor Sue likes Bob’. This is most naturally understood

\(^3\)Again, there may be a distinction between what is said and what is conversationally implied in a given context. Perhaps what was said generally corresponds to the inclusive table, though many uses are against background assumptions which automatically exclude the case when both are T. But we need not get into this. It is enough that some uses are according to the inclusive table.
as, ‘it is not the case that either Bob likes Sue or Sue likes Bob’ with translation \(\sim (B \lor S) \). Observe that this division is required: An attempt to parse it to ‘it is not the case that either Bob likes Sue or Sue like Bob’ results in the fragment ‘either Bob likes Sue’ in the blank for ‘it is not the case that ____’. There would be an ambiguity about the main operator if ‘either’ were missing; but with it there, the only way to keep complete sentences in the blanks is to make ‘it is not the case that ____’ the main operator. Similarly, ‘not both Bob likes Sue and Sue likes Bob’ comes to ‘it is not the case that both Bob likes Sue and Sue likes Bob’ with translation \(\sim (B \land S) \). It is possible to make these points directly. Thus, for example, ‘neither one nor ____’ has the following table,

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\text{Neither} & \text{nor} & \text{F} & \text{T} & \text{T} & \text{F} & \text{T} & \text{T} & \text{F} & \text{T} \\
\text{F} & \text{T} & \text{T} & \text{F} & \text{T} & \text{T} & \text{F} & \text{T} & \text{T} & \text{F} \\
\text{F} & \text{T} & \text{T} & \text{F} & \text{T} & \text{T} & \text{F} & \text{T} & \text{T} & \text{F} \\
\text{T} & \text{F} & \text{T} & \text{T} & \text{F} & \text{T} & \text{T} & \text{F} & \text{T} & \text{T} \\
\end{array}
\]

From (W) ‘neither Bob likes Sue nor Sue likes Bob’ is true just when ‘Bob likes Sue’ and ‘Sue likes Bob’ are both false, and otherwise the compound is false. No operator of our formal language has a table which is T just when components are both F. Still, we may form complex expressions which work this way. So from (X), \(\sim (P \lor Q) \) has the same table. Another expression that works this way is \(\sim P \land \sim Q \). Either would be a good translation, though one might be more natural than the other. Similarly both \(\sim (P \land Q) \) and \(\sim P \lor \sim Q \) are a good translation for ‘not both ____ and ____’.

And we continue to work with complex forms on trees. Thus, for example, consider ‘Neither Bob likes Sue nor Sue likes Bob, but Sue likes Jim unless Jim likes Mary’. This is a mouthful, but we can deal with it in the usual way. The hard part, perhaps, is just exposing the operator structure.

\[
\text{It is not the case that either Bob likes Sue or Sue likes Bob but Sue likes Jim unless Jim likes Mary}
\]

\[
\begin{array}{c}
\text{It is not the case that either Bob likes Sue or Sue likes Bob} \\
\text{Sue likes Jim unless Jim likes Mary}
\end{array}
\]

\[
\begin{array}{c}
\text{either Bob likes Sue or Sue likes Bob} \\
\text{Sue likes Jim} \\
\text{Jim likes Mary}
\end{array}
\]

\[
\begin{array}{c}
\text{Bob likes Sue} \\
\text{Sue likes Bob}
\end{array}
\]
Given this, with what we have said above, generate the interpretation function and then the parallel tree as follows.

\[\neg (B \lor S) \land (J \lor M) \]

\[\begin{array}{c}
\text{B: Bob likes Sue} \\
\text{S: Sue likes Bob} \\
\text{J: Sue likes Jim} \\
\text{M: Jim likes Mary} \\
\end{array} \]

We have seen that ‘\(\land \lor \)’ is equivalent to ‘\(\neg \) unless \(\lor \)’; and that ‘neither \(\land \lor \)’ works like ‘it is not the case that \(\neg \lor \)’. Given these, everything works as before. Again, the complex problem is rendered simple if we attack it one operator at a time. Another option is \((\neg B \land \neg S) \land (J \lor M)\) with the alternate version of ‘neither \(\land \lor \)’.

E5.8. Using the interpretation function below, produce parse trees and then parallel ones to complete the translation for each of the following.

\(B \): Bob likes Sue
\(S \): Sue likes Bob
\(B_1 \): Bob is cool
\(S_1 \): Sue is cool

a. Bob likes Sue.
b. Sue does not like Bob.
c. Bob likes Sue and Sue likes Bob.
d. Bob likes Sue or Sue likes Bob.
e. Bob likes Sue unless she is not cool.
f. Either Bob does not like Sue or Sue does not like Bob.
g. Neither Bob likes Sue, nor Sue likes Bob.
h. Not both Bob and Sue are cool.
i. Bob and Sue are cool, and Bob likes Sue but Sue does not like Bob.

j. Although neither Bob nor Sue are cool, either Bob likes Sue or Sue likes Bob.

E5.9. Use our method to translate each of the following. That is, generate parse
trees with an interpretation function for all the sentences, and then parallel
trees to produce formal equivalents.\(^4\)

a. Harry is not a muggle.

b. Neither Harry nor Hermione are muggles.

c. Either Harry’s or Hermione’s parents are muggles.

d. Neither Harry, nor Ron, nor Hermione are muggles.

e. Not both Harry and Hermione have muggle parents.

f. The game of Quidditch continues unless the Snitch is caught.

g. The Chudley Cannons are not the best Quidditch team ever, however they
 hope for the best.

h. Although blatching and blagging are illegal in Quidditch, the woolongong
 shimmy is not.

i. Either the beater hits the bludger or you are not protected from it, and the
 bludger is a very heavy ball.

j. Harry won the Quidditch cup in his 3rd year at Hogwarts, but not in his 1st,
 2nd, 4th, or 5th.

5.2.5 If, Iff

The operator which is most naturally associated with \(\rightarrow\) is ‘if \(\) then \(\)’. Consider some fellow, perhaps of less than sterling character, of whom we assert, ‘If he
loves her, then she is rich’. In this case, the table begins,

\[
\begin{array}{ccc}
T & T & T \\
T & F & F \\
F & ? & T \\
F & T & F \\
\end{array}
\]

\(^4\)My source for the information on Quidditch is Kennilworthy Whisp (aka, J.K. Rowling), *Quidditch Through the Ages* (2001), along with a daughter who is a rabid fan of all things Potter.
If ‘He loves her’ and ‘She is rich’ are both true, then what we said about him is true. If he loves her, but she is not rich, what we said was wrong. If he does not love her, and she is poor, then we are also fine, for all we said was that if he loves her, then she is rich. But what about the other case? Suppose he does not love her, but she is rich. There is a temptation to say that our conditional assertion is false. But do not give in! Notice: we did not say that he loves all the rich girls. All we said was that if he loves this particular girl, then she is rich. So the existence of rich girls he does not love does not undercut our claim. For another case, say you are trying to find the car he is driving and say ‘If he is in his own car, then it is a Corvette.’ That is, ‘If he is in his own car then it is a Corvette’. You would be mistaken if he has traded his Corvette for a Yugo. But say the Corvette is in the shop and he is driving a loaner that also happens to be a Corvette. Then ‘He is in his own car’ is F and ‘He is driving a Corvette’ is T. Still, there is nothing wrong with your claim—if he is in his own car, then it is a Corvette. Given this, we are left with the completed table,

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

which is identical to the table for →. With L for ‘He loves her’ and R for ‘She is rich’, for ‘If he loves her then she is rich’ the natural translation is \((L \rightarrow R)\). Another operator which works this way is ‘____ only if ____’. You should be able to see this with examples as above: ‘he loves her only if she is rich’ and ‘he is in his own car only if it is a Corvette’. So far, perhaps, so good.

But the conditional calls for special comment. First, notice that the table shifts with the position of ‘if’. Suppose he loves her if she is rich. Intuitively, this says the same as, ‘If she is rich then he loves her’. This time, we are mistaken if she is rich and he does not love her. Thus, with the above table and assignments, we end up with translation \((R \rightarrow L)\). Notice that the order is switched around the arrow. We can make this point directly from the original claim.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

The claim is false just in the case where she is rich but he does not love her. The result is not the same as the table for →. What we need is an expression that is F in the case when \(L\) is F and \(R\) is T, and otherwise T. We get just this with \((R \rightarrow L)\). Of course,
this is just the same result as by intuitively reversing the operator into the regular ‘If _____ then _____’ form.

In the formal language, the order of the components is crucial. In a true material conditional, the truth of the antecedent guarantees the truth of the consequent. In ordinary language this role is played, not by the order of the components, but by operator placement. In general, if by itself is an antecedent indicator; and only if is a consequent indicator. That is, we get,

\[
\begin{align*}
\text{If } P \text{ then } Q & \implies (P \rightarrow Q) \\
\text{if } P \text{ if } Q & \implies (Q \rightarrow P) \\
\text{P only if } Q & \implies (P \rightarrow Q) \\
\text{only if } P, Q & \implies (Q \rightarrow P)
\end{align*}
\]

‘If’, taken alone, identifies what does the guaranteeing, and so the antecedent of our material conditional; ‘only if’ identifies what is guaranteed, and so the consequent.\(^5\)

As we have just seen, the natural translation of ‘P if Q’ is \(Q \rightarrow P\), and the translation of ‘P only if Q’ is \(P \rightarrow Q\). Thus it should come as no surprise that the translation of ‘P if and only if Q’ is \((P \rightarrow Q) \land (Q \rightarrow P)\), where this is precisely what is abbreviated by \(P \leftrightarrow Q\). We can also make this point directly. Consider, ‘he loves her if and only if she is rich’. The operator is truth functional with the table,

\[
\begin{array}{c|c|c}
\hline
\text{he loves her if and only if she is rich} & T & T \\
\text{he loves her if and only if she is rich} & T & F \\
\text{he loves her if and only if she is rich} & F & T \\
\text{he loves her if and only if she is rich} & F & F \\
\hline
\end{array}
\]

It cannot be that he loves her and she is not rich, because he loves her only if she is rich; so the second row is F. And it cannot be that she is rich and he does not love her, because he loves her if she is rich; so the third row is F. The biconditional is true just when both she is rich and he loves her, or neither. Another operator that works this way is ‘_____ just in case _____.’. You should convince yourself that this is so. Notice that ‘if’, ‘only if’, and ‘if and only if’ play very different roles for translation—you almost want to think of them as completely different words: if, onlyif, and ifandonlyif, each with its own distinctive logical role. Do not get the different roles confused!

For an example that puts some of this together consider, ‘She is rich if he loves her, if and only if he is a cad or very generous’. This comes to the following.

\[^5\text{It may feel natural to convert ‘P unless Q’ to ‘P if not Q’ and translate } (\lnot Q \implies P). \text{ This is fine and, as is clear from the abbreviated form, equivalent to } (Q \lor P). \text{ However, with the extra negation and concern about direction of the arrow, it is easy to get confused on this approach—so the simple wedge is less likely to go wrong.}\]
CHAPTER 5. TRANSLATION

169

Cause and Conditional

It is important that the material conditional does not directly indicate causal connection. Suppose we have sentences S: You strike the match, and L: The match will light. And consider,

(i) If you strike the match then it will light \[S \rightarrow L \]
(ii) The match will light only if you strike it \[L \rightarrow S \]

with natural translations by our method on the right. Good. But clearly the cause of the lighting is the striking. So the first arrow runs from cause to effect, and the second from effect to cause. Why? In (i) we represent the cause as sufficient for the effect: striking the match guarantees that it will light. In (ii) we represent the cause as necessary for the effect—the only way to get the match to light, is to strike it—so that the match’s lighting guarantees that it was struck.

There may be a certain tendency to associate the ordinary ‘if’ and ‘only if’ with cause, so that we say, ‘if P then Q’ when we think of P as a (sufficient) cause of Q, and say ‘P only if Q’ when we think of Q as a (necessary) cause of P. But causal direction is not reflected by the arrow, which comes out $P \rightarrow Q$ either way. The material conditional indicates guarantee.

This point is important insofar as certain ordinary conditionals seem inextricably tied to causation. This is particularly the case with “subjunctive” conditionals (conditionals about what would have been). Suppose I was playing basketball and said, ‘If I had played Kobe, I would have won’ where this is, ‘If it were the case that I played Kobe then it would have been the case that I won the game’. Intuitively, this is false, Kobe would wipe the floor with me. But contrast, ‘If it were the case that I played Lassie then it would have been the case that I won the game’. Now, intuitively, this is true; Lassie has many talents but, presumably, basketball is not among them—and I could take her. But I have never played Kobe or Lassie, so both ‘I played Kobe’ and ‘I played Lassie’ are false. Thus the truth value of the whole conditional changes from false to true though the values of sentences in the blanks remain the same; and ‘If it were the case that ____ then it would have been the case that ____’ is not even truth functional. Subjunctive conditionals do offer a sort of guarantee, but the guarantee is for situations alternate to the way things actually are. So actual truth values do not determine the truth of the conditional.

Conditionals other than the material conditional are a central theme of Priest, Non-Classical Logics. As usual, we simply assume that ‘if’ and ‘only if’ are used in their truth functional sense, and so are given a good translation by \rightarrow.
We begin by assigning sentence letters to the simple sentences at the bottom. Then the parallel tree is constructed as follows.

\[
R: \text{She is rich} \\
L: \text{He loves her} \\
C: \text{He is a cad} \\
G: \text{He is very generous}
\]

\[
\begin{align*}
& ((L \to R) \leftrightarrow (C \lor G)) \\
& (L \to R) \\
& (C \lor G)
\end{align*}
\]

Observe that she is rich if he loves her is equivalent to \((L \to R)\), not the other way around. Then the wedge translates ‘\(\lor\)’, and the main operator has the same table as \(\leftrightarrow\).

Notice again that our procedure for translating, one operator or part at a time, lets us translate even where the original is so complex that it is difficult to comprehend. The method forces us to capture all available truth functional structure, and the resultant translation is good insofar as, given its interpretation function, a formal sentence comes out true on precisely the intended interpretations that correspond to stories on which the original is true. It does this because the formal and informal sentences work the same way. Eventually, you want to be able to work translations without the trees. (And maybe you have already begun to do so.) In fact, it will be natural to generate translations simultaneously with a (mental) parse tree. The result produces translations from the top down, rather than from the bottom up, building the translation operator-by-operator as you take the sentence apart from the main operator down. But, of course, the result should be the same no matter how you do it.

From definition AR on page 5, an argument is some sentences, one of which (the conclusion) is taken to be supported by the remaining sentences (the premises). In some courses on logic or critical reasoning, one might spend a great deal of time learning to identify premises and conclusions in ordinary discourse. However, we have taken this much as given, representing arguments in standard form, with premises
list as complete sentences above a line, and the conclusion under. Thus, for example,

If you strike the match, then it will light

(AF) The match will not light
You did not strike the match

is a simple argument of the sort we might have encountered in chapter 1. By the chapter 1 validity test VT, this argument is logically valid.

We get the same result by our formal methods: To translate the argument, we produce a translation for the premises and conclusion, retaining the “standard-form” structure. Thus we might end up with an interpretation function and translation as below,

\[S : \text{You strike the match} \quad \frac{S}{S \rightarrow L} \]
\[L : \text{The match will light} \quad \frac{\sim L}{\sim S} \]

The result is an object to which we can apply truth tables and derivations in a straightforward way. Thus by a truth table and (chapter 3) derivation,

\[
\begin{array}{c|cc|c|}
L & S & \rightarrow L & \sim L & \sim S \\
\hline
T & T & F & F & 1. \ S \rightarrow L \text{ prem} \\
T & F & T & T & 2. \ \sim L \text{ prem} \\
F & T & F & T & 3. \ (S \rightarrow L) \rightarrow (\sim L \rightarrow \sim S) \text{ T3.13} \\
F & F & T & T & 4. \ \sim L \rightarrow \sim S \text{ 3.1 MP} \\
\end{array}
\]

both \(S \rightarrow L, \sim L \vDash \sim S \) and \(S \rightarrow L, \sim L \vDash_{ADs} \sim S \).

And this is what we want. For the table, recall that (i) for any way a world (consistent story) can be, an interpretation function results in an intended interpretation; and (ii) on a good translation, the truth value of an ordinary sentence at an arbitrary world is the same as its formal counterpart on the corresponding intended interpretation. For some good formal translation of premises and conclusion: Suppose an argument is sententially valid; then by SV there is no interpretation on which the premises are true and the conclusion is false; so no intended interpretation from (i) makes the premises true and the conclusion is false; so with (ii) no consistent story makes the premises true and conclusion false; so by LV the original argument is logically valid. So if an argument is sententially valid, then it is logically valid. We will make this point again, in some detail, in part III. For now, notice that our formal methods, derivations and truth tables, apply to arguments of arbitrary complexity. So we are in a position to demonstrate validity for arguments that would have set us on our heels in chapter 1.

\[^{6}\text{And it remains for part III to show how derivations matter for logical validity.} \]
With this in mind, consider again the butler case (B) from page 2. The demonstration that the argument is logically valid is entirely straightforward, by a good translation and then a truth table to demonstrate semantic validity.

E5.10. Using the interpretation function below, produce parse trees and then parallel ones to complete the translation for each of the following.

\[L: \text{Lassie barks} \]
\[T: \text{Timmy is in trouble} \]
\[P: \text{Pa will help} \]
\[H: \text{Lassie is healthy} \]

a. If Timmy is in trouble, then Lassie barks.
b. Timmy is in trouble if Lassie barks.
c. Lassie barks only if Timmy is in trouble.
d. If Timmy is in trouble and Lassie barks, then Pa will help.
*e. If Timmy is in trouble, then if Lassie barks Pa will help.

f. If Pa will help only if Lassie barks, then Pa will help if and only if Timmy is in trouble.
g. Pa will help if Lassie barks, just in case Lassie barks only if Timmy is in trouble.
h. If Timmy is in trouble and Pa will not help, then Lassie is not healthy or does not bark.
*i. If Timmy is in trouble, then either Lassie is not healthy or if Lassie barks then Pa will help.
j. If Lassie neither barks nor is healthy, then Timmy is in trouble if Pa will not help.

E5.11. Use our method, with or without parse trees, to produce a translation, including interpretation function for the following.

a. If animals feel pain, then animals have intrinsic value.
b. Animals have intrinsic value only if they feel pain.
c. Although animals feel pain, vegetarianism is not right.
d. Animals do not have intrinsic value unless vegetarianism is not right.
e. Vegetarianism is not right only if animals do not feel pain or do not have intrinsic value.
f. If you think animals feel pain, then vegetarianism is right.

*g. If you think animals do not feel pain, then vegetarianism is not right.
h. If animals feel pain, then if animals have intrinsic value if they feel pain, then animals have intrinsic value.

*i. Vegetarianism is right only if both animals feel pain, and animals have intrinsic value just in case they feel pain; but it is not the case that animals have intrinsic value just in case they feel pain.
j. If animals do not feel pain if and only if you think animals do not feel pain, but you do think animals feel pain, then you do not think that animals feel pain.

E5.12. For each of the following arguments: (i) Produce a good translation, including interpretation function and translations for the premises and conclusion. Then (ii) use truth tables to determine whether the argument is sententially valid.

*a. Our car will not run unless it has gasoline
 Our car has gasoline

 Our car will run

b. If Bill is president, then Hillary is first lady
 Hillary is not first lady

 Bill is not president

c. Snow is white and snow is not white

 Dogs can fly

*d. If Mustard murdered Boddy, then it happened in the library.
 The weapon was the pipe if and only if it did not happen in the library, and the weapon was not the pipe only if Mustard murdered him.

 Mustard murdered Boddy
c. There is evil
 If god is good, there is no evil unless god has morally sufficient reasons for allowing it.
 If god is omnipotent, then god does not have morally sufficient reasons for allowing evil.
 God is not both good and omnipotent.

E5.13. For each of the arguments in E5.12 that is sententially valid, produce a derivation to show that it is valid in AD.

E5.14. Use translation and truth tables to show that the butler argument (B) from page 2 is semantically valid.

E5.15. For each of the following concepts, explain in an essay of about two pages, so that (high-school age) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples of your own construction (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.
 a. Good translations.
 b. Truth functional operators
 c. Parse trees, interpretation functions and parallel trees

5.3 Quantificational

It is not surprising that our goals for the quantificational case remain very much as in the sentential one. We still want to produce translations—consisting of interpretation functions and formal sentences—which capture available structure, making a formal P' true at intended interpretation I_{ω} just when the corresponding ordinary P is true at story ω. We do this as before, by assuring that the various parts of the ordinary and formal languages work the same way. Of course, now we are interested in capturing quantificational structure, and the interpretation and formal sentences are for quantificational languages.
In the last section, we developed a recipe for translating from ordinary language into sentential expressions, associating particular bits or ordinary language with various formal symbols. We might proceed in very much the same way here, moving from our notion of truth functional operators, to that of extensional terms, relation symbols, and operators. Roughly, an ordinary term is extensional when the truth value of a sentence in which it appears depends just on the object to which it refers; an ordinary relation symbol is extensional when the truth value of a sentence in which it appears depends just on the objects to which it applies; and an ordinary operator is extensional when the truth value of a sentence in which it appears depends just on the satisfaction of expressions which appear in its blanks. Clearly the notion of an extensional operator at least is closely related to that of a truth functional operator. Extensional terms, relation symbols and operators in ordinary language work very much like corresponding ones in a formal quantificational language—where, again, the idea would be to identify bits of ordinary language which contribute to truth values in the same way as corresponding parts of the formal language.

However, in the quantificational case, an official recipe for translation is relatively complicated. It is better to work directly with the fundamental goal of producing formal translations that are true in the same situations as ordinary expressions. To be sure, certain patterns and strategies will emerge but, again, we should think of what we are doing less as applying a recipe than as directly using our understanding of what makes ordinary and formal sentences true to produce good translations. With this in mind, let us move directly to sample cases, beginning with those that are relatively simple, and advancing to ones that are more complex.

5.3.1 Simple Quantifications

First, sentences without quantifiers work very much as in the sentential case. Consider a simple example. Say we are confronted with ‘Bob is happy’. We might begin, as in the sentential case, with the interpretation function,

\[B: \text{Bob is happy} \]

and use \(B \) for ‘Bob is happy’, \(\sim B \) for ‘Bob is not happy’, and so forth. But this is to ignore structure we are now capable of capturing. Thus, in our standard quantificational language \(\mathcal{L}_q \), we might let \(U \) be the set of all people, and set,

\[b: \text{Bob} \]

\[H^1: \{o \mid o \text{ is a happy person}\} \]
Then we can use Hb for ‘Bob is happy’, $\sim Hb$ for ‘Bob is not happy’, and so forth. If l_{l_0} assigns Bob to b, and the set of happy things to H, then Hb is satisfied and true on l_{l_0} just in case Bob is happy at ω—which is just what we want. Similarly suppose we are confronted with ‘Bob’s father is happy’. In the sentential case, we might have tried, F: Bob’s father is happy. But this is to miss structure available to us now. So we might consider assigning a constant d to Bob’s father and going with Hd as above. But this also misses available structure. In this case, we can expand the interpretation function to include,

$$f^1: \{\langle m, n \rangle \mid m, n \in U \text{ and } n \text{ is the father of } m\}$$

Then for any variable assignment d, $l_d[b] = \text{Bob}$ and $l_d[f^1 b]$ is Bob’s father. So $Hf^1 b$ is satisfied and true just in case Bob’s father is happy. $\sim Hf^1 b$ is satisfied just in case Bob’s father is not happy, and so forth—which is just what we want. In these cases without quantifiers, once we have translated simple sentences, everything else proceeds as in the sentential case. Thus, for example, for ‘Neither Bob nor his father is happy’ we might offer, $\sim (Hb \lor Hf^1 b)$.

The situation gets more interesting when we add quantifiers. We will begin with cases where a quantifier’s scope includes neither binary operators nor other quantifiers, and gradually increase complexity. Consider the following interpretation function.

$$l\ U: \{o \mid o \text{ is a dog}\}$$

$$f^1: \{\langle m, n \rangle \mid m, n \in U \text{ and } n \text{ is the father of } m\}$$

$$W^1: \{o \mid o \in U \text{ and } o \text{ will have its day}\}$$

We assume that there is some definite content to a dog’s having its day, and that every dog has a father—if a dog “Adam” has no father at all, we will not have specified a legitimate function. (Why?) Say we want to translate the following sentences.

1. Every dog will have its day
2. Some dog will have its day
3. Some dog will not have its day
4. No dog will have its day

Assume ‘some’ means ‘at least one’. The first sentence is straightforward. $\forall x W x$ is read, ‘for any x, $W x$’; it is true just in case every dog will have its day. Suppose l_{l_0} is an interpretation l where the elements of U are m, n, and so forth. Then the tree is as below.
The formula at (1) is satisfied just in case each of the branches at (2) is satisfied. But this can be the case only if each member of \(U \) is in the interpretation of \(W \)—which given our interpretation function, can only be the case if each dog will have its day. If even one dog does not have its day, then \(\forall x W x \) is not satisfied, and is not true.

The second case is also straightforward. \(\exists x W x \) is read, ‘there is an \(x \) such that \(W x \)’; it is true just in case some dog will have its day.

The next two cases are only slightly more difficult. \(\exists x \sim W x \) is read, ‘there is an \(x \) such that not \(W x \)’; it is true just in case some dog will not have its day.
satisfied. So $\exists x \sim Wx$ is satisfied and true just in case some member of U is not in the interpretation of W—just in case some dog does not have its day.

The last case is similar. $\forall x \sim Wx$ is read, ‘for any x, not Wx’; it is true just in case every dog does not have its day.

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\hline
I_d(x|m)[\sim Wx] & I_d(x|m)[Wx] & \vdash x[m] \\
\hline
I_d(x|n)[\sim Wx] & I_d(x|n)[Wx] & \vdash x[n] \\
\hline
\forall x \sim Wx & \forall x \sim Wx & \vdash \text{one branch for each member of } U
\end{array}
\]

The formula at (1) is satisfied just in case all of the branches at (2) are satisfied. And this is the case just in case none of the branches at (3) are satisfied. So $\forall x \sim Wx$ is satisfied and true just in case none of the members of U are in the interpretation of W—just in case no dog has its day.

Perhaps it has already occurred to you that there are other ways to translate these sentences. The following lists what we have done, with “quantifier switching” alternatives on the right.

\[
\begin{array}{llll}
\text{Every dog will have its day} & \forall x Wx & \sim \exists x \sim Wx \\
\text{Some dog will have its day} & \exists x Wx & \sim \forall x \sim Wx \\
\text{Some dog will not have its day} & \exists x \sim Wx & \sim \forall x Wx \\
\text{No dog will have its day} & \forall x \sim Wx & \sim \exists x Wx
\end{array}
\]

There are different ways to think about these alternatives. First, in ordinary language, beginning from the bottom, no dog will have its day just in case not even one dog does. Similarly, moving up the list, some dog will not have its day just in case not every dog does. Some dog will have its day just in case not every dog does not. And every dog will have its day iff not even one dog does not. These equivalences may be difficult to absorb at first but, if you think about them, each should make sense.

Next, we might think about the alternatives purely in terms of abbreviations. Notice that, in a tree, $I_d[\sim \sim P]$ is always the same as $I_d[P]$—the tildes “cancel each other out.” But then, in the top case, $\sim \exists x \sim Wx$ abbreviates $\sim \forall x \sim \sim Wx$ which is satisfied just in case $\forall x Wx$ is satisfied. In the second case, $\exists x Wx$ directly abbreviates $\sim \forall x \sim Wx$. In the third, $\exists x \sim Wx$ abbreviates $\sim \forall x \sim \sim Wx$ which is satisfied just in case $\sim \forall x Wx$ is satisfied. And, in the last case, $\exists x Wx$ abbreviates $\sim \forall x \sim \sim Wx$, which is satisfied just in case $\forall x \sim Wx$ is satisfied. So, again, the alternatives are true under just the same conditions.
Finally, we might think about the alternatives directly, based on their branch conditions. Taking just the last case,

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\hline
l_{d(x|m)}[Wx] & \vdash & x[m] \\
\hline
l_{d(x|n)}[Wx] & \vdash & x[n] \\
\end{array}
\]

The formula at (1) is satisfied just in case the formula at (2) is not. But the formula at (2) is not satisfied just in case none of the branches at (3) is satisfied—and this can only happen if no dog is in the interpretation of \(W \), where this is as it should be for ‘no dog will have its day’. In practice, there is no reason to prefer \(\exists x \sim P \) over \(\forall x \sim P \) or to prefer \(\forall x \sim P \) over \(\sim \exists x P \)—the choice is purely a matter of taste. It would be less natural to use \(\sim \exists x \sim P \) in place of \(\forall x P \), or \(\sim \forall x \sim P \) in place of \(\exists x P \). And it is a matter of good form to pursue translations that are natural. At any rate, all of the options satisfy CG. (But notice that we leave further room for alternatives among good answers, thus complicating comparisons with, for example, the Answers to Selected Exercises.)

Observe that variables are mere placeholders for these expressions so that choice of variables also does not matter. Thus, in tree (AN) immediately above, the formula is true just in case no dog is in the interpretation of \(W \). But we get the exact same result if the variable is \(y \).

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\hline
l_{d(y|m)}[Wy] & \vdash & y[m] \\
\hline
l_{d(y|n)}[Wy] & \vdash & y[n] \\
\end{array}
\]

In either case, what matters in the end is whether the objects are in the interpretation of the relation symbol: whether \(m \in l[W] \), and so forth. If none are, then the formulas are satisfied. Thus the formulas are satisfied under exactly the same conditions. And since one is satisfied iff the other is satisfied, one is a good translation iff the other is. So the choice of variables is up to you.
Given all this, we continue to treat truth functional operators as before—and we can continue to use underlines to expose truth functional structure. The difference is that what we would have seen as “simple” sentences have structure we were not able to expose before. So, for example, ‘Either every dog will have his day or no dog will have his day’ gets translation, \(\forall x Wx \lor \forall x \sim Wx \); ‘Some dog will have its day and some dog will not have its day’, gets, \(\exists x Wx \land \exists x \sim Wx \); and so forth. If we want to say that some dog is such that its father will have its day, we might try \(\exists x Wf^1 x \)—there is an \(x \) such that the father of it will have its day.

E5.16. Given the following partial interpretation function for \(\mathcal{L}_q \), complete the translation for each of the following. Assume Phil 300 is a logic class with Ninfa and Harold as members in which each student is associated with a unique homework partner.

\[
U: \{ o | o \text{ is a student in Phil 300} \} \\
a: \text{Ninfa} \\
h: \text{Harold} \\
p^1: \{ (m, n) | m, n \in U \text{ and } n \text{ is the homework partner of } m \} \\
G^1: \{ o | o \in U \text{ and } o \text{ gets a good grade} \} \\
H^2: \{ (m, n) | m, n \in U \text{ and } m \text{ gets a higher grade than } n \} \\
\]

a. Ninfa and Harold both get a good grade.

b. Ninfa gets a good grade, but her homework partner does not.

c. Ninfa gets a good grade only if both her homework partner and Harold do.

d. Harold gets a higher grade than Ninfa.

*e. If Harold gets a higher grade than Ninfa, then he gets a higher grade than her homework partner.

f. Nobody gets a good grade.

*g. If someone gets a good grade, then Ninfa’s homework partner does.

h. If Ninfa does not get a good grade, then nobody does.

*i. Nobody gets a grade higher than their own grade.

j. If no one gets a higher grade than Harold, then no one gets a good grade.
E5.17. Produce a good quantificational translation for each of the following. In this case you should provide an interpretation function for the sentences. Let U be the set of famous philosophers, and, assuming that each has a unique successor, implement a successor function.

a. Plato is a good philosopher.

b. Plato is better than Aristotle.

c. Neither Plato is better than Aristotle, nor Aristotle is better than Plato.

*d. If Plato is good, then his successor and successor’s successor are good.

e. No philosopher is better than his successor.

f. Not every philosopher is better than Plato.

g. If all philosophers are good, then Plato and Aristotle are good.

h. If neither Plato nor his successor are good, then no philosopher is good.

*i. If some philosopher is better than Plato, then Aristotle is.

j. If every philosopher is better than his successor, then no philosopher is better than Plato.

E5.18. On page 178 we say that we may show directly, based on branch conditions, that the alternatives of table (AM) have the same truth conditions, but show it only for the last case. Use trees to demonstrate that the other alternatives are true under the same conditions. Be sure to explain how your trees have the desired results.

5.3.2 Complex Quantifications

With a small change to our interpretation function, we introduce a new sort of complexity into our translations. Suppose U includes not just all dogs, but all physical objects, so that our interpretation function I has,

$\text{I} \quad U: \{o \mid o$ is a physical object$\}$

$W^1: \{o \mid o \in U$ and o will have its day$\}$

$D^1: \{o \mid o \in U$ and o is a dog$\}$
Thus the universe includes more than dogs, and D is a relation symbol with application to dogs. We set out to translate the same sentences as before.\footnote{Sentences of the sort, ‘all \mathcal{P} are \mathcal{Q}’, ‘no \mathcal{P} are \mathcal{Q}’, ‘some \mathcal{P} are \mathcal{Q}’, and ‘some \mathcal{P} are not \mathcal{Q}’ are, in a tradition reaching back to Aristotle, often associated with a “square of opposition” and called A, E, I and O sentences. In a context with the full flexibility of quantifier languages, there is little point to the special treatment, insofar as our methods apply to these as well as to ones that are more complex. For discussion, see Pietroski, “Logical Form.”}

(1) Every dog will have its day

(2) Some dog will have its day

(3) Some dog will not have its day

(4) No dog will have its day

This time, $\forall x Wx$ does not say that every dog will have its day. $\forall x Wx$ is true just in case everything in U, dogs along with everything else, will have its day. So it might be that every dog will have its day even though something else, for example my left sock, does not. So $\forall x Wx$ is not a good translation of ‘every dog will have its day’.

We do better with $\forall x (Dx \to Wx)$. $\forall x (Dx \to Wx)$ is read, ‘for any x if x is a dog, then x will have its day’; it is true just in case every dog will have its day. Again, suppose I_{ω} is an interpretation I such that the elements of U are $m, n, \ldots.$

\[
\begin{array}{c}
1 \quad 2 \\
\hline
I_d [\forall x (Dx \to Wx)] & I_d [\forall x (Dx \to Wx)] \\
\hline
\text{one branch for each member of } U
\end{array}
\]

The formula at (1) is satisfied just in case each of the branches at (2) is satisfied. And all the branches at (2) are satisfied just in case there is no S/N pair at (3). This is so just in case nothing in U is a dog that does not have its day; that is, just in case every dog has its day. It is important to see how this works: There is a branch at (2) for each thing in U. The key is that branches for things that are not dogs are “vacuously” satisfied just because the things are not dogs. If $\forall x (Dx \to Wx)$ is true, however,
whenever a branch is for a thing that is a dog—so that a top branch of a pair at (3) is satisfied, that thing must be one that will have its day. If anything is a dog that does not have its day, there is a S/N pair at (3), and \(\forall x (Dx \rightarrow Wx) \) is not satisfied and not true.

It is worth noting some expressions that do not result in a good translation. \(\forall x (Dx \land Wx) \) is true just in case everything is a dog that will have its day. To make it false, all it takes is one thing that is not a dog, or one thing that will not have its day—but this is not what we want. If this is not clear, work it out on a tree. Similarly, \(\forall x Dx \rightarrow \forall x Wx \) is true just in case if everything is a dog, then everything will have its day. To make it true, all it takes is one thing that is not a dog—then the antecedent is false, and the conditional is true; but again, this is not what we want. In the good translation, \(\forall x (Dx \rightarrow Wx) \), the quantifier picks out each thing in \(U \), the antecedent of the conditional identifies the ones we want to talk about, and the consequent says what we want to say about them.

Moving on to the second sentence, \(\exists x (Dx \land Wx) \) is read, ‘there is an \(x \) such that \(x \) is a dog, and \(x \) will have its day’; it is true just in case some dog will have its day.

\[
\begin{align*}
1 & \quad 2 & \quad 3 & \quad 4 \\
\text{AQ} & \\
\exists x (Dx \land Wx) & \quad l_g(\exists x (Dx \land Wx)) & \quad l_g(\exists x (Dx \land Wx)) & \quad \exists x & \quad \{Dx, Wx\} \\
\{Dx \land Wx\} & \quad \{Dx \land Wx\} & \quad \{Dx \land Wx\} & \quad x_m^n \\
\{Dx\} & \quad \{Dx\} & \quad \{Dx\} & \quad x_m^n \\
\{Wx\} & \quad \{Wx\} & \quad \{Wx\} & \quad x_m^n \\
\{\exists x (Dx \land Wx)\} & \quad \{\exists x (Dx \land Wx)\} & \quad \{\exists x (Dx \land Wx)\} & \quad \exists x & \quad \{Dx, Wx\} \\
\text{one branch for each member of } U
\end{align*}
\]

The formula at (1) is satisfied just in case one of the branches at (2) is satisfied. A branch at (2) is satisfied just in cases both branches in the corresponding pair at (3) are satisfied. And this is so just in case something is a dog that will have its day.

Again, it is worth noting expressions that do not result in good translation. \(\exists x Dx \land \exists x Wx \) is true just in case something is a dog, and something will have its day—where these need not be the same; so \(\exists x Dx \land \exists x Wx \) might be true even though no dog has its day. \(\exists x (Dx \rightarrow Wx) \) is true just in case something is such that if it is a dog, then it will have its day.
The formula at (1) is satisfied just in case one of the branches at (2) is satisfied; and a branch at (2) is satisfied just in case there is a pair at (3) in which the top is N or the bottom is S. So all we need for $\exists x (Dx \rightarrow Wx)$ to be true is for there to be even one thing that is not a dog—for example, my sock—or one thing that will have its day. So $\exists x (Dx \rightarrow Wx)$ can be true though no dog has its day.

The cases we have just seen are typical. Ordinarily, the existential quantifier operates on expressions with main operator \land. If it operates on an expression with main operator \rightarrow, the resultant expression is satisfied just by virtue of something that does not satisfy the antecedent. And, ordinarily, the universal quantifier operates on expressions with main operator \rightarrow. If it operates on an expression with main operator \land, the expression is satisfied only if everything in U has features from both parts of the conjunction—and it is uncommon to say something about everything in U, as opposed to all the objects of a certain sort. Again, when the universal quantifier operates on an expression with main operator \rightarrow, the antecedent of the conditional identifies the objects we want to talk about, and the consequent says what we want to say about them.

Once we understand these two cases, the next two are relatively straightforward. $\exists x (Dx \land \sim Wx)$ is read, ‘there is an x such that x is a dog and x will not have its day’; it is true just in case some dog will not have its day. Here is the tree without branches for the (by now obvious) term assignments.
The formula at (1) is satisfied just in case some branch at (2) is satisfied. A branch at (2) is satisfied just in case the corresponding pair of branches at (3) is satisfied. And for a lower branch at (3) to be satisfied, the corresponding branch at (4) has to be unsatisfied. So for $\exists x (Dx \land \neg Wx)$ to be satisfied, there has to be something that is a dog and does not have its day. In principle, this is just like ‘some dog will have its day’. We set out to say that some object of sort P has feature Q. For this, we say that there is an x that is of type P, and has feature Q. In ‘some dog will have its day’, Q is the simple Wx. In this case, Q is the slightly more complex $\neg Wx$.

Finally, $\forall x (Dx \rightarrow \neg Wx)$ is read, ‘for any x, if x is a dog, then x will not have its day’; it is true just in case every dog will not have its day—that is, just in case no dog will have its day.

The formula at (1) is satisfied just in case every branch at (2) is satisfied. Every branch at (2) is satisfied just in case there is no S/N pair at (3); and for this to be so there cannot be a case where a top at (3) is satisfied, and the corresponding bottom at (4) is satisfied as well. So $\forall x (Dx \rightarrow \neg Wx)$ is satisfied and true just in case nothing is a dog that will have its day. Again, in principle, this is like ‘every dog will have its day’.
Using the universal quantifier, we pick out the class of things we want to talk about in the antecedent, and say what we want to say about the members of the class in the consequent. In this case, what we want to say is that things in the class will not have their day.

As before, quantifier-switching alternatives are possible. In the table below, alternatives to what we have done are listed on the right.

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every dog will have its day</td>
<td>$\forall x (Dx \rightarrow Wx)$</td>
</tr>
<tr>
<td>Some dog will have its day</td>
<td>$\exists x (Dx \land Wx)$</td>
</tr>
<tr>
<td>Some dog will not have its day</td>
<td>$\forall x (Dx \rightarrow \neg Wx)$</td>
</tr>
<tr>
<td>No dog will have its day</td>
<td>$\exists x (Dx \land \neg Wx)$</td>
</tr>
</tbody>
</table>

Beginning from the bottom, if not even one thing is a dog that will have its day, then no dog will have its day. Moving up, if it is not the case that everything that is a dog will have its day, then some dog will not. Similarly, if it is not the case that everything that is a dog will not have its day, then some dog does. And if not even one thing is a dog that does not have its day, then every dog will have its day. Again, choices among the alternatives are a matter of taste, though the bottom alternatives may be more natural than ones above. If you have any questions about how the alternatives work, work them through on trees.

Before turning to some exercises, let us generalize what we have done a bit. Include in our interpretation function,

- H^1: \{o | o is happy\}
- C^1: \{o | o is a cat\}

Suppose we want to say, not that every dog will have its day, but that every happy dog will have its day. Again, in principle this is like what we have done. With the universal quantifier, we pick out the class of things we want to talk about in the antecedent—in this case, happy dogs, and say what we want about them in the consequent. Thus $\forall x [(Dx \land Hx) \rightarrow Wx]$ is true just in case everything that is both happy and a dog will have its day, which is to say, every happy dog will have its day. Similarly, if we want to say that every dog will or will not have its day, we might try, $\forall x [Dx \rightarrow (Wx \lor \neg Wx)]$. Or putting these together, for ‘every happy dog will or will not have its day’, $\forall x [(Dx \land Hx) \rightarrow (Wx \lor \neg Wx)]$. We consistently pick out the things we want to talk about in the antecedent, and say what we want about them with the consequent. Similar points apply to the existential quantifier. Thus ‘Some happy dog will have its day’ has natural translation, $\exists x [(Dx \land Hx) \land Wx]$—something is a happy dog and will have its day. ‘Some happy dog will or will not have its day’ gets, $\exists x [(Dx \land Hx) \lor (Wx \lor \neg Wx)]$. And so forth.
It is tempting to treat ‘All dogs and cats will have their day’ similarly with translation $\forall x[(Dx \land Cx) \rightarrow Wx]$. But this would be a mistake! We do not want to say that everything which is a dog and a cat will have its day—for nothing is both a dog and a cat. Rather, good translations are $\forall x(Dx \rightarrow Wx) \land \forall x(Cx \rightarrow Wx)$—all dogs will have their day and all cats will have their day, or the more elegant $\forall x[(Dx \lor Cx) \rightarrow Wx]$. In the happy dog case, we needed to restrict the class under consideration to include just happy dogs; in this dog and cat case, we are not restricting the class, but rather expanding it to include both dogs and cats. The disjunction $(Dx \lor Cx)$ applies to things in the broader class which includes both dogs and cats.

This dog and cat case brings out the point that we do not merely “cookbook” from ordinary language to formal translations, but rather want truth conditions to match. And we can make the conditions match for expressions where standard language does not lie directly on the surface. Thus consider ‘Only dogs will have their day’. This does not say that all dogs will have their day. Rather it tells us that anything that has its day is a dog, $\forall x(Wx \rightarrow Dx)$. Similarly, ‘Leaving out the happy ones, no dogs will have their day’, tells us that dogs other than the happy ones do not have their day, $\forall x[(Dx \land \sim Hx) \rightarrow \sim Wx]$. ‘Except’ has a similar effect as in, ‘Excepting the happy ones, no dogs will have their day’. It is tempting to add that the happy dogs will have their day, but it is not clear that this is part of what we have actually said; ‘except’ seems precisely to except members of the specified class from what is said.

Further, as in the dog and cat case, sometimes surface language is positively misleading compared to standard readings. Consider, for example, ‘if some dog is happy, it will have its day’. It is tempting to translate, $\exists x[(Dx \land Hx) \rightarrow Wx]$—but this is not right. All it takes to make this expression true is something that is not a happy dog (for example, my sock); if something is not a happy dog, then a branch for the conditional is satisfied, so that the existentially quantified expression is satisfied. But we want rather to say something about all dogs—if some (arbitrary) dog is happy it will have its day—so that no matter what dog you pick, if it is happy then it will have its day; thus the correct translation is $\forall x[(Dx \land Hx) \rightarrow Wx]$. Or again, consider ‘if any dog is happy, then they all are’. It is tempting to translate by the universal quantifier. But the correct translation is rather, $\exists x(Dx \land Hx) \rightarrow \forall x(Dx \rightarrow Hx)$—if some dog is happy, then every dog is happy. The best way to approach these cases is to think directly about the conditions under which the ordinary expressions are true and false, and to produce formal translations that are true and false under the same conditions.

\[8\text{It may be that we conventionally use ‘except’ in contexts where the consequent is reversed for the excepted class, for example, ‘I like all foods except brussels sprouts’—where I say it this way because I do not like brussels sprouts. But, again, it is not clear that I have actually said whether I like them or not.}\]
For these last cases however, it is worth noting that when there is “pronominal” cross reference as, ‘if some/any \(P \) is \(Q \) then it has such-and-such features’ the statement translates most naturally with the universal quantifier. But when such cross-reference is absent as, ‘if some/any \(P \) is \(Q \) then so-and-so is such-and-such’ the statement translates naturally as a conditional with an existential antecedent. The point is not that there are no grammatical cues! But cues are not so simple that we can always simply read from ‘some’ to the existential quantifier, and from ‘any’ to the universal. Perhaps this is sufficient for us to move to the following exercises.

E5.19. Given the following partial interpretation function for \(\mathcal{L}_q \), complete the translation for each of the following. (Perhaps these sentences reflect residual frustration over a Mustang the author owned in graduate school.)

- **U**: \(\{o \mid o \text{ is a car}\} \)
- **T^1**: \(\{o \mid o \in U \text{ and } o \text{ is a Toyota}\} \)
- **F^1**: \(\{o \mid o \in U \text{ and } o \text{ is a Ford}\} \)
- **E^1**: \(\{o \mid o \in U \text{ and } o \text{ was built in the eighties}\} \)
- **J^1**: \(\{o \mid o \in U \text{ and } o \text{ is a piece of junk}\} \)
- **R^1**: \(\{o \mid o \in U \text{ and } o \text{ is reliable}\} \)

- a. Some Ford is a piece of junk.
- *b. Some Ford is an unreliable piece of junk.*
- c. Some Ford built in the eighties is a piece of junk.
- d. Some Ford built in the eighties is an unreliable piece of junk.
- e. Any Ford is a piece of junk.
- f. Any Ford is an unreliable piece of junk.
- *g. Any Ford built in the eighties is a piece of junk.*
- h. Any Ford built in the eighties is an unreliable piece of junk.
- i. No reliable car is a piece of junk.
- j. No Toyota is an unreliable piece of junk.
- *k. If a car is unreliable, then it is a piece of junk.*
1. If some Toyota is unreliable, then every Ford is.

m. Only Toyotas are reliable.

n. Not all Toyotas and Fords are reliable.

o. Any car, except for a Ford, is reliable.

E5.20. Given the following partial interpretation function for \mathcal{L}_q, complete the translation for each of the following. Assume that Bob is married, and that each married person has a unique “primary” spouse in case of more than one.

- U: `{o | o is a person who is married}
- b: Bob
- s^1: `{(m, n) | n is the (primary) spouse of m}
- A^1: `{o | o \in U and o is having an affair}
- E^1: `{o | o \in U and o is employed}
- H^1: `{o | o \in U and o is happy}
- L^2: `{(m, n) | m, n \in U and m loves n}
- M^2: `{(m, n) | m is married to n}

a. Bob’s spouse is happy.

*b. Someone is married to Bob.

c. Anyone who loves their spouse is happy.

d. Nobody who is happy and loves their spouse is having an affair.

e. Someone is happy just in case they are employed.

f. Someone is happy just in case someone is employed.

g. Some happy people have affairs, and some do not.

*h. Anyone who loves and is loved by their spouse is happy, though some are not employed.

i. Only someone who loves their spouse and is employed is happy.
j. Anyone who is unemployed and whose spouse is having an affair is unhappy.

k. People who are unemployed and people whose spouse is having an affair are unhappy.

*l. Anyone married to Bob is happy if Bob is not having an affair.

m. Anyone married to Bob is happy only if Bob is employed and is not having an affair.

n. If Bob is having an affair, then everyone married to him is unhappy, and nobody married to him loves him.

o. Only unemployed people and unhappy people have affairs, but if someone loves and is loved by their spouse, then they are happy unless they are unemployed.

E5.21. Produce a good quantificational translation for each of the following. You should produce a single interpretation function with application to all of the sentences. Let U be the set of all animals.

a. Not all animals make good pets.

b. Dogs and cats make good pets.

c. Some dogs are ferocious and make good pets, but no cat is both.

d. No ferocious animal makes a good pet, unless it is a dog.

e. No ferocious animal makes a good pet, unless Lassie is both.

f. Some, but not all good pets are dogs.

g. Only dogs and cats make good pets.

h. Not all dogs and cats make good pets, but some do.

i. If Lassie does not make a good pet, then the only good pet is a cat that is ferocious, or a dog that is not.

j. A dog or cat makes a good pet if and only if it is not ferocious.

E5.22. Use trees to show that the quantifier-switching alternatives from (AU) are true and false under the same conditions as their counterparts. Be sure to explain how your trees have the desired results.
5.3.3 Overlapping Quantifiers

The full power of our quantificational languages emerges only when we allow one quantifier to appear in the scope of another. So let us turn to some cases of this sort. First, let U be the set of all people, and suppose the intended interpretation of L^2 is $\{\{m, n\} \mid m, n \in U, \text{and} \ m \text{ loves} \ n\}$. Say we want to translate,

1. Everyone loves everyone.
2. Someone loves someone.
3. Everyone loves someone.
4. Everyone is loved by someone.
5. Someone loves everyone.
6. Someone is loved by everyone.

First, you should be clear how each of these differs from the others. In particular, it is enough for (3) ‘everyone loves someone’ that each person loves some person—perhaps their mother (or themselves); but for (6) ‘someone is loved by everyone’ we need some one person, say Elvis, that everyone loves. Similarly, it is enough for (4) ‘everyone is loved by someone’ that for each person there is a lover of them—perhaps their mother (or themselves); but for (5) ‘someone loves everyone’ we need some particularly loving individual, say Mother Theresa, who loves everyone.

The first two are straightforward. $\forall x \forall y L_{xy}$ is read, ‘for any x and any y, x loves y’; it is true just in case everyone loves everyone.

\[
\begin{array}{c}
\forall x \forall y L_{xy} \quad \forall x \forall y L_{xy} \\
\forall y L_{xy} \quad \forall y L_{xy} \\
\vdots \\
\forall y L_{xy} \quad \forall y L_{xy} \\
\vdots \\
\end{array}
\]

(AV)

9Aristotle’s categorical logic is capable of handling simple A, E, I, and O sentences—consider experience you may have had with “Venn diagrams.” But you will not be able to make his logic, or such diagrams apply to the full range of cases that follow (see page 182n7)!
The branch at (1) is satisfied just in case all of the branches at (2) are satisfied. And all of the branches at (2) are satisfied just in case all of the branches at (3) are satisfied. But every combination of objects appears at the branch tips. So $\forall x \forall y L.xy$ is satisfied and true just in case for any pair $(m, n) \in U^2$, (m, n) is in the interpretation of L. Notice that the order of the quantifiers and variables makes no difference: for a given interpretation I, $\forall x \forall y L.xy$, $\forall x \forall y L.yx$, $\forall y \forall x L.xy$, and $\forall y \forall x L.yx$ are all satisfied and true under the same condition—just when every $(m, n) \in U^2$ is a member of $I[L]$.

The case for the second sentence is similar. $\exists x \exists y L.xy$ is read, ‘there is an x and there is a y such that x loves y’; it is true just in case some $(m, n) \in U^2$ is a member of $I[L]$—just in case someone loves someone. The tree is like (AV) above, but with \exists uniformly substituted for \forall. Then the formula at (1) is satisfied iff a branch at (2) is satisfied; iff a branch at (3) is satisfied; iff someone loves someone. Again the order of the quantifiers does not matter.

The next cases are more interesting. $\forall x \exists y L.xy$ is read, ‘for any x there is a y such that x loves y’; it is true just in case everyone loves someone.

Finally, $\exists x \forall y L.xy$ is read, ‘there is an x such that for any y, x loves y’; it is satisfied and true just in case someone loves everyone.
The branch at (1) is satisfied just in case some branch at (2) is satisfied. And a branch at (2) is satisfied just in case each of the corresponding branches at (3) is satisfied. So \(\exists x \forall y Lxy \) is satisfied and true just in case there is some \(o \in U \) such that, no matter what \(p \in U \) you pick, \((o, p) \in I[L] \)—just when there is someone who loves everyone.

If we switch \(Lyx \) for \(Lxy \), we get a tree for \(\exists x \forall y Lyx \); this formula is true just when someone is loved by everyone. Switching the order of the quantifiers and variables makes no difference when quantifiers are the same. But it matters crucially when quantifiers are different!

Let us see what happens when, as before, we broaden the interpretation function so that \(U \) includes all physical objects.

\[\begin{align*}
\text{II} & : \{ o \mid o \text{ is a physical object} \} \\
\text{P1} & : \{ o \mid o \in U \text{ and } o \text{ is a person} \} \\
\text{L2} & : \{ \{ m, n \} \mid m, n \in U, \text{ and } m \text{ loves } n \}
\end{align*} \]

Let us set out to translate the same sentences as before.

For ‘everyone loves everyone’, where we are talking about people, \(\forall x \forall y Lxy \) will not do. \(\forall x \forall y Lxy \) requires that each member of \(U \) love all the other members of \(U \)—but then we are requiring that my left sock love my computer, and so forth. What we need is rather, \(\forall x \forall y [(Px \land Py) \rightarrow Lxy] \). With the last branch tips omitted, the tree is as follows.
The formula at (1) is satisfied iff all the branches at (2) are satisfied; all the branches at (2) are satisfied just in case all the branches at (3) are satisfied. And, for this to be the case, there can be no pair at (4) where the top is satisfied and the bottom is not. That is, there can be no o and p such that o and p are people, o, p ∈ l[P], but o does not love p, {o, p} ∉ l[L]. The idea is very much as before: With the universal quantifiers, we select the things we want to talk about in the antecedent, we make sure that x and y pick out people, and then say what we want to say about the things in the consequent.

The case for ‘someone loves someone’ also works on close analogy with what has gone before. In this case, we do not use the conditional. If the quantifiers in the above tree were existential, all we would need is one branch at (2) to be satisfied, and one branch at (3) satisfied. And, for this, all we would need is one thing that is not a person—so that the top branch for the conditional is N, and the conditional is therefore S. On the analogy with what we have seen before, what we want is something like, ∃x∃y[(P x ∧ P y) ∧ L x y]. There are some people x and y such that x loves y.
The formula at (1) is satisfied iff at least one branch at (2) is satisfied. At least one branch at (2) is satisfied just in case at least one branch at (3) is satisfied. And for this to be the case, we need some branch pair at (4) where both the top and the bottom are satisfied—some \(o \) and \(p \) such that \(o \) and \(p \) are people, \(o, p \in \mathbb{I} \), and \(o \) loves \(p \), \(h_o; p \in \mathbb{I} \).

In these cases, the order of the quantifiers and variables does not matter. But order matters when quantifiers are mixed. Thus, for ‘everyone loves someone’, \(\forall x [P_x \rightarrow \exists y (P_y \land L_{xy})] \) is good—if any thing \(x \) is a person, then there is some \(y \) such that \(y \) is a person and \(x \) loves \(y \).
The formula at (1) is satisfied just in case all the branches at (2) are satisfied. All the branches at (2) are satisfied just in case no pair at (3) has the top satisfied and the bottom not. If \(x \) is assigned to something that is not a person, the branch at (2) is satisfied trivially. But where the assignment to \(x \) is some \(o \) that is a person, a bottom branch at (3) is satisfied just in case at least one of the corresponding branches at (4) is satisfied—just in case there is some \(p \) such that \(p \) is a person and \(o \) loves \(p \).

Notice, again, that the universal quantifier is associated with a conditional, and the existential with a conjunction. Similarly, we translate ‘everyone is loved by someone’, \(\forall x [P x \rightarrow \exists y (P y \land L y x)] \). The tree is as above, with \(L y x \) uniformly replaced by \(L y x \).

For ‘someone loves everyone’, \(\exists x [P x \land \forall y (P y \rightarrow L y x)] \) is good—there is an \(x \) such that \(x \) is a person, and for any \(y \), if \(y \) is a person, then \(x \) loves \(y \).

The formula at (1) is satisfied just in case some branch at (2) is satisfied. A branch at (2) is satisfied just in case the corresponding pair at (3) is satisfied. The top of such a pair is satisfied when the assignment to \(x \) is some \(o \in l[P] \); the bottom is satisfied just in case all of the corresponding branches at (4) are satisfied—just in case any \(p \) is such that if it is a person, then \(o \) loves it. So there has to be an \(o \) that loves every person \(p \). Similarly, you should be able to see that \(\exists x [P x \land \forall y (P y \rightarrow L y x)] \) is good for ‘someone is loved by everyone’.

Again, it may have occurred to you already that there are other options for these sentences. This time natural alternatives are not for quantifier switching, but for quantifier placement. For ‘someone loves everyone’ we have given, \(\exists x [P x \land \forall y (P y \rightarrow L y x)] \) with the universal quantifier on the inside. However, \(\exists x \forall y [P x \land (P y \rightarrow L y x)] \) would do as well. As a matter of strategy, it is best to keep quantifiers as close as possible to that which they modify. However, we can show that, in this case,
pushing the quantifier across that which it does not bind leaves the truth condition unchanged. Let us make the point generally. Say $Q(v)$ is a formula with variable v free, but P is one in which v is not free. We are interested in the relation between $(P \land \forall v Q(v))$ and $\forall v (P \land Q(v))$. Here are the trees.

The key is this: Since P has no free instances of v, for any $o \in U$, $l_d[P]$ is satisfied just in case $l_{d[v|o]}[P]$ is satisfied; for if v is not free in P, the assignment to v makes no difference to the evaluation of P. In (BC), the formula at (1) is satisfied iff each of the branches at (2) is satisfied; and each of the branches at (2) is satisfied iff each of the branches at (3) is satisfied. In (BD) the formula at (4) is satisfied iff both branches at (5) are satisfied. The bottom requires that all the branches at (6) are satisfied. But the branches at (6) are just like the bottom branches from (3) in (BC). And given the equivalence between $l_d[P]$ and $l_{d[v|o]}[P]$, the top at (5) is satisfied iff each of the tops at (3) is satisfied. So the one formula is satisfied iff the other is as well. Notice that this only works because v is not free in P and $l_d[P] = l_{d[v|o]}[P]$. You can move the quantifier past the P only if it does not bind a variable free in P!

Parallel reasoning would work for any combination of \forall and \exists, with \land, \lor and \rightarrow. That is, supposing that v is not free in P, each of the following pairs is equivalent.
The comparison between \(\forall v (P \land Q(v)) \) and \(\forall v (P \lor Q(v)) \) is an instance of the first pair. In effect, then, we can “push” the quantifier into the parentheses across a formula to which the quantifier does not apply, and “pull” it out across a formula to which the quantifier does not apply—without changing the conditions under which the formula is satisfied.

But we need to be more careful when the order of \(P \) and \(Q(v) \) is reversed. Some cases work the way we expect. Consider \(\forall v (Q(v) \land P) \) and \(\forall v (Q(v) \land P) \).

In this case, the reasoning is as before. In (BF), the formula at (1) is satisfied iff all the branches at (2) are satisfied; and all the branches at (2) are satisfied iff all the branches at (3) are satisfied. And in (BG), the formula at (4) is satisfied iff both branches at (5) are satisfied. And the top at (5) is satisfied iff all the branches at (6) are satisfied. But the branches at (6) are like the tops at (3). And given the equivalence between \(l_d[P] \) and \(l_d[v](P) \), the bottom at (5) is satisfied iff the bottoms at (3) are satisfied. So, again, the formulas are satisfied under the same conditions. And similarly for
different combinations of the quantifiers \(\forall \) or \(\exists \) and the operators \(\land \) or \(\lor \). Thus our table extends as follows.

\[
\begin{align*}
\forall v (Q(v) \land P) & \iff \forall v Q(v) \land P \\
\exists v (Q(v) \land P) & \iff \exists v Q(v) \land P \\
\forall v (Q(v) \lor P) & \iff \forall v Q(v) \lor P \\
\exists v (Q(v) \lor P) & \iff \exists v Q(v) \lor P
\end{align*}
\]

(BH)

We can push a quantifier “into” the front part of a parenthesis or pull it out as above.

But the case is different when the inner operator is \(\rightarrow \). Consider trees for \(\forall v (Q(v) \rightarrow P) \) and, noting the quantifier shift, for \(\exists v Q(v) \rightarrow P \).

(BI)

\[
\begin{array}{c}
1 \\
\vdots \\
\end{array}
\]

(BJ)

\[
\begin{array}{c}
4 \\
\vdots \\
6 \\
\end{array}
\]

Starting with (BJ), the formula at (4) is satisfied so long as at (5) the upper branch is \(N \) or bottom is \(S \); and the top is \(N \) iff no branch at (6) is \(S \); thus the formula at (4) is satisfied so long as none of the branches at (6) are \(S \) or the bottom at (5) is \(S \); or, put the other way around, the formula at (4) is \(N \) iff one of the branches at (6) is \(S \) and the bottom at (5) is \(N \). The formula at (1) is satisfied iff all the branches at (2) are satisfied; and all the branches at (2) are satisfied iff there is no \(S/N \) pair at (3); so the formula at (1) is \(N \) iff there is an \(S/N \) pair at (3). But, as before, the tops at (3) are the same as the branches at (6). And given the match between \(l_d[\mathcal{P}] \) and \(l_d[v_{|0}][\mathcal{P}] \), the bottoms at (3) are the same as the bottom at (5). So there is an \(S/N \) pair at (3) iff some branch at (6) is \(S \) and the bottom at (5) is \(N \). So \(\forall v (Q(v) \rightarrow P) \) and \(\exists v Q(v) \rightarrow P \)
are (not) satisfied under the same conditions. By similar reasoning, we are left with the following equivalences to complete our table.

\[
\begin{align*}
\forall v (Q(v) \rightarrow P) & \iff \exists v (Q(v) \rightarrow P) \\
\exists v (Q(v) \rightarrow P) & \iff \forall v (Q(v) \rightarrow P)
\end{align*}
\]

When a universal goes into the antecedent of a conditional, it flips to an existential. And when an existential quantifier goes in to the antecedent of a conditional, it flips to a universal. And similarly in the other direction.

Here is an explanation for what is happening: The universal quantifier of \(\forall v (Q(v) \rightarrow P)\) requires that each inner conditional branch be satisfied; with tips for \(P\) the same, this requires either that every antecedent tip be \(N\) or the consequent be \(S\). But once the quantifier is pushed in, the resultant conditional \(A \rightarrow P\) is satisfied only when the antecedent is \(N\) or the consequent is \(S\); so the original requirement that all the antecedent tips be \(N\) or \(P\) be \(S\) is matched by the requirement that an existential \(A\) be \(N\) or \(P\) be \(S\). Similarly, the existential quantifier of \(\exists v (Q(v) \rightarrow P)\) requires that some inner conditional branch be satisfied; with tips for \(P\) the same, this requires either that some antecedent tip be \(N\) or the consequent be \(S\). But once the quantifier is pushed in, the resultant conditional \(A \rightarrow P\) is satisfied when the antecedent is \(N\) or the consequent is \(S\); so the original requirement that some antecedent tip be \(N\) or \(P\) be \(S\) is matched by the requirement that a universal \(A\) be \(N\) or \(P\) be \(S\). These cases differ from others insofar as an inner conditional branch is \(S\) when its antecedent tip is \(N\). In the standard cases, a branch is \(S\) when the tip remains \(S\)—and the quantifiers go in as one would expect. The place for caution is when a quantifier comes from or goes into the antecedent of a conditional.

Return to ‘everybody loves somebody’. We gave as a translation, \(\forall x [P x \rightarrow \exists y (P y \land L x y)]\). But \(\forall x \exists y [P x \rightarrow (P y \land L x y)]\) does as well. To see this, notice that the immediate subformula, \([P x \rightarrow \exists y (P y \land L x y)]\) is of the form \([P \rightarrow \exists v Q(v)]\) where \(P\) has no free instance of the quantified variable \(v\). The quantifier is in the consequent of the conditional, so \([P x \rightarrow \exists y (P y \land L x y)]\) is equivalent to \(\exists y [P x \rightarrow (P y \land L x y)]\). So the larger formula \(\forall x [P x \rightarrow \exists y (P y \land L x y)]\) is equivalent to \(\forall x \exists y [P x \rightarrow (P y \land L x y)]\). And similarly in other cases. Officially, there is no reason to prefer one option over the other. Informally, however, there is less

10 By similar reasoning, we should expect quantifier flipping when pushing into expressions \(\forall v (P \downarrow Q(v))\) or \(\forall v (Q(v) \downarrow P)\) with a neither-nor operator true only when both sides are false. And this is just so: The universal expression is satisfied only when all the inner branches are satisfied; and all the inner branches are satisfied just when all the tips are not. And this is like the condition from the existential quantifier in \(\exists v Q \downarrow P\) or \(P \downarrow \exists v Q\). Observe also that we get results as above by previously established equivalences: \(\forall v (Q(v) \rightarrow P) = \forall v (\sim Q(v) \lor P) = \forall v \sim Q(v) \lor P = \sim \exists v Q(v) \lor P = \exists v Q \rightarrow P\). The universal goes into the disjunction as we expect, but the negation flips it to existential. And similarly for other cases.
room for confusion when we keep quantifiers relatively close to the expressions they modify. One reason is that we continue to associate \(\forall \) with \(\rightarrow \) and \(\exists \) with \(\land \). In so doing, we avoid unexpected results from quantifier flipping. On this basis, \(\forall x[Px \rightarrow \exists y(Py \land Lxy)] \) is to be preferred. To illustrate the point, consider ‘everyone is such that if someone loves them then they love themselves’. The natural translation is \(\forall x[Px \rightarrow (\exists y(Py \land Lyx) \rightarrow Lxx)] \). By our principles, this is equivalent to \(\forall x[Px \rightarrow \forall y((Py \land Lyx) \rightarrow Lxx)] \) and then \(\forall x\forall y[Px \rightarrow ((Py \land Lyx) \rightarrow Lxx)] \). Again, the first is preferable relative to the others, with their unintuitive use of the universal \(y \)-quantifier outside parentheses.\(^{11}\)

If you have followed this discussion, you are doing well—and should be in a good position to think about the following exercises.

E5.23. Given the following partial interpretation function for \(L_q \), complete the translation for each of the following. (The last generates a famous paradox—can a barber shave himself?)

\[
\begin{align*}
U & : \{o \mid o \text{ is a person}\} \\
b & : \text{Bob} \\
B^1 & : \{o \mid o \in U \text{ and } o \text{ is a barber}\} \\
M^1 & : \{o \mid o \in U \text{ and } o \text{ is a man}\} \\
S^2 & : \{(m, n) \mid m, n \in U \text{ and } m \text{ shaves } n\}
\end{align*}
\]

a. Bob shaves himself.

b. Everyone shaves everyone.

c. Someone shaves everyone.

d. Everyone is shaved by someone.

e. Someone is shaved by everyone.

f. Not everyone shaves themselves.

g. Any man is shaved by someone.

h. Some man shaves everyone.

\(^{11}\)And \(\forall x\exists y[Px \rightarrow ((Py \land Lyx) \rightarrow Lxx)] \) is a mistake: it goes to \(\forall x[Px \rightarrow \exists y((Py \land Lyx) \rightarrow Lxx)] \) and then \(\forall x[Px \rightarrow (\forall y(Py \land Lyx) \rightarrow Lxx)] \) — ‘everyone is such that if everything is a person that loves them then they love themselves’.

i. No man is shaved by all barbers.

*j. Any man who shaves everyone is a barber.

k. If someone shaves all men, then they are a barber.

l. If someone shaves everyone, then they shave themselves.

m. A barber shaves anyone who does not shave themselves.

*n. A barber shaves only people who do not shave themselves.

o. A barber shaves all and only people who do not shave themselves.

E5.24. Given an extended version of $\mathcal{L}_{\mathcal{N}}$ and the standard interpretation as below, complete the translation for each of the following. Recall that $<$ and $=$ are relation symbols, where S, \times and $+$ are function symbols. As we shall see shortly, it is possible to define E and P in the primitive vocabulary. Also the last sentence states the famous Goldbach conjecture, so far unproved.

U: \mathbb{N}

\emptyset: zero

S: $\{\langle m, n \rangle \mid m, n \in \mathbb{N}, \text{ and } n \text{ is the successor of } m\}$

$+$: $\{\langle m, n, o \rangle \mid m, n, o \in \mathbb{N}, \text{ and } m \text{ plus } n \text{ equals } o\}$

\times: $\{\langle m, n, o \rangle \mid m, n, o \in \mathbb{N}, \text{ and } m \text{ times } n \text{ equals } o\}$

$<$: $\{\langle m, n \rangle \mid m, n \in \mathbb{N}, \text{ and } m \text{ is less than } n\}$

E^1: $\{o \mid o \in \mathbb{N} \text{ and } o \text{ is even}\}$

P^1: $\{o \mid o \in \mathbb{N} \text{ and } o \text{ is prime}\}$

*a. One plus one equals two.

b. Three is greater than two.

c. There is an even prime number.

d. Zero is less than or equal to every number.

e. There is a number less than or equal to every other.

f. For any prime, there is one greater than it.
*g. Any odd (non-even) number is equal to the successor of some even number.

h. Some even number is not equal to the successor of any odd number.

i. A number \(x \) is even iff it is equal to two times some \(y \).

j. A number \(x \) is odd if it is equal to two times some \(y \) plus one.

k. Any odd number is equal to the sum of an odd and an even.

l. Any even number not equal to zero is the sum of one odd with another.

*m. The sum of one odd with another odd is even.

n. No odd number is greater than every prime.

o. Any even number greater than two is equal to the sum of two primes.

E5.25. Produce a good quantificational translation for each of the following. In this case you should provide an interpretation function for the sentences. Let \(U \) be the set of people, and, assuming that each has a unique best friend, implement a best friend of function.

a. Bob’s best friend likes all New Yorkers.

b. Some New Yorker likes all Californians.

c. No Californian likes all New Yorkers.

d. Any Californian likes some New Yorker.

e. Californians who like themselves, like at least some people who do not.

f. New Yorkers who do not like themselves, do not like anybody.

g. Nobody likes someone who does not like them.

h. There is someone who dislikes every New Yorker, and is liked by every Californian.

i. Anyone who likes themselves and dislikes every New Yorker, is liked by every Californian.

j. Everybody who likes Bob’s best friend likes some New Yorker who does not like Bob.
E5.26. (i) Use trees to explain the fourth (\exists, \lor) equivalence in table (BE). (ii) Use trees to explain an equivalence in (BH) for an operator other than \land. Then (iii) use trees to explain the second equivalence in (BK). Be sure to explain how your trees justify the results.

E5.27. Explain why we have not listed quantifier placement equivalences matching $\forall x. (P \leftrightarrow Q(x))$. Hint: consider $\forall x. (P \leftrightarrow Q(x))$ as an abbreviation of $\forall x. ((P \to Q(x)) \land (Q(x) \to P))$. Now, what is the consequence of quantifier placement difficulties for \leftrightarrow? Would it work if the quantifier did not flip?

5.3.4 Equality

We complete our discussion of translation by turning to some important applications for equality. Adopt an interpretation function with U the set of people and:

- b: Bob
- c: Bob
- f^1: $\{(m, n) \mid m, n \in U, \text{ where } n \text{ is the father of } m\}$
- H^1: $\{o \mid o \in U \text{ and } o \text{ is a happy person}\}$

(Maybe Bob’s friends call him “Cronk.”) The simplest applications for \equiv assert the identity of individuals. Thus, for example, on any intended interpretation I, $b = c$ is satisfied insofar as $\langle I_b, I_c \rangle \in I[\equiv]$. Similarly, $\exists x. (b = f^1 x)$ is satisfied just in case Bob is someone’s father. And, on the standard interpretation of $\mathcal{L}_{\mathbf{N}_0}$, $\exists x. (x + x) = (x \times x)$ is satisfied insofar as, say, $\langle N_{d(x; \mathbf{Z})} [x + x], N_{d(x; \mathbf{Z})} [x \times x] \rangle \in N[\equiv]$—that is, $(4, 4) \in N[\equiv]$. If this last case is not clear, think about it on a tree.

We get to an interesting class of cases when we turn to quantity expressions. Thus, for example, we can easily say ‘at least one person is happy’, $\exists x. H x$. But notice that neither $\exists x. H x \land \exists y. H y$ nor $\exists x. \exists y. (H x \land H y)$ work for ‘at least two people are happy’. For the first, it should be clear that each conjunct is satisfied, so that the conjunction is satisfied, so long as there is at least one happy person. And similarly for the second. To see this in a simple case, suppose Bob, Sue and Jim are the only people in U. Then the existentials for $\exists x. \exists y. (H x \land H y)$ result in nine branches of the following sort,
for some individuals \(m \) and \(n \). Just one of these branches has to be satisfied in order for the main sentence to be satisfied and true. Clearly none of the tips are satisfied if none of Bob, Sue or Jim is happy; then the branches are \(N \) and \(9 \). But suppose just one of them, say Sue, is happy. Then on the branch for \(d(x) \) both \(Hx \) and \(Hy \) are satisfied. Thus the conjunction is satisfied, and the existential is satisfied as well. So \(\exists x \exists y (Hx \land Hy) \) does not require that at least two people are happy. The problem, again, is that the same person might satisfy both conjuncts at once.

But this case points the way to a good translation for ‘at least two people are happy’. We get the right result with, \(\exists x \exists y [(Hx \land Hy) \land \neg (x = y)] \). Now, in our simple example, the existentials result in nine branches as follows,

The sentence is satisfied and true if at least one such branch is satisfied. Now in the case where just Sue is happy, on the branch with \(d(x) \) both \(Hx \) and \(Hy \) are satisfied as before, so that the top at (2) is satisfied. But \(x = y \) is satisfied; so \(\neg (x = y) \) is not, and the branch as a whole fails. But suppose both Bob and Sue are happy. Then on the branch with \(d(x) \) both \(Hx \) and \(Hy \) are satisfied; but this time, \(x = y \) is not satisfied; so \(\neg (x = y) \) is satisfied, and the branch is satisfied, so that the whole sentence, \(\exists x \exists y [(Hx \land Hy) \land \neg (x = y)] \) is satisfied and true. That is, the sentence is satisfied and true just when the happy people assigned to \(x \) and \(y \) are distinct—just when there are at least two happy people. On this pattern, you should be able to see how to say there are at least three happy people, and so forth.

Now suppose we want to say, ‘at most one person is happy’. We have, of course, learned a couple of ways to say nobody is happy, \(\forall x \neg Hx \) and \(\neg \exists x Hx \). But for ‘at most one’ we need something like, \(\forall x [Hx \rightarrow \forall y (Hy \rightarrow (x = y))] \). For
this, in our simplified case, the universal quantifier yields three branches of the sort, $l_{d(x|m)}[Hx \rightarrow \forall y(Hy \rightarrow (x = y))]$. The beginning of the branch is as follows,

$$(BN)\begin{array}{c}
1 \\
2 \\
3 \\
\end{array}$$

\[
\begin{array}{c}
\vdash l_{d(x|m)}[Hx] \\
\vdash x[m] \\
\vdash l_{d(x|m,y)}[Hy \rightarrow (x = y)] \\
\vdash \forall y[Hy \rightarrow (x = y)] \\
\vdash l_{d(x|m,y)}[Hy \rightarrow (x = y)] \\
\vdash l_{d(x|m,y)}[Hy \rightarrow (x = y)] \\
\vdash l_{d(x|m,y)}[Hy \rightarrow (x = y)] \\
\end{array}
\]

The universal $\forall x[Hx \rightarrow \forall y(Hy \rightarrow (x = y))]$ is satisfied and true if and only if all the conditional branches at (1) are satisfied. And the branches at (1) are satisfied so long as there is no S/N pair at (2). This is, of course, true if nobody is happy so that the top at (2) is never satisfied. But suppose m is a happy person, say Sue, and the top at (2) is satisfied. Then the bottom comes out S so long as Sue is the only happy person. If Sue is the only happy person, when y is assigned to objects other than Sue, Hy is N and so the conditionals are S; and when y is assigned to Sue, the equality is S and so the conditional is S. So there is no S/N pair. But suppose Jim, say, is also happy; then on the very bottom branch at (3), Hy is S and so the conditional is N; so the universal at (2) is N; so the conditional at (1) is N; and the entire sentence is N. Suppose x is assigned to a happy person; in effect, $\forall y(Hy \rightarrow (x = y))$ limits the range of happy things, telling us that anything happy is it. We get ‘at most two people are happy’ with $\forall x\forall y[(Hx \land Hy) \rightarrow \forall z(Hz \rightarrow (x = z \lor y = z))]$—if some things are happy, then anything that is happy is one of them. And similarly in other cases.

To say ‘exactly one person is happy’, it is enough to say at least one person is happy, and at most one person is happy. Thus, using what we have already done, $\exists x[Hx \land \forall x[Hx \rightarrow \forall y(Hy \rightarrow (x = y))]$ does the job. But we can use the “limiting” strategy with the universal quantifier more efficiently. Thus, for example, if we want to say ‘Bob is the only happy person’ we might try $Hb \land \forall y[Hy \rightarrow (b = y)]$—Bob is happy, and every happy person is Bob. Similarly, for ‘exactly one person is happy’, $\exists x[Hx \land \forall y(Hy \rightarrow (x = y))]$ is good. We say that there is a happy person, and that all the happy people are identical to it. For ‘exactly two people are happy’, $\exists x\exists y[((Hx \land Hy) \land \neg(x = y)) \land \forall z(Hz \rightarrow [(x = z) \lor (y = z)])$ does the job—there are at least two happy people, and anything that is a happy person is identical to one of them.
Phrases of the sort “the such-and-such” are definite descriptions. Perhaps it is natural to think “the such-and-such is so-and-so” fails when there is more than one such-and-such. Similarly, phrases of the sort “the such-and-such is so-and-so” seem to fail when nothing is such-and-such. Thus, for example, neither ‘The desk at CSUSB has graffiti on it’ nor ‘the present king of France is bald’ seem to be true. The first because the description fails to pick out just one object, and the second because the description does not pick out any object. Of course, if a description does pick out just one object, then the predicate must apply. So, for example, as I write, ‘The president of the USA is a woman’ is not true. There is exactly one object which is the president of the USA, but it is not a woman. And ‘the president of the USA is a man’ is true. In this case, exactly one object is picked out by the description, and the predicate does apply. Thus, in “On Denoting,” Bertrand Russell famously proposes that a statement of the sort ‘the \(P \) is \(Q \)’ is true just in case there is exactly one \(P \) and it is \(Q \). On Russell’s account, then, where \(P(x) \) and \(Q(x) \) have variable \(x \) free, and \(P(v) \) is like \(P(x) \) but with free instances of \(x \) replaced by a new variable \(v \), \(\exists x [(P(x) \land \forall v(P(v) \rightarrow x = v)) \land Q(x)] \) is good—there is a \(P \), it is the only \(P \), and it is \(Q \). Thus, for example, with the natural interpretation function, \(\exists x [(P(x) \land \forall y(P(y \rightarrow x = y)) \land W] \) translates ‘the president is a woman’. In a course on philosophy of language, one might spend a great deal of time discussing definite descriptions. But in ordinary cases we will simply assume Russell’s account for translating expressions of the sort, ‘the \(P \) is \(Q \).

Finally, notice that equality can play a role in exception clauses. This is particularly important when making general comparisons. Thus, for example, if we want to say that zero is the smallest natural number, with the standard interpretation \(\mathbb{N} \) of \(\mathcal{L}_{\mathbb{N}} \), \(\forall x(0 < x) \) is a mistake. This formula is satisfied only if zero is less than zero! What we want is rather, \(\forall x[\neg(x = 0) \rightarrow (0 < x)] \). Similarly, if we want to say that there is a tallest person, we would not use \(\exists x \forall y Tyx \) where \(Tyx \) when \(x \) is taller than \(y \). This would require that the tallest person be taller than herself. What we want is rather, \(\exists x \forall y[\neg(x = y) \rightarrow Tx] \).

Observe that relations of this sort may play a role in definite descriptions. Thus it seems natural to talk about the smallest natural number, or the tallest person. We might therefore additionally assert uniqueness with something like, \(\exists x[x \text{ is taller than every other } \land \forall z(z \text{ is taller than every other } \rightarrow x = z)] \). However, we will not usually add the second clause, insofar as uniqueness follows automatically in these cases from the initial claim, \(\exists x \forall y[\neg(x = y) \rightarrow Tx] \) together with the premise that \(taller \text{ than (less than) is asymmetric, that } \forall x \forall y(Txy \rightarrow \neg Tyx) \). By itself,

\[\exists x[\forall y(\neg(x = y) \rightarrow Tx) \land \forall y(\neg(x = y) \rightarrow Tzx) \rightarrow x = z] \]

\[^{12} \exists x[\forall y(\neg(x = y) \rightarrow Tx) \land \forall y(\forall z(\neg(z = y) \rightarrow Tzx) \rightarrow x = z)] \]
\[\exists x \forall y[\neg(x = y) \rightarrow Txy] \] does not require uniqueness—it says only that there is an object that stands in relation \(T \) to every other. When the relation is asymmetric, however, there cannot be multiple things with the relation to everything else.

If \(m \) is taller than everything other than itself, and \(n \) is taller than everything other than itself, but \(m \neq n \), then \(m \) is taller than \(n \) and \(n \) is taller than \(m \). But this is impossible if the relation is asymmetric. So only one object can be taller than all the others.

Thus, in these cases, for ‘The tallest person is happy’ it will be sufficient conjoin ‘an object with \(T \) to every other is happy’ with asymmetry, \(\exists x[\forall y[\neg(x = y) \rightarrow Txy] \land Hx] \land \forall x \forall y(Txy \rightarrow \neg Tyx) \). Taken together, these imply all the elements of Russell’s account.

E5.28. Given the following partial interpretation function for \(\mathcal{L}_4 \), complete the translation for each of the following.

\[U: \{o \mid o \text{ is a snake in my yard}\} \]
\[a: \text{Aalph} \]
\[G^1: \{o \mid o \in U \text{ and } o \text{ is in the grass}\} \]
\[D^1: \{o \mid o \in U \text{ and } o \text{ is deadly}\} \]
\[B^2: \{(m, n) \mid m, n \in U \text{ and } m \text{ is bigger than } n\} \]

a. There is at least one snake in the grass.

b. There are at least two snakes in the grass.

*c. There are at least three snakes in the grass.

d. There are no snakes in the grass.

e. There is at most one snake in the grass.

f. There are at most two snakes in the grass.

g. There are at most three snakes in the grass.

h. There is exactly one snake in the grass.

i. There are exactly two snakes in the grass.
j. There are exactly three snakes in the grass.

*k. The snake in the grass is deadly.

l. Aalph is the biggest snake.

*m. Aalph is bigger than any other snake in the grass.

n. The biggest snake in the grass is deadly.

o. The smallest snake in the grass is deadly.

E5.29. Given \(\mathcal{L}_{\mathbb{N}} \) and the standard interpretation \(\mathbb{N} \) as below, complete the translation for each of the following. Hint: Once you know how to say a number is odd or even, answers to some exercises will mirror ones from E5.24.

\[U: \mathbb{N} \]
\[\emptyset: \text{zero} \]
\[S: \{ \langle m, n \rangle \mid m, n \in \mathbb{N}, \text{ and } n \text{ is the successor of } m \} \]
\[+: \{ \langle \langle m, n \rangle, o \rangle \mid m, n, o \in \mathbb{N}, \text{ and } m \text{ plus } n \text{ equals } o \} \]
\[\times: \{ \langle \langle m, n \rangle, o \rangle \mid m, n, o \in \mathbb{N}, \text{ and } m \text{ times } n \text{ equals } o \} \]
\[<: \{ \langle m, n \rangle \mid m, n \in \mathbb{N}, \text{ and } m \text{ is less than } n \} \]

a. Any number is equal to itself (identity is reflexive).

b. If a number \(a \) is equal to a number \(b \), then \(b \) is equal to \(a \) (identity is symmetric).

c. If a number \(a \) is equal to a number \(b \) and \(b \) is equal to \(c \), then \(a \) is equal to \(c \) (identity is transitive).

d. No number is less than itself (less than is irreflexive).

*e. If a number \(a \) is less than a number \(b \), then \(b \) is not less than \(a \) (less than is asymmetric).

f. If a number \(a \) is less than a number \(b \) and \(b \) is less than \(c \), then \(a \) is less than \(c \) (less than is transitive).

g. There is no largest number.

*h. Four is even (a number such that two times something is equal to it).
CHAPTER 5. TRANSLATION

i. Three is odd (such that two times something plus one is equal to it).

*j. Any odd number is the sum of an odd and an even.

k. Any even number other than zero is the sum of one odd with another.

l. The sum of one odd with another odd is even.

m. There is no even number greater than every other even number.

*n. Three is prime (a number divided by no number other than one and itself—though you will have to put this in terms of multipliers).

o. Every prime except two is odd.

E5.30. For each of the following arguments: (i) Produce a good translation, including interpretation function and translations for the premises and conclusion. Then (ii) for each argument that is not quantificationally valid, produce an interpretation (trees optional) to show that the argument is not quantificationally valid.

a. Only citizens can vote
 Hannah is a citizen

 Hannah can vote

b. All citizens can vote
 If someone is a citizen, then their father is a citizen
 Hannah is a citizen

 Hannah’s father can vote

*c. Alice is taller than everyone else

 Only Alice is taller than everyone else

d. Alice is taller than everyone else
 The taller than relation is asymmetric

 Only Alice is taller than everyone else

e. There is a dog
 At most one dog is pursuing a cat
 At least one cat is being pursued (by something)

 Some dog is pursuing a cat
E5.31. For each of the arguments in E5.30 that you have not shown is invalid, produce a derivation to show that it is valid in AD.

E5.32. For each of the following concepts, explain in an essay of about two pages, so that (high-school age) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples of your own construction (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. Quantifier switching

b. Quantifier placement

c. Quantity expressions and definite descriptions
Chapter 6

Natural Deduction

Natural deductions systems are so-called because their rules formalize patterns of reasoning that occur in relatively ordinary “natural” contexts. Thus, initially at least, the rules of natural deduction systems are easier to motivate than the axioms and rules of axiomatic systems. By itself, this is sufficient to give natural deduction a special interest. As we shall see, natural deduction is also susceptible to proof strategies in a way that (primitive) axiomatic systems are not. If you have had another course in formal logic, you have probably been exposed to natural deduction. So, again, it may seem important to bring what we have done into contact what you have encountered in other contexts. After some general remarks about natural deduction in section 6.1, we turn to the sentential part ND_s (section 6.2) and then the full version ND (section 6.3) of our natural derivation system, and finally consider some applications to arithmetic (section 6.4).

6.1 General

This section develops some concepts required for ND_s and ND. The first part develops a “toy” system to introduce the very idea of a derivation and a derivation rule. We then turn to some concepts required for the particular rules of ND.\footnote{Parts of this section are reminiscent of 3.1 and, especially if you skipped over that section, you may want to look over it now as additional background.}

6.1.1 Derivations as Games

Derivations can be seen as a kind of game—with the aim of getting from a starting point to a goal by rules. In their essential nature, these rules are defined in terms of
form: the forms of expressions authorize “moves” in the game. Given this, there is no immediate or obvious connection between derivations and semantic validity or truth. All the same, even though the rules are not defined by a relation to validity and truth, ultimately we shall be able to establish relations between the derivation rules and these notions.

Still, we can introduce natural derivations purely in their nature as games. Thus, for example, consider a preliminary system NP with the following rules.

NP

<table>
<thead>
<tr>
<th></th>
<th>$\mathcal{P} \to \mathcal{Q}$</th>
<th>$\mathcal{P} \lor \mathcal{Q}$</th>
<th>$\mathcal{P} \land \mathcal{Q}$</th>
<th>\mathcal{P}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>\mathcal{Q}</td>
<td>\mathcal{Q}</td>
<td>\mathcal{P}</td>
<td>$\mathcal{P} \lor \mathcal{Q}$</td>
</tr>
</tbody>
</table>

In this system, R1: given formulas of the form $\mathcal{P} \to \mathcal{Q}$ and \mathcal{P}, you may move to \mathcal{Q}; R2: given a formula of the form $\mathcal{P} \lor \mathcal{Q}$, you may move to \mathcal{Q}; R3: given a formula of the form $\mathcal{P} \land \mathcal{Q}$, you may move to \mathcal{P}; and R4: given a formula \mathcal{P} you may move to $\mathcal{P} \lor \mathcal{Q}$ for any \mathcal{Q}. For now, at least, the game is played as follows: You begin with some starting formulas and a goal. The starting formulas are like “cards” in your hand. You then apply the rules to obtain more formulas, to which the rules may be applied again and again. You win if you eventually obtain the goal formula.

Let us consider some examples. At this stage, do not worry about strategy, about why we do what we do, as much as about how the rules work and the way the game is played. A game always begins with starting premises at the top, and goal on the bottom.

1. $A \to (B \land C)$
 P(remise)
2. A
 P(remise)

 (A)

 $B \lor D$
 (goal)

The formulas on lines (1) and (2) are of the form $\mathcal{P} \to \mathcal{Q}$ and \mathcal{P}, where \mathcal{P} maps to A and \mathcal{Q} to $(B \land C)$; so we are in a position to apply rule R1 to get the \mathcal{Q}.

1. $A \to (B \land C)$
 P(remise)
2. A
 P(remise)

 3. $B \land C$
 1,2 R1

 $B \lor D$
 (goal)

The justification for our move—the way the rules apply—is listed on the right; in this case, we use the formulas on lines (1) and (2) according to rule R1 to get $B \land C$; so that is indicated by the notation. Now $B \land C$ is of the form $\mathcal{P} \land \mathcal{Q}$. So we can apply R3 to it in order to obtain the \mathcal{P}, namely B.

CHAPTER 6. NATURAL DEDUCTION

Notice that one application of a rule is independent of another. It does not matter what formula was \mathcal{P} or \mathcal{Q} in a previous move for evaluation of this one. Finally, where \mathcal{P} is B, $B \lor D$ is of the form $\mathcal{P} \lor \mathcal{Q}$. So we can apply R4 to get the final result.

Notice that R4 leaves the \mathcal{Q} unrestricted: Given some \mathcal{P}, we can move to $\mathcal{P} \lor \mathcal{Q}$ for any \mathcal{Q}. Since we reached the goal from the starting sentences, we win! In this simple derivation system, any line of a successful derivation is either given as a premise, or justified from lines before it by the rules.

Here are a couple more examples, this time of completed derivations.

$A \land C$ is of the form $\mathcal{P} \land \mathcal{Q}$. So we can apply R3 to obtain the \mathcal{P}, in this case A. Then where \mathcal{P} is A, we use R4 to add on a B to get $A \lor B$. ($A \lor B) \rightarrow D$ and $A \lor B$ are of the form $\mathcal{P} \rightarrow \mathcal{Q}$ and \mathcal{P}; so we apply R1 to get the \mathcal{Q}, that is D. Finally, where D is \mathcal{P}, $D \lor (R \rightarrow S)$ is of the form $\mathcal{P} \lor \mathcal{Q}$; so we apply R4 to get the final result. Notice again that the \mathcal{Q} may be any formula whatsoever.

Here is another example.
1. \((A \land B) \land D\) P
2. \((A \land B) \rightarrow C\) P
3. \(A \rightarrow (C \rightarrow (B \land D))\) P

\[\begin{array}{c}
\hline
\text{4. } A \land B & 1 \text{ R3} \\
\text{5. } C & 2,4 \text{ R1} \\
\text{6. } A & 4 \text{ R3} \\
\text{7. } C \rightarrow (B \land D) & 3,6 \text{ R1} \\
\text{8. } B \land D & 7,5 \text{ R1} \\
\text{9. } B & 8 \text{ R3 Win!} \\
\hline
\end{array} \]

You should be able to follow the steps. In this case, we use \(A \land B\) on line (4) twice; once as part of an application of R1 to get \(C\), and again in an application of R3 to get the \(A\). Once you have a formula in your “hand” you can use it as many times and whatever way the rules will allow. Also, the order in which we worked might have been different. Thus, for example, we might have obtained \(A\) on line (5) and then \(C\) after. You win if you get to the goal by the rules; how you get there is up to you. Finally, it is tempting to think we could get \(B\) from, say, \(A \land B\) on line (4). We will able to do this in our official system. But the rules we have so far do not let us do so.

R3 lets us move just to the left conjunct of a formula of the form \(P \land Q\).

When there is a way to get from the premises of some argument to its conclusion by the rules of derivation system \(N\), the premises prove the conclusion in system \(N\). In this case, where \(\Gamma\) (Gamma) is the set of premises and \(P\) the conclusion, we write \(\Gamma \vdash_N P\). If \(\Gamma \vdash_N P\) the argument is valid in derivation system \(N\). Notice the distinction between this “single turnstile” \(\vdash\) and the double turnstile \(\models\) associated with semantic validity. As usual, if \(Q_1 \ldots Q_n\) are the members of \(\Gamma\), we sometimes write \(Q_1 \ldots Q_n \vdash_N P\) in place of \(\Gamma \vdash_N P\). If \(\Gamma\) has no members then we simply write \(\vdash_N P\). In this case, \(P\) is a theorem of derivation system \(N\).

One can imagine setting up many different rule sets, and so many different games of this kind. In the end, we want our game to serve a specific purpose. That is, we want to use the game in the identification of valid arguments. In order for our games to be an indicator of validity, we would like it to be the case that \(\Gamma \vdash_N P\) iff \(\Gamma \models P\), that \(\Gamma\) proves \(P\) iff \(\Gamma\) entails \(P\). In part III we will show that our official derivation games have this property.

For now, we can at least see how this might be: Roughly, we impose the following condition on rules: we require of our rules that the inputs always semantically entail the outputs. Then if some premises are true, and we make a move to a formula, the formula we move to must be true; and if the formulas in our “hand” are all true, and we add some formula by another move, the formula we add must be true; and so forth for each formula we add until we get to the goal, which will have to be true as well.
So if the premises are true, the goal must be true as well.

Notice that our rules R1, R3 and R4 each meet the proposed requirement on rules, but R2 does not.

<table>
<thead>
<tr>
<th></th>
<th>P → Q</th>
<th>P / Q</th>
<th>P ∨ Q / Q</th>
<th>P ∧ Q / P</th>
<th>P / P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

R1, R3 and R4 have no row where the input(s) are T and the output is F. But for R2, the second row has input T and output F. So R2 does not meet our condition. This does not mean that one cannot construct a game with R2 as a part. Rather, the point is that R2 will not help us accomplish what we want to accomplish with our games. So long as rules meet the condition, a win in the game always corresponds to an argument that is semantically valid. Thus, for example, derivation (C), in which R2 does not appear, corresponds to the result that \((A ∧ B) ∧ D, (A ∧ B) → C, A → (C → (B ∧ D))) \models B.\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>(A ∧ B) ∧ D</th>
<th>(A ∧ B) → C</th>
<th>A → (C → (B ∧ D))</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

There is no row where the premises are T and the conclusion is F. As the number of rows goes up, we may decide that the games are dramatically easier to complete than the tables. And similarly for the quantificational case, where we have not yet been able to demonstrate semantic validity at all.

E6.1. Show that each of the following is valid in \(NP\). Complete (a)–(d) using just rules R1, R3 and R4. You will need an application of R2 for (e).
*a. \((A \land B) \land C \vdash_{NP} A\)

b. \((A \land B) \land C, A \rightarrow (B \land C) \vdash_{NP} B\)

c. \((A \land B) \rightarrow (B \land A), A \land B \vdash_{NP} B \lor A\)

d. \(R, [R \lor (S \lor T)] \rightarrow S \vdash_{NP} S \lor T\)

e. \(A \vdash_{NP} A \rightarrow C\)

*E6.2. (i) For each of the arguments in E6.1, use a truth table to decide if the argument is sententially valid. (ii) To what do you attribute the fact that a win in \(NP\) is not a sure indicator of semantic validity?

6.1.2 Auxiliary Assumptions

Having introduced the idea a derivation by our little system \(NP\), we now turn to some additional concepts that are background to the rules of our official derivation system \(ND\). So far, our derivations have had the following form,

\[
\begin{align*}
(a) & \quad A \quad \text{(remise)} \\
& \quad \vdash_{NP} \\
(b) & \quad B \quad \text{(remise)} \\
& \quad \vdash_{NP} \\
(c) & \quad \emptyset \quad \text{(goal)}
\end{align*}
\]

We have some premise(s) at the top, and a conclusion at the bottom. The premises are against a line which indicates the range or scope over which the premises apply. In each case, the line extends from the premises to the conclusion, indicating that the conclusion is derived from them. It is always our aim to derive the conclusion under the scope of the premises alone. But our official derivation system will allow appeal to certain auxiliary assumptions in addition to premises. Any such assumption comes with a scope line of its own—indicating the range over which it applies. Thus, for example, derivations might be structured as follows.
In each, there are premises \mathcal{A} through \mathcal{B} at the top and goal \mathcal{G} at the bottom. As indicated by the main leftmost scope line, the premises apply throughout the derivations, and the goal is derived under them. In case (G), there is an additional assumption at (c). As indicated by its scope line, that assumption applies from (c)–(d). In (H), there are a pair of additional assumptions. As indicated by the associated scope lines, the first applies over (c)–(f), and the second over (d)–(e). We will say that an auxiliary assumption, together with the formulas that fall under its scope, is a subderivation. Thus (G) has a subderivation on from (c)–(d). (H) has a pair of subderivations, one on (c)–(f), and another on (d)–(e). A derivation or subderivation may include various other subderivations. Any subderivation begins with an auxiliary assumption. In general we cite a subderivation by listing the line number on which it begins, then a dash, and the line number on which its scope line ends.

In contexts without auxiliary assumptions, we have been able freely to appeal to any formula already in our “hand.” Where there are auxiliary assumptions, however, we may appeal only to accessible subderivations and formulas. A formula is accessible at a given stage when it is obtained under assumptions all of which continue to apply. In practice, what this means is that for justification of a formula at line number i, we can appeal only to formulas which appear immediately against scope lines extending as far as i. Thus, for example, with the scope structure as in (I) below, in the justification of line (6),
we could appeal only to formulas at (1), (2) and (3), for these are the only ones immediately against scope lines extending as far as (6). To see this, notice that scope lines extending as far as (6) are ones cut by the arrow at (6). Formulas at (4) and (5) are not against a line extending that far. Similarly, as indicated by the arrow in (J), for the justification of (11), we could appeal only to formulas at (1), (2), and (10). Formulas at other line numbers are not immediately against scope lines extending as far as (11). The accessible formulas are ones derived under assumptions all of which continue to apply.

It may be helpful to think of a completed subderivation as a sort of “box.” So long as you are under the scope of an assumption, the box is open and you can “see” the formulas under its scope. However, once you exit from an assumption, the box is closed, and the formulas inside are no longer available.
Thus, again, at line (6) of (I') the formulas at (4)–(5) are locked away so that the only accessible lines are (1)–(3). Similarly, at line (11) of (J') all of (3)–(9) is unavailable.

Our aim is always to obtain the goal against the leftmost scope line—under the scope of the premises alone—and if the only formulas accessible for the goal’s justification are also against the leftmost scope line, it may appear mysterious why we would ever introduce auxiliary assumptions and subderivations at all. What is the point of auxiliary assumptions, if formulas under their scope are inaccessible for justification for the formula we want? The answer is that though the formulas inside a box are unavailable the box may still be useful. Some of our rules will appeal to entire subderivations (to the boxes), rather than to the formulas in them. A subderivation is accessible at a given stage when it is obtained under assumptions all of which continue to apply. In practice, what this means is that for a formula at line \(i \), we can appeal to a box (to a subderivation) only if it (its scope line) is against a line which extends down to \(i \).

Thus at line (6) of (I'), we would not be able to appeal to the formulas on lines (4) and (5)—they are inside the closed box. However, we would be able to appeal to the box on lines (4)–(5), for it is against a scope line cut by the arrow. Similarly, at line (11) of (J') we are not able to appeal to formulas on any of the lines (3)–(9), for they are inside the closed boxes. Similarly, we cannot appeal to the boxes on (4)–(5) or (7)–(8) for they are locked inside the larger box. However, we can appeal to the larger subderivation on (3)–(9) insofar as it is against a line cut by the arrow. Observe that one can appeal to a box only after it is closed—so, for example, at (11) of (J') there is not (yet) a closed box at (10)–(11) and so no available subderivation to which one may appeal. When a box is closed, its assumption is discharged.
So we have an answer to our question about the point of subderivations for reaching a conclusion: In our example, the justification for the conclusion at line (12) might appeal to the formulas on lines (1) and (2) or to the subderivations on lines (3)–(9) and (10)–(11). Again line (12) does not have access to the formulas inside the subderivations from lines (3)–(9) and (10)–(11). So the subderivations are accessible even where the formulas inside them are not.

Definitions for Auxiliary Assumptions

SD An auxiliary assumption, together with the formulas that fall under its scope, is a subderivation.

FA A formula is accessible at a given stage when it is obtained under assumptions all of which continue to apply.

SA A subderivation is accessible at a given stage when it (as a whole) is obtained under assumptions all of which continue to apply.

In practice, what this means is that for justification of a formula at line \(i\) we can appeal to another formula only if it is immediately against a scope line extending as far as \(i\).

And in practice, for justification of a formula at line \(i\), we can appeal to a subderivation only if its whole scope line is itself immediately against a scope line extending as far as \(i\).

First rule of NDs. All this will become more concrete as we turn now to the rules of our official system ND and its initial fragment NDs. Let us set aside rules of the preliminary system NP and begin rules of NDs from scratch. We can reinforce the point about accessibility of formulas by introducing the first, and simplest, rule of NDs. If a formula \(\mathcal{P}\) appears on an accessible line \(a\) of a derivation, we may repeat it by the rule reiteration, with justification \(a\ R\).

\[
\begin{array}{c}
a. \\
\hline
\mathcal{P} \\
\end{array}
\]

\[
\begin{array}{c}
\mathcal{P} \\
\hline
\end{array} \quad a \ R
\]

It should be obvious why reiteration satisfies our basic condition on rules. If \(\mathcal{P}\) is true, of course \(\mathcal{P}\) is true. So this rule could never lead from a formula that is true to one that is not. Observe, though, that the line \(a\) must be accessible. Leaving aside assumption lines (which are always justified ‘A’), if in (I) the assumption at line (3) were a formula \(\mathcal{P}\), we could conclude \(\mathcal{P}\) with justification 3 R at lines (5), (6), (8) or (9). We could not obtain \(\mathcal{P}\) with the same justification at (11) or (12) without violating
the rule, because (3) is not accessible for justification of (11) or (12). You should be clear about why this is so.

*E6.3. Consider a derivation with the following structure.

1. P
2. A
3.
4. A
5. A
6.
7.
8.

For each of the lines (3), (6), (7) and (8) which lines are accessible? which subderivations (if any) are accessible? That is, complete the following table.

<table>
<thead>
<tr>
<th>accessible lines</th>
<th>accessible subderivations</th>
</tr>
</thead>
<tbody>
<tr>
<td>line 3</td>
<td></td>
</tr>
<tr>
<td>line 6</td>
<td></td>
</tr>
<tr>
<td>line 7</td>
<td></td>
</tr>
<tr>
<td>line 8</td>
<td></td>
</tr>
</tbody>
</table>

*E6.4. Suppose in a derivation with structure as in E6.3 we have obtained a formula \(A \) on line (3). (i) On what lines would we be allowed to conclude \(A \) by 3 R? Suppose there is a formula \(B \) on line (4). (ii) On what lines would we be allowed to conclude \(B \) by 4 R? Hint: this is just a question about accessibility, asking where it is possible to use lines (3) and (4).

6.2 Sentential

We introduced the idea of a derivation by the preliminary system \(NP \). We have introduced notions of accessibility. And, setting aside the rules of \(NP \), we have seen the first rule \(R \) of NDs. We now turn to the rest of the rules of NDs, including rules for arbitrary sentential forms—for arbitrary forms involving \(\sim \) and \(\rightarrow \) (and so \(\land \), \(\lor \), and \(\leftrightarrow \)). Of course expressions of a quantificational language may have sentential forms, and if this is so the rules apply to them. For the most part, though, we simply focus on expressions of our sentential language \(L_s \). In a derivation, each formula
is either a premise, an auxiliary assumption, or is justified by the rules. In addition to reiteration, \(ND_s \) includes two rules for each of the five sentential operators—for a total of eleven rules. For each of the operators, there is an ‘I’ or \textit{introduction} rule, and an ‘E’ or \textit{exploitation} rule.\(^2\) As we will see, this division helps structure the way we approach derivations. There are sections to introduce the rules (6.2.1–6.2.3), for discussion of strategy (6.2.4) and for an extended system \(ND_s^+ \) (6.2.5).

\section*{6.2.1 \(\to \) and \(\wedge \)}

Let us start with the I- and E-rules for \(\to \) and \(\wedge \). We have already seen the exploitation rule for \(\to \). It is R1 of system \(NP \). If formulas \(P \to Q \) and \(P \) appear on accessible lines \(a \) and \(b \) of a derivation, we may conclude \(Q \) with justification \(a,b \to E \).

\begin{align*}
\to E \\
a. & \ P \to Q \\
b. & \ P \\
\hline \\
\ & \ Q \quad \ a,b \to E
\end{align*}

Intuitively, if it is true that \(\text{if } P \text{ then } Q \), and it is true that \(P \), then \(Q \) must be true as well. And on table (D) we saw that if both \(P \to Q \) and \(P \) are true, then \(Q \) is true. Notice that we do not somehow get the \(P \) from \(P \to Q \). Rather, we exploit \(P \to Q \) when, given that \(P \) also is true, we use \(P \to Q \) to conclude \(Q \). So this rule requires two input “cards.” The \(P \to Q \) card sits idle without a \(P \) to activate it. The order in which \(P \to Q \) and \(P \) appear does not matter so long as they are both accessible. However, you should cite them in the standard order—line for the conditional first, then the antecedent. As in the axiomatic system from \textit{chapter 3}, this rule is sometimes called \textit{modus ponens}.

Here is an example. We show, \(L, L \to (A \wedge K), (A \wedge K) \to (L \to P) \vdash_{ND_s} P \).

\begin{align*}
\text{(K)} \\
1. & \ L \ & P \\
2. & \ L \to (A \wedge K) \ & P \\
3. & \ (A \wedge K) \to (L \to P) \ & P \\
4. & \ A \wedge K \ & 2,1 \to E \\
5. & \ L \to P \ & 3,4 \to E \\
6. & \ P \ & 5,1 \to E
\end{align*}

\(L \to (A \wedge K) \) and \(L \) and are of the form \(P \to Q \) and \(P \) where \(L \) is the \(P \) and \(A \wedge K \) is \(Q \). So we use them to conclude \(A \wedge K \) by \(\to E \) on (4). But then \((A \wedge K) \to (L \to P) \) and \(A \wedge K \) are of the form \(P \to Q \) and \(P \), so we use them to conclude \(Q \), in this

\(^2\text{I- and E-rules are often called \textit{introduction} and \textit{elimination} rules. This can lead to confusion as E-rules do not necessarily eliminate anything.}\)
case, $L \rightarrow P$, on line (5). Finally $L \rightarrow P$ and L are of the form $\mathcal{P} \rightarrow \mathcal{Q}$ and \mathcal{P}, and we use them to conclude P on (6). Notice that,

\begin{align*}
\text{(L)} & \\
1. & (A \rightarrow B) \land C & P \\
2. & A & P \\
3. & B & 1,2 \rightarrow E \text{ Mistake!}
\end{align*}

misapplies the rule. $(A \rightarrow B) \land C$ is not of the form $\mathcal{P} \rightarrow \mathcal{Q}$—the main operator being \land, so that the formula is of the form $\mathcal{P} \land \mathcal{Q}$. The rule $\rightarrow E$ applies just to formulas with main operator \rightarrow. If we want to use $(A \rightarrow B) \land C$ with A to conclude B, we would first have to isolate $A \rightarrow B$ on a line of its own. We introduce a rule for this just below (and we might have done it in NP). But we do not yet have the required rule in NDs.

$\rightarrow I$ is our first rule that requires a subderivation. Once we understand this rule, the rest are mere variations on a theme. $\rightarrow I$ takes as its input an entire subderivation. Given an accessible subderivation which begins with assumption \mathcal{P} on line a and ends with \mathcal{Q} against the assumption’s scope line at b, one may conclude $\mathcal{P} \rightarrow \mathcal{Q}$ with justification $a-b \rightarrow I$.

\begin{align*}
\rightarrow I & \\
a. & \mathcal{P} & A (Q, \rightarrow I) \\
b. & \mathcal{Q} & a-b \rightarrow I & \\
\rightarrow I & \\
a. & \mathcal{P} & A (g, \rightarrow I) \\
b. & \mathcal{Q} & a-b \rightarrow I
\end{align*}

So $\mathcal{P} \rightarrow \mathcal{Q}$ is justified by a subderivation that begins with assumption \mathcal{P} and ends with \mathcal{Q}. Note that the auxiliary assumption comes with a parenthetical exit strategy: In this case the exit strategy includes the formula \mathcal{Q} with which the subderivation is to end, and an indication of the rule ($\rightarrow I$) by which exit is to be made. We might write out the entire formula inside the parentheses as indicated on the left. In practice, however, this is tedious, and it is easier just to write the formula at the bottom of the scope line where we will need it in the end. Thus in the parentheses on the right ‘g’ is a simple pointer to the goal formula at the end of the scope line. Note that the pointer is empty unless there is a formula to which it points, and the exit strategy therefore is not complete unless the goal formula is stated. In this case, the strategy includes the pointer to the goal formula, along with the indication of the rule ($\rightarrow I$) by which exit is to be made. Again, at the time we make the assumption, we write the \mathcal{Q} down as part of the strategy for exiting the subderivation. But this does not mean the \mathcal{Q} is justified! The \mathcal{Q} is rather introduced as a new goal. Notice also that the justification $a-b \rightarrow I$ does not refer to the formulas on lines a and b. These are inaccessible. Rather, the justification appeals to the subderivation which begins on line a and ends on line b—where this subderivation is accessible even though the
formulas in it are not. So there is a difference between the comma and the hyphen, as they appear in justifications.

For this rule, we assume the antecedent, reach the consequent, then discharge the assumption and conclude to the conditional by \(\rightarrow I \). Intuitively, if an assumption \(P \) leads to \(Q \) then we know that if \(P \) then \(Q \). On truth tables, if there is a sententially valid argument from some premises \(A_1 \ldots A_n \) and \(P \) to conclusion \(Q \), then there is no row where \(A_1 \ldots A_n \) are true and \(P \) is true but \(Q \) is false—but this is just to say that there is no row where \(A_1 \ldots A_n \) are true and \(P \rightarrow Q \) is false; so \(A_1 \ldots A_n \) entail \(P \rightarrow Q \).

For an example, suppose we are confronted with the following.

\[
\begin{array}{c|c}
1. & A \rightarrow B \quad P \\
2. & B \rightarrow C \quad P \\
\hline
\end{array}
\]

(M) \[
\begin{array}{c}
A \rightarrow C \\
\end{array}
\]

In general, we use an introduction rule to produce some formula—typically one already given as a goal. \(\rightarrow I \) generates \(P \rightarrow Q \) given a subderivation that starts with the \(P \) and ends with the \(Q \). Thus to reach \(A \rightarrow C \), we need a subderivation that starts with \(A \) and ends with \(C \). So we set up to reach \(A \rightarrow C \) with the assumption \(A \) and an exit strategy to produce \(A \rightarrow C \) by \(\rightarrow I \). For this we set the consequent \(C \) as a subgoal.

\[
\begin{array}{c|c}
1. & A \rightarrow B \quad P \\
2. & B \rightarrow C \quad P \\
3. & A \quad \text{(g, } \rightarrow I) \\
\hline
\end{array}
\]

\[
\begin{array}{c|c}
3. & C \\
\hline
A \rightarrow C \\
\end{array}
\]

Again, we have not yet reached \(C \) or \(A \rightarrow C \). Rather, we have assumed \(A \) and set \(C \) as a subgoal, with the strategy of terminating our subderivation by an application of \(\rightarrow I \). This much is stated in the exit strategy. We are not in a position to fill in the entire justification for \(A \rightarrow C \), but there is no harm filling in what we can, to remind us where we are going. As it happens, the new goal \(C \) is easy to get.
CHAPTER 6. NATURAL DEDUCTION

1. \(A \rightarrow B \) \(\text{P} \)
2. \(B \rightarrow C \) \(\text{P} \)
3. \(A \) \(A \ (g, \rightarrow I) \)
4. \(B \) \(1,3 \rightarrow E \)
5. \(C \) \(2,4 \rightarrow E \)
6. \(A \rightarrow C \) \(3-5 \rightarrow I \)

Having reached \(C \), and so completed the subderivation, we are in a position to execute our exit strategy and conclude \(A \rightarrow C \) by \(\rightarrow I \).

1. \(A \rightarrow B \) \(\text{P} \)
2. \(B \rightarrow C \) \(\text{P} \)
3. \(A \) \(A \ (g, \rightarrow I) \)
4. \(B \) \(1,3 \rightarrow E \)
5. \(C \) \(2,4 \rightarrow E \)
6. \(A \rightarrow C \) \(3-5 \rightarrow I \)

We appeal to the subderivation that starts with the assumption of the antecedent, and reaches the consequent. Notice that the \(\rightarrow I \) setup is driven, not by the premises, but by where we want to get. We will say something more systematic about strategy once we have introduced all the rules. But here is the fundamental idea: think goal directly.

We begin with \(A \rightarrow C \) as a goal. Our idea for producing it leads to \(C \) as a new goal. And the new goal is relatively easy to obtain.

Here is another example, one that should illustrate the above point about strategy as well as the rule. Say we want to show \(A \vdash_{\text{ND}} B \rightarrow (C \rightarrow A) \).

\[\fill \]

\[(N) \]

\[\]

\[B \rightarrow (C \rightarrow A) \]

Forget about the premise! Since the goal is of the form \(\mathcal{P} \rightarrow \mathcal{Q} \), we set up to get it by \(\rightarrow I \).

1. \(A \) \(\text{P} \)
2. \(B \) \(A \ (g, \rightarrow I) \)
3. \(C \rightarrow A \) \(2-3 \rightarrow I \)

We need a subderivation that starts with the antecedent and ends with the consequent. So we assume the antecedent, and set the consequent as a new goal. In this case, the new goal \(C \rightarrow A \) has main operator \(\rightarrow \), so we set up again to reach it by \(\rightarrow I \).
1. \(A \)
2. \(B \) \(A (g, \rightarrow I) \)
3. \(C \) \(A (g, \rightarrow I) \)

The pointer \(g \) in an exit strategy points to the goal formula at the bottom of its scope line. Thus \(g \) for assumption \(B \) at (2) points to \(C \rightarrow A \) at the bottom of its line, and \(g \) for assumption \(C \) at (3) points to \(A \) at the bottom of its line. Again, for the conditional, we assume the antecedent, and set the consequent as a new goal. And this last goal is particularly easy to reach. It follows immediately by reiteration from (1). Then it is a simple matter of executing the exit strategies with which our auxiliary assumptions were introduced.

1. \(A \)
2. \(B \) \(A (g, \rightarrow I) \)
3. \(C \) \(A (g, \rightarrow I) \)
4. \(A \) \(1 \) \(R \)
5. \(C \rightarrow A \) \(3-4 \rightarrow I \)
6. \(B \rightarrow (C \rightarrow A) \) \(2-5 \rightarrow I \)

The subderivation which begins on (3) and ends on (4) begins with the antecedent and ends with the consequent of \(C \rightarrow A \). So we conclude \(C \rightarrow A \) on (5) by 3-4 \(\rightarrow I \).

The subderivation which begins on (2) and ends at (5) begins with the antecedent and ends with the consequent of \(B \rightarrow (C \rightarrow A) \). So we reach \(B \rightarrow (C \rightarrow A) \) on (6) by 2-5 \(\rightarrow I \). Notice again how our overall reasoning is driven by the goals, rather than the premises and assumptions. It is sometimes difficult to motivate strategy when derivations are short and relatively easy. But this sort of thinking will serve you well as problems get more difficult!

Given what we have done, the E- and I-rules for \(\wedge \) are completely straightforward. If \(\mathcal{P} \land \mathcal{Q} \) appears on some accessible line \(a \) of a derivation, then you may move to the \(\mathcal{P} \) or to the \(\mathcal{Q} \) with justification \(a \wedge E \).

\[
\begin{align*}
\wedge E & \quad \mathcal{P} \land \mathcal{Q} \\
& \quad a \wedge E \\
\mathcal{P} & \quad \mathcal{Q} \\
& \quad a \wedge E
\end{align*}
\]

Either qualifies as an instance of the rule. The left-hand case was R3 from NP. Intuitively, \(\wedge E \) should be clear. If \(\mathcal{P} \) and \(\mathcal{Q} \) is true, then \(\mathcal{P} \) is true. And if \(\mathcal{P} \) and \(\mathcal{Q} \) is
true, then \(Q \) is true. We saw a table for the left-hand case in (D). The other is similar. The \(\land \) introduction rule is equally straightforward. If \(P \) and \(Q \) appear on accessible lines \(a \) and \(b \) of a derivation, then you may move to \(P \land Q \) with justification \(a,b \land \mathcal{I} \).

\[
\begin{array}{c}
a. P \\
b. Q \\
\hline
P \land Q \quad a,b \land \mathcal{I}
\end{array}
\]

The order in which \(P \) and \(Q \) appear is irrelevant, though you should cite them in the specified order, line for the left conjunct first, and then for the right. If \(P \) is true and \(Q \) is true, then \(P \land Q \) is true. Similarly, on a table, any line with both \(P \) and \(Q \) true has \(P \land Q \) true.

Here is a simple example, demonstrating the associativity of conjunction.

(O)

\[
\begin{array}{c}
1. A \land (B \land C) \\
2. A \\
3. B \land C \\
4. B \\
5. C \\
6. A \land B \\
7. (A \land B) \land C
\end{array}
\]

Notice that we could not get the \(B \) alone or the \(C \) alone without first isolating \(B \land C \) on (3). As before, our rules apply just to the main operator. In effect, we take apart the premise with the E-rule, and put the conclusion together with the I-rule. Of course, as with \(\rightarrow \mathcal{I} \) and \(\rightarrow \mathcal{E} \), rules for other operators do not always let us get to the parts and put them together in this simple and symmetric way.

A final example brings together all of the rules so far (except R).

(P)

\[
\begin{array}{c}
1. A \rightarrow C \\
2. A \land B \\
3. A \\
4. C \\
5. B \\
6. B \land C \\
7. (A \land B) \rightarrow (B \land C)
\end{array}
\]

We set up to obtain the overall goal by \(\rightarrow \mathcal{I} \). This generates \(B \land C \) as a subgoal. We get \(B \land C \) by getting the \(B \) and the \(C \).

Here is our guiding idea for strategy (which may now seem obvious): As you focus on a goal, to generate a formula with any main operator, consider producing
it by the corresponding introduction rule. Thus, if the main operator of a goal or subgoal is →, consider producing the formula by →I; if the main operator of a goal is ∧, consider producing it by ∧I. You make use of a formula with main operator → by →E and of a formula with main operator ∧ with ∧E. This much should be sufficient for you to approach the following exercises. As you approach these and other derivations, you may find the NDs quick reference on page 244 helpful. As you work the derivations, it is good simply to leave plenty of space on the page for your derivation as you state goal formulas, and let there be blank lines if room remains.3

Words to the wise:

- A common mistake made by beginning students is to assimilate other rules to ∧E and ∧I—moving, say, from P → Q alone to P or Q, or from P and Q to P → Q. Do not forget what you have learned! Do not make this mistake! The ∧ rules are particularly easy. But each operator has its own special character. Thus →E requires two “cards” to play. And →I takes a subderivation as input.

- Another common mistake is to assume a formula P merely because it would be nice to have access to P. Do not make this mistake! An assumption always comes with an exit strategy, and is useful only for application of the exit rule. At this stage, then, the only reason to assume P is to produce a formula of the sort P → Q by →I.

- Our little system NP introduced the idea of a derivation game. But we are introducing ND from scratch. At this stage, then, the only rules for derivations in NDs are R, →I, →E, ∧I and ∧E.

3Typing on a computer it is easy to push lines down if you need more room. It is not so easy with pencil and paper, and worse with pen! Typing works best with purposely designed proof software (such as D. Otto’s Deductions available in the CSUSB Logic Lab).
CHAPTER 6. NATURAL DEDUCTION

a. 1. \((A \land B) \rightarrow C\)
 2. \(B \land A\)
 3. \(B\)
 4. \(A\)
 5. \(A \land B\)
 6. \(C\)

b. 1. \((R \rightarrow L) \land [(S \lor R) \rightarrow (T \leftrightarrow K)]\)
 2. \((R \rightarrow L) \rightarrow (S \lor R)\)
 3. \(R \rightarrow L\)
 4. \(S \lor R\)
 5. \((S \lor R) \rightarrow (T \leftrightarrow K)\)
 6. \(T \leftrightarrow K\)

c. 1. \(B\)
 2. \((A \rightarrow B) \rightarrow (B \rightarrow (L \land S))\)
 3. \(A\)
 4. \(B\)
 5. \(A \rightarrow B\)
 6. \(B \rightarrow (L \land S)\)
 7. \(L \land S\)
 8. \(S\)
 9. \(L\)
 10. \(S \land L\)

d. 1. \(A \land B\)
 2. \(C\)
 3. \(A\)
 4. \(A \land C\)
 5. \(C \rightarrow (A \land C)\)
 6. \(C\)
 7. \(B\)
 8. \(B \land C\)
 9. \(C \rightarrow (B \land C)\)
 10. \([C \rightarrow (A \land C)] \land [C \rightarrow (B \land C)]\)
CHAPTER 6. NATURAL DEDUCTION

E6.6. The following are not legitimate ND derivations. In each case, explain why.

*a. 1. \((A \land B) \land (C \rightarrow B)\) P
2. \(A\) 1 \(\land\) E

b. 1. \((A \land B) \land (C \rightarrow A)\) P
2. \(C\) P
3. \(A\) 1,2 \(\rightarrow\) E

c. 1. \((R \land S) \land (C \rightarrow A)\) P
2. \(C \rightarrow A\) 1 \(\land\) E
3. \(A\) 2 \(\rightarrow\) E

d. 1. \(A \rightarrow B\) P
2. \(A \land C\) A \((g, \rightarrow I)\)
3. \(A\) 2 \(\land\) E
4. \(B\) 1,3 \(\rightarrow\) E

e. 1. \(A \rightarrow B\) P
2. \(A \land C\) A \((g, \rightarrow I)\)
3. \(A\) 2 \(\land\) E
4. \(B\) 1,3 \(\rightarrow\) E
5. \(C\) 2 \(\land\) E
6. \(A \land C\) 3,5 \(\land\) I

Hint: For this last problem, think carefully about the exit strategy and the scope lines. Do we have the conclusion where we want it?

E6.7. Provide derivations to show each of the following.
Now let us consider the I- and E-rules for \(\sim \) and \(\lor \). The two rules for \(\sim \) are quite similar to one another. Each appeals to a single subderivation. For \(\sim \text{I} \), given an accessible subderivation which begins with assumption \(\mathcal{P} \) on line \(a \), and ends with a formula of the form \(\mathcal{Q} \wedge \sim \mathcal{Q} \) against its scope line on line \(b \), one may conclude \(\sim \mathcal{P} \) by \(a-b \sim \text{I} \). For \(\sim \text{E} \), given an accessible subderivation which begins with assumption \(\sim \mathcal{P} \) on line \(a \), and ends with a formula of the form \(\mathcal{Q} \wedge \sim \mathcal{Q} \) against its scope line on line \(b \), one may conclude \(\mathcal{P} \) by \(a-b \sim \text{E} \).
~I introduces an expression with main operator tilde, adding tilde to the assumption \(\mathcal{P} \). ~E exploits the assumption ~\(\mathcal{P} \), with a result that takes the tilde off. For these rules, the formula \(Q \) may be any formula, so long as ~\(Q \) is it with a tilde in front. Because \(Q \) may be any formula, when we declare our exit strategy for the assumption, we might have no particular goal formula in mind. So, where \(g \) always points to a formula written at the bottom of a scope line, \(c \) is not a pointer to any particular formula. Rather, when we declare our exit strategy, we merely indicate our intent to obtain some contradiction, and then to exit by ~I or ~E.

Intuitively, if an assumption leads to a result that is false, the assumption is wrong. So if the assumption \(\mathcal{P} \) leads to both \(Q \) and ~\(Q \) and so to \(Q \land ~Q \), then we can discharge the assumption and conclude ~\(\mathcal{P} \); and if the assumption ~\(\mathcal{P} \) leads to \(Q \) and ~\(Q \) and so ~\(Q \land ~Q \), then we discharge the assumption and conclude \(\mathcal{P} \). On tables, there can be no row where both \(Q \) and ~\(Q \) are true; so if every row where premises \(A_1 \ldots A_n \) and \(\mathcal{P} \) are true would have to make both \(Q \) and ~\(Q \) true, there is no row where \(A_1 \ldots A_n \) and \(\mathcal{P} \) are true; so on a row where \(A_1 \ldots A_n \) are true ~\(\mathcal{P} \) is true. Similarly when the assumption is ~\(\mathcal{P} \), a row where premises \(A_1 \ldots A_n \) are true has \(\mathcal{P} \) true.

Here are some examples of these rules. Notice that, again, we introduce subderivations with the overall goal in mind.

1. \(A \rightarrow B \quad P \)
2. \(A \rightarrow \sim B \quad P \)
3. \(A \) \(A (c, \sim I) \)
4. \(B \) \(1,3 \rightarrow E \)
5. \(\sim B \) \(2,3 \rightarrow E \)
6. \(B \land \sim B \) \(4,5 \land I \)
7. \(\sim A \) \(3-6 \sim I \)

We begin with the goal of obtaining ~\(A \). The natural way to obtain this is by ~I. So we set up a subderivation with that in mind. Since the goal is ~\(A \), we begin with \(A \) and go for a contradiction. In this case, the contradiction is easy to obtain by a couple applications of \(\rightarrow E \) and then \(\land I \).

Here is another case that may be more interesting.
CHAPTER 6. NATURAL DEDUCTION

234

(R)

1. \(\neg A \quad P \)
2. \(B \rightarrow A \quad P \)
3. \(L \land B \quad A (c, \neg I) \)
4. \(B \quad 3 \land E \)
5. \(A \quad 2,4 \rightarrow E \)
6. \(A \land A \quad 5,1 \land I \)
7. \(\neg (L \land B) \quad 3-6 \neg I \)

This time, the original goal is \(\neg (L \land B) \). It is of the form \(\neg \mathcal{P} \), so we set up to obtain it with a subderivation that begins with the \(\mathcal{P} \), that is, \(L \land B \). In this case, the contradiction is \(A \lor \neg A \). Once we have the contradiction, we simply apply our exit strategy.

A simplification. For a language \(\mathcal{L} \) let \(\bot \) (bottom) abbreviate some sentence of the form \(Z \land \neg Z \)—for \(\mathcal{L}_4 \) let \(\bot \) just be \(Z \land \neg Z \). Adopt a rule \(\bot I \) as on the left below,

\[
\begin{array}{l}
\bot I \\
a. Q \\
b. \neg Q \\
\bot \quad a, b \bot I \\
\end{array}
\]

(S)

\[
\begin{array}{l}
1. Q \\
2. \neg Q \\
3. \neg \bot \quad A (c, \neg E) \\
4. Q \land \neg Q \quad 1,2 \land I \\
5. \bot \quad 3-4 \neg E \\
\end{array}
\]

Given \(Q \) and \(\neg Q \) on accessible lines, we move directly to \(\bot \) by \(\bot I \). This is an example of a derived rule. For given \(Q \) and \(\neg Q \), we can always derive \(\bot \) as in (S) on the right. Thus we allow ourselves to shortcut the routine by introducing \(\bot I \) as a derived rule. We will see examples of additional derived rules in section 6.2.5. For now, the important thing is that since \(\bot \) abbreviates \(Z \land \neg Z \) we operate with \(\bot \) as we might operate with \(Z \land \neg Z \). Especially, given this abbreviation, our \(\neg I \) and \(\neg E \) rules appear in forms,

\[
\begin{array}{l}
a. \mathcal{P} \quad A (c, \neg I) \\
b. \bot \quad \neg E \\
\end{array}
\]

\[
\begin{array}{l}
a. \neg \mathcal{P} \quad A (c, \neg E) \\
b. \bot \quad \mathcal{P} \quad a-b \neg E \\
\end{array}
\]

Since \(\bot \) is (abbreviates) \(Z \land \neg Z \), the subderivations for \(\neg I \) and \(\neg E \) are appropriately concluded with \(\bot \). With \(\bot \) as their last line, subderivations for \(\neg I \) and \(\neg E \) have a particular goal sentence very much like \(\rightarrow I \). However, the \(Q \) and \(\neg Q \) required to

\[\text{\footnote{\(\bot \) is often introduced as a primitive symbol. We have chosen not to extend the primitives, and so to treat it as an abbreviation. On the above account, then, one might derive \(\bot \) from \(Z \) and \(\neg Z \) by \(\land I \); or use \(\land E \) to conclude \(Z \) or \(\neg Z \) from \(\bot \).}}\]
CHAPTER 6. NATURAL DEDUCTION

obtain ⊥ by ⊥I are the same as would be required for \(Q \land \neg Q \) on the original form of the rules. For this reason, we declare our exit strategy with a \(c \) rather than \(g \) any time the goal is ⊥. At one level, this simplification is a mere notational convenience: having obtained \(Q \) and \(\neg Q \), we move to ⊥, instead of writing out the complex conjunction \(Q \land \neg Q \). However, there are contexts where it will be convenient to have a particular contradiction as goal. Thus this is the standard form in which we use these rules.

Here is an example of the rules in this form, this time for \(\sim E \).

\[
\begin{align*}
1. & \quad \sim A & P \\
2. & \quad \sim A & A (c, \sim E) \\
3. & \quad \bot & 2,1 \bot I \\
4. & \quad A & 2-3 \sim E
\end{align*}
\]

It is no surprise that we can derive \(A \) from \(\sim \sim A \). This is how to do it in \(NDs \). Again, do not begin by thinking about the premise. The goal is \(A \), and we can get it with a subderivation that starts with \(\sim A \), by a \(\sim E \) exit strategy. In this case the \(Q \) and \(\sim Q \) for \(\bot I \) are \(\sim A \) and \(\sim \sim A \)—that is \(\sim A \) and \(\sim A \) with a tilde in front of it. Though very often (at least in the beginning) an atomic and its negation will do for your contradiction, \(Q \) and \(\sim Q \) need not be simple. Observe that \(\sim E \) is a strange and powerful rule: Though an E-rule, effectively it can be used in pursuit of any goal whatsoever—to obtain formula \(P \) by \(\sim E \), all one has to do is obtain a contradiction from the assumption of \(P \) with a tilde in front. As in this last example (T), \(\sim E \) is particularly useful when the goal is an atomic formula, and thus without a main operator, so that there is no straightforward way for regular introduction rules to apply. In this way, it plays the role of a sort of “backdoor” introduction rule.

The \(\vee I \) and \(\vee E \) rules apply methods we have already seen. For \(\vee I \), given an accessible formula \(P \) on line \(a \), one may move to either \(\vee Q \) or to \(Q \vee P \) for any formula \(Q \), with justification \(a \ \vee I \).

\[
\begin{align*}
\text{a.} & \quad P \\
\text{a.} & \quad Q
\end{align*}
\]

\[
\begin{align*}
\vee I & \quad \vee Q \\
\text{a \ \vee I} & \quad Q \vee P \\
\text{a \ \vee I} & \quad P
\end{align*}
\]

The left-hand case was R4 from \(NP \). Table (D) exhibits the left-hand case. And the other side should be clear as well: Any row of a table where \(P \) is true has both \(P \vee Q \) and \(Q \vee P \) true.

Here is a simple example.
It is easy to get R once we have $P \lor Q$. And we build $P \lor Q$ directly from the P. Note that we could have done the derivation as well if (2) had been, say, $(P \lor [K \land (L \leftrightarrow T)]) \rightarrow R$ and we used $\lor I$ to add $[K \land (L \leftrightarrow T)]$ to the P all at once.

The inputs to $\lor E$ are a formula of the form $\mathcal{P} \lor \mathcal{Q}$ and two subderivations. Given an accessible formula of the form $\mathcal{P} \lor \mathcal{Q}$ on line a, with an accessible subderivation beginning with assumption \mathcal{P} on line b and ending with conclusion \mathcal{C} against its scope line at c, and an accessible subderivation beginning with assumption \mathcal{Q} on line d and ending with conclusion \mathcal{C} against its scope line at e, one may conclude \mathcal{C} with justification $a,b-c,d-e \lor E$.

\[\begin{array}{ll}
1. & P \\
2. & (P \lor Q) \rightarrow R \\
3. & P \lor Q \\
4. & R \\
\end{array}\]

\(\rightarrow E\)

Given a disjunction $\mathcal{P} \lor \mathcal{Q}$, one subderivation begins with \mathcal{P}, and the other with \mathcal{Q}; both conclude with \mathcal{C}. This time our exit strategy includes markers for the new subgoals, along with a notation that we exit by appeal to the disjunction on line a and $\lor E$. Intuitively, if we know it is one or the other, and both lead to some conclusion, then the conclusion must be true. Here is an example a student gave me near graduation time: She and her mother were shopping for a graduation dress. They narrowed it down to dress A or dress B. Dress A was expensive, and if they bought it, her mother would be mad. But dress B was ugly and if they bought it the student would complain and her mother would be mad. Conclusion: her mother would be mad—and this without knowing which dress they were going to buy! On a truth table, if rows where \mathcal{P} is true have \mathcal{C} true, and rows where \mathcal{Q} is true have \mathcal{C} true, then any row with $\mathcal{P} \lor \mathcal{Q}$ true must have one of \mathcal{P} or \mathcal{Q} true and so \mathcal{C} true as well.

Here are a couple of examples. The first is straightforward, and illustrates both the $\lor I$ and $\lor E$ rules.

\[\begin{array}{ll}
a. & \mathcal{P} \lor \mathcal{Q} \\
b. & \mathcal{P} \\
c. & \mathcal{C} \\
d. & \mathcal{Q} \\
e. & \mathcal{C} \\
\end{array}\]

\(\lor E\)

\[\begin{array}{ll}
a,b,c,d-e \lor E \\
\end{array}\]
We have the disjunction $A \lor B$ as premise, and original goal $B \lor C$. And we set up to obtain the goal by $\lor E$. For this, one subderivation starts with A and ends with $B \lor C$, and the other starts with B and ends with $B \lor C$. As it happens, these subderivations are easy to complete.

Very often, beginning students resist using $\lor E$—no doubt because it is relatively messy. But this is a mistake—$\lor E$ is your friend! In fact, with this rule, we have a case where it pays to look at accessible formulas for general strategy. If you have an accessible line of the form $P \lor Q$, go for your goal, whatever it is, by $\lor E$. Here is why: As you go for the goal in the first subderivation, you have whatever sentences were accessible before, plus P; and as you go for the goal in the second subderivation, you have whatever sentences were accessible before plus Q. So you can only be better off in your quest to reach the goal. In many cases where an accessible formula has main operator \lor, there is no way to complete the derivation except by $\lor E$. The above example (V) is a case in point.

Here is a relatively messy example, which should help you be sure you understand the \lor rules. It illustrates the associativity of disjunction.
The premise has main operator \lor. So we set up to obtain the goal by \lorE. This gives us subderivations starting with A and $B \lor C$, each with $(A \lor B) \lor C$ as goal. The first is easy to complete by a couple instances of \lorI. But the assumption of the second, $B \lor C$ has main operator \lor. So we set up to obtain its goal by \lorE. This gives us subderivations starting with B and C, each again having $(A \lor B) \lor C$ as goal. Again, these are easy to complete by application of \lorI. The final result follows by the planned applications of \lorE. If you have been able to follow this case, you are doing well!

E6.8. Complete the following derivations by filling in justifications for each line.

a. 1. $\sim B$
2. $(\sim A \lor C) \rightarrow (B \land C)$
3. $\sim A$
4. $\sim A \lor C$
5. $B \land C$
6. B
7. \bot
8. A
b. 1. \(R \)
2. \(\neg (S \lor T) \)
3. \(R \rightarrow S \)
4. \(S \)
5. \(S \lor T \)
6. \(\bot \)
7. \(\neg (R \rightarrow S) \)

c. 1. \((R \land S) \lor (K \land L) \)
2. \(R \land S \)
3. \(R \)
4. \(S \)
5. \(S \land R \)
6. \((S \land R) \lor (L \land K) \)
7. \(K \land L \)
8. \(K \)
9. \(L \)
10. \(L \lor K \)
11. \((S \land R) \lor (L \land K) \)
12. \((S \land R) \lor (L \land K) \)

d. 1. \(A \lor B \)
2. \(A \)
3. \(A \rightarrow B \)
4. \(B \)
5. \((A \rightarrow B) \rightarrow B \)
6. \(B \)
7. \(A \rightarrow B \)
8. \(B \)
9. \((A \rightarrow B) \rightarrow B \)
10. \((A \rightarrow B) \rightarrow B \)
E6.9. The following are not legitimate NDs derivations. In each case, explain why.

a. 1. \(A \lor B \quad P \)
 2. \(B \quad 1 \lor E \)

b. 1. \(\neg A \quad P \)
 2. \(B \rightarrow A \quad P \)
 3. \(B \quad A (c, \neg I) \)
 4. \(A \quad 2,3 \rightarrow E \)
 5. \(\neg B \quad 3-4 \neg I \)

*c. 1. \(W \quad P \)
 2. \(R \quad A (c, \neg I) \)
 3. \(\neg W \quad A (c, \neg E) \)
 4. \(\bot \quad 1,3 \bot I \)
 5. \(W \quad 3-4 \neg E \)
 6. \(\neg R \quad 2-5 \neg I \)
E6.10. Produce derivations to show each of the following.

a. \(\sim A \vdash_{NDs} \sim (A \land B) \)

b. \(A \vdash_{NDs} \sim \sim A \)

c. \(\sim A \rightarrow B, \sim B \vdash_{NDs} A \)

d. \(A \rightarrow B \vdash_{NDs} \sim (A \land \sim B) \)

e. \(\sim A \rightarrow B, B \rightarrow A \vdash_{NDs} A \)

f. \(A \land B \vdash_{NDs} (R \leftrightarrow S) \lor B \)

g. \(A \lor (A \land B) \vdash_{NDs} A \)

h. \(S, (B \lor C) \rightarrow \sim S \vdash_{NDs} \sim B \)

i. \(A \lor B, A \rightarrow B, B \rightarrow A \vdash_{NDs} A \land B \)

j. \(A \rightarrow B, (B \lor C) \rightarrow D, D \rightarrow \sim A \vdash_{NDs} \sim A \)

k. \(A \lor B \vdash_{NDs} B \lor A \)
6.2.3 \(\leftrightarrow \)

We complete our presentation of rules for NDs with the rules \(\leftrightarrow E \) and \(\leftrightarrow I \). Given that \(P \leftrightarrow Q \) abbreviates the same as \((P \rightarrow Q) \land (Q \rightarrow P) \), it is not surprising that rules for \(\leftrightarrow \) work like ones for arrow, but going two ways. For \(\leftrightarrow E \), if formulas \(P \leftrightarrow Q \) and \(P \) appear on accessible lines \(a \) and \(b \) of a derivation, we may conclude \(Q \) with justification \(a,b \leftrightarrow E \); and similarly but in the other direction, if formulas \(P \leftrightarrow Q \) and \(Q \) appear on accessible lines \(a \) and \(b \) of a derivation, we may conclude \(P \) with justification \(a,b \leftrightarrow E \).

\[
\begin{array}{c|c}
\leftrightarrow E & \leftrightarrow I \\
\hline
a. & a. \\
b. & b. \\
P \leftrightarrow Q & P \leftrightarrow Q \\
\hline
Q & P \\
\hline
\text{a,b } \leftrightarrow E & \text{a,b } \leftrightarrow E
\end{array}
\]

\(P \leftrightarrow Q \) thus works like either \(P \rightarrow Q \) or \(Q \rightarrow P \). Intuitively given \(P \) if and only if \(Q \), then if \(P \) is true, \(Q \) is true. And given \(P \) if and only if \(Q \), then if \(Q \) is true \(P \) is true. On tables, if \(P \leftrightarrow Q \) is true, then \(P \) and \(Q \) have the same truth value. So if \(P \leftrightarrow Q \) is true and \(P \) is true, \(Q \) is true as well; and if \(P \leftrightarrow Q \) is true and \(Q \) is true, \(P \) is true as well.

Given that \(P \leftrightarrow Q \) can be exploited like \(P \rightarrow Q \) or \(Q \rightarrow P \), it is not surprising that introducing \(P \leftrightarrow Q \) is like introducing both \(P \rightarrow Q \) and \(Q \rightarrow P \). The input to \(\leftrightarrow I \) is two subderivations. Given an accessible subderivation beginning with assumption \(P \) on line \(a \) and ending with conclusion \(Q \) against its scope line on \(b \), and an accessible subderivation beginning with assumption \(Q \) on line \(c \) and ending with conclusion \(P \) against its scope line on \(d \), one may conclude \(P \leftrightarrow Q \) with justification, \(a-b,c-d \leftrightarrow I \).
CHAPTER 6. NATURAL DEDUCTION

Intuitively, if an assumption \(\mathcal{P} \) leads to \(\mathcal{Q} \) and the assumption \(\mathcal{Q} \) leads to \(\mathcal{P} \), then we know that if \(\mathcal{P} \) then \(\mathcal{Q} \), and if \(\mathcal{Q} \) then \(\mathcal{P} \)—which is to say that \(\mathcal{P} \) if and only if \(\mathcal{Q} \). On truth tables, if there is a sententially valid argument from premises \(A_1 \ldots A_n \) and \(\mathcal{P} \) to conclusion \(\mathcal{Q} \), then there is no row where \(A_1 \ldots A_n \) are true and \(\mathcal{P} \) is true and \(\mathcal{Q} \) is false; and if there is a sententially valid argument from \(A_1 \ldots A_n \) and \(\mathcal{Q} \) to conclusion \(\mathcal{P} \), then there is no row where \(A_1 \ldots A_n \) are true and \(\mathcal{Q} \) is true and \(\mathcal{P} \) is false; so on rows where \(A_1 \ldots A_n \) are true, it is not the case that one of \(\mathcal{P} \) or \(\mathcal{Q} \) is true and the other is false; so the biconditional \(\mathcal{P} \leftrightarrow \mathcal{Q} \) is true.

Here are a couple of examples. The first is straightforward, and exercises both the \(\leftrightarrow I \) and \(\leftrightarrow E \) rules. We show, \(A \leftrightarrow B, B \leftrightarrow C \vdash_{\text{NDs}} A \leftrightarrow C \).

\[\begin{align*}
1. & A \leftrightarrow B & P \\
2. & B \leftrightarrow C & P \\
3. & A & A (g, \leftrightarrow I) \\
4. & B & 1,3 \leftrightarrow E \\
5. & C & 2,4 \leftrightarrow E \\
6. & C & A (g, \leftrightarrow I) \\
7. & B & 2,6 \leftrightarrow E \\
8. & A & 1,7 \leftrightarrow E \\
9. & A \leftrightarrow C & 3-5,6-8 \leftrightarrow I \\
\end{align*}\]

Our original goal is \(A \leftrightarrow C \). So it is natural to set up subderivations to get it by \(\leftrightarrow I \). Once we have done this, the subderivations are easily completed by applications of \(\leftrightarrow E \).

Here is an interesting case that again exercises both rules. We show, \(A \leftrightarrow (B \leftrightarrow C), C \vdash_{\text{NDs}} A \leftrightarrow B \).
NDs Quick Reference

<table>
<thead>
<tr>
<th>Derived Rule</th>
<th>R (reiteration)</th>
<th>~I (negation intro)</th>
<th>~E (negation exploit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (P)</td>
<td>a. (P)</td>
<td>a. (A (c, \sim I))</td>
<td>a. (\sim P)</td>
</tr>
<tr>
<td>(P) a R</td>
<td>b. (Q \land \sim Q (\bot))</td>
<td>b. (Q \land \sim Q (\bot))</td>
<td>(P) a-b ~I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Derived Rule</th>
<th>(\land I) (conjunction intro)</th>
<th>(\land E) (conjunction exploit)</th>
<th>(\land E) (conjunction exploit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (P)</td>
<td>a. (P \land Q)</td>
<td>a. (P \land Q)</td>
<td></td>
</tr>
<tr>
<td>b. (Q)</td>
<td>(P \land Q) a, b (\land I)</td>
<td>(P \land Q) a, (\land E)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Derived Rule</th>
<th>(\lor I) (disjunction intro)</th>
<th>(\lor I) (disjunction intro)</th>
<th>(\lor E) (disjunction exploit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (P)</td>
<td>a. (P \lor Q)</td>
<td>a. (P \lor Q)</td>
<td></td>
</tr>
<tr>
<td>(P \lor Q) a (\lor I)</td>
<td>(P \lor Q) a (\lor I)</td>
<td>(P \lor Q) A (g, a \lor E)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Derived Rule</th>
<th>(\rightarrow I) (conditional intro)</th>
<th>(\rightarrow E) (conditional exploit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (P)</td>
<td>a. (P \rightarrow Q)</td>
<td>a. (P \rightarrow Q)</td>
</tr>
<tr>
<td>(P \rightarrow Q) a-b (\rightarrow I)</td>
<td>(P \rightarrow Q) a-b (\rightarrow E)</td>
<td>(P \rightarrow Q) a-b (\rightarrow E)</td>
</tr>
</tbody>
</table>

| Derived Rule | \(
\leftrightarrow I \) (biconditional intro) | \(
\leftrightarrow E \) (biconditional exploit) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (P)</td>
<td>a. (P \leftrightarrow Q)</td>
<td>a. (P \leftrightarrow Q)</td>
</tr>
<tr>
<td>b. (P \leftrightarrow Q) a-b (\leftrightarrow I)</td>
<td>(P \leftrightarrow Q) a-b (\leftrightarrow E)</td>
<td>(P \leftrightarrow Q) a-b (\leftrightarrow E)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Derived Rule</th>
<th>(\bot I) (bottom intro)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (Q)</td>
<td>b. (\sim Q)</td>
</tr>
<tr>
<td>(\bot)</td>
<td>a-b (\bot I)</td>
</tr>
</tbody>
</table>

derived rule:
\[\bot \rightarrow \bot I \]
We begin by setting up the subderivations to get \(A \leftrightarrow B \) by \(\leftrightarrow I \). The first is easily completed with a couple applications of \(\leftrightarrow E \). To reach the goal for the second by means of the premise (1) we need \(B \leftrightarrow C \) as our second “card.” So we set up to reach that. As it happens, the extra subderivations at (7)–(8) and (9)–(10) are easy to complete. Again, if you have followed so far, you are doing well. We will be in a better position to create such derivations after our discussion of strategy.

So much for the rules of NDs. Before we turn in the next section to strategy, let us note a couple of features of the rules that may so-far have gone without notice. First, premises are not always necessary for NDs derivations. Thus, for example, \(\vdash_{\text{NDs}} A \to A \).

If there are no premises, do not panic! Begin in the usual way. In this case, the original goal is \(A \to A \). So we set up to obtain it by \(\to I \). And the subderivation is particularly simple. Notice that our derivation of \(A \to A \) corresponds to the fact from truth tables that \(\models_s A \to A \). And we need to be able to derive \(A \to A \) from no premises if there is to be the right sort of correspondence between derivations in NDs and semantic validity—if we are to have \(\Gamma \models_s \mathcal{P} \iff \Gamma \vdash_{\text{NDs}} \mathcal{P} \).

Second, observe again that every subderivation comes with an exit strategy. The exit strategy says whether you intend to complete the subderivation with a particular
goal or by obtaining a contradiction, and then how the subderivation is to be used once complete. There are just five rules which appeal to a subderivation: →I, ¬I, ¬I, ∨E, and ↔I. You will complete the subderivation, and then use it by one of these rules. So these are the only rules which may appear in an exit strategy. If you do not understand this, then you need to go back and think about the rules until you do.

Finally, it is worth noting a strange sort of case, with application to rules that can take more than one input of the same type. Consider a simple demonstration that $A \vdash_{\text{NDs}} A \land A$. We might proceed as in (AA) on the left,

$$
\text{(AA)} \quad \begin{array}{c}
1. A \\
2. A \\
3. A \land A
\end{array} \quad \begin{array}{c}
1. A \\
2. A
\end{array}
$$

We begin with A, reiterate so that A appears on different lines, and apply \landI. But we might have proceeded as in (AB) on the right. The rule requires an accessible line on which the left conjunct appears—which we have at (1), and an accessible line on which the right conjunct appears which we also have on (1). So the rule takes an input for the left conjunct and an input for the right—they just happen to be the same thing.

A similar point applies to rules \landE and \leftrightarrowI which take more than one subderivation as input. Suppose we want to show $A \lor A \vdash_{\text{NDs}} A$.

$$
\text{(AC)} \quad \begin{array}{c}
1. A \lor A \\
2. A \\
3. A \\
4. A \\
5. A
\end{array} \quad \begin{array}{c}
1. A \lor A \\
2. A \\
3. A \\
4. A
\end{array}
$$

In (AC), we begin in the usual way to get the main goal by \lorE. This leads to the subderivations (2)–(3) and (4)–(5), the first moving from the left disjunct to the goal, and the second from the right disjunct to the goal. But the left and right disjuncts are the same. So we might have simplified as in (AD). \lorE still requires three inputs: First an accessible disjunction, which we find on (1); second an accessible subderivation which moves from the left disjunct to the goal, which we find on (2)–(3); third a subderivation which moves from the right disjunct to the goal—but we have this on (2)–(3). So the justification at (4) of (AD) appeals to the three relevant facts, by

I am reminded of a character in *Groundhog Day* (film, 1993) who repeatedly asks, “Am I right or am I right?” If he is right or he is right, it follows that he is right.
appeal to the same subderivation twice. Similarly one could imagine a quick-and-dirty demonstration that $\vdash_{\text{ND}} A \leftrightarrow A$.

E6.11. Complete the following derivations by filling in justifications for each line.

a. 1. $A \leftrightarrow B$
 2. A
 3. B
 4. $A \rightarrow B$

b. 1. $A \leftrightarrow B$
 2. $\sim B$
 3. A
 4. B
 5. \bot
 6. $\sim A$

c. 1. $A \leftrightarrow \sim A$
 2. A
 3. $\sim A$
 4. \bot
 5. $\sim A$
 6. A
 7. \bot
 8. $(A \leftrightarrow \sim A)$

d. 1. A
 2. $\sim A$
 3. A
 4. $\sim A \rightarrow A$
 5. $\sim A \rightarrow A$
 6. $\sim A$
 7. A
 8. \bot
 9. A
 10. $A \leftrightarrow (\sim A \rightarrow A)$
E6.12. Each of the following are not legitimate NDs derivations. In each case, explain why.

a. 1. \(A \) P
2. \(B \) P
3. \(A \leftrightarrow B \) 1,2 \(\leftrightarrow \)I

b. 1. \(A \rightarrow B \) P
2. \(B \) P
3. \(A \) 1,2 \(\rightarrow \)E

*c. 1. \(A \leftrightarrow B \) P
2. \(A \leftrightarrow E \)

 d. 1. \(B \) P
2. \(A \) \(A (g, \leftrightarrow I) \)
3. \(B \) 1 R
4. \(B \) \(A (g, \leftrightarrow I) \)
5. \(A \) 2 R
6. \(A \leftrightarrow B \) 2-3,4-5 \(\leftrightarrow \)I
CHAPTER 6. NATURAL DEDUCTION

249

E6.13. Produce derivations to show each of the following.

*a. (A \land B) \leftrightarrow A \vdash_{\text{NDs}} A \rightarrow B

b. A \leftrightarrow (A \lor B) \vdash_{\text{NDs}} B \rightarrow A

c. A \leftrightarrow B, B \leftrightarrow C, C \leftrightarrow D, \sim A \vdash_{\text{NDs}} \sim D

d. A \leftrightarrow B \vdash_{\text{NDs}} (A \rightarrow B) \land (B \rightarrow A)

*e. A \leftrightarrow (B \land C), B \vdash_{\text{NDs}} A \leftrightarrow C

f. (A \rightarrow B) \land (B \rightarrow A) \vdash_{\text{NDs}} (A \leftrightarrow B)

g. A \rightarrow (B \leftrightarrow C) \vdash_{\text{NDs}} (A \land B) \leftrightarrow (A \land C)

h. A \leftrightarrow B, C \leftrightarrow D \vdash_{\text{NDs}} (A \land C) \leftrightarrow (B \land D)

i. \vdash_{\text{NDs}} A \leftrightarrow A

j. \vdash_{\text{NDs}} (A \land B) \leftrightarrow (B \land A)

*k. \vdash_{\text{NDs}} \sim A \leftrightarrow A

l. \vdash_{\text{NDs}} (A \leftrightarrow B) \rightarrow (B \leftrightarrow A)

m. (A \land B) \leftrightarrow (A \land C) \vdash_{\text{NDs}} A \rightarrow (B \leftrightarrow C)

n. \sim A \rightarrow B, A \rightarrow \sim B \vdash_{\text{NDs}} \sim A \leftrightarrow B

o. A, B \vdash_{\text{NDs}} \sim A \leftrightarrow \sim B
6.2.4 Strategy

It is natural to introduce derivation rules, as we have, with relatively simple cases. And you may or may not have been able to see from the start in some cases how derivations would go. But derivations are not always simple, and it is beyond human power always to see how they go. Perhaps this has already been an issue! As we shall see, for the quantificational case at least, it is not possible to produce a mechanical algorithm adequate to complete every completable derivation (see page 833). However, as with chess or other games of strategy, it is possible to say a good deal about how to approach problems effectively. We have said quite a bit already. In this section, we pull together some of the themes and present the material more systematically.

In doing derivations there are two fundamentally different contexts. In the one case, you have some accessible lines, and want a definite goal sentence. In the other, there are some accessible lines, and you want a contradiction.

<table>
<thead>
<tr>
<th>a.</th>
<th>A</th>
<th>a.</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>b.</td>
<td>B</td>
<td>b.</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>(goal sentence)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(contradiction)</td>
</tr>
</tbody>
</table>

The different contexts motivate separate strategies for a goal and strategies for a contradiction. In the first case, strategies for a goal help reach a known goal formula. But in the other case you want some \(Q \) and \(\neg Q \), where it may not be clear what this \(Q \) should be; thus strategies for a contradiction help discover the formula you need.

First, strategies for a goal.

Strategies for a Goal

For natural derivation systems, the overriding strategy is to work goal directly. What you do at any stage is directed primarily, not by what you have, but by where you want to be. Suppose you are trying to show that \(\Gamma \models_{NDe} \mathcal{P} \). You are given \(\mathcal{P} \) as your goal. Perhaps it is tempting to begin by using E-rules to “see what you can get” from the members of \(\Gamma \). There is nothing wrong with a bit of this in order to simplify your premises (like arranging the cards in your hand into some manageable order), but the main work of doing a derivation does not begin until you focus on the goal. This is not to say that your premises play no role in strategic thinking. Rather, it is to rule out doing things with them which are not purposefully directed at the end. In the ordinary case, applying the strategies for your goal dictates some new goal; applying
strategies for this new goal dictates another; and so forth, until you come to a goal that is easily achieved.

The following strategies for a goal are arranged in rough priority order:

SG 1. If accessible lines contain explicit contradiction, use \(\sim E \) to reach goal.
2. Given an accessible formula with main operator \(\lor \), use \(\lor E \) to reach goal.
3. If goal is “in” accessible lines (set goals and) attempt to exploit it out.
4. To reach goal with main operator \(\star \), use \(\star I \) (careful with \(\lor \)).
5. Try \(\sim E \) (especially for atomics and sentences with \(\lor \) as main operator).

If a high priority strategy applies, use it. If one does not apply, simply “fall through” to the next. The priority order is not necessarily a frequency order. The frequency will likely be something like SG4, SG3, SG5, SG2, SG1. But high priority strategies are such that you should adopt them if they are available—even though most often you will fall through to ones that are more frequently used. I take up the strategies in the priority order.

SG1. If accessible lines contain explicit contradiction, use \(\sim E \) to reach goal. For goal \(B \), with an explicit contradiction accessible, you can simply assume \(\sim B \), use your contradiction, and conclude \(B \).

\[
\begin{array}{c|c}
\text{given} & \text{use} \\
\hline
A & A \\
\sim A & \sim A \\
\hline
B & \sim B \\
& A (c, \sim E) \\
& \bot \\
& a,b \bot I \\
B & c-d \sim E \\
\end{array}
\]

That is it! No matter what your goal is, given an accessible contradiction, you can reach that goal by \(\sim E \). Since this strategy always delivers, you should jump on it whenever it is available. As an example, try to show, \(A, \sim A \vdash_{ND} (R \land S) \rightarrow T \). Your derivation need not involve \(\rightarrow I \). (This section will be most valuable if you do work these examples, and so think through the steps.) Here it is in two stages.

\[
\begin{array}{c|c}
1. & A \\
2. & \sim A \\
\hline
\text{(AE)} & \sim [(R \lor S) \rightarrow T] \\
& A (c, \sim E) \\
& \bot \\
& 1.2 \bot I \\
(R \lor S) \rightarrow T & 3- \sim E \\
\end{array}
\]

\[
\begin{array}{c|c}
1. & A \\
2. & \sim A \\
3. & \sim [(R \lor S) \rightarrow T] \\
4. & \bot \\
5. & (R \lor S) \rightarrow T \\
\hline
& 3-4 \sim E \\
\end{array}
\]
As soon as we see the accessible contradiction, we assume the negation of our goal, with a plan to exit by \(\sim E \). This is accomplished on the left. Then it is a simple matter of applying the contradiction, and going to the conclusion by \(\sim E \).

For this strategy, it is not required that accessible lines “contain” a contradiction only when you already have \(Q \) and \(\sim Q \) for \(\bot I \). However, the intent is that there should be some straightforward way to obtain them. It should be possible to obtain the contradiction directly by some \(E \)-rule(s). If you can do this, then your derivation is over: assuming the opposite, applying the rules and then \(\sim E \) reaches the goal. If there is no simple way to obtain a contradiction, fall through to the next strategy.

SG2. Given an accessible formula with main operator \(\lor \), use \(\lor E \) to reach goal. As suggested above, you may prefer to avoid \(\lor E \). But this is a mistake—\(\lor E \) is your friend! Suppose you have some accessible lines including a disjunction \(A \lor B \) with goal \(C \). If you go for *that very goal* by \(\lor E \), the result is a pair of subderivations with goal \(C \)—where, in the one case, all those very same accessible lines and \(A \) are accessible, and in the other case, all those very same lines and \(B \) are accessible. So, in each subderivation, you can only be better of in your attempt to reach \(C \).

\[
\begin{align*}
given & \quad \begin{array}{c} \lor \quad \text{(goal)} \\
A \land B & \quad \text{use} \\
C & \quad \text{(goal)} \\
\end{array} \\
\begin{array}{c} \lor \quad \text{(goal)} \\
A & \quad (g, a \lor E) \\
B & \quad (g, a \lor E) \\
\end{array} \\
\end{align*}
\]

As an example, try to show, \(A \rightarrow B \), \(A \lor (A \land B) \vdash_{ND} A \land B \). Try showing it without \(\lor E \)! Here is the derivation in stages.

\[
\begin{align*}
\text{(AF)} \quad & 1. \quad A \rightarrow B & P \\
& 2. \quad A \lor (A \land B) & P \\
& 3. \quad A & (g, 2\lor E) \\
& 4. \quad 1, 3 \rightarrow E \\
& 5. \quad A \land B & 3, 4 \land I \\
& 6. \quad A \land B & (g, 2\lor E) \\
& 7. \quad A \land B & 6 \land R \\
& 8. \quad A \land B & 2, 3, _ , _ \lor E \\
\end{align*}
\]
When we start, there is no accessible contradiction. So we fall through to SG2. Since a premise has main operator \(\lor\), we set up to get the goal by \(\lor E\). This leads to a pair of simple subderivations. Once we do this, we treat the disjunction as effectively “used up” so that SG2 does not apply to it again. Notice that there is almost nothing one could do except set up this way—and that once you do, it is easy!

SG3. If goal is “in” accessible lines (set goals and) attempt to exploit it out. In most derivations, you will work toward goals which are successively closer to what can be obtained directly from accessible lines. And you finally come to a goal which can be obtained directly. If it can be obtained directly, do so! In some cases, however, you will come to a stage where your goal exists in accessible lines but can be obtained only by means of some other result. In this case, you can set that other result as a new goal. A typical case is as follows.

Given:

\[
\begin{align*}
\text{a.} & \quad A \rightarrow B \\
\text{b.} & \quad B
\end{align*}
\]

Use:

\[
\begin{align*}
\text{a.} & \quad A \rightarrow B \\
\text{b.} & \quad A \\
\text{c.} & \quad a,b \rightarrow E
\end{align*}
\]

The \(B\) exists in the premises. You cannot get it without the \(A\). So you set \(A\) as a new goal and use it to get the \(B\). But this is not the only context where SG3 applies. The idea is that the complete goal exists in accessible lines, and can be obtained directly by reiteration, by an \(E\)-rule, or by an \(E\)-rule with some new goal. Observe that the strategy would not apply in case you have \(A \rightarrow B\) and are going for \(A\). Then the goal exists as part of a premise all right. But there is no obvious result such that obtaining it would give you a way to exploit \(A \rightarrow B\) to get the \(A\).

As an example, let us try to show \((A \rightarrow B) \land (B \rightarrow C), (L \leftrightarrow S) \rightarrow A, (L \leftrightarrow S) \land H \vdash_{\text{NDs}} C\). Here is the derivation in four stages.

\[
\begin{align*}
\text{1.} & \quad (A \rightarrow B) \land (B \rightarrow C) & \text{P} \\
\text{2.} & \quad (L \leftrightarrow S) \rightarrow A & \text{P} \\
\text{3.} & \quad (L \leftrightarrow S) \land H & \text{P} \\
\text{4.} & \quad B \rightarrow C & \text{1 } \land \text{E} \\
\text{5.} & \quad A \rightarrow B & \text{1 } \land \text{E}
\end{align*}
\]

\[
\begin{align*}
\text{AG} \\
\text{B} & \quad A \\
\text{C} & \quad B \\
\text{} & \quad C \\
\text{41 } \rightarrow \text{E} & \quad 51 \rightarrow \text{E} & \quad 41 \rightarrow \text{E}
\end{align*}
\]

The original goal \(C\) exists in the premises, as the consequent of the right conjunct of (1). It is easy to isolate the \(B \rightarrow C\), but this leaves us with the \(B\) as a new goal to
get the C. B also exists in the premises, as the consequent of the left conjunct of (1). Again, it is easy to isolate $A \Rightarrow B$, but this leaves us with A as a new goal.

1. $(A \Rightarrow B) \land (B \Rightarrow C)$ \hspace{1em} P
2. $(L \Leftrightarrow S) \Rightarrow A$ \hspace{1em} P
3. $(L \Leftrightarrow S) \land H$ \hspace{1em} P
4. $B \Rightarrow C$ \hspace{1em} 1 \land E
5. $A \Rightarrow B$ \hspace{1em} 1 \land E

$L \Leftrightarrow S$

6. A \hspace{1em} 2, _ \rightarrow E
7. A \hspace{1em} 2,6 \rightarrow E
8. B \hspace{1em} 5,7 \rightarrow E
9. C \hspace{1em} 4,8 \rightarrow E

But A also exists in the premises, as the consequent of (2); to get it, we set $L \Leftrightarrow S$ as a goal. But $L \Leftrightarrow S$ exists in the premises, and is easy to get by $\land E$. So we complete the derivation with the steps that motivated the subgoals in the first place. Observe the way we move from one goal to the next, until finally there is a stage where $SG3$ applies in its simplest form, so that $L \Leftrightarrow S$ is obtained directly. Another example of this strategy is derivation (Y) above where we needed A to complete the second subderivation and so set $B \Leftrightarrow C$ as goal.

SG4. To reach goal with main operator \ast, use $\ast I$ (careful with \lor). This is the most frequently used strategy, the one most likely to structure your derivation as a whole. $\neg E$ to the side, the basic structure of I-rules and E-rules in NDs gives you just one way to generate a formula with main operator \ast, whatever that may be. In the ordinary case, then, you can expect to obtain a formula with main operator \ast by the corresponding I-rule. Thus, for a typical example,

<table>
<thead>
<tr>
<th>given</th>
<th>use</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \Rightarrow B$ (goal)</td>
<td>a. A \hspace{1em} A (g, $\rightarrow I$)</td>
</tr>
<tr>
<td></td>
<td>b. B \hspace{1em} B (goal)</td>
</tr>
<tr>
<td></td>
<td>$A \Rightarrow B$ \hspace{1em} a-b $\rightarrow I$</td>
</tr>
</tbody>
</table>

And this is not the only context where $SG4$ applies. It makes sense to consider it for formulas with any main operator. Be cautious, however, for formulas with main operator \lor. There are cases where it is possible to prove a disjunction, but not to prove it by $\lor I$—as one might have conclusive reason to believe the butler or the maid did it, without conclusive reason to believe the butler did it, or conclusive reason to believe the maid did it (perhaps the butler and maid were the only ones with means and motive). You should consider the strategy for \lor. But it does not always work.
As an example, let us show $D \vdash_{ND} A \rightarrow (B \rightarrow (C \rightarrow D))$. Here is the derivation in four stages.

1. $D \quad P$
2. $A \quad A (g, \rightarrow I)$

(AH)

$B \rightarrow (C \rightarrow D)$
$A \rightarrow (B \rightarrow (C \rightarrow D))$

3. $B \quad A (g, \rightarrow I)$
4. $C \quad A (g, \rightarrow I)$
5. $D \quad 1\text{R}$
6. $C \rightarrow D \quad 4_ \rightarrow I$
7. $B \rightarrow (C \rightarrow D) \quad 3_ \rightarrow I$
8. $A \rightarrow (B \rightarrow (C \rightarrow D)) \quad 2_ \rightarrow I$

Initially, there is no contradiction in the premises, and neither do we see the goal. So we fall through to strategy $SG4$ and, since the main operator of the goal is \rightarrow, set up to get it by $\rightarrow I$. This gives us $B \rightarrow (C \rightarrow D)$ as a new goal. Since this has main operator \rightarrow, and it remains that other strategies do not apply, we fall through to $SG4$, and set up to get it by $\rightarrow I$. This gives us $C \rightarrow D$ as a new goal.

1. $D \quad P$
2. $A \quad A (g, \rightarrow I)$
3. $B \quad A (g, \rightarrow I)$
4. $C \quad A (g, \rightarrow I)$
5. $D \quad 1\text{R}$
6. $C \rightarrow D \quad 4_ \rightarrow I$
7. $B \rightarrow (C \rightarrow D) \quad 3_ \rightarrow I$
8. $A \rightarrow (B \rightarrow (C \rightarrow D)) \quad 2_ \rightarrow I$

As before, with $C \rightarrow D$ as the goal, there is no contradiction on accessible lines, no accessible formula has main operator \lor, and the goal does not itself appear on accessible lines. Since the main operator is \rightarrow, we set up again to get it by $\rightarrow I$. This gives us D as a new subgoal. But D does exist on an accessible line. Thus we are faced with a particularly simple instance of strategy $SG3$. To complete the derivation, we simply reiterate D from (1), and follow our exit strategies as planned.

$SG5$. Try $\sim E$ (especially for atomics and sentences with \lor as main operator). The previous strategy has no application to atomics, because they have no main operator, and we have suggested that it is problematic for disjunctions. This last strategy applies particularly in those cases. So it is applicable in cases where other strategies seem not to apply.
It is possible to obtain any formula by \(\sim E \), by assuming its negation and going for a contradiction. So this strategy is generally applicable. It cannot hurt: if you could have reached goal \(A \) anyway, you can still obtain \(A \) under the assumed \(\sim A \) and use the resultant contradiction to reach \(A \) outside of the subderivation. And it may help: as for \(\lor E \), all the lines from before plus the new assumption are accessible; in many cases, the assumption puts you in a position to make progress you would not have been able to make before.

As a simple example of the strategy, try showing \(\sim A \to B, \sim B \vdash_{NDs} A \). Here is the derivation in two stages.

\[
\begin{array}{l}
1. \quad \sim A \to B \quad P \\
2. \quad \sim B \quad P \\
3. \quad \sim A \quad A (c, \sim E) \\
\quad \bot \\
\quad A \quad 3- \sim E \\
\end{array}
\]

There is no contradiction in the premises, no formula has main operator \(\lor \) and, though \(\sim A \) is the antecedent of (1), there is no obvious way to exploit the premise to isolate the \(A \). The goal \(A \) has no operators, so it has no main operator and strategy \(SG4 \) does not apply. So we fall through to strategy \(SG5 \), and set up to get the goal by \(\sim E \). In this case, the subderivation is particularly easy to complete.

Sometimes the occasion between this strategy and \(SG1 \) can seem obscure (and, in the end, it may not be all that important to separate them). However, for the first strategy, accessible lines by themselves are sufficient for a contradiction and so motivate the assumption. In this example, from the premises we have \(\sim B \), but cannot get the \(B \) and so do not have a contradiction from the premises alone. So \(SG1 \) does not apply. For \(SG5 \), in contrast to \(SG1 \), the contradiction becomes available only after you make the assumption.

Here is an extended example which combines a number of the strategies considered so far. We show that \(B \lor A \vdash_{NDs} \sim A \to B \). You want especially to absorb the mode of thinking about this case as a way to approach exercises.
CHAPTER 6. NATURAL DEDUCTION

There is no contradiction in the premise; so strategy SG1 is inapplicable. Strategy SG2 tells us to go for the goal by $\vee \text{E}$. Another option is to fall through to SG4 and go for $\neg A \rightarrow B$ by $\rightarrow \text{I}$ and then apply $\vee \text{E}$ to get the B, but $\rightarrow \text{I}$ has lower priority and let us follow the official procedure.

Having set up for $\vee \text{E}$ on line (1), we treat $B \lor A$ as effectively “used up” and so out of the picture. Concentrating, for the moment, on the first subderivation, there is no contradiction on accessible lines; neither is there another accessible disjunction; and the goal is not in accessible lines. So we fall through to SG4.

In this case, the subderivation is easy to complete. The new goal, B exists as such on an accessible line. So we are faced with a simple instance of SG3, and so can complete the subderivation.
CHAPTER 6. NATURAL DEDUCTION

1. \(B \lor A \) P
2. \(B \) A (g, 1\lor E)
3. \(\sim A \) A (g, \rightarrow I)
4. \(B \) 2 R
5. \(\sim A \rightarrow B \) 3-4 \rightarrow I
6. \(A \) A (g, 1\lor E)

\[\sim A \rightarrow B \]
\[\sim A \rightarrow B \quad 1,2,5,6- \lor E \]

The first subderivation is completed by reiterating \(B \) from line (2), and following the exit strategy.

For the second main subderivation tick off in your head: there is no accessible contradiction; neither is there another accessible formula with main operator \(\lor \); and the goal is not in accessible lines. So we fall through to strategy SG4.

1. \(B \lor A \) P
2. \(B \) A (g, 1\lor E)
3. \(\sim A \) A (g, \rightarrow I)
4. \(B \) 2 R
5. \(\sim A \rightarrow B \) 3-4 \rightarrow I
6. \(A \) A (g, 1\lor E)
7. \(\sim A \) A (g, \rightarrow I)

\[\sim A \rightarrow B \quad 7-\sim \rightarrow I \]
\[\sim A \rightarrow B \quad 1,2,5,6- \lor E \]

To reach goal with main operator \(\rightarrow \), use \(\rightarrow I \).

But now there is an accessible contradiction at (6) and (7). So SG1 applies, and we are in a position to complete the derivation as follows.
CHAPTER 6. NATURAL DEDUCTION

This derivation is fairly complicated! But we did not need to see how the whole thing would go from the start. Indeed, it is hard to see how one could do so. Rather it was enough to see, at each stage, what to do next. That is the beauty of our goal-oriented approach.

A brief remark before we turn to exercises: In going for a contradiction, as from SG4 or SG5, the new goal is not a definite formula—any contradiction is sufficient for the rule and for a derivation of \(\bot \). But each of our strategies for a goal presuppose a known goal sentence. So the strategies for a goal do not directly apply. This motivates the “strategies for a contradiction” of the next section. For now, I will say just this: If there is a contradiction to be had, and you can reduce formulas on accessible lines to atomics and negated atomics, the contradiction will appear at that level. So one way to go for a contradiction is simply by applying E-rules to accessible lines, to generate what atomics and negated atomics you can.

Proofs for the following theorems are left as exercises. You should not start them now, but wait for the assignment in E6.16. The first three may remind you of axioms from chapter 3 and the fourth has an application in part IV. The others foreshadow rules from the system \(ND_s^+ \), which we will see shortly.

\[
\text{T6.1. } \vdash_{ND_s} \mathcal{P} \rightarrow (\mathcal{Q} \rightarrow \mathcal{P})
\]

\[
\text{T6.2. } \vdash_{ND_s} (\varnothing \rightarrow (\mathcal{P} \rightarrow \mathcal{Q})) \rightarrow ((\varnothing \rightarrow \mathcal{P}) \rightarrow (\varnothing \rightarrow \mathcal{Q}))
\]

\[
\text{*T6.3. } \vdash_{ND_s} (\neg \mathcal{Q} \rightarrow \neg \mathcal{P}) \rightarrow ((\neg \mathcal{Q} \rightarrow \mathcal{P}) \rightarrow \mathcal{Q})
\]
T6.4. $A \rightarrow (B \rightarrow C), D \rightarrow (C \rightarrow E), D \rightarrow B \vdash_{NDs} A \rightarrow (D \rightarrow E)$

T6.5. $A \rightarrow B, \sim B \vdash_{NDs} \sim A$

T6.6. $A \rightarrow B, B \rightarrow C \vdash_{NDs} A \rightarrow C$

T6.7. $A \lor B, \sim A \vdash_{NDs} B$

T6.8. $A \lor B, \sim B \vdash_{NDs} A$

T6.9. $A \leftrightarrow B, \sim A \vdash_{NDs} \sim B$

T6.10. $A \leftrightarrow B, \sim B \vdash_{NDs} \sim A$

T6.11. $\vdash_{NDs} (A \land B) \leftrightarrow (B \land A)$

T6.12. $\vdash_{NDs} (A \leftrightarrow B) \leftrightarrow (B \leftrightarrow A)$

*T6.13. $\vdash_{NDs} (A \lor B) \leftrightarrow (B \lor A)$

T6.14. $\vdash_{NDs} (A \rightarrow B) \leftrightarrow (\sim B \rightarrow \sim A)$

T6.15. $\vdash_{NDs} [A \rightarrow (B \rightarrow C)] \leftrightarrow [(A \land B) \rightarrow C]$

T6.16. $\vdash_{NDs} [A \land (B \land C)] \leftrightarrow [(A \land B) \land C]$

T6.17. $\vdash_{NDs} [A \lor (B \lor C)] \leftrightarrow [(A \lor B) \lor C]$

T6.18. $\vdash_{NDs} A \leftrightarrow \sim \sim A$
T6.19. \(\vdash_{NDs} A \leftrightarrow (A \land A) \)

T6.20. \(\vdash_{NDs} A \leftrightarrow (A \lor A) \)

E6.14. For each of the following, (i) which goal strategy applies? and (ii) what is the next step? If the strategy calls for a new subgoal, show the subgoal; if it calls for a subderivation, set up the subderivation. In each case, explain your response. Hint: Each goal strategy applies once.

a. 1. \(\neg A \lor B \quad P \)
2. \(A \quad P \)
 \(B \quad P \)

b. 1. \(J \land S \quad P \)
2. \(S \rightarrow K \quad P \)
 \(K \quad P \)

*c. 1. \(\neg A \leftrightarrow B \quad P \)
 \(B \leftrightarrow \neg A \)

d. 1. \(A \leftrightarrow \neg B \quad P \)
2. \(\neg A \quad P \)
 \(B \quad P \)

e. 1. \(A \land B \quad P \)
2. \(\neg A \quad P \)
 \(K \lor J \quad P \)

E6.15. Produce derivations to show each of the following. If you get stuck, you will find strategy hints in the Answers to Selected Exercises.

*a. \(A \leftrightarrow (A \rightarrow B) \vdash_{NDs} A \rightarrow B \)

*b. \((A \lor B) \rightarrow (B \leftrightarrow D) \), \(B \vdash_{NDs} B \land D \)
*c. \(\sim (A \land C), \sim (A \land C) \iff B \vdash_{\text{NDs}} A \lor B \)
*d. \(A \land (C \land \sim B), (A \lor D) \rightarrow \sim E \vdash_{\text{NDs}} \sim E \)
*e. \(A \rightarrow B, B \rightarrow C \vdash_{\text{NDs}} A \rightarrow C \)
*f. \((A \land B) \rightarrow (C \land D) \vdash_{\text{NDs}} [(A \land B) \rightarrow C] \land [(A \land B) \rightarrow D] \)
*g. \(A \rightarrow (B \rightarrow C), (A \land D) \rightarrow E, C \rightarrow D \vdash_{\text{NDs}} (A \land B) \rightarrow E \)
*h. \((A \rightarrow B) \land (B \rightarrow C), [(D \lor E) \lor H] \rightarrow A, \sim (D \lor E) \land H \vdash_{\text{NDs}} C \)
*i. \(A \rightarrow (B \land C), \sim C \vdash_{\text{NDs}} \sim (A \land D) \)
*j. \(A \rightarrow (B \rightarrow C), D \rightarrow B \vdash_{\text{NDs}} A \rightarrow (D \rightarrow C) \)
*k. \(A \rightarrow (B \rightarrow C) \vdash_{\text{NDs}} \sim C \rightarrow \sim (A \land B) \)
*l. \((A \land \sim B) \rightarrow \sim A \vdash_{\text{NDs}} A \rightarrow B \)
*m. \(\sim A \vdash_{\text{NDs}} A \rightarrow B \)
*n. \(\sim B \iff A, C \rightarrow B, A \land C \vdash_{\text{NDs}} \sim K \)
*o. \(\sim A \iff \sim B \vdash_{\text{NDs}} A \iff B \)
*p. \((A \lor B) \lor C, B \iff C \vdash_{\text{NDs}} C \lor A \)
*q. \(\vdash_{\text{NDs}} A \rightarrow (A \lor B) \)
*r. \(\vdash_{\text{NDs}} A \rightarrow (B \rightarrow A) \)
*s. \(\vdash_{\text{NDs}} (A \iff B) \rightarrow (A \rightarrow B) \)
*t. \(\vdash_{\text{NDs}} (A \land \sim A) \rightarrow (B \land \sim B) \)
*u. \(\vdash_{\text{NDs}} (A \rightarrow B) \rightarrow [(C \rightarrow A) \rightarrow (C \rightarrow B)] \)
*v. \(\vdash_{\text{NDs}} [(A \rightarrow B) \land \sim B] \rightarrow \sim A \)
*w. \(\vdash_{\text{NDs}} A \rightarrow [B \rightarrow (A \rightarrow B)] \)
*x. \(\vdash_{\text{NDs}} \sim A \rightarrow [(B \land A) \rightarrow C] \)
*y. \(\vdash_{\text{NDs}} (A \rightarrow B) \rightarrow [\sim B \rightarrow \sim (A \land D)] \)
CHAPTER 6. NATURAL DEDUCTION

*E6.16. Produce derivations to demonstrate each of T6.1–T6.20. These are a mix—
some repetitious, some challenging. But when we need the results later, we will
be glad to have done them now. Hint: do not worry if one or two get a bit longer
than you are used to—they should!

Strategies for a Contradiction

We come now to our second set of strategies. Each of our strategies for a goal
presupposes a known goal sentence—the strategies for a goal say how to go about
reaching this goal or that. In going for a contradiction, however, the \(Q \) and \(\sim Q \) may
not be known. Where the goal is unknown, our strategies for a goal do not apply. This
motivates strategies for a contradiction. Again, the strategies are in rough priority
order.

SC 1. Break accessible formulas down into atomics and negated atomics.
2. Given a disjunction in a subderivation for \(\sim E \) or \(\sim I \), go for \(\bot \) by \(\vee E \).
3. Set as goal the opposite of some negation (something that cannot itself be
broken down). Then apply strategies for a goal to reach it.
4. For some \(\mathcal{P} \) such that both \(\mathcal{P} \) and \(\sim \mathcal{P} \) lead to contradiction: Assume \(\mathcal{P} \)
\((\sim \mathcal{P})\), obtain the first contradiction, and conclude \(\sim \mathcal{P} \ (\sim \mathcal{P}) \); then obtain
the second contradiction—this is the one you want.

Again, the priority order is not the frequency order. The frequency is likely to be
something like SC1, SC3, SC4, SC2. Also sometimes, but not always, SC3 and SC4
coincide: in deriving the opposite of some negation, you end up assuming a \(\mathcal{P} \) such
that \(\mathcal{P} \) and \(\sim \mathcal{P} \) lead to contradiction.

SC1. Break accessible formulas down into atomics and negated atomics. As we
have already said, if there is a contradiction to be had, and you can break accessible
formulas into atomics and negated atomics, the contradiction will appear at that level.
Thus, for example,

\[
\begin{array}{c|c|c}
1 & \text{A } & \text{B} \\
2 & \sim \text{B} & \text{P} \\
3 & \text{C} & \text{A (c, \sim I)} \\
\hline
\text{(AK)} & \bot \\
\end{array}
\]

\[
\begin{array}{c|c|c}
1 & \text{A } & \text{\dot{\cap} E} \\
2 & \text{B} & \text{\dot{\cap} E} \\
3 & \text{C} & \text{\sim I} \\
\hline
\text{\sim C} & 2 & \text{\sim I} \\
\end{array}
\]
Our strategy for the main goal is \textsc{sg}4 with an application of \(\sim\text{-I}\). Then the aim is to obtain a contradiction. And our first thought is to break accessible lines down to atomics and negated atomics. Perhaps this example is too simple. And you may wonder about the point of getting \(A\) at (4)—there is no need for \(A\) at (4). But this merely illustrates the point: if you can get to atomics and negated atomics (“randomly” as it were) the contradiction will appear in the end.

As another example, try showing \(A \land (B \land \sim C), \sim F \rightarrow D, (A \land D) \rightarrow C \vdash_{\text{ND}} F\).

Here is the completed derivation in two stages.

\begin{align*}
1. & A \land (B \land \sim C) & \text{P} \\
2. & \sim F \rightarrow D & \text{P} \\
3. & (A \land D) \rightarrow C & \text{P} \\
4. & \sim F & \text{A (c, \text{-E})} \\
& & (AL) \\
& \vdash & \\
& F & 4- \sim E \\
\end{align*}

This time, our strategy for the goal falls through to \textsc{sg}5. After that, again, our goal is to obtain a contradiction—and our first thought is to break accessible formulas down to atomics and negated atomics. The assumption \(\sim F\) gets us \(D\) with (2). We can get \(A\) from (1), and then \(C\) with the \(A\) and \(D\) together. Then \(\sim C\) follows from (1) by a couple applications of \(\land\text{-E}\). You might proceed to get the atomics in a different order, but the basic idea of any such derivation is likely to be the same.

\textbf{SC}2. \textit{Given a disjunction in a subderivation for \(\sim\text{-E}\) or \(\sim\text{-I}\), go for \(\perp\) by \(\lor\text{-E}\).} This strategy applies only occasionally, though it is related to one that is common for the quantificational case. In most cases, you will have applied \(\lor\text{-E}\) by \textsc{sg}2 prior to setting up for \(\sim\text{-E}\) or \(\sim\text{-I}\). In some cases, however, a disjunction is “uncovered” only inside a subderivation for a tilde rule. In any such case, \textsc{sc}2 has high priority for the same reasons as \textsc{sg}2: You can only be better off in your attempt to reach a contradiction inside the subderivations for \(\lor\text{-E}\) than before. So the strategy says to set \(\perp\) as the goal you need for \(\sim\text{-E}\) or \(\sim\text{-I}\), and go for \textit{it} by \(\lor\text{-E}\).
CHAPTER 6. NATURAL DEDUCTION

[122x687]265
given

a. \[P \quad A (c, \sim I) \]
b. \[A \lor B \quad \sim P \quad a-\sim I \]

use

a. \[P \quad A (c, \sim I) \]
b. \[A \lor B \quad \sim A \quad A (c, b \lor E) \]
c. \[\sim A \quad A (c, b \lor E) \]
d. \[\bot \quad \text{(goal)} \]
e. \[B \quad A (c, b \lor E) \]
f. \[\bot \quad \text{(goal)} \]
g. \[\sim B \quad b, c-d, e-f \lor E \quad \sim P \quad a-g \sim I \]

Observe that since the subderivations for \(\lor E \) have goal \(\bot \), they have exit strategy \(c \) rather than \(g \). Here is another advantage of our standard use of \(\bot \). Because \(\bot \) is a particular sentence, it works as a goal for \(\lor E \). We might obtain \(\bot \) by one contradiction in the first subderivation, and by another in the second. Different contradictions would not come out directly by \(\lor E \). But once we have obtained \(\bot \) in each, we are in a position to exit in the usual way by \(\lor E \) and so to apply \(\sim I \).

Here is an example. We show \(\sim A \land \sim B \vdash_{NDs} \sim (A \lor B) \). The derivation is in four stages.

1. \[\sim A \land \sim B \quad P \]
2. \[A \lor B \quad A (c, \sim I) \]

(AM)

1. \[\sim A \land \sim B \quad P \]
2. \[A \lor B \quad A (c, \sim I) \]
3. \[A \quad A (c, 2 \lor E) \]

\[\bot \]
4. \[B \quad A (c, 2 \lor E) \]
5. \[\bot \]
6. \[2, 3- \lor E \]
7. \[\sim (A \lor B) \quad 2-\sim \sim I \]

In this case, our strategy for the goal is \(\text{SG}4 \). The disjunction appears only inside the subderivation as the assumption for \(\sim I \). We might obtain \(\sim A \) and \(\sim B \) from (1) but after that, there are no more atomics or negated atomics to be had. So we fall through to \(\text{SC}2 \), with \(\bot \) as the goal for \(\lor E \).
The first subderivation is easily completed from atomics and negated atomics. And the second is completed the same way. Observe that it is only because of our assumptions for \(\lor E\) that we are able to get the contradictions at all.

sc3. Set as goal the opposite of some negation (something that cannot itself be broken down). Then apply standard strategies for the goal. You will find yourself using this strategy often, after **sc1.** In the ordinary case, if accessible formulas cannot be broken into atomics and negated atomics, it is because complex forms are “sealed off” by main operator \(\neg\). The tilde blocks **sc1 or sc2.** But you can turn this lemon to lemonade: taking the complex \(\neg Q\) as one half of a contradiction, set \(Q\) as goal. For some complex \(Q\),

\[
\begin{align*}
\text{given} & \quad \begin{array}{l}
\neg Q \\
\begin{array}{l}
A \\
\bot
\end{array}
\end{array} \\
\text{use} & \quad \begin{array}{l}
A (c, \neg I) \\
\bot
\end{array}
\end{align*}
\]

We are after a contradiction. Supposing that we cannot break \(\neg Q\) into its parts, our efforts to apply other strategies for a contradiction are frustrated. But **sc3** offers an alternative: Set \(Q\) itself as a new goal and use this with \(\neg Q\) to reach \(\bot\). Then strategies for the new goal take over. If we reach the new goal, we have the contradiction we need.

As an example, try showing \(B, \neg(A \rightarrow B) \vdash_{\text{NDs}} \neg A\). Here is the derivation in four stages.
Our strategy for the goal is SG4; for main operator \sim we set up to get the goal by $\sim\text{I}$. So we need a contradiction. In this case, there is nothing to be done by way of obtaining atomics and negated atomics, and there is no disjunction. So we fall through to strategy SC3. $\sim(A \rightarrow B)$ on (2) has main operator \sim, so we set $A \rightarrow B$ as a new subgoal with the idea to use it for contradiction.

Since $A \rightarrow B$ is a definite subgoal, we proceed with strategies for the goal in the usual way. The main operator is \rightarrow so we set up to get it by $\rightarrow\text{I}$. The subderivation is particularly easy to complete. And we finish by executing the exit strategies as planned.

SC4. For some \mathcal{P} such that both \mathcal{P} and $\sim\mathcal{P}$ lead to contradiction: Assume \mathcal{P} ($\sim\mathcal{P}$), obtain the first contradiction, and conclude $\sim\mathcal{P}$ (\mathcal{P}); then obtain the second contradiction—this is the one you want.
The essential point is that both P and $\neg P$ somehow lead to contradiction. Given this, you can assume one of them and use the first contradiction to obtain the other; and once you have obtained this other formula, the desired contradiction results from it. The intuition behind this strategy is like that for the $\vee E$ rule: P has to be one way or the other; if both ways lead to contradiction, contradiction follows. The strategy shows how to extract that contradiction—and is often a powerful way of making progress when none seems possible by other means.

Let us try to show $A \leftrightarrow B$, $B \leftrightarrow C$, $C \leftrightarrow \neg A \vdash_{NDs} K$. Here is the derivation in four stages.

\[
\begin{array}{l}
1. A \leftrightarrow B & P \\
2. B \leftrightarrow C & P \\
3. C \leftrightarrow \neg A & P \\
4. \neg K & A (c, \neg E) \\
\hline
\bot & \bot \\
K & 4 \neg \neg E
\end{array}
\]

Our strategy for the goal is either an obscure instance of $SG1$ or else falls through to $SG5$. Either way we assume the negation of the goal, and go for a contradiction. In this case, there are no atomics or negated atomics to be had. There is no disjunction under the scope of the negation, and no formula is itself a negation such that we could build up to the opposite. So we fall through to $SC4$. In this case, A is such that both it and its negation lead to contradiction: given A we can use $\leftrightarrow E$ to reach $\neg A$ and so contradiction; and given $\neg A$ we can use $\leftrightarrow E$ to reach A and so contradiction. So, following $SC4$, we assume one of them to get the other.
The first contradiction appears easily at the level of atomics and negated atomics. This gives us \(\neg A \). And with \(\neg A \), the second contradiction also comes easily, at the level of atomics and negated atomics.

Though it can be useful, this strategy is often difficult to see. And there is no obvious way to give a strategy for using the strategy! The best thing to say is that you should look for it when the other strategies seem to fail.

Let us consider an extended example which combines some of the strategies. We show that \(\neg A \rightarrow B \vdash_{NDs} B \lor A \).

\[\begin{array}{l}
1. \sim A \rightarrow B \quad P \\
2. B \rightarrow C \quad P \\
3. C \leftrightarrow \sim A \quad P \\
4. \sim K \quad A (c, \sim E) \\
5. A \quad A (c, \sim I) \\
6. B \quad 1,5 \leftrightarrow E \\
7. C \quad 2,6 \leftrightarrow E \\
8. \sim A \quad 3,7 \leftrightarrow E \\
9. \bot \quad 5,8 \bot I \\
10. \sim A \quad 5-9 \sim I \\
11. C \quad 3,10 \leftrightarrow E \\
12. B \quad 2,11 \leftrightarrow E \\
13. A \quad 1,12 \leftrightarrow E \\
14. \bot \quad 13,10 \bot I \\
15. K \quad 4-14 \bot I
\end{array}\]

Especially considering our goal has main operator \(\lor \), set up to get the goal by \(\sim E \).
To get a contradiction, our first thought is to go for atomics and negated atomics. But there is nothing to be done. Similarly, there is no formula with main operator \vee. So we fall through to $SC3$ and continue as follows.

1. $\neg A \rightarrow B$ P
2. $\neg (B \vee A)$ A $(c, \neg E)$
 $B \vee A$
 \bot $\bot \bot 1$
 $B \vee A$ $\bot \bot \neg E$

Given a negation that cannot be broken down, set up to get the contradiction by building up to the opposite.

It might seem that we have made no progress, since our new goal is no different than the original! But there is progress insofar as we have an accessible formula not available before (more on this in a moment). At this stage, we can get the goal by $\lor I$. Either side will work, but it is easier to start with the A. So we set up for that.

1. $\neg A \rightarrow B$ P
2. $\neg (B \vee A)$ A $(c, \neg E)$
 \bot $\bot \bot 1$
 $B \vee A$ $\bot \bot \neg E$
 $B \vee A$ $\bot \bot \neg E$

For a goal with main operator \lor, go for the goal by $\lor I$

Now the goal is atomic. Again, there is no contradiction or formula with main operator \lor on accessible lines. The goal is not on accessible lines in any form we can hope to exploit. And the goal has no main operator. So, again, we fall through to $SG5$.

1. $\neg A \rightarrow B$ P
2. $\neg (B \vee A)$ A $(c, \neg E)$
3. $\neg A$ A $(c, \neg E)$
 \bot $\bot \bot 1$
 A $\bot \bot \neg E$
 $B \vee A$ $\bot \bot \neg E$
 $B \vee A$ $\bot \bot \neg E$

Especially for atomics, go for the goal by $\neg E$

Again, our first thought is to get atomics and negated atomics. We can get B from lines (1) and (3) by $\rightarrow E$. But that is all. So we will not get a contradiction from atomics and negated atomics alone. There is no formula with main operator \lor. However, the
possibility of getting a B suggests that we can build up to the opposite of line (2). That is, we complete the subderivation as follows, and follow our exit strategies to complete the whole.

1. $\neg A \rightarrow B$ \hspace{1cm} P
2. $(B \lor A)$ \hspace{1cm} A (c, $\sim E$)
3. $\neg A$ \hspace{1cm} A (c, $\sim E$)
4. B \hspace{1cm} 1,3 $\rightarrow E$
5. $B \lor A$ \hspace{1cm} 4 $\lor I$
6. \bot \hspace{1cm} 5,2 $\bot I$
7. A \hspace{1cm} 3-6 $\bot E$
8. $B \lor A$ \hspace{1cm} 7 $\lor I$
9. \bot \hspace{1cm} 8,2 $\bot I$
10. $B \lor A$ \hspace{1cm} 2-9 $\bot E$

Get the contradiction by building up to the opposite of an existing negation.

A couple of comments: First, observe that we build up to the opposite of $\neg (B \lor A)$ twice, coming at it from different directions. First we obtain the left side B and use $\lor I$ to obtain the whole, then the right side A and use $\lor I$ to obtain the whole. This “double use” is typical with negated disjunctions. Second, note that this derivation might be reconceived as an instance of SC4. Then we get B, and so $B \lor A$, which contradicts $\neg (B \lor A)$. But A gets us $B \lor A$ which again contradicts $\neg (B \lor A)$. So both A and $\neg A$ lead to contradiction; so we assume one ($\neg A$), and get the first contradiction; this gets us A, from which the second contradiction follows.

The general pattern of this derivation is typical for goal formulas with main operator \lor. For $P \lor Q$ we may not be able to prove either P or Q from scratch—so that the formula is not directly provable by $\lor I$. However, it may be indirectly provable. If it is provable at all, it must be that the negation of one side forces the other. So it must be possible to get the P or the Q under the additional assumption that the other is false. This makes possible an argument of the following form.

\[
\begin{align*}
\text{(AQ)}
\begin{array}{c}
a. \sim (P \lor Q) & A (c, \sim E) \\
b. \sim P & A (c, \sim E) \\
\vdots

c. Q \\
d. P \lor Q & c \lor I \\
e. \bot & d, a \bot I \\
f. P & b, e \sim E \\
g. P \lor Q & f \lor I \\
h. \bot & g, a \bot I \\
i. P \lor Q & a, h \sim E
\end{array}
\end{align*}
\]
The “work” in this routine is getting from the negation of one side of the disjunction to the other. Thus if from the assumption \(\neg P \) it is possible to derive \(Q \), all the rest is automatic. We have just seen an extended example (AP) of this pattern. It may be seen as an application of \(\text{SC} 3 \) or \(\text{SC} 4 \) (or both). Where a disjunction may be provable but not provable by \(\lor I \), it \textit{will} work by this method. Observe that \(\lor I \) still plays an essential role—only not as the main strategy. In difficult cases when the goal is a disjunction, it is wise to think about whether you can get one side from the negation of the other. If you can, set up as above. (And reconsider this method when we get to a simplified version in the extended system \(NDs^+ \).)

This example was fairly difficult! You may see some longer, but you will not see many harder. The strategies are not a cookbook for performing all derivations—doing derivations remains an art. But the strategies will give you a good start, and take you a long way through the exercises that follow. The theorems immediately below again foreshadow rules of \(NDs^+ \).

* T6.21. \(\vdash_{NDs} \neg (A \land B) \iff (\neg A \lor \neg B) \)

T6.22. \(\vdash_{NDs} \neg (A \lor B) \iff (\neg A \land \neg B) \)

T6.23. \(\vdash_{NDs} (\neg A \to B) \iff (A \lor B) \)

T6.24. \(\vdash_{NDs} (A \to B) \iff (A \lor B) \)

T6.25. \(\vdash_{NDs} [A \land (B \lor C)] \iff [(A \lor B) \land (A \lor C)] \)

T6.26. \(\vdash_{NDs} [A \lor (B \land C)] \iff [(A \lor B) \land (A \lor C)] \)

T6.27. \(\vdash_{NDs} (A \leftrightarrow B) \iff [(A \to B) \land (B \to A)] \)

T6.28. \(\vdash_{NDs} (A \leftrightarrow B) \iff [(A \land B) \lor (\neg A \land \neg B)] \)

T6.29. \(\vdash_{NDs} [A \leftrightarrow (B \leftrightarrow C)] \iff [(A \leftrightarrow B) \leftrightarrow C] \)
CHAPTER 6. NATURAL DEDUCTION

E6.17. Each of the following begins with a simple application of \(\sim I \) or \(\sim E \). Complete the derivations, and *explain* your use of strategies for a contradiction. Hint: Each of the strategies for a contradiction is used at least once.

* a. 1. \(A \land B \)
2. \(\sim (A \land C) \)
3. \(C \) \(A (c, \sim I) \)
 \[
 \bot
 \]
 \[
 \sim C

b. 1. \((\sim B \lor \sim A) \rightarrow D \)
2. \(C \land \sim D \)
3. \(\sim B \)
 \[
 \bot
 \]
 \[
 B

c. 1. \(A \land B \)
2. \(\sim A \lor \sim B \) \(A (c, \sim I) \)
 \[
 \bot
 \]
 \[
 \sim (\sim A \lor \sim B)

d. 1. \(A \leftrightarrow \sim A \)
2. \(B \) \(A (c, \sim I) \)
 \[
 \bot
 \]
 \[
 \sim B

e. 1. \(\sim (A \rightarrow B) \)
2. \(\sim A \) \(A (c, \sim E) \)
 \[
 \bot
 \]
 \[
 A

E6.18. Produce derivations to show each of the following.
*a. $A \rightarrow \neg (B \land C) \land B \rightarrow C \vdash_{\text{NDs}} A \rightarrow \neg B$

*b. $\vdash_{\text{NDs}} \neg (A \rightarrow A) \rightarrow A$

*c. $A \lor B \vdash_{\text{NDs}} \neg (A \land \neg B)$

*d. $\neg (A \land B), \neg (A \land \neg B) \vdash_{\text{NDs}} \neg A$

*e. $\vdash_{\text{NDs}} A \lor \neg A$

*f. $\vdash_{\text{NDs}} A \lor (A \rightarrow B)$

*g. $A \lor \neg B, \neg A \lor \neg B \vdash_{\text{NDs}} \neg B$

*h. $A \leftrightarrow (\neg B \lor C), B \rightarrow C \vdash_{\text{NDs}} A$

*i. $A \leftrightarrow B \vdash_{\text{NDs}} (C \leftrightarrow A) \leftrightarrow (C \leftrightarrow B)$

*j. $A \leftrightarrow \neg (B \leftrightarrow \neg C), \neg (A \lor B) \vdash_{\text{NDs}} C$

*k. $[C \lor (A \lor B)] \land (C \rightarrow E), A \rightarrow D, D \rightarrow \neg A \vdash_{\text{NDs}} C \lor B$

*l. $\neg (A \rightarrow B), \neg (B \rightarrow C) \vdash_{\text{NDs}} \neg D$

*m. $C \rightarrow \neg A, \neg (B \land C) \vdash_{\text{NDs}} (A \lor B) \rightarrow \neg C$

*n. $\neg (A \leftrightarrow B) \vdash_{\text{NDs}} \neg A \leftrightarrow B$

*o. $A \leftrightarrow B, B \leftrightarrow \neg C \vdash_{\text{NDs}} \neg (A \leftrightarrow C)$

*p. $A \lor B, \neg A \lor C, \neg C \vdash_{\text{NDs}} A$

*q. $(\neg A \lor C) \lor D, D \rightarrow \neg B \vdash_{\text{NDs}} (A \land B) \rightarrow C$

*r. $A \lor D, \neg D \leftrightarrow (E \lor C), (C \land B) \lor [C \land (F \rightarrow C)] \vdash_{\text{NDs}} A$

*s. $(A \lor B) \lor (C \land D), (A \leftrightarrow E) \land (B \rightarrow F), G \leftrightarrow \neg (E \lor F), C \rightarrow B \vdash_{\text{NDs}} \neg G$

*t. $(A \lor B) \land \neg C, \neg C \rightarrow (D \land \neg A), B \vdash_{\text{NDs}} (A \lor E) \lor \neg G$ \lor F$

*E6.19. Produce derivations to demonstrate each of T6.21–T6.28. Note that demonstration of T6.29 (from left to right) is left for E6.20e.

E6.20. Produce derivations to show each of the following. These are particularly challenging. If you can get them, you are doing very well!
a. \((A \lor B) \rightarrow (A \lor C) \vdash_{NDs} A \lor (B \rightarrow C)\)
b. \(A \rightarrow (B \lor C) \vdash_{NDs} (A \rightarrow B) \lor (A \rightarrow C)\)
c. \((A \leftrightarrow B) \leftrightarrow (C \leftrightarrow D) \vdash_{NDs} (A \leftrightarrow C) \rightarrow (B \rightarrow D)\)
d. \((\neg(A \leftrightarrow B), \neg(B \leftrightarrow C), \neg(C \leftrightarrow A) \vdash_{NDs} \neg K\)
e. \(A \leftrightarrow (B \leftrightarrow C) \vdash_{NDs} (A \leftrightarrow B) \leftrightarrow C\)

6.2.5 The System \(NDs^+\)

We turn now to some derived rules that will be useful for streamlining derivations. \(NDs^+\) includes all the rules of \(NDs\), with some additional inference rules and new replacement rules. It is not possible to derive anything in \(NDs^+\) that cannot already be derived in \(NDs\). Thus the new rules do not add extra derivation power. They are rather “shortcuts” for things that can already be done in \(NDs\). This is particularly obvious in the case of the inference rules.

We have already seen \(\bot I\) as a first example of a derived rule. As described on page 234 it is possible to derive \(\bot\) from any \(Q\) and \(\neg Q\). It is possible also to introduce a companion \(\bot E\) as below and justified by the derivation on the right.

\[
\begin{array}{c}
\bot E \\
\hline
\bot \\
\p \\
a \bot E \\
(AR) \\
1. \bot \\
2. \neg \p A (c, \neg E) \\
3. \bot 1,3 R \\
4. \p 2-3 \neg E
\end{array}
\]

From a contradiction, one can derive anything.\(^6\) Again, the justification for this rule is that it does not let you do anything that you could not already do in \(NDs\). In contexts where \(SG1\) applies, this rule shortcuts a step, and cleans out a distracting subderivation.

For other new rules, suppose in an \(NDs\) derivation we have \(\p \rightarrow Q\) and \(\neg Q\) and want to reach \(\neg \p\). No doubt, we would proceed as follows.

\[
\begin{array}{c}
(AS) \\
1. \p \rightarrow Q P \\
2. \neg Q P \\
3. \p A (c, \neg I) \\
4. Q 1,3 \rightarrow E \\
5. \bot 4.2 \bot I \\
6. \neg \p 3-5 \neg I
\end{array}
\]

\(^6\)This rule is sometimes known as **ex falso quodlibet**, which translates, “from falsehood anything (follows).”
CHAPTER 6. NATURAL DEDUCTION

We assume P, get the contradiction, and conclude by $\sim I$. Perhaps you have done this so many times that you can do it in your sleep. In $\text{ND}s+$ you are given a way to shortcut the routine, and go directly from an accessible $P \rightarrow Q$ on a, and an accessible $\sim Q$ on b to $\sim P$ with justification a,b MT (*modus tollens*).

\[\begin{array}{c|c|c}
 & P \rightarrow Q & \\
a & b & \sim Q \\
\end{array}\]

MT

\[\sim P \quad a,b \text{ MT} \]

Again, the justification for this is that the rule does not let you do anything that you could not already do in $\text{ND}s$. So if the rules of $\text{ND}s$ preserve truth, this rule preserves truth. And, as a matter of fact, we already demonstrated that $P \rightarrow Q$, $\sim Q \vdash_{\text{ND}s} \sim P$ in T6.5.

\[\begin{array}{c|c|c}
 & P \leftrightarrow Q & \\
a & b & \sim P \\
\end{array}\]

NB

\[\sim Q \quad a,b \text{ NB} \quad \sim P \quad a,b \text{ NB} \]

NB (*negated biconditional*) lets you move from a biconditional and the negation of one side, to the negation of the other. It is like MT, but with the arrow going both ways. The parts are justified in T6.9 and T6.10.

\[\begin{array}{c|c|c}
 & P \lor Q & \\
a & b & \sim P \\
\end{array}\]

DS

\[Q \quad a,b \text{ DS} \quad P \quad a,b \text{ DS} \]

DS (*disjunctive syllogism*) lets you move from a disjunction and the negation of one side, to the other side of the disjunction. The two parts are justified by T6.7 and T6.8.

\[\begin{array}{c|c|c}
 & \Theta \rightarrow P & \\
a & b & \Theta \rightarrow Q \\
\end{array}\]

HS

\[\Theta \rightarrow Q \quad a,b \text{ HS} \]

HS (*hypothetical syllogism*) is a principle of transitivity by which you may string a pair of conditionals together into one. It is justified by T6.6.

Each of these rules should be clear and easy to use. Here is an example that puts most of the new rules together into one derivation.
We can do it by our normal methods purely with the rules of NDs as on the right. But it is easier with the shortcuts from NDs+ as on the left. It may take you some time to “see” applications of the new rules when you are doing derivations, but the simplification makes it worth getting used to them.

The replacement rules of NDs+ are different from ones we have seen before in two respects. First, replacement rules go in two directions. Consider the following simple rule.

DN \[\phi \leftrightarrow \neg \phi\]

According to DN (double negation), given \(\phi\) on an accessible line \(a\), you may move to \(\neg \neg \phi\) with justification \(a\) DN; and given \(\neg \neg \phi\) on an accessible line \(a\), you may move to \(\phi\) with justification \(a\) DN. This two-way rule is justified by T6.18, in which we showed \(\vdash_{NDs} \phi \leftrightarrow \neg \neg \phi\). Given \(\phi\) we could use the routine from one half of the derivation to reach \(\neg \neg \phi\), and given \(\neg \neg \phi\) we could use the routine from the other half of the derivation to reach \(\phi\).

But, further, we can use replacement rules to replace a subformula that is just a proper part of another formula. Thus, for example, in the following list, we could move in one step by DN from the formula on the left to any of the ones on the right, and from any of the ones on the right to the one on the left.
The first application is of the sort we have seen before, in which the whole formula is replaced. In the second, the replacement is between the subformulas A and $\neg\neg A$. In the third, between the subformulas $(B \rightarrow C)$ and $\neg\neg (B \rightarrow C)$. The fourth switches B and $\neg\neg B$ and the last C and $\neg\neg C$. Thus the DN rule allows the substitution of any subformula P with one of the form $\neg\neg P$, and vice versa.

The application of replacement rules to subformulas is not so easily justified as their application to whole formulas. A complete justification that ND does not let you go beyond what can be derived in ND will have to wait for part III. Roughly, though, the idea is this: given a complex formula, we can take it apart, do the replacement, and then put it back together. Here is a very simple example from above.

On the left, we make the move from $A \land (B \rightarrow C)$ to $A \land \neg\neg (B \rightarrow C)$ in one step by DN. On the right, using ordinary inference rules, we begin by taking off the A. Then we convert $B \rightarrow C$ to $\neg\neg (B \rightarrow C)$, and put it back together with the A. Though we will not be able to show that this sort of thing is generally possible until part III, for now I will continue to say that replacement rules are “justified” by the corresponding biconditionals. As it happens, for replacement rules, the biconditionals play a crucial role in the demonstration that $\Gamma \vdash_{\text{ND}} P$ iff $\Gamma \vdash_{\text{ND}^*} P$.

The rest of the replacement rules work the same way.

Com (commutation) lets you reverse the order of formulas around a conjunction, disjunction or biconditional. By Com you could go from, say, $A \land (B \lor C)$ to $(B \lor C) \land A$, switching the order around \land, or from $A \land (B \lor C)$ to $A \land (C \lor B)$,
CHAPTER 6. NATURAL DEDUCTION

switching the order around \lor. You should be clear about why this is so. The different forms are justified by T6.11, T6.13 and T6.12.

Assoc

\[\Theta \land (\mathcal{P} \land \mathcal{Q}) \triangleleft (\Theta \land \mathcal{P}) \land \mathcal{Q} \]

\[\Theta \lor (\mathcal{P} \lor \mathcal{Q}) \triangleleft (\Theta \lor \mathcal{P}) \lor \mathcal{Q} \]

\[\Theta \leftrightarrow (\mathcal{P} \leftrightarrow \mathcal{Q}) \triangleleft (\Theta \leftrightarrow \mathcal{P}) \leftrightarrow \mathcal{Q} \]

Assoc (association) lets you shift parentheses for conjunctions, disjunctions and biconditionals. The different forms are justified by T6.16, T6.17 and T6.29.

Idem

\[\mathcal{P} \triangleleft \mathcal{P} \land \mathcal{P} \]

\[\mathcal{P} \triangleleft \mathcal{P} \lor \mathcal{P} \]

Idem (idempotence) exposes the equivalence between \mathcal{P} and $\mathcal{P} \land \mathcal{P}$, and between \mathcal{P} and $\mathcal{P} \lor \mathcal{P}$. The two forms are justified by T6.19 and T6.20.

Impl

\[\mathcal{P} \rightarrow \mathcal{Q} \triangleleft \neg \mathcal{P} \lor \mathcal{Q} \]

\[\neg \mathcal{P} \rightarrow \mathcal{Q} \triangleleft \mathcal{P} \lor \mathcal{Q} \]

Impl (implication) lets you move between a conditional and a corresponding disjunction. Thus, for example, by the first form of Impl you could move from $A \rightarrow (\neg B \lor C)$ to $\neg A \lor (\neg B \lor C)$, using the rule from left to right, or to $A \rightarrow (B \rightarrow C)$, using the rule from right to left. As we will see, this rule can be particularly useful. The two forms are justified by T6.23 and T6.24.

Trans

\[\mathcal{P} \rightarrow \mathcal{Q} \triangleleft \neg \mathcal{Q} \rightarrow \neg \mathcal{P} \]

Trans (transposition) lets you reverse the antecedent and consequent around a conditional—subject to the addition or removal of negations. From left to right, this rule should remind you of MT, as Trans plus $\rightarrow E$ has the same effect as one application of MT. Trans is justified by T6.14.

DeM

\[\neg (\mathcal{P} \land \mathcal{Q}) \triangleleft \neg \mathcal{P} \lor \neg \mathcal{Q} \]

\[\neg (\mathcal{P} \lor \mathcal{Q}) \triangleleft \neg \mathcal{P} \land \neg \mathcal{Q} \]

DeM (DeMorgan) should remind you of equivalences we learned in chapter 5, for not both (the first form) and neither nor (the second form). This rule also can be very useful. The two forms are justified by T6.21 and T6.22.

Exp

\[\Theta \rightarrow (\mathcal{P} \rightarrow \mathcal{Q}) \triangleleft (\Theta \land \mathcal{P}) \rightarrow \mathcal{Q} \]

Exp (exportation) is another equivalence that may have arisen in translation. It is justified by T6.15.

Equiv

\[\mathcal{P} \leftrightarrow \mathcal{Q} \triangleleft (\mathcal{P} \rightarrow \mathcal{Q}) \land (\mathcal{Q} \rightarrow \mathcal{P}) \]

\[\mathcal{P} \leftrightarrow \mathcal{Q} \triangleleft (\mathcal{P} \land \mathcal{Q}) \lor (\neg \mathcal{P} \land \neg \mathcal{Q}) \]
Equiv (equivalence) converts between a biconditional and the corresponding pair of conditionals, or converts between a biconditional and a corresponding pair of conjunctions. The two forms are justified by T6.27 and T6.28.

\[
\Theta \land (P \lor Q) \iff ((\Theta \land P) \lor (\Theta \land Q))
\]

\[
\Theta \lor (P \land Q) \iff ((\Theta \lor P) \land (\Theta \lor Q))
\]

Dist (distribution) works something like the mathematical principle for multiplying across a sum. In each case, moving from left to right, the operator from outside attaches to each of the parts inside the parenthesis, and the operator from inside becomes the main operator. The two forms are justified by T6.25 and T6.26.

Thus end the sentential rules of NDs+. They are a lot to absorb at once. But you do not need to absorb all the rules at once. Again, the rules do not let you do anything you could not already do in NDs. For the most part, you should proceed as if you were in NDs. If an NDs+ shortcut occurs to you, use it. You will gradually become familiar with more and more of the special NDs+ rules. Perhaps, though, we can make a few observations about strategy that will get you started. First, again, do not get too distracted by the extra rules! You should continue with the overall goal-directed approach from NDs. There are, however, a few contexts where special rules from NDs+ can make a substantive difference. I comment on three.

First, as we have seen, in NDs formulas with \(\lnot \) can be problematic. \(\lnot E \) is awkward to apply, and \(\lnot I \) does not always work. In simple cases, DS can get you out of \(\lnot E \). But this is not always so, and you will want to keep \(\lnot E \) among your standard strategies. More importantly, Impl can convert between awkward goal formulas with main operator \(\lnot \) and more manageable ones with main operator \(\rightarrow \). Although a disjunction may be derivable, but not by \(\lor I \), if a conditional is derivable, it is derivable by \(\rightarrow I \). Thus to reach a goal with main operator \(\lor \), consider going for the corresponding \(\rightarrow \), and converting with Impl.

<table>
<thead>
<tr>
<th>given</th>
<th>use</th>
</tr>
</thead>
</table>
| \(A \lor B \) (goal) | a. \(\sim A \) (\(g \), \(\rightarrow I \))
| b. \(B \) (goal)
| c. \(\sim A \rightarrow B \) a-b \(\rightarrow I \)
| \(A \lor B \) c Impl |

And the other form of Impl may be helpful for a goal of the sort \(\sim A \lor B \). Here is a quick example.
NDs+ Quick Reference

NDs+ includes all the rules of NDs and,

Inference Rules

\(\bot I \) (bottom intro) \hspace{1cm} \(\bot E \) (bottom exploit)

\[
\begin{align*}
\text{a.} & \quad \bot \\
\text{b.} & \quad \neg \bot \\
\bot & \quad \text{a, b} \quad \bot I \\
\end{align*}
\]

MT (Modus Tollens) \hspace{1cm} NB (Negated Biconditional) \hspace{1cm} NB (Negated Biconditional)

\[
\begin{align*}
\text{a.} & \quad \ell \rightarrow \bot \\
\text{b.} & \quad \neg \ell \\
\neg \ell & \quad \text{a, b} \quad \text{MT} \\
\ell & \quad \text{a, b} \quad \text{NB} \\
\end{align*}
\]

DS (Disjunctive Syllogism) \hspace{1cm} DS (Disjunctive Syllogism) \hspace{1cm} HS (Hypothetical Syllogism)

\[
\begin{align*}
\text{a.} & \quad \ell \lor \bot \\
\text{b.} & \quad \neg \ell \\
\ell & \quad \text{a, b} \quad \text{DS} \\
\bot & \quad \text{a, b} \quad \text{DS} \\
\end{align*}
\]

Replacement Rules

DN \hspace{1cm} Idem

\[
\begin{align*}
\ell & \quad \text{a} \quad \ell \\
\ell & \quad \ell \\
\end{align*}
\]

Assoc \hspace{1cm} Com

\[
\begin{align*}
\ell \land (\ell \land \ell) & \quad \text{a} \quad (\ell \land \ell) \\
\ell & \quad \ell \\
\end{align*}
\]

Exp \hspace{1cm} Trans

\[
\begin{align*}
\neg (\ell \land \ell) & \quad \text{a} \quad \ell \\
\neg (\ell \land \ell) & \quad \text{a} \quad \ell \\
\end{align*}
\]

DeM \hspace{1cm} Impl

\[
\begin{align*}
\neg (\ell \land \ell) & \quad \text{a} \quad \ell \\
\neg (\ell \land \ell) & \quad \text{a} \quad \ell \\
\end{align*}
\]

Dist \hspace{1cm} Equiv

\[
\begin{align*}
\ell & \quad \text{a} \quad \ell \\
\ell & \quad \ell \\
\end{align*}
\]
The derivation on the left using Impl is completely trivial, requiring just a derivation of \(\sim A \rightarrow \sim A \). But the derivation on the right is not. It falls through to SC5, and then requires a challenging application of SC3 or SC4. This proposed strategy replaces or simplifies the pattern (AQ) for disjunctions described on page 271. Observe that the work—getting from the negation of one side of a disjunction to the other, is exactly the same. It is only that we use the derived rule to simplify away the distracting and messy setup.

Second, among the most useless formulas for exploitation in NDs are ones with main operator \(\sim \). But the combination of DeM, Impl, Equiv and DN let you “push” negations into arbitrary formulas. Thus you can convert formulas with main operator \(\sim \) into a more useful form. To see how these rules can be manipulated, consider the following sequence.

We begin with the negation as main operator, and end with a negation only against an atomic. This sort of thing is often very useful. For example, in going for a contradiction, you have the option of “breaking down” a formula with main operator \(\sim \) rather than automatically building up to its opposite, according to SC3.

Finally, observe that derivations which can be conducted entirely by replacement rules are “reversible.” Thus, for a simple case,
E6.21. Produce derivations to show each of the following.

a. \((H \land G) \rightarrow (L \lor K), \; G \land H \vdash_{\text{NDs}} K \lor L\)

b. \(\vdash_{\text{NDs}} [(A \land B) \rightarrow (B \land A)] \land \lnot(A \land B) \rightarrow \lnot(B \land A)]\)

c. \([(K \land J) \lor I] \lor \lnot Y, \; Y \land [(I \lor K) \rightarrow F] \vdash_{\text{NDs}} F \lor N\)

d. \(\lnot L \lor (\lnot Z \lor \lnot U), \; (U \lor G) \lor H, \; Z \vdash_{\text{NDs}} L \rightarrow H\)

e. \(F \rightarrow (\lnot G \lor H), \; F \rightarrow G, \; \lnot(H \lor I) \vdash_{\text{NDs}} F \rightarrow J\)

f. \(F \rightarrow (G \rightarrow H), \; \lnot I \rightarrow (F \lor H), \; F \rightarrow G \vdash_{\text{NDs}} I \lor H\)

g. \(G \rightarrow (H \land K), \; H \leftrightarrow (L \land I), \; \lnot I \lor K \vdash_{\text{NDs}} G\)

h. \(\lnot(Z \lor \lnot X) \lor (\lnot X \lor \lnot Y), \; X \rightarrow Z, \; Z \rightarrow Y \vdash_{\text{NDs}} X \leftrightarrow Y\)

i. \(\vdash_{\text{NDs}} [A \lor (B \lor C)] \leftrightarrow [C \lor (B \lor A)]\)

j. \(\vdash_{\text{NDs}} [A \rightarrow (B \leftrightarrow C)] \leftrightarrow (A \rightarrow [(\lnot B \lor C) \land (\lnot C \lor B)])\)

k. \(\vdash_{\text{NDs}} (A \lor [B \rightarrow (A \rightarrow B)]) \leftrightarrow (A \lor [(\lnot A \lor \lnot B) \lor B])\)

l. \(\vdash_{\text{NDs}} [\lnot A \rightarrow (\lnot B \rightarrow C)] \rightarrow [(A \lor B) \lor (\lnot B \lor C)]\)
CHAPTER 6. NATURAL DEDUCTION

m. \(\vdash_{NDs} (\sim A \leftrightarrow \sim A) \leftrightarrow [\sim(\sim A \rightarrow A) \leftrightarrow (A \rightarrow \sim A)] \)

n. \(\vdash_{NDs} (A \rightarrow B) \vee (B \rightarrow C) \)

o. \(\vdash_{NDs} [(A \rightarrow B) \rightarrow A] \rightarrow A \)

E6.22. For each of the following, produce a good translation including interpretation function. Then use a derivation to show that the argument is valid in ND\(_{s+}\). The first two are suggested from the history of philosophy; the last is our familiar case from page 2.

a. We have knowledge about numbers.
 If Platonism is true, then numbers are not in spacetime.
 Either numbers are in spacetime, or we do not interact with them.
 We have knowledge about numbers only if we interact with them.
 Platonism is not true.

b. There is evil.
 If god is good, then there is no evil unless he has morally sufficient reasons for allowing it.
 If god is both omnipotent and omniscient, then he does not have morally sufficient reasons for allowing evil.
 God is not good, omnipotent and omniscient.

c. If Bob goes to the fair, then so do Daniel and Edward. Albert goes to the fair only if Bob or Carol go. If Daniel goes, then Edward goes only if Fred goes. But not both Fred and Albert go. So Albert goes to the fair only if Carol goes too.

d. If I think dogs fly, then I am insane or they have really big ears. But if dogs do not have really big ears, then I am not insane. So either I do not think dogs fly, or they have really big ears.

e. If the maid did it, then it was done with a revolver only if it was done in the parlor. But if the butler is innocent, then the maid did it unless it was done in the parlor. The maid did it only if it was done with a revolver, while the butler is guilty if it did happen in the parlor. So the butler is guilty.

E6.23. For each of the following concepts, explain in an essay of about two pages, so that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples of your own construction (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. Derivations as games, and the condition on rules.

b. Accessibility, and auxiliary assumptions.

c. The rules $\lor I$ and $\lor E$.

d. The strategies for a goal.

e. The strategies for a contradiction.

6.3 Quantificational

Our full system ND includes all the rules for NDs, along with new I- and E-rules for quantifiers and equality—so it includes reiteration, with I- and E-rules for \neg, \rightarrow, \leftrightarrow, \land, \lor and then I- and E-rules for $\forall x$, $\exists x$ and $=$. Thus ND completes the basic structure of I- and E-rules. We leave aside derived rules from NDs^+ (except $\bot I$) until they are included again with ND^+. After some quick introductory remarks, there are sections for the quantifier rules (6.3.1, 6.3.2), for discussion of strategy (6.3.3), then for the equality rules (6.3.4) and for the extended system ND^+ (6.3.5).

First, we do not sacrifice any of the NDs rules we have so far. All these rules apply to formulas of quantificational languages as well as to formulas of sentential ones. Thus, for example, $Fx \rightarrow \forall xFx$ and Fx are of the form $P \lor Q$ and P. So we might move from them to $\forall xFx$ by $\rightarrow E$ as before. And similarly for other rules. Here is a short example.

$$\forall x Fx \land \exists y (Hx \lor Zy) \quad P$$

1. \begin{align*}
Kx & \quad A (g, \rightarrow I) \\
\forall x Fx & \quad 1 \land E \\
Kx \rightarrow \forall x Fx & \quad 2-3 \rightarrow I
\end{align*}

The goal is of the form $\mathcal{P} \rightarrow \mathcal{Q}$; so we set up to get it in the usual way. And the subderivation is particularly simple. Notice that formulas of the sort $\forall x (Kx \rightarrow Fx)$ and Kx are not of the form $\mathcal{P} \rightarrow \mathcal{Q}$ and \mathcal{P}. The main operator of $\forall x (Kx \rightarrow Fx)$ is $\forall x$, not \rightarrow. So $\rightarrow E$ does not apply. That is why we need new rules for the quantificational operators.
For our quantificational rules, we need a couple of notions already introduced in chapter 3. Again, for any formula \mathcal{A}, variable x, and term t, say \mathcal{A}_t^x is \mathcal{A} with all the free instances of x replaced by t. And t is free for x in \mathcal{A} iff all the variables in the replacing instances of t remain free after substitution in \mathcal{A}_t^x. Thus, for example,

(BA) $$(\forall xRxy \lor Px)_y^x \text{ is } \forall xRxy \lor Py$$

There are three instances of x in $\forall xRxy \lor Px$, but only the last is free; so y is substituted only for that instance. Since the substituted y is free in the resultant expression, y is free for x in $\forall xRxy \lor Px$. Similarly,

(BB) $$[\forall x(x = y) \lor Ryx]_{f^1x}^y \text{ is } \forall x(x = f^1x) \lor Rf^1xx$$

Both instances of y in $\forall x(x = y) \lor Ryx$ are free; so our substitution replaces both. But the x in the first instance of f^1x is bound upon substitution; so f^1x is not free for y in $\forall x(x = y) \lor Ryx$.

Some quick applications: If x is not free in \mathcal{A}, then replacing every free instance of x in \mathcal{A} with some term results in no change; so if x is not free in \mathcal{A}, then \mathcal{A}_t^x is \mathcal{A}. Similarly, A_x^x is just \mathcal{A} itself. Further, any variable x is sure to be free for itself in a formula \mathcal{A}—if every free instance of variable x is “replaced” with x, then the replacing instances are sure to be free. Similarly variable-free terms (like constants) are sure to be free for a variable x in a formula \mathcal{A}; if a term has no variables, no variable in the replacing term is bound upon substitution for free instances of x. And if \mathcal{A} is quantifier-free then any t free for variable x in \mathcal{A}; if \mathcal{A} has no quantifiers, then no variable in t can be bound upon substitution.

With this said, we are ready to turn to our rules. We begin with the easier ones, and work from there.

6.3.1 $\forall E$ and $\exists I$

$\forall E$ and $\exists I$ are straightforward. For the former, for any variable x, given an accessible formula $\forall x\mathcal{P}$ on line a, if term t is free for x in \mathcal{P}, one may move to \mathcal{P}_t^x with justification, $a \forall E$.

$$\begin{array}{c|l|l}
\forall E & \text{provided } t \text{ is free for } x \text{ in } \mathcal{P} \\
\text{a. } \forall x\mathcal{P} & \mathcal{P}_t^x & \text{a } \forall E
\end{array}$$

$\forall E$ removes a quantifier and substitutes a term t for resulting free instances of x, so long as t is free in the resulting formula. We sometimes say that variable x is instantiated by term t. Thus, for example, $\forall x\exists yLxy$ is of the form $\forall x\mathcal{P}$, where \mathcal{P} is...
∃yLxy. So by ∀E we can move from ∀x∃yLxy to ∃yLay, removing the quantifier and substituting a for x. And similarly, since the complex terms f^1a and g^2zb are free for x in ∃yLxy, ∀E legitimates moving from f^2ξ to ∃yLf^1ay or ∃yLg^2zby. What we cannot do is move from ∀x∃yLxy to ∃yLyy or ∃yLf^1yy. These violate the constraint insofar as a variable of the substituted term is bound by a quantifier in the resulting formula.

Intuitively, the motivation for this rule is clear: If P is satisfied for every assignment to variable x, then it is sure to be satisfied for the thing assigned to t, whatever that thing may be. Thus, for example, if everyone loves someone, ∀x∃yLxy, it is sure to be the case that Al, and Al’s father love someone—that ∃yLay and ∃yLf^1ay. But from everyone loves someone, it does not follow that anyone loves themselves, that ∃yLyy, or that anyone is loved by their father ∃yLf^1yy. Though we know Al and Al’s father loves someone, we do not know who that someone might be. We therefore require that the replacing term be independent of quantifiers in the rest of the formula.

Here are some examples. Notice that we continue to apply bottom-up goal-oriented thinking.

\[
\begin{array}{l|l}
1 & ∀x∀yHxy \quad P \\
2 & Hcf^2ab \rightarrow ∀zKz \quad P \\
3 & ∀yHyce \quad 1 \ ∀E \\
4 & Hcf^2ab \quad 3 \ ∀E \\
5 & ∀zKz \quad 2,4 \ →E \\
6 & Kb \quad 5 \ ∀E \\
\end{array}
\]

Our original goal is Kb. We could get this by ∀E if we had ∀zKz. So we set that as a subgoal. This leads to Hcf^2ab as another subgoal. And we get this from (1) by two applications of ∀E. The constant c is free for x in ∀yHxy so we move from ∀x∀yHxy to ∀yHcy by ∀E. And the complex term f^2ab is free for y in Hcy, so we move from ∀yHcy to Hcf^2ab by ∀E. And similarly, we get Kb from ∀zKz by ∀E.

Here is another example, also illustrating strategic thinking.

\[
\begin{array}{l|l}
1 & ∀xBx \quad P \\
2 & ∀x(Cx \rightarrow ¬Bx) \quad P \\
3 & Ca \quad A (c, ¬I) \\
4 & Ca \rightarrow ¬Ba \quad 2 \ ∀E \\
5 & ¬Ba \quad 4,3 \ →E \\
6 & Ba \quad 1 \ ∀E \\
7 & \bot \quad 6,5 \ ⊥I \\
8 & ¬Ca \quad 3,7 \ ¬I \\
\end{array}
\]
Our original goal is \(\sim Ca \); so we set up to get it by \(\sim I \). And our contradiction appears at the level of atomics and negated atomics. The constant \(a \) is free for \(x \) in \(Cx \rightarrow \sim Bx \). So we move from \(\forall x(Cx \rightarrow \sim Bx) \) to \(Ca \rightarrow \sim Ba \) by \(\forall E \). And similarly, we move from \(\forall xBx \) to \(Ba \) by \(\forall E \). Notice that we could use \(\forall E \) to instantiate the universal quantifiers to any terms. We pick the constant \(a \) because it does us some good in the context of our assumption \(Ca \)—itself driven by the goal \(\sim Ca \). And it is typical to “swoop” in with universal quantifiers to put variables on terms that matter in a given context.

\(\exists I \) is equally straightforward. For variable \(x \), given an accessible formula \(\mathcal{P}_t^x \) on line \(a \), where term \(t \) is free for \(x \) in formula \(\mathcal{P} \), one may move to \(\exists x \mathcal{P} \), with justification, \(a \ \exists I \).

\[
\exists I \quad \begin{array}{c}
\mathcal{P}_t^x \\
\exists x \mathcal{P} \quad a \ \exists I
\end{array}
\]

The statement of this rule is somewhat in reverse from the way one expects it to be: Supposing that \(t \) is free for \(x \) in \(\mathcal{P} \), when one removes the quantifier from the result and replaces every free instance of \(x \) with \(t \) one ends up with the start. A consequence is that one starting formula might legitimately lead to different results by \(\exists I \). Thus if \(\mathcal{P} \) is any of \(Fxx, Fxa, \) or \(Fax \), then \(\mathcal{P}_a^x \) is \(Faa \). So \(\exists I \) allows a move from \(Faa \) to any of \(\exists x Fxx, \exists x Fax \) or \(\exists x Fxa \). In doing a derivation, there is a sense in which we replace one or more instances of \(a \) in \(Faa \) with \(x \), and add the quantifier to get the result. But then notice that not every instance of the term need be replaced. Officially the rule is stated the other way: Removing the quantifier from the result and replacing free instances of the variable yields the initial formula. Be clear about this in your mind. The requirement that \(t \) be free for \(x \) in \(\mathcal{P} \) prevents moving from \(\forall y Lyy \) or \(\forall y Lf^1 yy \) to \(\exists x \forall y Lxy \). The term from which we generalize must be free in the sense that it has no bound variable!

Again, the motivation for this rule is clear. If \(\mathcal{P} \) is satisfied for the individual assigned to \(t \), it is sure to be satisfied for some individual. Thus, for example, if Al or Al’s father love everyone, \(\forall y Lay \) or \(\forall y Lf^1 ay \), it is sure to be the case that someone loves everyone \(\exists x \forall y Lxy \). But from the premise that everyone loves themselves \(\forall y Lyy \), or that everyone is loved by their father \(\forall y Lf^1 yy \) it does not follow that someone loves everyone. Again, the constraint on the rule requires that the term on which we generalize be independent of quantifiers in the rest of the formula.

Here are a couple of examples. The first is relatively simple. The second illustrates the “duality” between \(\forall E \) and \(\exists I \).
Ha ∧ Ja is (H x ∧ J x)∃x so we can get ∃x(H x ∧ J x) from Ha ∧ Ja by ∃I. Ha is already a premise, so we set Ja as a subgoal. Ja comes by ∀E from ∀xJ x, and to get this we set ∃yHy as another subgoal. And ∃yHy follows directly by ∃I from Ha. Observe that, for now, the natural way to produce a formula with main operator ∃ is by ∃I. You should fold this into your strategic thinking.

For the second example, recall from translations that ¬∀x¬Px is equivalent to ∃xPx, and ¬∃x¬Px is equivalent to ∀xPx. Given this, it turns out that we can use the universal rule with an effect something like ∃I, and the existential rule with an effect like ∀E. The following pair of derivations illustrate this point.

By ∃I we could move from Pa to ∃xPx in one step. In (BF) we use the universal rule to move from the same premise to the equivalent ¬∀x¬Px. Indeed, ∃xPx abbreviates this very expression. Similarly, by ∀E we could move from ∀xPx to Pa in one step. In (BG), we move to the same result from the equivalent ¬∃x¬Px by the existential rule. Thus there is a sense in which, in the presence of rules for negation, the work done by one of these quantifier rules is very similar to, or can substitute for, the work done by the other.

E6.24. Complete the following derivations by filling in justifications for each line. Then for each application of ∀E or ∃I, show that the “free for” constraint is met.

Hint: it may be convenient to xerox the problems, and fill in your answers directly on the copy.
CHAPTER 6. NATURAL DEDUCTION

290

a. 1. \(\forall x(Ax \rightarrow Bxf^1x) \)
 2. \(\forall xAx \)
 3. \(Af^1c \)
 4. \(Af^1c \rightarrow Bf^1cf^1f^1c \)
 5. \(Bf^1cf^1f^1c \)

*b. 1. \(Gaa \)
 2. \(\exists yGay \)
 3. \(\exists x\exists yGxy \)

c. 1. \(\forall x(Rx \land Jx) \)
 2. \(Rk \land Jk \)
 3. \(Rk \)
 4. \(Jk \)
 5. \(Jk \land Rk \)
 6. \(\exists y(Jy \land Ry) \)

d. 1. \(\exists x(Rx \land Gx) \rightarrow \forall yFy \)
 2. \(\forall zGz \)
 3. \(Ra \)
 4. \(Ga \)
 5. \(Ra \land Ga \)
 6. \(\exists x(Rx \land Gx) \)
 7. \(\forall yFy \)
 8. \(Fg^2ax \)

e. 1. \(\neg \exists zFg^1z \)
 2. \(\forall xFx \)
 3. \(Fg^1k \)
 4. \(\exists zFg^1z \)
 5. \(\bot \)
 6. \(\neg \forall xFx \)

E6.25. The following are not legitimate ND derivations. In each case, explain why.

a. 1. \(\forall xFx \leftrightarrow Gx \quad \text{P} \)
 2. \(Fj \leftrightarrow Gj \quad 1 \text{VE} \)

*b. 1. \(\forall x\exists yGxy \quad \text{P} \)
 2. \(\exists yGyy \quad 1 \text{VE} \)
CHAPTER 6. NATURAL DEDUCTION

291

E6.26. Provide derivations to show each of the following.

a. $\forall x Fx \vdash_{ND} Fa \land Fb$

*b. $\forall x \forall y Fxy \vdash_{ND} Fab \land Fba$

c. $\forall x (Gf^1 x \rightarrow \forall y Axy), Gf^1 b \vdash_{ND} Af^1 cb$

d. $\forall x \forall y (Hxy \rightarrow Dyx), \sim Dab \vdash_{ND} \sim Hba$

e. $\vdash_{ND} [\forall x \forall y Fxy \land \forall x (Fxx \rightarrow A)] \rightarrow A$

f. $Fa, Ga \vdash_{ND} \exists x (Fx \land Gx)$

*g. $Gaf^1 z \vdash_{ND} \exists x \exists y Gxy$

h. $\vdash_{ND} (Fa \lor Fb) \rightarrow \exists x Fx$

i. $Gaa \vdash_{ND} \exists x \exists y (Kxx \rightarrow Gxy)$

j. $\forall x Fx, Ga \vdash_{ND} \exists y (Fy \land Gy)$

*k. $\forall x (Fx \rightarrow Gx), \exists y Gy \rightarrow Ka \vdash_{ND} Fa \rightarrow \exists x Kx$

l. $\forall x \forall y Hxy \vdash_{ND} \exists y \exists x Hxy$

m. $\forall x (\sim Bx \rightarrow Kx), \sim Kf^1 x \vdash_{ND} Bf^1 x$

n. $\forall x \forall y (Fxy \rightarrow \sim Fyx) \vdash_{ND} \exists z \sim Fzz$

o. $\forall x (Fx \rightarrow Gx), Fa \vdash_{ND} \exists x (\sim Gx \rightarrow Hx)$
6.3.2 \(\forall I \) and \(\exists E \)

In parallel with \(\forall E \) and \(\exists I \), rules for \(\forall I \) and \(\exists E \) are a linked pair. \(\forall I \) is as follows: For variables \(v \) and \(x \), given an accessible formula \(P^x_v \) at line \(a \), where \(v \) is free for \(x \) in \(P \), \(v \) is not free in any undischarged assumption, and \(v \) is not free in \(\forall x P \), one may move to \(\forall x P \) with justification \(a \ \forall I \).

\[
\forall I \\
\begin{array}{c}
\forall x P \\
\vdash P^x_v \\
a \ \forall I
\end{array}
\]

The form of this rule is like a constrained \(\exists I \) when \(t \) is a variable: From \(P^x_v \) we move to the quantified expression \(\forall x P \). The underlying difference is in the special constraints.

First, constraints (i) and (iii) are automatically met when \(v \) is \(x \). For \(x \) is sure to be free for \(x \) in \(P \); and \(x \) is not free in \(\forall x P \). More generally, constraints (i) and (iii) together require that \(x \) and \(v \) appear free in just the same places of \(P \). If \(v \) is free for \(x \) in \(P \), then \(v \) is free in \(P^x_v \) everywhere \(x \) is free in \(P \). If \(v \) is not free in \(\forall x P \), then \(v \) is free in \(P^x_v \) only where \(x \) is free in \(P \). This two-way requirement is not present for \(\exists I \). So, for example, \(A_{xy}x \) and \(A_{vy}v \) have \(x \) and \(v \) free in just the same places—and a move from \(A_{vy}v \) to \(\forall x A_{xy}x \) satisfies constraints (i) and (iii).

In addition, \(v \) cannot be free in an auxiliary assumption still in effect when \(\forall I \) is applied. Recall that a formula is true when it is satisfied on every variable assignment. As it turns out (and we shall see in detail in part II), the truth of a formula with a free variable is therefore equivalent to the truth of its universal quantification. But this is not so under the scope of an assumption in which the variable is free. Under the scope of an assumption with a free variable, we effectively constrain the range of assignments under consideration to ones where the assumption is satisfied. Thus under any such assumption, the move to a universal quantification is not justified. However outside the scope of an assumption in which \(v \) is free, assignments are unconstrained and the move from \(P^x_v \) to \(\forall x P \) is justified. Again, observe that no such constraint is required for \(\exists I \), which depends on satisfaction for just a single individual, so that any assignment and term will do.

Once you get your mind around them, these constraints are not difficult. Somehow, though, managing them is a common source of frustration for beginning students. However, there is a simple way to be sure that the constraints are met. Suppose you have been following the strategies, along the lines from before, and come to a goal of the sort \(\forall x P \). It is natural to expect to get this by \(\forall I \) from \(P^x_v \). You will be sure to satisfy the constraints if you set \(P^x_v \) as a subgoal, where \(v \) does not appear elsewhere in the derivation. If \(v \) does not otherwise appear in the derivation, (i) there cannot
be any \(v \)-quantifier in \(\mathcal{P} \), so \(v \) is sure to be free for \(x \) in \(\mathcal{P} \). If \(v \) does not otherwise appear in the derivation, \(\text{(ii)} \) \(v \) cannot appear in any assumption, and so be free in an undischarged assumption. And if \(v \) does not otherwise appear in the derivation, \(\text{(iii)} \) it cannot appear at all in \(\forall x \mathcal{P} \), and so cannot be free in \(\forall x \mathcal{P} \). It is not always necessary to use a new variable in order to satisfy the constraints, and sometimes it is possible to simplify derivations by clever variable selection. However, we shall make it our standard procedure to do so.

Here are some examples. The first is very simple, but illustrates the basic idea underlying the rule.

\[
\begin{array}{l}
\frac{1. \; \forall x (Hx \land Mx) \quad \text{P}}{1. \; \forall x (Hx \land Mx) \quad \text{P}}
\end{array}
\]

(BH)

\[
\frac{Hj}{\forall y H_y} \quad \forall I
\]

The goal is \(\forall y H_y \). So, picking a variable new to the derivation, we set up to get this by \(\forall I \) from \(Hj \). This goal is easy to obtain from the premise by \(\forall E \) and \(\land E \). If every \(x \) is such that both \(Hx \) and \(Mx \), it is not surprising that every \(y \) is such that \(H_y \).

The general content from the quantifier is converted to the form with free variables, manipulated by ordinary rules, and converted back to quantified form. This is typical.

Another example has free variables in an auxiliary assumption.

\[
\begin{array}{l}
\frac{1. \; \forall x (Ex \rightarrow Sx) \quad \text{P}}{1. \; \forall x (Ex \rightarrow Sx) \quad \text{P}}
\end{array}
\]

(BI)

\[
\frac{2. \; \forall z (Sz \rightarrow Kz) \quad \text{P}}{3. \; Ej \quad \text{A (g, \rightarrow I)}}
\]

\[
\frac{4. \; Ej \rightarrow Sj \quad 1 \; \forall E}{5. \; Sj \quad 4,3 \; \rightarrow E}
\]

\[
\frac{6. \; Sj \rightarrow Kj \quad 2 \; \forall E}{7. \; Kj \quad 6,5 \; \rightarrow E}
\]

\[
\frac{8. \; Ej \rightarrow Kj \quad 3-7 \; \rightarrow I}{9. \; \forall x (Ex \rightarrow Kx) \quad 8 \; \forall I}
\]

Given the goal \(\forall x (Ex \rightarrow Kx) \), we immediately set up to get it by \(\forall I \) from \(Ej \rightarrow Kj \). At this stage, \(j \) does not appear elsewhere in the derivation and we can therefore be sure that the constraints will be met when it comes time to apply \(\forall I \). The derivation is completed by the usual strategies. Observe that \(j \) appears in an auxiliary assumption at (3). This is no problem insofar as the assumption is discharged by the time \(\forall I \) is applied. Inside the subderivation, however, we would not be able to conclude, say, \(\forall x Sx \) from (5) or \(\forall x Kx \) from (7), since at that stage, the variable \(j \) is free in the undischarged assumption. But, of course, given the strategies, there should be no
temptation whatsoever to do so. For when we set up for \(\forall I \), we set up to do it in a way that is sure to satisfy the constraints.

A last example introduces multiple quantifiers and, again, emphasizes the importance of following the strategies. Insofar as the conclusion merely exchanges variables with the premise, it is no surprise that there is a way for it to be done.

\[
\begin{align*}
1. \forall x(Gx \to \forall yFxy) & \quad \text{P} \\
2. \quad Gj & \quad \text{A} (g, \to I) \\
\end{align*}
\]

First, we set up to get \(\forall y(Gy \to \forall xFxy) \) from \(Gj \to \forall xFxj \). The variable \(j \) does not appear in the derivation, so we expect that the constraints on \(\forall I \) will be satisfied. But our new goal is a conditional, so we set up to go for it by \(\to I \) in the usual way. This leads to \(\forall xFxj \) as a goal, and we set up to get it from \(Fkj \), where \(k \) does not otherwise appear in the derivation. Observe that we have at this stage an undischarged assumption in which \(j \) appears free. However, our plan is to generalize on \(k \). Since \(k \) is new at this stage, we are fine. Of course, this assumes that we are following the strategies so that our new variable automatically avoids variables free in assumptions under which this instance of \(\forall I \) falls. This goal is easily obtained and the derivation completed as follows.

\[
\begin{align*}
1. \quad \forall x(Gx \to \forall yFxy) & \quad \text{P} \\
2. \quad Gj & \quad \text{A} (g, \to I) \\
3. \quad Gj \to \forall yFyj & \quad 1 \ \forall E \\
4. \quad \forall yFyj & \quad 3,2 \ \to E \\
5. \quad Fkj & \quad 4 \ \forall E \\
6. \quad \forall xFxj & \quad 5 \ \forall I \\
7. \quad Gj \to \forall xFxj & \quad 2-6 \ \to I \\
8. \quad \forall y(Gy \to \forall xFxy) & \quad 7 \ \forall I \\
\end{align*}
\]

When we apply \(\forall I \) the first time, we replace \(k \) with \(x \) and add the \(x \)-quantifier. When we apply \(\forall I \) the second time, we replace each instance of \(j \) with \(y \) and add the \(y \)-quantifier. This is just how we planned for the rules to work.

\(\exists E \) appeals to both a formula and a subderivation. For variables \(v \) and \(x \), given an accessible formula \(\exists x \mathcal{P} \) at \(a \), and an accessible subderivation beginning with \(\mathcal{P}^x_v \) at \(b \) and ending with \(\mathcal{Q} \) against its scope line at \(c \) — where \(v \) is free for \(x \) in \(\mathcal{P} \), \(v \) is free in
CHAPTER 6. NATURAL DEDUCTION

no undischarged assumption, and \(v \) is not free in \(\exists x \mathcal{P} \) or in \(\mathcal{Q} \). one may move to \(\mathcal{Q} \), with justification \(a, b, c \ \exists \mathcal{E} \).

\[
\mathcal{E} \quad \begin{array}{c}
\exists x \mathcal{P} \\
\mathcal{P}_x^v \\
\mathcal{A} (g, a \exists \mathcal{E})
\end{array} \quad \text{provided (i) } v \text{ is free for } x \text{ in } \mathcal{P}, (\text{ii) } v \text{ is not free in any undischarged auxiliary assumption, and (iii) } v \text{ is not free in } \exists x \mathcal{P} \text{ or in } \mathcal{Q} \\
\mathcal{Q} \\
a, b, c \ \exists \mathcal{E}
\]

Notice that the assumption comes with an exit strategy as usual. We can think of this rule on analogy with \(\forall \mathcal{E} \). A universally quantified expression is something like a big conjunction: if \(\forall x \mathcal{P} \), then this element of \(U \) is \(\mathcal{P} \) and that element of \(U \) is \(\mathcal{P} \) and \(\ldots \). And an existentially quantified expression is something like a big disjunction: if \(\exists x \mathcal{P} \), then this element of \(U \) is \(\mathcal{P} \) or that element of \(U \) is \(\mathcal{P} \) or \(\ldots \). What we need to show is that no matter which thing happens to be the one that is \(\mathcal{P} \), we get the result that \(\mathcal{Q} \). Given this, we are in a position to conclude that \(\mathcal{Q} \). As for the case of \(\forall \mathcal{I} \), then, the constraints guarantee that our reasoning applies to any individual.

Again, if you are following the strategies, a simple way to guarantee that the constraints are met is to use a variable new to the derivation for the assumption. Suppose you are going for goal \(\mathcal{Q} \). In parallel with \(\forall \), when presented with an accessible formula with main operator \(\exists \), it is wise to go for the entire goal by \(\exists \mathcal{E} \).

\[
\exists \mathcal{E} \quad \begin{array}{c}
\exists x \mathcal{P} \\
\mathcal{P}_x^v \\
\mathcal{A} (g, a \exists \mathcal{E})
\end{array} \quad \text{provided (i) } v \text{ is free for } x \text{ in } \mathcal{P}, (\text{ii) } v \text{ is not free in any undischarged auxiliary assumption, and (iii) } v \text{ is not free in } \exists x \mathcal{P} \text{ or in } \mathcal{Q} \\
\mathcal{Q} \\
a, b, c \ \exists \mathcal{E}
\]

If \(v \) does not otherwise appear in the derivation, then (i) there is no \(v \)-quantifier in \(\mathcal{P} \) and \(v \) is sure to be free for \(x \) in \(\mathcal{P} \). If \(v \) does not otherwise appear in the derivation (ii) \(v \) does not appear in any other assumption and so is not free in any undischarged auxiliary assumption. And if \(v \) does not otherwise appear in the derivation (iii) \(v \) does not appear in either \(\exists x \mathcal{P} \) or in \(\mathcal{Q} \) and so is not free in \(\exists x \mathcal{P} \) or in \(\mathcal{Q} \). Thus we adopt the same simple expedient to guarantee that the constraints are met. Of course, this presupposes we are following the strategies enough so that other assumptions are in place when we make the assumption for \(\exists \mathcal{E} \), and that we are clear about the exit strategy, so that we know what \(\mathcal{Q} \) will be. The variable is new relative to this much setup.

Here are some examples. The first is particularly simple, and should seem intuitively right. Notice again that given an accessible formula with main operator \(\exists \), we go directly for the goal by \(\exists \mathcal{E} \).
Given an accessible formula with main operator ∃, we go for the goal by ∃E. This gives us a subderivation with the same goal, and our assumption with the new variable. As it turns out, this goal is easy to obtain, with instances of ∧E and ∃I. We could not do ∀I to introduce ∀xFx under the scope of the assumption with j free. But ∃I is not so constrained. So we complete the derivation as above. If some x is such that both Fx and Gx then of course some x is such that Fx. Again, we are able to take the quantifier off, manipulate the expressions with free variables, and put the quantifier back on.

Observe that the following is a mistake. It violates the third constraint that the variable v to which we instantiate the existential is not free in the formula Q that results from ∃E.

If you are following the strategies, there should be no temptation to do this. In the above example (BL), we go for the goal ∃xFx by ∃E. At that stage, the variable of the assumption j is new to the derivation and so does not appear in the goal. So all is well. This case (BM) does not introduce a variable that is new relative to the goal of the subderivation, and so runs into trouble.

Very often, a goal from ∃E is existentially quantified—for introducing an existential quantifier may be a way to bind the variable from the assumption, so that it is not free in the goal. In fact, we do not have to think much about this, insofar as we explicitly introduce the assumption by a variable not in the goal. However, it is not always the case that the goal for ∃E is existentially quantified. Here is a simple case of that sort.
Again, given an existential premise, we set up to reach the goal by $\exists E$, where the variable in the assumption is new. In this case, the goal is universally quantified, and illustrates the point that any formula may be the goal for $\exists E$. In this case, we reach the goal in the usual way. To reach $\forall x Gx$ set Gk as goal; at this stage, k is new to the derivation, and so not free in any undischarged assumption. So there is no problem about $\exists I$. Then it is a simple matter of exploiting accessible lines for the result.

Here is an example with multiple quantifiers. It is another case which makes sense insofar as the premise and conclusion merely exchange variables.

The premise is an existential, so we go for the goal by $\exists E$. This gives us the first subderivation, with the same goal and new variable j substituted for x. But just a bit of simplification gives us another existential on line (3). Thus, following the standard strategies, we set up to go for the goal again by $\exists E$. At this stage, j is no longer new, so we set up another subderivation with new variable k substituted for y. Now the derivation is reasonably straightforward.
1. \(\exists x (F x \land \exists y G x y) \)
2. \(F j \land \exists y G j y \)
3. \(\exists y G j y \)
4. \(G j k \)
5. \(\exists x G j x \)
6. \(F j \)
7. \(F j \land \exists x G j x \)
8. \(\exists y (F y \land \exists x G y x) \)
9. \(\exists y (F y \land \exists x G y x) \)
10. \(\exists y (F y \land \exists x G y x) \)

\(\exists I \) applies in the scope of the subderivations. And we put \(F j \) and \(\exists x G j x \) together so that the outer quantifier goes on properly, with \(y \) in the right slots.

Finally, observe that \(\forall I \) and \(\exists I \) also constitute a dual to one another. The derivations to show this are relatively difficult to create. But to not worry about that. It is enough to understand the steps. For the parallel to \(\forall I \), suppose the constraints are met for a derivation of \(\forall x P x \) from \(P j \). And for the parallel to \(\exists E \), suppose it is possible to derive \(Q \) by \(\exists E \) from \(\exists x P x \); so from application of that rule, in a subderivation, we can get \(Q \) from \(P j \).

\[\begin{align*}
1. & P j & P \\
2. & \exists x \sim P x & A (c, \sim I) \\
3. & \sim P j & A (c, \exists E) \\
4. & \bot & 1.3 \bot I \\
5. & \bot & 2.3-4 \exists E \\
6. & \sim \exists x \sim P x & 2.5 \sim I \\
\end{align*} \]

(BP)

\[\begin{align*}
1. & \sim \forall x \sim P x & P \\
2. & \sim Q & A (c, \sim E) \\
3. & P j & A (c, \sim I) \\
4. & Q & (somehow) \\
5. & \bot & 4.2 \bot I \\
6. & \sim P j & 3.5 \sim I \\
7. & \forall x \sim P x & 6 \forall I \\
8. & \bot & 7.1 \bot I \\
9. & Q & 2.8 \sim E \\
\end{align*} \]

(BQ)

Where \(P j \) is a premise, it would be possible to derive \(\forall x P x \) in one step by \(\forall I \). But in (BP) from the same start we derive the equivalent \(\sim \exists x \sim P x \) by the existential rule. Since conditions for the universal rule apply, \(j \) is not free in an undischarged assumption, is free for \(x \) in \(\sim P x \) and is not free in \(\exists x \sim P x \). In this case, it matters that \(\bot \) abbreviates a sentence and so includes no free instance of \(j \). So the constraints are satisfied. Similarly, if it is possible to derive \(Q \) by \(\exists E \) from \(\exists x P x \), we would set up a subderivation starting with \(P j \), derive \(Q \) and use \(\exists E \) to exit with the \(Q \). In (BQ) we begin with the equivalent \(\sim \forall x \sim P x \) and, supposing it is possible in a subderivation
to derive Q from P_j, use the universal rule to derive Q. Since conditions for the existential rule apply, j is free for x in $\sim P x$ and not free in $\forall x \sim P x$. Observe also that the assumption P_j is discharged by the time $\forall I$ is applied, and that the constraint on $\exists E$ requires that j is not free in Q or other undischarged assumptions. Thus, again, there is a sense in which in the presence of rules for negation, the work done by one of these quantifier rules is very similar to, or can substitute for, the work done by the other.

E6.27. Complete the following derivations by filling in justifications for each line. Then for each application of $\forall I$ or $\exists E$ show that the constraints are met by running through each of the three requirements. Hint: it may be convenient to xerox the problems, and fill in your answers directly on the copy.

a.
1. $\forall x (Hx \rightarrow Rx)$
2. $\forall y Hy$
3. $Hj \rightarrow Rj$
4. Hj
5. Rj
6. $\forall z Rz$

b.
1. $\forall y (Fy \rightarrow Gy)$
2. $\exists z Fz$
3. Fj
4. $Fj \rightarrow Gj$
5. Gj
6. $\exists x Gx$
7. $\exists x Gx$

c.
1. $\exists x \forall y \forall z Hxyz$
2. $\forall y \forall z Hjyz$
3. $\forall z Hj \varphi^1 k z$
4. $Hj \varphi f^1 k$
5. $\exists x Hx \varphi f^1 k f^1 k$
6. $\forall y \exists x Hx \varphi f^1 y f^1 y$
7. $\forall y \exists x Hx \varphi f^1 y f^1 y$
E6.28. The following are not legitimate ND derivations. In each case, explain why.

a. 1. \(Gjy \to Fjy \)
2. \(\forall z (Gzy \to Fjy) \) 1 \(\forall I \)

b. 1. \(\exists x \forall y Byx \)
2. \(\forall y Byy \) A (g, 1\(\exists E \))
3. \(Baa \) 2 \(\forall E \)
4. \(Baa \) 1,2-3 \(\exists E \)

c. 1. \(\exists y Byy \)
2. \(Byy \) A (g, 1\(\exists E \))
3. \(\exists y Byy \) 2 \(\exists I \)
4. \(\exists y Byy \) 1,2-3 \(\exists E \)
CHAPTER 6. NATURAL DEDUCTION

d. 1. \[\forall x \exists y Lxy \quad P \]
2. \[\exists y Lxy \quad 1 \forall E \]
3. \[Ljk \quad \land (g, 2 \exists E) \]
4. \[\forall x Lk \quad 3 \forall I \]
5. \[\exists y \forall x Lxy \quad 4 \exists I \]
6. \[\exists y \forall x Lxy \quad 2,3-5 \exists E \]

E6.29. Provide derivations to show each of the following.

a. \[\forall x Kxx \vdash_{\text{ND}} \exists z Kzz \]

b. \[\exists x Kxx \vdash_{\text{ND}} \exists z Kzz \]

*c. \[\forall x \sim Kx, \forall x (\sim Kx \rightarrow \sim Sx) \vdash_{\text{ND}} \forall x (Hx \lor \sim Sx) \]

d. \[\vdash_{\text{ND}} \forall x Hf^1 x \rightarrow \forall x Hf^1 g^1 x \]

e. \[\forall x \forall y (Gy \rightarrow Fx) \vdash_{\text{ND}} \forall x (\forall y Gy \rightarrow Fx) \]

*f. \[\exists y Byyy \vdash_{\text{ND}} \exists x \exists y \exists z Bxyz \]

g. \[\forall x [(Hx \land \sim Kx) \rightarrow Ix], \exists y (Hy \land Gy), \forall x (Gx \land \sim Kx) \vdash_{\text{ND}} \exists y (Iy \land Gy) \]

h. \[\forall x (Ax \rightarrow Bx) \vdash_{\text{ND}} \exists z Az \rightarrow \exists Bz \]

i. \[\exists x \sim (Cx \lor \sim Rx) \vdash_{\text{ND}} \exists x \sim Cx \]

j. \[\exists x (Nx \lor Lxx), \forall x \sim Nx \vdash_{\text{ND}} \exists y Lyy \]

*k. \[\forall x \forall y (Fx \rightarrow Gy) \vdash_{\text{ND}} \forall x (Fx \rightarrow \forall y Gy) \]

l. \[\forall x (Fx \rightarrow \forall y Gy) \vdash_{\text{ND}} \forall x \forall y (Fx \rightarrow Gy) \]

m. \[\exists x (Mx \land \sim Kx), \exists y (\sim Oy \land Wy) \vdash_{\text{ND}} \exists x \exists y (\sim Kx \land \sim Oy) \]

n. \[\forall x (Fx \rightarrow \exists y Gxy) \vdash_{\text{ND}} \forall x [Fx \rightarrow \exists y (Gxy \lor \sim Hxy)] \]

o. \[\exists x (Jxa \land Cb), \exists x (Sx \land Hxx), \forall x [(Cb \land Sx) \rightarrow \sim Ax] \vdash_{\text{ND}} \exists z (\sim Az \land Hzz) \]
6.3.3 Strategy

Our strategies remain very much as before. They are modified only to accommodate the parallels between \land and \lor, and between \lor and \exists. I restate the strategies in their modified form, and give some examples of each. As before, we begin with strategies for reaching a determinate goal.

SG

1. If accessible lines contain explicit contradiction, use $\neg E$ to reach goal.
2. Given an accessible formula with main operator \exists or \lor, use $\exists E$ or $\lor E$ to reach goal (watch “screened” variables).
3. If goal is “in” accessible lines (set goals and) attempt to exploit it out.
4. To reach goal with main operator \star, use $\star I$ (careful with \lor and \exists).
5. Try $\neg E$ (especially for atomics and formulas with \lor or \exists as main operator).

And we have strategies for reaching a contradiction.

SC

1. Break accessible formulas down into atomics and negated atomics.
2. Given an existential or disjunction in a subderivation for $\neg E$ or $\neg I$, go for \bot by $\exists E$ or $\lor E$ (watch “screened” variables).
3. Set as goal the opposite of some negation (something that cannot itself be broken down). Then apply strategies for a goal to reach it.
4. For some \mathcal{P} such that both \mathcal{P} and $\neg \mathcal{P}$ lead to contradiction: Assume \mathcal{P} ($\neg \mathcal{P}$), obtain the first contradiction, and conclude $\neg \mathcal{P}$ (\mathcal{P}); then obtain the second contradiction—this is the one you want.

As before, these are listed in priority order, though the frequency order may be different. If a high priority strategy does not apply, simply fall through to one that does. In each case, you may want to refer back to the corresponding section in the sentential case for further discussion and examples.

SG1. If accessible lines contain explicit contradiction, use $\neg E$ to reach goal. The strategy is unchanged from before. If accessible lines contain an explicit contradiction, we can assume the negation of our goal, bring the contradiction under the assumption, and conclude to the original goal. Since this always works, we want to jump on it whenever it is available. The only thing to add for the quantificational case is that accessible lines might “contain” a contradiction that is just a short step away buried in quantified expressions. Thus, for example,
Though \(\forall x Fx \) and \(\forall y \sim Fy \) are not themselves an explicit contradiction, they lead by \(\forall E \) directly to expressions that are. Given the analogy between \(\land \) and \(\forall \), it is as if we had both \(F_1 \land F_2 \) and \(\sim F_1 \land \sim F_2 \) in the premises. In the sentential case, we would not hesitate to go for the goal by \(\sim E \). And similarly here.

SG2. Given an accessible formula with main operator \(\exists \) or \(\lor \), use \(\exists E \) or \(\lor \ E \) to reach goal (watch “screened” variables). What is new for this strategy is the existential quantifier. Motivation is the same as before: With goal \(Q \), and an accessible line with main operator \(\exists \), go for the goal by \(\exists E \). Then you have all the same accessible formulas as before, with the addition of the assumption. So you will (typically) be better off in your attempt to reach \(Q \). We have already emphasized this strategy in introducing the rules. Here is an example.

The premise at (3) has main operator \(\to \) and so is not existentially quantified. But the first two premises have main operator \(\exists \). So we set up to reach the goal with two applications of \(\exists E \). It does not matter which we do first, as, either way, we end up with the same accessible formulas to reach the goal at the innermost subderivation. Once we have the subderivations set up, the rest is straightforward.
Given what we have said, it might appear mysterious how one could be anything but better off going directly for a goal by $\exists E$ or $\forall E$. But consider the derivations below.

(BT)
1. $\forall x \exists y Fxy$
2. $\forall x \forall y (Fxy \rightarrow Gxy)$
3. $\exists y F j y$
4. $F j k$
5. $\forall y (F j y \rightarrow G j y)$
6. $F j k \rightarrow G j k$
7. $G j k$
8. $\exists y G j y$
9. $\forall x \exists y G x y$
10. $\forall x \exists y G x y$

(BU)
1. $\forall x \exists y Fxy$
2. $\forall x \forall y (Fxy \rightarrow Gxy)$
3. $\exists y F j y$
4. $F j k$
5. $\forall y (F j y \rightarrow G j y)$
6. $F j k \rightarrow G j k$
7. $G j k$
8. $\exists y G j y$
9. $\forall x \exists y G x y$
10. $\forall x \exists y G x y$

In derivation (BT), we isolate the existential on line (3) and go for the goal, $\forall x \exists y G x y$ by $\exists E$. But something is in fact lost when we set up for the subderivation—the variable j, that was not in any undischarged assumption and therefore available for $\forall I$, gets “screened off” by the assumption and so lost for universal generalization. So at step (9), we are blocked from using (8) and $\forall I$ to reach the goal. The problem is solved in (BU) by letting variable j pass into the subderivation and back out, where it is available again for $\forall I$. We pass over our second strategy for a goal until we have a new goal in which j is free. This way there is no call to generalize on j under the scope of the assumption. The restriction on $\exists E$ blocks a goal in which k is free, but there is no problem about j.

SG3. If goal is “in” accessible lines (set goals and) attempt to exploit it out. This is the same strategy as before. The only thing to add is that we should consider the instances of a universally quantified expression as already “in” the expression (as if it were a big conjunction). Thus, for example,

(BV)
1. $Ga \rightarrow \forall x Fx$
2. $\forall x Gx$
3. Ga
4. $\forall x Fx$
5. Fa

The original goal Fa is “in” the consequent of (1), $\forall x Fx$. So we set $\forall x Fx$ as a subgoal. This leads to Ga as another subgoal, and we find this “in” the premise at (2).
Here is a more complicated case. When extracting a goal that involves multiple quantifiers and terms it can sometimes help to pencil a “map” for how quantifiers are to be applied.

\[
1. \forall x \forall y (W_x y b) \quad P \\
2. \forall x \forall y \forall z (W x y z \to R z x) \quad P
\]

Working back from the goal, we want \(Rba\) from the consequent of (2); this tells us how to instantiate \(z\) and \(x\) in (2); then in order to connect with (1) we instantiate \(y\) to \(b\). From this \(x\) and \(y\) in (1) go to \(a\) and \(b\). Then the plan is easily executed.

SG4. To reach goal with main operator \(\forall\), use \(\forall I\) (careful with \(\lor\) and \(\exists\)). As before, this is your “bread-and-butter” strategy. You will come to it over and over. Of new applications, the most automatic is for \(\exists\). For a simple case,

\[
1. \forall x G x \quad P \\
2. \forall y G y \quad P
\]

Given a goal with main operator \(\forall\), we immediately set up to get it by \(\forall I\). This leads to \(F_j \land G_j\) with the new variable \(j\) as a subgoal. After that, completing the derivation is easy. Observe that this strategy does not always work for formulas with main operator \(\lor\) and \(\exists\).

SG5. Try \(\sim E\) (especially for atomics and formulas with \(\lor\) or \(\exists\) as main operator). Recall that atomics now include more than just sentence letters. Thus this strategy applies to goals of the sort \(F a b\) or \(G z\). And, just as one might have good reason to accept that \(\mathcal{P}\) or \(\mathcal{Q}\) without having good reason to accept that \(\mathcal{P}\), or that \(\mathcal{Q}\), so one might have reason to accept that \(\exists x \mathcal{P}\) without having reason to accept that any particular individual is \(\mathcal{P}\)—as one might be quite confident that someone did it, without evidence sufficient to convict any particular individual. Thus there are
contexts where it is possible to derive $\exists x.P$ but not possible to reach it directly by $\exists I$. SG5 has special application in those contexts. Thus consider the following example.

\begin{enumerate}
\item $\neg \forall x.Ax$
\item $\neg \exists x.Ax$
\end{enumerate}

$A(c, \neg E)$

\begin{enumerate}
\item $\neg \forall x.Ax$
\item $\exists x.Ax$
\item $A(c, \neg E)$
\item $\exists x.Ax$
\item \bot
\item $A(c, \neg E)$
\item $\forall x.Ax$
\item \bot
\item $\exists x.Ax$
\end{enumerate}

Our initial goal is $\exists x.Ax$. There is no contradiction in the premises; there is no disjunction or existential in the premises; we do not see the goal in the premises; and attempts to reach the goal by $\exists I$ are doomed to fail. So we fall through to SG5, and set up to reach the goal by $\neg E$. As it happens, the contradiction is not easy to get! We can think of the derivation as involving applications of either SC3 or SC4. We take up this sort of case below. For now, the important point is just the setup on the left.

Where strategies for a goal apply in the context of some determinate goal, strategies for a contradiction apply when the goal is just some contradiction—and any contradiction will do. Again, there is nothing fundamentally changed from the sentential case, though we can illustrate some special quantificational applications.

SC1. Break accessible formulas down into atomics and negated atomics. This works just as before. The only point to emphasize for the quantificational case is one we made for SG1 above, that relevant atomics may be “contained” in quantified expressions. So going for atomics and negated atomics may include “shaking” quantified expressions to see what falls out. Here is a simple example.

\begin{enumerate}
\item $\neg Fa$
\item $\forall x(Fx \land Gx)$
\item \bot
\item $\forall x(Fx \land Gx)$
\end{enumerate}

$A(c, \neg I)$

\begin{enumerate}
\item $\neg Fa$
\item $\forall x(Fx \land Gx)$
\item $Fa \land Ga$
\item Fa
\item \bot
\item $\forall x(Fx \land Gx)$
\end{enumerate}

$A(c, \neg I)$

\begin{enumerate}
\item $\neg Fa$
\item $\forall x(Fx \land Gx)$
\item $Fa \land Ga$
\item Fa
\item \bot
\item $\forall x(Fx \land Gx)$
\end{enumerate}

Our strategy for the goal is SG4. For an expression with main operator \neg, we go for the goal by $\neg I$. We already have $\neg Fa$ toward a contradiction at the level of atomics.
and negated atomics. And \(Fa \) comes from the universally quantified expression by \(\forall E \).

SC2. Given an existential or disjunction in a subderivation for \(\sim E \) or \(\sim I \), go for \(\bot \) by \(\exists E \) or \(\lor E \) (watch “screened” variables). Where applications of this strategy were infrequent in the sentential case, they will be much more common now. Motivation is unchanged from SG2: In your attempt to reach a contradiction, you have all the same accessible formulas as before, with the addition of the assumption. So you will (typically) be better off in your attempt to reach a contradiction. Here is an example.

\[
\begin{array}{c}
1. \forall x \sim Ax & P \\
2. \exists x Ax & A (c, \sim I) \\
\bot & \\
\sim \exists x Ax & 2-\sim I \\
\end{array}
\]

CA

We set up to reach the main goal by \(\sim I \). This gives us an existentially quantified expression at (2), where the goal is a contradiction. SC2 tells us to go for \(\bot \) by \(\exists E \). Observe that, because the goal is \(\bot \), the exit strategy is \(c \) rather than \(g \). But by application of SC1, this subderivation is easy.

\[
\begin{array}{c}
1. \forall x \sim Ax & P \\
2. \exists x Ax & A (c, \sim I) \\
3. \sim Aj & A (c, 2\exists E) \\
4. \sim Aj & 1 \forall E \\
5. \bot & 3,4 \bot I \\
6. \bot & 2,3-5 \exists E \\
7. \sim \exists x Ax & 2-6 \sim I \\
\end{array}
\]

The contradiction results with \(Aj \) on line (3) and \(\sim Aj \) “contained” on line (1). But as occurs with the parallel goal-directed strategy, the contradiction would not even have been possible without the assumption \(Aj \) for \(\exists E \).

As can occur with applications of SG2, it is wise to be careful about applications of this strategy when assumptions for \(\exists E \) or \(\lor E \) “screen off” variables that would otherwise be available for \(\forall I \). Here is an example to illustrate the point.
In derivation (CB), we isolate the existential on line (4) and set up to go for contradiction by \(\exists \mathcal{E} \). But something is in fact lost when we set up for the subderivation—the variable \(j \), that was not in any undischarged assumption and therefore available for \(\forall \mathcal{I} \), gets “screened off” by the assumption and so lost for universal generalization. So at step (10), we are blocked from using (9) and \(\forall \mathcal{I} \) to reach the goal. Again, the problem is solved in (CC) by letting variable \(j \) pass into the subderivation and back out, where it is available for \(\forall \mathcal{I} \). As before, we pass over the second strategy for a contradiction until we have a new goal in which \(j \) is free. And we apply \(\exists \mathcal{E} \) for it.

SC3. Set as goal the opposite of some negation (something that cannot itself be broken down); then apply strategies for a goal to reach it. In principle, this strategy is unchanged from before, though of course there are new applications for quantified expressions. Here is a quick example.

Our strategy for the goal is SG4. We plan on reaching \(\forall x \sim Ax \) by \(\forall \mathcal{I} \). So we set \(\sim Aj \) as a subgoal. Again the strategy for the goal is SG4, and we set up to get \(\sim Aj \) by \(\sim \mathcal{I} \). Other than the assumption itself, there are no atomics and negated atomics to be had. There is no existential or disjunction in the scope of the subderivation. But the premise
is a negated expression. So we set $\exists x Ax$ as a goal. But this is easy as it comes in one step by $\exists I$. (CC) above is another example of this. Needing a contradiction, we build up to the opposite of the formula on line (1).

SC4. For some P such that both P and $\neg P$ lead to contradiction: Assume P ($\neg P$), obtain the first contradiction, and conclude $\neg P$ ($\neg P$); then obtain the second contradiction—this is the one you want. As in the sentential case, this strategy often coincides with SC3—in building up to the opposite of something that cannot be broken down, one assumes a P such that both P and $\neg P$ result in contradiction. Corresponding to the pattern with \lor, this often happens when some accessible expression is a negated existential. Here is a challenging example.

\[
\begin{array}{ll}
1. & \forall x (\neg A x \to K x) \quad P \\
2. & \neg \forall y K y \quad P \\
3. & \neg \exists w A w \quad A (c, \neg E) \\
4. & \neg \exists w A w \quad A (c, \neg E) \\
5. & \exists w A w \quad 4 \exists I \\
6. & \bot \quad 5,3 \bot I \\
7. & \neg A j \quad 4-6 \neg I \\
8. & \neg A j \to K j \quad 1 \forall E \\
9. & K j \quad 8,7 \rightarrow E \\
10. & \forall y K y \quad 9 \forall I \\
11. & \bot \quad 10,2 \bot I \\
12. & \exists w A w \quad 3-11 \neg E \\
\end{array}
\]

(CE)

Once we decide that we cannot get the goal directly by $\exists I$, the strategy for a goal falls through to SG5. And, as it turns out, both $A j$ and $\neg A j$ lead to contradiction. So we assume one and get the contradiction; this gives us the other which leads to contradiction as well. The decision to assume $A j$ may seem obscure! But it is a common pattern: Given $\forall x P$, assume an instance P^x_v for some variable v, or at least something that will yield P^x_v. Then $\exists I$ gives you $\exists x P$, and so the first contradiction. So you conclude $\neg P^x_v$—and this outside the scope of the assumption, where $\forall I$ and the like might apply for v. In effect, you come with an instance of the existential “underneath” its negation, this leads to contradiction and so to a negation of the instance—which has some chance to give you what you want. For another example of this pattern, see (BY) above.

Notice that such cases can also be understood as driven by applications of SC3. In (CE), we set the opposite of the formula on (2) as goal. This leads to $K j$ and
then \(\sim Aj \) as subgoals. To reach \(\sim Aj \), we assume \(Aj \), and get this by building to the opposite of \(\sim \exists w Aw \). And similarly in (BY).

Again, these strategies are not a cookbook for performing all derivations—doing derivations remains an art. But the strategies will give you a good start, and take you a long way through the exercises that follow, including derivation of the theorems immediately below.

T6.30. \(\vdash_{ND} \forall x \, \mathcal{P} \rightarrow \mathcal{P}_t \) where term \(t \) is free for variable \(x \) in formula \(\mathcal{P} \)

*T6.31. \(\vdash_{ND} \forall x \left(\mathcal{P} \rightarrow \mathcal{Q} \right) \rightarrow \left(\mathcal{P} \rightarrow \forall x \mathcal{Q} \right) \) where \(x \) is not free in formula \(\mathcal{P} \)

T6.32. \(\vdash_{ND} \exists x \left(\mathcal{P} \lor \mathcal{Q} \right) \leftrightarrow \left(\exists x \, \mathcal{P} \lor \exists x \, \mathcal{Q} \right) \)

T6.33. \(\vdash_{ND} \sim \forall x \mathcal{P} \leftrightarrow \exists x \sim \mathcal{P} \)

T6.34. \(\vdash_{ND} \sim \exists x \mathcal{P} \leftrightarrow \forall x \sim \mathcal{P} \)

E6.30. For each of the following, (i) which strategies for a goal apply? and (ii) show the next two steps. If the strategies call for a new subgoal, show the subgoal; if they call for a subderivation, set up the subderivation. In each case, explain your response. Hint: each of the strategies for a goal is used at least once.

*a. 1. \(\exists x \exists y \left(F_{xy} \land G_{xy} \right) \) P
 \[\exists x \exists y F_{xy} \]

 b. 1. \(\forall y \left[\left(H_y \land F_y \right) \rightarrow G_y \right] \) P
 2. \(\forall z F_z \land \sim \forall x K_{xb} \) P
 \[\forall x \left(H_x \rightarrow G_x \right) \]

 c. 1. \(\forall x \forall y \left(G_y \rightarrow R_{xy} \right) \) P
 2. \(\forall x \left(H_x \rightarrow G_x \right) \) P
 3. \(H_b \) P
 \[R_{ab} \]
CHAPTER 6. NATURAL DEDUCTION

311

d. 1. $\forall x \forall y (Rxy \rightarrow \sim Ryx)$
 \hline
 2. Raa
 \hline
 $\exists x \exists y Syz$

e. 1. $\sim \forall x (Fx \vee A)$
 \hline
 $\exists x \sim Fx$

E6.31. Each of the following sets up an application of $\sim I$ or $\sim E$ for SG4 or SG5. Complete the derivations, and explain your use of strategies for a contradiction. Hint: Each of the strategies for a contradiction is used at least once.

*a. 1. $\sim \exists x (Fx \land Gx)$
 \hline
 2. Fj
 \hline
 $\sim Gj$
 \hline
 3. Gj
 \hline
 \perp
 \hline
 $Fx \rightarrow \sim Gj$
 \hline
 $\forall x (Fx \rightarrow \sim Gx)$
 \hline
 $\forall I$

b. 1. $\forall x (Fx \rightarrow \forall y Fy)$
 \hline
 2. $\exists x Fx$
 \hline
 \perp
 \hline
 $\sim \exists x Fx$
 \hline
 $\forall I$

c. 1. $\forall x (Fx \rightarrow \forall y Rxy)$
 \hline
 2. $\sim Rab$
 \hline
 \perp
 \hline
 $\sim Fa$
 \hline
 $\forall I$
CHAPTER 6. NATURAL DEDUCTION

312

d. 1. \(\neg \forall x Fx \quad P \)

 2. \(\neg \exists x (\neg Fx \lor A) \quad A (c, \neg E) \)

 \(\bot \)

 \(\exists x (\neg Fx \lor A) \quad 2,- \neg E \)

e. 1. \(\exists x (Ax \leftrightarrow \neg Ax) \quad A (c, \neg I) \)

 \(\bot \)

 \(\neg \exists x (Ax \leftrightarrow \neg Ax) \quad 1,- \neg I \)

E6.32. Produce derivations to show each of the following. Though no full answers are provided, strategy hints are available for the first problems. If you get the last few on your own, you are doing very well!

a. \(\forall x (\neg Bx \rightarrow \neg Wx), \exists x Wx \vdash_{ND} \exists x Bx \)

b. \(\forall x \forall y \exists z \forall y \forall z (Hxyz \rightarrow Gzyx) \)

c. \(\forall x [Ax \rightarrow \forall y (\neg Dxy \leftrightarrow Bf^1 f^1 y)], \forall x (Ax \land \neg Bx) \vdash_{ND} \forall x Df^1 f^1 x \)

d. \(\forall x (Hx \rightarrow \forall y Rxyb), \forall x \forall z (Razx \rightarrow Sxz) \vdash_{ND} Ha \rightarrow \exists x Sxzx \)

e. \(\forall x (Fx \land Abx) \leftrightarrow \neg \forall x Kx, \forall y [\exists x \neg (Fx \land Abx) \land Ryy] \vdash_{ND} \neg \forall x Kx \)

f. \(\forall x \forall y (Dxy \rightarrow Cxy), \forall x \exists y Dxy, \forall x \forall y (Cyx \rightarrow Dxy) \vdash_{ND} \exists x \exists y (Cxy \land Cyx) \)

g. \(\forall x \forall y ((Ry \lor Dx) \rightarrow \neg Ky), \forall x \exists y (Ax \rightarrow \neg Ky), \exists x (Ax \lor Rx) \vdash_{ND} \exists x \neg Kx \)

h. \(\forall y (My \rightarrow Ay), \exists x \exists y [(Bx \land Mx) \land (Ry \land Syx)], \exists Ax \rightarrow \forall y \forall z (Syz \rightarrow Ay) \)

\(\vdash_{ND} \exists x (Rx \land Ax) \)

i. \(\forall x \forall y [(Hby \land Hxb) \rightarrow Hxy], \forall z (Bz \rightarrow Hbz), \exists x (Bx \land Hxb) \)

\(\vdash_{ND} \exists z [Bz \land \forall y (By \rightarrow Hzy)] \)

j. \(\forall x \exists y Rxy, \forall x \forall y (Rxy \rightarrow Ryx) \vdash_{ND} \forall x \exists y (Rxy \land Ryx) \)

k. \(\forall x ((Fx \land \neg Kx) \rightarrow \exists y [(Fy \land Hxy) \land \neg Ky]), \forall x [(Fx \land \forall y ((Fy \land Hxy) \rightarrow Ky)] \rightarrow Kx] \rightarrow Ma \vdash_{ND} Ma \)

l. \(\forall x \forall y [(Gx \land Gy) \rightarrow (Hxy \rightarrow Hyx)], \forall x \forall y \forall z [(Gx \land Gy) \land Gz] \rightarrow [(Hxy \land Hyz) \rightarrow Hxz] \vdash_{ND} \forall w [(Gw \land \exists z (Gz \land Hwz)] \rightarrow Hwv \)

m. \(\forall x \forall y [(Ax \land By) \rightarrow Cxy], \exists y [Ey \land \forall w (Hw \rightarrow Cyw)], \forall x \forall y \forall z [(Cxy \land Cyz) \rightarrow Cxz], \forall y (Ew \rightarrow Bw) \vdash_{ND} \forall z \forall w [(Az \land Hw) \rightarrow Czw] \)
*n. \(\forall x \exists y \exists z (Axyz \lor Bzyx), \sim \exists x \exists y \exists z xzyx \vdash_{ND} \forall x \exists y \exists z Axyz \)

*o. \(A \to \exists x Fx \vdash_{ND} \exists x (A \to Fx) \)

*p. \(\forall x Fx \to A \vdash_{ND} \exists x (Fx \to A) \)

q. \(\forall x (Fx \to Gx), \forall x \forall y (Rxy \to Sxy), \forall x \forall y (Sxy \to Syx) \vdash_{ND} \forall x \exists y (Fy \land Rx) \to \exists y (Gy \land Sxy) \)

r. \(\exists y \forall x Rx, \forall x (Fx \to \exists y Sxy), \forall x \forall y (Rxy \to \sim Sxy) \vdash_{ND} \exists x \sim Fx \)

s. \(\exists x \forall y [(Fx \lor Gy) \to \forall z (Hxy \to Hyz)], \exists z \forall x \sim Hxz \vdash_{ND} \exists y \forall x (Fy \to \sim Hxy) \)

t. \(\forall x \forall y [\exists z Hyz \to Hxy] \vdash_{ND} \exists x \exists y Hxy \to \forall x \forall y Hxy \)

u. \(\exists x (Fx \land \forall y [(Gy \land Hy) \to \sim Sxy]), \forall x \forall y ([Fx \land Gy] \land Jy] \to \sim Sxy), \forall x \forall y ([(Fx \land Gy] \land Rxy) \to Sxy), \exists x (Gx \land (Jx \lor Hx)) \vdash_{ND} \exists x \exists y [(Fx \land Gy] \land \sim Rxy) \)

v. \(\exists x \forall y [\exists z (Fzy \to \exists w Fyw) \to Fxy] \vdash_{ND} \exists x Fxx \)

w. \(\vdash_{ND} \exists x \forall y (Fx \to Fy) \)

x. \(\vdash_{ND} \exists x (\exists y Fy \to Fx) \)

y. \(\vdash_{ND} \forall x \exists y \forall z [\exists w Txyzw \to \exists w Txyzw] \)

*E6.33. Produce derivations to demonstrate each of T6.30–T6.34. For the first two, explain for each application how quantifier restrictions are met. Hint: You might try working test versions where \(P \) and \(Q \) are atomics \(Px \) and \(Qx \); then you can think about the general case.

6.3.4 \(=I \) and \(=E \)

We complete the system \(ND \) with I- and E-rules for equality. Strictly, \(= \) is not an operator; it is a two-place relation symbol. However, because its interpretation is standardized across all interpretations, it is possible to introduce rules for its behavior.

The \(=I \) rule is particularly simple. At any stage in a derivation, for any term \(t \), one may write down \(t = t \) with justification \(=I \).

\[
\begin{align*}
\text{=I} \quad & t = t \quad \text{=I} \\
\end{align*}
\]

Strictly, without any inputs, this is an axiom of the sort we encountered in chapter 3. It is a formula which may be asserted at any stage in a derivation. Its motivation should be clear. Since for any \(m \) in the universe \(U \), \((m, m) \) is in the interpretation of
$t = t$ is sure to be satisfied, no matter what the assignment to t might be. Thus, in \mathcal{L}_a, $a = a$, $x = x$, and $f^2ax = f^2ax$ are formulas that might be justified by $=I$. $=E$ is more interesting and, in practice, more useful. Say an arbitrary term is free in a formula iff every variable in it is free. Automatically, then, any term without variables is free in any formula. And say $P^{t/s}$ is P where some, but not necessarily all, free instances of term t may be replaced by term s. Then, given an accessible formula P on line a and the atomic formula $t = s$ or $s = t$ on accessible line b, one may move to $P^{t/s}$, where s is free for all the replaced instances of t in P, with justification $a,b=\text{E}.$

\[
\begin{array}{c|c|c}
\text{a.} & \text{P} & \text{b.} \\
\text{b.} & t = s & \text{b.} \\
\hline
\end{array}
\]

If the assignment to some terms is the same, this rule lets us replace free instances of the one term by the other in any formula. Again, the motivation should be clear. On trees, the only thing that matters about a term is the thing to which it refers. So if P with term t is satisfied, and the assignment to t is the same as the assignment to s, then P with s in place of t should be satisfied as well. When a term is not free, it is not the assignment to the term that is doing the work, but rather the way it is bound. So we restrict ourselves to contexts where it is just the assignment that matters!

Because we need not replace all free instances of one term with the other, this rule has some special applications that are worth noticing. Consider the formulas $Raba$ and $a = b$. The following lists all the formulas that could be derived from them in one step by $=E$.

\[
\begin{array}{c|c|c}
\text{1.} & \text{Raba} & \text{P} \\
\text{2.} & a = b & \text{P} \\
\text{3.} & \text{Rbba} & 1.2 =E \\
\text{4.} & \text{Rabb} & 1.2 =E \\
\text{5.} & \text{Rbbb} & 1.2 =E \\
\text{6.} & \text{Raab} & 1.2 =E \\
\text{7.} & a = a & 2.2 =E \\
\text{8.} & b = b & 2.2 =E \\
\end{array}
\]

(3) and (4) replace one instance of a with b. (5) replaces both instances of a with b. (6) replaces the instance of b with a. We could reach, say, $Raab$, but this would require another step—which we could take from any of (4), (5) or (6). You should be clear about why this is so. (7) and (8) are different. We have a formula $a = b$, and an equality $a = b$. In (7) we use the equality to replace one instance of b in the formula.
ND Quick Reference

ND includes all the rules of **NDs** and,

<table>
<thead>
<tr>
<th>Rule</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall)E (universal exploit)</td>
<td>(\forall x \mathcal{P})</td>
<td></td>
</tr>
<tr>
<td>(\exists)I (existential intro)</td>
<td>(\exists x \mathcal{P})</td>
<td>Provided (t) is free for (x) in (\mathcal{P})</td>
</tr>
<tr>
<td>(\forall)I (universal intro)</td>
<td>(\forall x \mathcal{P})</td>
<td></td>
</tr>
<tr>
<td>(\exists)E (existential exploit)</td>
<td>(\exists x \mathcal{P})</td>
<td>Provided (i) (v) is free for (x) in (\mathcal{P}), (ii) (v) is not free in any undischarged auxiliary assumption, and (iii) (v) is not free in (\forall x \mathcal{P} / \exists x \mathcal{P}) or in (\mathcal{Q})</td>
</tr>
<tr>
<td>(=)I (equality intro)</td>
<td>(t = t)</td>
<td></td>
</tr>
<tr>
<td>(=)E (equality exploit)</td>
<td>(t = s), (s = t)</td>
<td>Provided that term (s) is free for all the replaced instances of term (t) in formula (\mathcal{P})</td>
</tr>
</tbody>
</table>

with \(a \). In (8) we use the equality to replace one instance of \(a \) in the formula with \(b \). Of course (7) and (8) might equally have been derived by \(=I \). Notice also that \(=E \) is not restricted to atomic formulas, or to simple terms. Thus, for example,

1. \(\forall y (Rax \land Kxy) \) \(\mathcal{P} \)
2. \(x = f^3azx \) \(\mathcal{P} \)
3. \(\forall y (Raf^3azx \land Kxy) \) 1.2 =E
4. \(\forall y (Rax \land Kf^3azxy) \) 1.2 =E
5. \(\forall y (Raf^3azx \land Kf^3azxy) \) 1.2 =E

(\(CG \))

lists the steps that are legitimate applications of \(=E \) to (1) and (2). If the second premise were \(x = f^3azy \), however, we could not use it with (1) to reach say, \(\forall y (Raf^3azy \land Kxy) \), since \(f^3azy \) is not free for any instance of \(x \) in \(\forall y (Rax \land Kxy) \). And of course, we could not replace any instances of \(y \) in \(\forall y (Rax \land Kxy) \) since none of them are free.

There is not much new to say about strategy, except that you should include \(=E \) among the stock of rules you use to identify what is “contained” in accessible lines. It may be that a goal is contained in accessible lines, when terms only need to be switched by some equality. Thus, for goal \(Fa \), with \(Fb \) explicitly available, it might
be worth setting $a = b$ as a subgoal, with the intent of using the equality to switch the terms.

Rather than dwell on strategy as such, let us proceed directly to a few substantive applications. First, you should find derivation of the following theorems straightforward. Thus, for example, T6.35 and T6.38 take just one step. The first three may remind you of axioms from chapter 3. The others represent important features of equality.

T6.35. $\vdash_{ND} x = x$

T6.36. $\vdash_{ND} (x_0 = y) \rightarrow (h^n x_1 \ldots x_i \ldots x_n = h^n x_1 \ldots y \ldots x_n)$

T6.37. $\vdash_{ND} (x_i = y) \rightarrow (\mathcal{R}^n x_1 \ldots x_i \ldots x_n \rightarrow \mathcal{R}^n x_1 \ldots y \ldots x_n)$

T6.38. $\vdash_{ND} t = t$ reflexivity of equality

T6.39. $\vdash_{ND} (t = s) \rightarrow (s = t)$ symmetry of equality

T6.40. $\vdash_{ND} (r = s) \rightarrow [(s = t) \rightarrow (r = t)]$ transitivity of equality

For a more substantive case, suppose we want to show that the following argument is valid in ND.

- **(CH)**
 \[
 \exists x[(Dx \land \forall y(Dy \rightarrow x = y)) \land Bx] \quad \text{The dog is barking}
 \]
 \[
 \exists x(Dx \land Cx) \quad \text{Some dog is chasing a cat}
 \]
 \[
 \exists x[Dx \land (Bx \land Cx)] \quad \text{Some dog is barking and chasing a cat}
 \]

Using the methods of chapter 5, this might translate something like the argument on the right. We set out to do the derivation in the usual way.

1. $\exists x[(Dx \land \forall y(Dy \rightarrow x = y)) \land Bx] \quad P$
2. $\exists x(Dx \land Cx) \quad P$
3. $[(Dj \land \forall y(Dy \rightarrow j = y)) \land Bj] \quad A (g, 1\exists)$
4. $Dk \land Ck \quad A (g, 2\exists)$

- \[
 Dk \land (Bj \land Cj)
 \]
- \[
 \exists x[Dx \land (Bx \land Cx)] \quad \exists I
 \]
- \[
 \exists x[Dx \land (Bx \land Cx)] \quad 2,4- \exists E
 \]
- \[
 \exists x[Dx \land (Bx \land Cx)] \quad 1,3- \exists E
 \]
Given two existentials in the premises, we set up to get the goal by two applications of \(\exists E \). And we can get the conclusion from \(D_j \land (B_j \land C_j) \) by \(\exists I \). \(D_j \) and \(B_j \) are easy to get from (3). But we do not have \(C_j \). What we have is rather \(C_k \). The existentials in the assumptions are instantiated to different (new) variables—and they must be so instantiated if we are to meet the constraints on \(\exists E \). From \(\exists x \mathcal{P} \) and \(\exists x \mathcal{Q} \) it does not follow that any one thing is both \(\mathcal{P} \) and \(\mathcal{Q} \). In this case, however, we are given that there is just one dog. And we can use this to force an equivalence between \(j \) and \(k \). Then we get the result by \(\exists E \).

1. \(\exists x[(D_x \land \forall y(D_y \rightarrow x = y)) \land B_x] \) \(\mathcal{P} \)
2. \(\exists x(D_x \land C_x) \) \(\mathcal{P} \)
3. \((D_j \land \forall y(D_y \rightarrow j = y)) \land B_j \) \(A (g, \exists \exists) \)
4. \(D_k \land C_k \) \(A (g, \exists \exists) \)
5. \(B_j \) \(3 \land E \)
6. \(D_j \land \forall y(D_y \rightarrow j = y) \) \(3 \land E \)
7. \(D_j \) \(6 \land E \)
8. \(\forall y(D_y \rightarrow j = y) \) \(6 \land E \)
9. \(D_k \rightarrow j = k \) \(8 \forall E \)
10. \(D_k \) \(4 \land E \)
11. \(j = k \) \(9,10 \rightarrow E \)
12. \(C_k \) \(4 \land E \)
13. \(C_j \) \(12,11 \equiv E \)
14. \(B_j \land C_j \) \(5,13 \land I \)
15. \(D_j \land (B_j \land C_j) \) \(7,14 \land I \)
16. \(\exists x[D_x \land (B_x \land C_x)] \) \(15 \exists \)
17. \(\exists x[D_x \land (B_x \land C_x)] \) \(2,4-16 \exists \)
18. \(\exists x[D_x \land (B_x \land C_x)] \) \(1,3-17 \exists \)

Though there are a few steps, the work to get it done is simple. This is a very common pattern: Arbitrary individuals are introduced as if they were distinct. But uniqueness clauses let us establish an identity between them. Given this, facts about the one transfer to the other by \(\equiv E \).

*E6.34. Produce derivations to show T6.35–T6.40. Hint: it may help to begin with concrete versions of the theorems and then move to the general case. Thus, for example, for T6.36, show that \(\downarrow_{ND} (y = j) \rightarrow (g^2xyz = g^3xjz) \). Then you will be able to show the general case.

E6.35. Produce derivations to show each of the following.
*a. \(\vdash_{ND} \forall x \exists y (x = y) \)

b. \(\vdash_{ND} \forall x \exists y (f^1 x = y) \)

c. \(\vdash_{ND} \forall x \forall y [(Fx \land \sim Fy) \rightarrow \sim (x = y)] \)

d. \(\forall x (Rx a \rightarrow x = c), \forall x (Rx b \rightarrow x = d), \exists x (Rxa \land Rx b) \vdash_{ND} c = d \)

e. \(\vdash_{ND} \forall x [\sim (f^1 x = x) \rightarrow \forall y ((f^1 x = y) \rightarrow \sim (x = y))] \)

f. \(\vdash_{ND} \forall x \forall y [(f^1 x = y \land f^1 y = x) \rightarrow f^1 f^1 x = x] \)

g. \(\exists x \exists y Hxy, \forall y \forall z (Dyz \leftrightarrow Hzy), \forall x \forall y (\sim Hxy \lor x = y) \)
\(\vdash_{ND} \exists x (Hxx \land Dxx) \)

h. \(\forall x \forall y [(Rxy \land Ryx) \rightarrow x = y], \forall x \forall y (Rxy \rightarrow Ryx) \)
\(\vdash_{ND} \forall x [\exists y (Rxy \lor Ryx) \rightarrow Rxx] \)

i. \(\exists x \forall y (x = y \leftrightarrow Fy), \forall x (Gx \rightarrow Fx) \vdash_{ND} \forall x \forall y [(Gx \land Gy) \rightarrow x = y] \)

j. \(\forall x [Fx \rightarrow \exists y (Gyx \land \sim Gxy)], \forall x \forall y [(Fx \land Fy) \rightarrow x = y] \)
\(\vdash_{ND} \forall x (Fx \rightarrow \exists y \sim Fy) \)

6.3.5 The System ND+

We conclude this section with some final derived rules. Again, it is not possible to derive anything with the extra rules that cannot already be derived in \(ND \). Thus the new rules do not add extra derivation power. They are rather “shortcuts” for things that can already be done in \(ND \). The full system \(ND^+ \) includes all the rules of \(ND \), all the derived rules of \(ND^s+ \), and just a few additional derived rules.

First, a very useful replacement rule.

\(\text{QN} \)

\(\sim \forall x \mathcal{P} \Longleftrightarrow \exists x \sim \mathcal{P} \)

\(\sim \exists x \mathcal{P} \Longleftrightarrow \forall x \sim \mathcal{P} \)

\(\text{QN (quantifier negation)} \) is principle we encountered in chapter 5. It lets you push or pull a negation across a quantifier, with a corresponding flip from one quantifier to the other. The forms are justified by T6.33 and T6.34.

Again, with DeM, Impl and Equiv, this rule lets you “push” a main operator \(\sim \) to the inside of a formula. This can be especially useful. So, for example, if you see a negated universal on some accessible line, you can think of it as if it were an existentially quantified expression: push the negation through, get the existential, and go for the goal by \(\exists E \) as usual. Here is an example.
The derivation on the left is much to be preferred over the one on the right, where we are caught up in a difficult case of SG5 and then SC3 or SC4. But, after QN, the derivation on the left is straightforward—and would be relatively straightforward even if we missed the uses of Impl and DeM.

The rest of the rules for ND+ apply to a species of restricted quantifier. In chapter 5 we emphasized that the universal quantifier typically applies to expressions with main operator \(\rightarrow \) and the existential to ones with \(\exists \). We can streamline operations on these expressions as follows. Take,

\[
\begin{align*}
\text{RQ} & \\
(\forall x : B) P & \text{abbreviates } \forall x (B \rightarrow P) \\
(\exists x : B) P & \text{abbreviates } \exists x (B \land P)
\end{align*}
\]

Read: ‘for all \(x \) such that \(B, \ P \)’ and ‘for some \(x \) such that \(B, \ P \)’. In these expressions \(B \) restricts the range of things to which the quantifier applies. Important instances, encountered in the next section and especially in part IV, are the bounded quantifiers as, \((\forall x : x < t) P \) and \((\exists x : x < t) P \) where \(x \) does not appear in \(t \). These are usually compressed to \((\forall x < t) P \) and \((\exists x < t) P \). In these cases, \(B \) is \(x < t \). For for such expressions, we have natural I- and E-rules along with a replacement rule.

First the I- and E-rules for bounded quantifiers \((\forall I), (\forall E), (\exists I), (\exists E) \) streamline what you can do with the unabbreviated forms.
Observe that the assumption for \((\exists E) \) occupies two lines. Perhaps it is obvious that these rules are derived in ND. So, for \((\forall E) \), the unabbreviated premises are \(\forall x (B \rightarrow P) \) and \(B^x_t \); then \(\forall E \) with \(!E \) give the desired result. At any rate, we postpone official demonstration that these rules are derived to chapter 9.

Here is the replacement rule,

\[
\begin{align*}
RQN & \quad \neg(\exists x : B) P \quad \vdash \quad (\forall x : B) \neg P \\
& \quad \neg(\forall x : B) P \quad \vdash \quad (\exists x : B) \neg P
\end{align*}
\]

RQN (restricted quantifier negation) works by analogy with QN. Its demonstration requires a new theorem:

\[T6.41. \text{The following are theorems of ND:} \]

\[*(a) \vdash_{ND} \neg(\forall x : B) P \leftrightarrow (\exists x : B) \neg P \]

\[(b) \vdash_{ND} \neg(\exists x : B) P \leftrightarrow (\forall x : B) \neg P. \]

Demonstration of this result is left to E6.37.

E6.36. Produce derivations to show each of the following.

a. \(\neg \exists x (\sim Rx \land Sxx), Saa \vdash_{ND+} Ra \)

b. \(\forall x (\sim Af^1 x \lor \exists y Bg^1 y) \vdash_{ND+} \exists x Af^1 x f^1 x \rightarrow \exists y Bg^1 y \)

c. \(\forall x[(\sim Cxb \lor Hx) \rightarrow Lxx], \exists y ~Ly y \vdash_{ND+} \exists x Cxb \)

d. \(\forall x Fx, \forall z Hz \vdash_{ND+} \sim y(\sim Fy \lor \sim Hy) \)

e. \(\exists \forall y (Pxy \land \sim Qxy) \vdash_{ND+} \forall x \exists y (Pxy \rightarrow Qxy) \)

f. \(\exists \forall x (Fx \land Gx) \lor \exists x \sim Gx, \forall y Gy \vdash_{ND+} \forall z (Fz \rightarrow \sim Gz) \)

\[\textbf{g.} \quad \forall x \forall y \exists z Af^1 x y z, \forall x \forall y \forall z[Ax y z \rightarrow \sim(Cxyz \lor Bzy x)] \]

\[\vdash_{ND+} \forall x \forall y \forall z Bg^1 y f^1 g^1 x \]
ND+ Quick Reference

ND+ includes all the rules of ND, all the derived rules of NDs+, and,

Inference Rules

- **(∀E) restricted univ exploit**
 - a. \((∀x : B)\mathcal{P}\)
 - b. \(\mathcal{P}_x^x\)

- **(∃I) restricted exist intro**
 - a. \(∃x : B)\mathcal{P}\)
 - b. \(\mathcal{P}_x^x\) provided \(t\) is free for \(x\) in \(B\) and \(\mathcal{P}\)

- **(∀I) restricted univ intro**
 - a. \(\mathcal{B}_x^x\)
 - b. \(A(∀I)\)

- **(∃E) restricted exist exploit**
 - a. \(∃x : B)\mathcal{P}\)
 - b. \(\mathcal{P}_x^x\) provided (i) \(v\) is free for \(x\) in \(B\) and \(\mathcal{P}\), (ii) \(v\) is not free in any undischarged auxiliary assumption, and (iii) \(v\) is not free in \((∀x : B)\mathcal{P}\) or in \(\mathcal{Q}\)

Replacement Rules

- **QN**
 - \(~∀x\mathcal{P} \leftrightarrow (∃x : B)\)\mathcal{P}\)
 - \(~∃x\mathcal{P} \leftrightarrow (∀x : B)\)\mathcal{P}\)

- **RQN**
 - \(~(∀x : B)\mathcal{P} \leftrightarrow (∃x : B)\)\mathcal{P}\)
 - \(~(∃x : B)\mathcal{P} \leftrightarrow (∀x : B)\)\mathcal{P}\)

- h. \(~∃y(Ty v ∃x~xy) \vdash_{ND+} ∀x∀yxy ∧ ∀x~Tx\)
- i. \(∃x(Fx → ∃y~Fy) \vdash_{ND+} ~∀xFx\)
- j. \(∀x(Ax → Bx) ∨ ∃xAx\)
- k. \(∀x(Fx v A) → (∀xFx v A)\)
- l. \(∀x(Fx ↔ Gx), ∀x(Gx → (Hx → Jx))\)
 \(∀x(Fx → ∃x(Gx ∧ ~Hx))\)
- m. \(∀x(∼Bxa ∧ ∀y(Cy → ~Gxy)), ∀z[∼∀y(Wy → Gzy) → Bza]\)
 \(∀x(∀yCx → ∼Wy)\)
- n. \(∀xFx → ∼∀yGy, ∀y(Kx → ∃yJy), ∃y∼Gy → ∃xKx\)
 \(∀xFx ∨ ∃yJy\)
o. \(\exists z Q z \rightarrow \forall w (L w w \rightarrow \sim H w), \exists x B x \rightarrow \forall y (Ay \rightarrow Hy) \)
\[\vdash_{ND+} \exists w (Q w \land B w) \rightarrow \forall y (L y y \rightarrow \sim Ay) \]

p. \(\sim \forall x (\sim P x \lor \sim H x) \rightarrow \forall x [C x \land \forall y (L y \rightarrow Axy)] \), \(\exists x [H x \land \forall y (L y \rightarrow Axy)] \rightarrow \forall x (R x \land \forall y Bxy) \vdash_{ND+} \sim \forall x \forall y Bxy \rightarrow \forall x (\sim P x \lor \sim H x) \)

q. \(\vdash_{ND+} (\exists x Ax \rightarrow \exists x Bx) \rightarrow \exists x (Ax \rightarrow Bx) \)

r. \(\forall x F x \rightarrow A \vdash_{ND+} \exists x (F x \rightarrow A) \)

s. \(\forall x \exists y (Ax \lor By) \vdash_{ND+} \exists y \forall x (Ax \lor By) \)

t. \(\forall x F x \leftrightarrow \sim \exists x \exists y Rxy \vdash_{ND+} \exists x \forall y \forall z (F x \rightarrow \sim Ryz) \)

*E6.37. Provide derivations to show both parts of T6.41. Hint: \(P x x \) is just \(P \)—it may help to begin with models as \((\forall x : B x) P x \) and \((\exists x : B x) P x \).

E6.38. For each of the following, produce a translation into \(L q \), including interpretation function and formal sentences, and show that the resulting arguments are valid in \(ND+ \).

a. If a first person is taller than a second, then the second is not taller than the first. So nobody is taller than themselves. (An asymmetric relation is irreflexive.)

b. A barber shaves all and only people who do not shave themselves. So there are no barbers.

c. Bob is taller than every other man. If a first person is taller than a second, then the second is not taller than the first. So only Bob is taller than every other man.

d. There is at most one dog, and at least one flea. Each flea has a dog for a host, and any dog hosts at most one flea. So there is exactly one flea.

e. Something is divine just in case nothing is conceived to be greater than it. Some (conceivable) object is divine. If something is divine but not real, then something is divine but conceived to be real. If one thing is divine and conceived to be real, and another is divine but not real, then the first is conceived to be greater than the second. So something is both divine and real.
Hint: Let quantifiers range over objects of conception and so set \(U = \{ o | o \ is \ conceivable \} \). This, of course, is a version of Anselm’s Ontological Argument according to which god is ‘a being than which none greater can be conceived’.
CHAPTER 6. NATURAL DEDUCTION

This version is simplified from Robinson, “A New Formalization of Anselm’s Ontological Argument.” For a good introductory discussion and alternate account, see Plantinga, God, Freedom, and Evil.

6.4 Applications: Q and PA

A very important application, one with which we will be extensively concerned later in the text, is to arithmetic. We encountered Peano Arithmetic in chapter 3. We now consider a pair of theories, Robinson Arithmetic (Q) and then Peano Arithmetic (PA) once again.

For this, L_{NT} is like $L_{NT}^{<}$ in section 2.3.5 but without $<$. As described in the language of arithmetic reference, there are the constant symbol 0, the function symbols S, $+$ and \times, and the relation symbol $=$. We will find it convenient to let the variables be any of $a \ldots z$ with or without positive integer subscripts. Let $s \leq t$ abbreviate $\exists v (v + s = t)$, and $s < t$ abbreviate $\exists v (Sv + s = t)$ where v is a variable that does not appear in s or t. We also encounter restricted (bounded) quantifiers in the forms $(\forall x \leq t)P$, $(\exists x \leq t)P$, $(\forall x < t)P$ and $(\exists x < t)P$ where x does not occur in t. This requirement that x not occur in t ensures that t sets a bound independently of values for x; if we were, say, to let t be Sx then on the standard interpretation there would be no bound at all—as $x < Sx$ is always satisfied. For the bounded quantifiers derived introduction and exploitation rules appear in the forms,

$$(\forall E) \quad (\exists I) \quad (\forall I) \quad (\exists E)$$

\[
\begin{align*}
\text{a.} & \quad (\forall x < t)P \\
\text{b.} & \quad s < t
\end{align*}
\]

\[
\begin{align*}
\text{a.} & \quad P^x_s \\
\text{b.} & \quad s < t \\
\text{c.} & \quad (\exists x < t)P
\end{align*}
\]

\[
\begin{align*}
\text{a.} & \quad P^x_v \\
\text{b.} & \quad v < t \\
\text{c.} & \quad (\forall x < t)P
\end{align*}
\]

And similarly with '\leq' uniformly substituted for '$<$'. Officially, formulas of L_{NT} may be treated as uninterpreted. It is natural, however, to think of them on the universe of natural numbers with their usual meanings, 0 for zero, S the successor function, $+$ the addition function, \times the multiplication function, and $=$ the equality relation. But, again, we do not need to think about that for now.
6.4.1 Robinson Arithmetic, Q

Robinson arithmetic is a minimal theory of arithmetic just strong enough to support Gödel’s incompleteness theorem from part IV. We will say that a formula \(P \) is an ND **theorem of Robinson Arithmetic** just in case \(P \) follows in ND given as premises the following axioms for Robinson Arithmetic:\(^7\)

\[
\begin{align*}
1. & \quad \sim(Sx = \emptyset) \\
2. & \quad (Sx = Sy) \rightarrow (x = y) \\
3. & \quad (x + \emptyset) = x \\
4. & \quad (x + Sy) = S(x + y) \\
5. & \quad (x \times \emptyset) = \emptyset \\
6. & \quad (x \times Sy) = [(x \times y) + x] \\
7. & \quad \sim(x = \emptyset) \rightarrow \exists y (x = Sy)
\end{align*}
\]

In the ordinary case we suppress mention of Q1–Q7 as premises, and simply write \(\Gamma \vdash_{ND} P \) to indicate that \(P \) is an ND theorem of Robinson arithmetic—that there is an ND derivation of \(P \) which may include appeal to any of Q1–Q7.

The axioms set up a basic version of arithmetic on the natural numbers. Intuitively, \(\emptyset \) is not the successor of any natural number (Q1); if the successor of \(x \) is the same as the successor of \(y \), then \(x \) is \(y \) (Q2); \(x \) plus \(\emptyset \) is equal to \(x \) (Q3); \(x \) plus one more than \(y \) is equal to one more than \(x \) plus \(y \) (Q4); \(x \) times \(\emptyset \) is equal to \(\emptyset \) (Q5); \(x \) times one more than \(y \) is equal to \(x \) times \(y \) plus \(x \) (Q6); and any number other than \(\emptyset \) is a successor (Q7).

If \(P \) is derived directly from some of Q1–Q7 then it is trivially an ND theorem of Robinson Arithmetic. But if the members of a set \(\Gamma \) are ND theorems of Robinson Arithmetic, and \(\Gamma \vdash_{ND} P \), then \(P \) is an ND theorem of Robinson Arithmetic as well—for any derivation of \(P \) from some theorems might be extended into one which derives the theorems, and then goes on from there to obtain \(P \). In the ordinary case, then, we **build** to increasingly complex results: having once demonstrated a theorem by a derivation, we feel free simply to **cite** it as a premise in the next derivation. So the collection of formulas we count as premises increases from one derivation to the next.

Though the application to arithmetic is interesting, there is in principle **nothing different** about derivations for \(Q \) from ones we have done before: We are moving

\(^7\) After R. Robinson, “An Essentially Undecidable Axiom System.” Again (page 91n3) observe that ‘theorem’ is context-relative. A theorem of Robinson arithmetic which results only given Q1–Q7 is not a theorem of ND just because it takes some of Q1–Q7 for its derivation.
Reference

Vocabulary:

variables: $a \ldots z$ with or without positive integer subscripts
constant: \emptyset
one-place function symbol: S
two-place function symbols: $+, \times$
relation symbol: $=$

Abbreviations:

$s \leq t$ abbreviates $\exists v(v + s = t)$
$s < t$ abbreviates $\exists v(Sv + s = t)$
 —where v does not appear in s or t
$(\forall x \leq t)P$ abbreviates $\forall x(x \leq t \rightarrow P)$
$(\forall x < t)P$ abbreviates $\forall x(x < t \rightarrow P)$
$(\exists x \leq t)P$ abbreviates $\exists x(x \leq t \land P)$
$(\exists x < t)P$ abbreviates $\exists x(x < t \land P)$
 —where x does not appear in t

From section 6.3.5, the restricted quantifiers have derived introduction and exploitation rules $(\forall E)$, $(\forall I)$, $(\exists E)$, $(\exists I)$, and a restricted quantifier negation RQN.

L_{NT} has a standard interpretation N with U the set \mathbb{N} of natural numbers and,

$N[\emptyset] = 0$
$N[S] = \{(m, n) \mid m, n \in \mathbb{N}, \text{ and } n \text{ is the successor of } m\}$
$N[+] = \{((m, n), o) \mid m, n, o \in \mathbb{N}, \text{ and } m \text{ plus } n \text{ equals } o\}$
$N[\times] = \{((m, n), o) \mid m, n, o \in \mathbb{N}, \text{ and } m \text{ times } n \text{ equals } o\}$

On this interpretation there are derived semantic conditions for the inequalities T12.3 and for the bounded quantifiers T12.4.

from premises to a goal. As we make progress, however, there will be an increasing number of premises available, and it may be relatively challenging to recognize which premises are relevant to a given goal.

Let us start with some simple generalizations of $Q1-Q7$. As they are stated, $Q-Q7$ are formulas involving variables. But they permit derivation of corresponding principles for arbitrary terms s and t.
T6.42. \(\vdash_{ND} \sim (S t = \emptyset) \)
1. \(\sim (S x = \emptyset) \) Q1
2. \(\forall u \sim (S u = \emptyset) \) 1 \(\forall I \)
3. \(\sim (S t = \emptyset) \) 2 \(\forall E \)

Observe that since \(\sim (S u = \emptyset) \) has no quantifiers, term \(t \) is sure to be free for \(u \) in \(\sim (S u = \emptyset) \). So there is no problem about the restriction on \(\forall E \). And since \(t \) is any term, substituting \(\emptyset \) and \((S \emptyset + y) \) and the like for \(t \), we have that \(\sim (S \emptyset = \emptyset) \), \(\sim (S (S \emptyset + y) = \emptyset) \) and the like are all instances of T6.42. The next theorems are similar.

T6.43. \(\vdash_{ND} (S t = S s) \rightarrow (t = s) \)
1. \((S x = S y) \rightarrow (x = y) \) Q2
2. \(\forall u [(S u = S y) \rightarrow (u = y)] \) 1 \(\forall I \)
3. \(\forall u \forall v [(S u = S v) \rightarrow (u = v)] \) 2 \(\forall I \)
4. \(\forall u [(S u = S s) \rightarrow (u = s)] \) 3 \(\forall E \)
5. \((S t = S s) \rightarrow (t = s) \) 4 \(\forall E \)

Observe that for (4) it is important that term \(s \) not include any variable \(u \). Thus for this derivation we simply choose \(u \) so that it is not a variable in \(s \).

*T6.44. \(\vdash_{ND} (t + \emptyset) = t \)

T6.45. \(\vdash_{ND} (t + S s) = S(t + s) \)

T6.46. \(\vdash_{ND} (t \times \emptyset) = \emptyset \)

T6.47. \(\vdash_{ND} (t \times S s) = ((t \times s) + t) \)

T6.48. \(\vdash_{ND} \sim (t = \emptyset) \rightarrow \exists z (t = S z) \) where variable \(z \) does not appear in \(t \)
Observe that z of T6.48 may be any variable that does not appear in t and so need not be the y of Q7; the potential for variable exchange extends that derivation (minimally) beyond the simple $\forall I/\forall E$ pattern of the others.

Given these results, we are ready for some that are more interesting. Let us show that $1 + 1 = 2$. That is, that $Q^{\vdash_{ND}} S \emptyset + S \emptyset = SS \emptyset$.

1. $(S \emptyset + \emptyset) = S \emptyset$ T6.44
2. $(S \emptyset + S \emptyset) = S (S \emptyset + \emptyset)$ T6.45
3. $(S \emptyset + S \emptyset) = SS \emptyset$ 2,1 =E

The first premise is an instance of T6.44 with $S \emptyset$ for t. (2) is an instance of T6.45 that has $S \emptyset$ for t and \emptyset for s. Given the premises, this derivation is simple. Given that $(S \emptyset + \emptyset) = S \emptyset$ from (1), we can replace $S \emptyset + \emptyset$ in (2) with $S \emptyset$ by =E. This is just what we do, substituting into the second premise. Be sure you understand each step. In the same way, and more generally,

T6.49. $Q^{\vdash_{ND}} t + S \emptyset = St$

Hint: You can do this by the same basic steps as above.

Observe the way Q3 and Q4 work together: Q3 (T6.44) gives the sum of any term with zero; and given the sum of a term with any number, Q4 (T6.45) gives the sum of that term and one more than it. So we can calculate the sum of a term and zero from T6.44, and then with T6.45 get the sum of it and one, then it and two, and so forth. In this way, we calculate arbitrary sums. So, for example, $Q^{\vdash_{ND}} SS \emptyset + SS \emptyset = SS SS SS \emptyset$. We start with T6.44 and T6.45.

1. $(SS \emptyset + \emptyset) = SS \emptyset$ T6.44
2. $(SS \emptyset + S \emptyset) = S (SS \emptyset + \emptyset)$ T6.45
3. $(SS \emptyset + S \emptyset) = SS SS \emptyset$ 2,1 =E
4. $(SS \emptyset + SS \emptyset) = S (SS \emptyset + S \emptyset)$ T6.45
5. $(SS \emptyset + SS \emptyset) = SS SS SS \emptyset$ 4,3 =E

We use (1) to put the known value of $SS \emptyset + \emptyset$ into the right side of (2). Or we might simply have asserted this result by T6.49. But now the value of $SS \emptyset + S \emptyset$ is known, and we can use T6.45 again.

1. $(SS \emptyset + \emptyset) = SS \emptyset$ T6.44
2. $(SS \emptyset + S \emptyset) = S (SS \emptyset + \emptyset)$ T6.45
3. $(SS \emptyset + S \emptyset) = SS SS \emptyset$ 2,1 =E
4. $(SS \emptyset + SS \emptyset) = S (SS \emptyset + S \emptyset)$ T6.45
5. $(SS \emptyset + SS \emptyset) = SS SS SS \emptyset$ 4,3 =E

This time, we use (3) to put the known value of $SS \emptyset + S \emptyset$ into the right side of (4). And we can use T6.45 again to get the final result. Since we are in ND, we sort the premises to the top to get,
Again, the left term S S 0 is given from T6.44; we use multiple applications of T6.45 to increase the next term to S S S S 0 for the final result.

And similarly for multiplication: Q5 (T6.46) gives the product of any term with zero; and given the product of a term with any number, Q6 (T6.47) gives the product of that term and one more than it. So we can calculate the product of a term and zero from T6.46, and then with T6.47 get the product of it and one, it and two, and so forth.

Thus, for example, Q \(\vdash_{ND} S \, \emptyset \times S \, \emptyset = S \, S \, \emptyset \).

The basic pattern of working from one case to the next is as for addition. A difference is that the multiplications depend on additions—which require derivations of their own (in this case, T6.49).

So far, we have focused on variable-free terms built up from \(\emptyset \). But nothing stops application to expressions in a more general form.
The basic setup for \(\forall I, \rightarrow I \) and \(\exists E \) is by now routine. The real work is where we use (1) and (3) to obtain \(j + Sk = SS\emptyset \). Here are a couple of theorems that will be of interest later.

T6.50. \(Q \vdash_{ND} t \leq \emptyset \rightarrow t = \emptyset \)

Hints: Be sure you are clear about what is being asked for; at some stage, you will need to unpack the abbreviation. Do not forget that you can appeal to T6.42 and T6.48.

T6.51. \(Q \vdash_{ND} (t < \emptyset) \)

Hint: This comes to an application of SC4. From \(\exists v(Sv + t = \emptyset) \), and using T6.48, assume \(t \neq \emptyset \) to obtain a first contradiction; you will be able to obtain contradiction from \(t = \emptyset \) as well.

Robinson Arithmetic is interesting. Its axioms are sufficient to prove arbitrary facts about particular numbers. Its language and derivation system are just strong enough to support Gödel’s incompleteness result, on which it is not possible for a “nicely specified” theory including a sufficient amount of arithmetic to have as consequences \(\mathcal{P} \) or \(\neg \mathcal{P} \) for every \(\mathcal{P} \) (part IV). But we do not need Gödel’s result to see that Robinson Arithmetic is incomplete: It turns out that many true generalizations are not provable in Robinson Arithmetic. So, for example, neither \(\forall x \forall y[(x \times y) = (y \times x)] \), nor its negation is provable.\(^8\) So Robinson Arithmetic is a particularly weak theory.

E6.39. Produce derivations to show T6.44–T6.49. For any problem, you may appeal to results before.

E6.40. Produce derivations to show each of the following

* \(Q \vdash_{ND} (\emptyset + SS\emptyset) = SS\emptyset \)

b. \(Q \vdash_{ND} (SS\emptyset + SS\emptyset) = SSSS\emptyset \)

c. \(Q \vdash_{ND} (SS\emptyset \times SS\emptyset) = SSSS\emptyset \)

Hint: You may find (a) and (b) useful.

\(^8\)A semantic demonstration of this negative result is left as an exercise for chapter 7. But we already understand the basic idea from chapter 4: To show that a conclusion does not follow, produce an interpretation on which the axioms are true but the conclusion is not. The connection between derivations and the semantic results must wait for chapter 10.
d. \(Q \vdash_{ND} (\emptyset + SSS\emptyset) = SSS\emptyset \)

e. \(Q \vdash_{ND} (SS\emptyset \times SS\emptyset) = SSSSSSS\emptyset \)

Hint: You may find (d) and another “side” sum useful.

*f. \(Q \vdash_{ND} \exists x(x + S\emptyset = S\emptyset) \)

Hint: Do not forget that you can appeal to T6.42 and T6.43.

g. \(Q \vdash_{ND} \forall x[(x = \emptyset \lor x = S\emptyset) \rightarrow x \leq S\emptyset] \)

Hint: You will need to unpack the abbreviation.

h. \(Q \vdash_{ND} \forall x[(x = \emptyset \lor x = S\emptyset) \rightarrow x < SS\emptyset] \)

i. \(Q \vdash_{ND} (\forall x \leq S\emptyset)(x = \emptyset \lor x = S\emptyset) \)

Hint: You can use \((\forall I)\) and T6.48, T6.45, T6.43 and T6.50.

j. \(Q \vdash_{ND} (\forall x \leq S\emptyset)(x \leq SS\emptyset) \)

Hint: You may find the previous result helpful.

E6.41. Produce derivations to show T6.50 and T6.51.

6.4.2 Peano Arithmetic

Though Robinson Arithmetic leaves even standard results like commutation for multiplication unproven, it is possible to strengthen the axioms to obtain such results. Thus such standard generalizations are provable in Peano Arithmetic. This is the system we encountered in chapter 3, but now with \(ND \)—so that when \(P \) is derived from the axioms it is an \(ND \) theorem of Peano Arithmetic. For this, let PA1–PA6 be the same as Q1–Q6. Replace Q7 as follows. For any formula \(P \),

\[
\text{PA7 } [P^x_\emptyset \land \forall x(P \rightarrow P^x_{Sx})] \rightarrow \forall xP
\]

is an axiom. If a formula \(P \) applies to \(\emptyset \), and for any \(x \) if \(P \) applies to \(x \) then it also applies to \(Sx \), then \(P \) applies to every \(x \). This schema represents the principle of mathematical induction. We will have much more to say about the principle of mathematical induction in part II. For now, it is enough merely to recognize its instances. Thus, for example, if \(P \) is \(~(x = Sx)\), then \(P^x_\emptyset \) is \(~(\emptyset = S\emptyset)\), and \(P^x_{Sx} \) is \(~(Sx = SSx)\). So,

\(^9\)After the work of R. Dedekind and G. Peano. For historical discussion, see Wang, “The Axiomatization of Arithmetic.”
is an instance of the scheme. You should see why this is so.

It will be convenient to have the principle of mathematical induction in a rule form. Given \(P \) and \(\forall x (P \rightarrow P^x) \) on accessible lines \(a \) and \(b \), one may move to \(\forall x P \) with justification \(a,b \text{ IN} \).

\[
\begin{align*}
\text{IN} & \quad \frac{a. P \quad b. \forall x (P \rightarrow P^x)}{\forall x P} \quad a,b \text{ IN}
\end{align*}
\]

The rule is justified from PA7 by reasoning as on the right. That is, given \(P^x \) and \(\forall x (P \rightarrow P^x) \) on accessible lines, one can always conjoin them, then with an instance of PA7 as a premise reach \(\forall x P \) by \(\rightarrow E \). The use of IN merely saves a couple steps, and avoids some relatively long formulas we would have to deal with using PA7 alone. Thus, from our previous example, where \(P \) is \(\sim (x = Sx) \), we would need \(\sim (\emptyset = S\emptyset) \) and \(\forall x [\sim (x = Sx) \rightarrow \sim (Sx = SSx)] \) to move to \(\forall x \sim (x = Sx) \) by IN. You should see that this is no different from before.

In this system, there is no need for an axiom like Q7, insofar as we shall be able to derive it with the aid of PA7. That is, we shall be able to show,

\[
T6.52. \text{PA} \vdash_{\text{\textit{ND}}} \sim (t = \emptyset) \rightarrow \exists z (t = Sz) \quad \text{where } z \text{ is not a variable in } t
\]

Since it is to follow from PA1–PA7, the proof must, of course, not depend on Q7 and so on any of T6.48, T6.50, or T6.51.

But this is the same as T6.48, and has Q7 as an instance. Given this, any ND theorem of Q is automatically an ND theorem of PA—for we can derive T6.52, and use it as it would have been used in a derivation for Q. We thus freely use any theorem from Q in the derivations that follow.

With these axioms in hand, including the principle of mathematical induction, we set out to show some general principles of commutativity, associativity and distribution for addition and multiplication. But we build gradually to them. For a first application of IN, let \(P \) be \((\emptyset + x) = x \); then \(P^x \) is \((\emptyset + \emptyset) = \emptyset \) and \(P^x_{Sx} \) is \((\emptyset + Sx) = Sx \).

\[
T6.53. \text{PA} \vdash_{\text{\textit{ND}}} (\emptyset + t) = t
\]
The key to this derivation, and others like it, is bringing IN into play. That we want to
do this is sufficient to drive us to the following as setup.

\[(CP)\]

<table>
<thead>
<tr>
<th>Step</th>
<th>Rule</th>
<th>Premises</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>((\emptyset + \emptyset)) = (\emptyset)</td>
<td>T6.44</td>
</tr>
<tr>
<td>2.</td>
<td>((\emptyset + sj)) = (S(\emptyset + j))</td>
<td>T6.45</td>
</tr>
<tr>
<td>3.</td>
<td>((\emptyset + j)) = (j)</td>
<td>A ((g, \rightarrow I))</td>
</tr>
<tr>
<td>4.</td>
<td>((\emptyset + sj)) = (sj)</td>
<td>2.3 (\Rightarrow)E</td>
</tr>
<tr>
<td>5.</td>
<td>([(\emptyset + j)](\emptyset + sj))</td>
<td>3.4 (\Rightarrow)I</td>
</tr>
<tr>
<td>6.</td>
<td>(\forall x([(\emptyset + x)] = x) \rightarrow ([\emptyset + Sx] = Sx)]</td>
<td>5 (\forall I)</td>
</tr>
<tr>
<td>7.</td>
<td>(\forall x[(\emptyset + x)] = x)</td>
<td>1,6 (\forall I)</td>
</tr>
<tr>
<td>8.</td>
<td>(\emptyset + t) = (t)</td>
<td>7 (\forall E)</td>
</tr>
</tbody>
</table>

Our aim is to get the goal by \(\forall E\) from \(\forall x[\(\emptyset + x\)] = x\]. And we will get this by IN. So we need the inputs to IN, \(\mathcal{D}_\emptyset^x\), that is, \((\emptyset + \emptyset) = \emptyset\), and \(\forall x(\mathcal{D} \rightarrow \mathcal{D}_x^x)\), that is, \(\forall x[([\emptyset + x)] = x] \rightarrow ([\emptyset + Sx] = Sx)\]. As is often the case, \(\mathcal{D}_\emptyset^x\), here \((\emptyset + \emptyset) = \emptyset\), is easy to get. It is natural to get the latter by \(\forall I\) from \([\emptyset + j]\) = \(j\) \(\rightarrow\) \([\emptyset + sj] = sj\], and to go for this by \(\rightarrow I\). The work of the derivation is reaching our two goals. But that is not hard. The first is an immediate instance of T6.44. And the second follows from the equality on (3), with an instance of T6.45. We are in a better position to think about which (axioms or) theorems we need as premises once we have gone through this standard setup for IN. We will see this pattern over and over.

T6.54. \(PA \vdash_{ND} \langle St + \emptyset\rangle = S(t + \emptyset)\)

<table>
<thead>
<tr>
<th>Step</th>
<th>Rule</th>
<th>Premises</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(\langle St + \emptyset\rangle = St)</td>
<td>T6.44</td>
</tr>
<tr>
<td>2.</td>
<td>(\langle t + \emptyset\rangle = t)</td>
<td>T6.44</td>
</tr>
<tr>
<td>3.</td>
<td>(\langle St + \emptyset\rangle = S(t + \emptyset))</td>
<td>1,2 (\Rightarrow)E</td>
</tr>
</tbody>
</table>

This simple derivation results by using the equality on (2) to justify a substitution for \(t\) in (1). This result forms the “zero case” for the one that follows.
CHAPTER 6. NATURAL DEDUCTION

T6.55. PA \(\vdash_{ND} (S t + s) = S(t + s) \)

1. \((S t + \emptyset) = S(t + \emptyset) \) T6.54
2. \((t + S j) = S(t + j) \) T6.45
3. \((S t + S j) = S(S t + j) \) T6.45
4. \((S t + j) = S(t + j) \) A \((g, \rightarrow I)\)
5. \((S t + S j) = SS(t + j) \) 3.4 \(=E\)
6. \((S t + S j) = S(t + S j) \) 5.2 \(=E\)
7. \([S t + j] = S(t + j) \rightarrow [S t + S j] = S(t + S j)] \) 4-6 \(\rightarrow I\)
8. \(\forall x([S t + x] = S(t + x) \rightarrow [S t + S x] = S(t + S x)]) \) 7 \(\forall I\)
9. \(\forall x[S t + x] = S(t + x) \) 1.8 \(\forall:\\!\!IN\)
10. \((S t + s) = S(t + s) \) 9 \(\forall:\!\!E\)

Again, the idea is to bring \(\text{IN}\) into play. Here \(\mathcal{P}\) is \((S t + x) = S(t + x) \). Given that we have the zero-case on line (1), with standard setup the derivation reduces to obtaining the formula on (6) given the assumption on (4). Line (6) is like (3) except for the right-hand side. So it is a matter of applying the equalities on (4) and (2) to reach the goal. You should study this derivation, to be sure that you follow the applications of \(=E\). If you do, you are managing some reasonably complex applications of the rule!

T6.56. PA \(\vdash_{ND} t + s = s + t \) \(\text{commutativity of addition}\)

1. \(t + \emptyset = t \) T6.44
2. \(\emptyset + t = t \) T6.53
3. \(t + S j = S(t + j) \) T6.45
4. \(S j + t = S(j + t) \) T6.55
5. \(t + \emptyset = \emptyset + t \) 1.2 \(=E\)
6. \(t + j = j + t \) A \((g, \rightarrow I)\)
7. \(t + S j = S(j + t) \) 3.6 \(=E\)
8. \(t + S j = S j + t \) 7.4 \(=E\)
9. \([t + j = j + t] \rightarrow [t + S j = S j + t] \) 6-8 \(\rightarrow I\)
10. \(\forall x[(t + x = x + t) \rightarrow [t + S x = S x + t]] \) 9 \(\forall I\)
11. \(\forall x[t + x = x + t] \) 5.10 \(\forall:\!\!IN\)
12. \(t + s = s + t \) 11 \(\forall:\!\!E\)

Again the derivation is by \(\text{IN}\) where \(\mathcal{P}\) is \(t + x = x + t \). We achieve the zero case on (5) from (1) and (2). So the derivation reduces to getting (8) given the assumption on (6). The left-hand side of (8) is like (3). So it is a matter of applying the equalities on (6) and then (4) to reach the goal. Very often the challenge in these cases is not so
much doing the derivations, as organizing in your mind which equalities you have, and which are required to reach the goal.

T6.56 is an interesting result! No doubt, you have heard from your mother’s knee that \(t + s = s + t \). But it is a sweeping claim with application to all numbers. Surely you have not been able to test every case. But here we have a derivation of the result from the Peano Axioms. And similarly for results that follow. Now that you have this result, recognize that you can use instances of it to switch around terms in additions—just as you would have done automatically for addition in elementary school.

*T6.57. PA \(\vdash_{ND} (r + s) + 0 = r + (s + 0) \)

Hint: Begin with \((r + s) + 0 = r + s\) as an instance of T6.44. The derivation is then a simple matter of using T6.44 again to “replace” \(s \) in the right-hand side with \(s + 0 \).

*T6.58. PA \(\vdash_{ND} (r + s) + t = r + (s + t) \)

associativity of addition

Hint: For an application of IN let \(P \) be \((r + s) + x = r + (s + x)\). You already have the zero case from T6.57. Inside the subderivation for \(\rightarrow \), use the assumption together with some instances of T6.45 to reach the goal.

Again, once you have this result, be aware that you can use its instances for association as you would have done long ago. It is good to think about what the different theorems give you, so that you can make sense of what to use where!

T6.59. PA \(\vdash_{ND} t \times S0 = t \)

Hint: This does not require IN. It is a rather a simple result which you can do in just a few lines.

T6.60. PA \(\vdash_{ND} 0 \times t = 0 \)

Hint: For an application of IN, let \(P \) be \(0 \times x = 0 \). The derivation is easy enough with an application of T6.46 for the zero case, and instances of T6.47 and T6.44 for the main result.

T6.61. PA \(\vdash_{ND} S t \times 0 = (t \times 0) + 0 \)

Hint: This does not require IN. It follows rather by some simple applications of T6.44 and T6.46.
T6.62. PA $\vdash_{\text{ND}} S t \times s = (t \times s) + s$

Hint: For this longish derivation, plan to reach the goal through IN where \mathcal{P} is $S t \times x = (t \times x) + x$. You will be able to use your assumption for $\rightarrow I$ with an instance of T6.47 to show $S t \times S j = ((t \times j) + j) + S t$. And you should be able to use associativity and the like to manipulate the right-hand side into the result you want. You will need several theorems as premises.

T6.63. PA $\vdash_{\text{ND}} t \times s = s \times t$

commutativity for multiplication

Hint: Plan on reaching the goal by IN where \mathcal{P} is $t \times x = x \times t$. Apart from theorems for the zero case, you will need an instance of T6.47 and an instance of T6.62.

T6.64. PA $\vdash_{\text{ND}} r \times (s + \emptyset) = (r \times s) + (r \times \emptyset)$

Hint: You will not need IN for this.

T6.65. PA $\vdash_{\text{ND}} r \times (s + t) = (r \times s) + (r \times t)$

distributivity

Hint: Plan on reaching the goal by IN where \mathcal{P} is $r \times (s + x) = (r \times s) + (r \times x)$. Perhaps the simplest thing is to start with $r \times (s + S j) = r \times S (s + j)$ by $= I$. Then the left side is what you want, and you can work on the right. Working on the right-hand side, $S (s + j) = S (s + j)$ by T6.45. And $r \times S (s + j) = (r \times (s + j)) + r$ by T6.47. With this, you will be able to apply the assumption for $\rightarrow I$. And further simplification should get you to your goal.

T6.66. PA $\vdash_{\text{ND}} (s + t) \times r = (s \times r) + (t \times r)$

distributivity

Hint: You will not need IN for this. Rather, it is enough to use T6.65 with a few applications of T6.63.

T6.67. PA $\vdash_{\text{ND}} (r + s) \times (t + u) = ((r \times t) + (r \times u)) + ((s \times t) + (s \times u))$

Hint: This is another application of distributivity. You may have encountered this result under the acronym ‘FOIL’ (first/outer/inner/last) in elementary algebra.

T6.68. PA $\vdash_{\text{ND}} (s \times t) \times \emptyset = s \times (t \times \emptyset)$

Hint: This is easy without an application of IN.
T6.69. \(\text{PA} \vdash_{\text{ND}} \ (s \times t) \times r = s \times (t \times r) \) \text{ associativity of multiplication}

Hint: Go after the goal by IN where \(\mathcal{P} \) is \((s \times t) \times x = s \times (t \times x)\). You should be able to use the assumption with T6.47 to show that \((s \times t) \times Sj = (s \times (t \times j)) + (s \times t)\); then you can reduce the right hand side to what you want.

T6.70. \(\text{PA} \vdash_{\text{ND}} r + t = s + t \rightarrow r = s \) \text{ cancellation law for addition}

Hint: Go for the goal by IN where \(\mathcal{P} \) is \(r + x = s + x \rightarrow r = s \).

T6.71. \(\text{PA} \vdash_{\text{ND}} t \neq \emptyset \rightarrow (r \times t = s \times t \rightarrow r = s) \) \text{ cancellation law for multiplication}

Hint: For this challenging derivation go for the goal by IN where \(\mathcal{P} \) is \(\forall x [t \neq \emptyset \rightarrow (x \times t = y \times t \rightarrow x = y)] \); so you will be looking to introduce the universal \(y \)-quantifier by IN. It will be convenient to obtain the basis as a preliminary result.

Observe that we adopt the ‘slash’ notation to indicate negated equality.

After you have completed the exercises, if you are looking for more to do, you might take a look at the additional results from T13.11 on page 688—or, really, once you get started all of section 13.2–13.6 is a playground for proofs in PA.

Peano Arithmetic is thus sufficient for many “ordinary” results we could not obtain in Q alone. However, insofar as PA includes the language and results of Q, it too is sufficient for Gödel’s incompleteness theorem. So PA is not complete, and it is not possible for a nicely specified theory including PA to be such that it proves either \(\mathcal{P} \) or \(\sim \mathcal{P} \) for every \(\mathcal{P} \). But such results must wait for later.

E6.43. Produce a derivation to show T6.52 and so that any ND theorem of Q is an ND theorem of PA. Hint: For an application of IN let \(\mathcal{P} \) be \(x \neq \emptyset \rightarrow \exists z (x = Sz) \).

E6.44. For each of the following concepts, explain in an essay of about two pages, so that (high-school age) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples of your own construction (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.
Robinson and Peano Arithmetic (ND)

Q/PA
1. \(\neg (Sx = \emptyset) \)
2. \((Sx = Sy) \rightarrow (x = y) \)
3. \((x + \emptyset) = x \)
4. \((x + Sy) = S(x + y) \)
5. \((x \times \emptyset) = \emptyset \)
6. \((x \times Sy) = [(x \times y) + x] \)

Q7 \(\neg (x = \emptyset) \rightarrow \exists y (x = Sy) \)

PA7 \[[\mathcal{P}^x_\emptyset \land \forall x (\mathcal{P} \rightarrow \mathcal{P}^x_{Sy})] \rightarrow \forall x \mathcal{P} \]

T6.42 \(\vdash_{ND} \neg (S t = \emptyset) \)
T6.43 \(\vdash_{ND} (S t = S s) \rightarrow (t = s) \)
T6.44 \(\vdash_{ND} (t + \emptyset) = t \)
T6.45 \(\vdash_{ND} (t + S s) = S(t + s) \)
T6.46 \(\vdash_{ND} (t \times \emptyset) = \emptyset \)
T6.47 \(\vdash_{ND} (t \times S s) = ((t \times s) + t) \)
T6.48 \(\vdash_{ND} \neg (t = \emptyset) \rightarrow \exists z (t = Sz) \quad \text{where variable } z \text{ does not appear in } t \)
T6.49 \(\vdash_{ND} t + S \emptyset = S t \)
T6.50 \(\vdash_{ND} t \leq \emptyset \rightarrow t = \emptyset \)
T6.51 \(\vdash_{ND} \neg (t < \emptyset) \)
T6.52 \(\vdash_{ND} \neg (t = \emptyset) \rightarrow \exists z (t = Sz) \quad (z \text{ not in } t) \) and so Q7
T6.53 \(\vdash_{ND} (\emptyset + t) = t \)
T6.54 \(\vdash_{ND} (S t + \emptyset) = S(t + \emptyset) \)
T6.55 \(\vdash_{ND} (S t + s) = S(t + s) \)
T6.56 \(\vdash_{ND} t + s = s + t \quad \text{commutativity of addition} \)
T6.57 \(\vdash_{ND} (r + s) + \emptyset = r + (s + \emptyset) \)
T6.58 \(\vdash_{ND} (r + s) + t = r + (s + t) \quad \text{associativity of addition} \)
T6.59 \(\vdash_{ND} t \times S \emptyset = t \)
T6.60 \(\vdash_{ND} \emptyset \times t = \emptyset \)
T6.61 \(\vdash_{ND} S t \times \emptyset = (t \times \emptyset) + \emptyset \)
T6.62 \(\vdash_{ND} S t \times s = (t \times s) + s \)
T6.63 \(\vdash_{ND} t \times s = s \times t \quad \text{commutativity for multiplication} \)
T6.64 \(\vdash_{ND} r \times (s + \emptyset) = (r \times s) + (r \times \emptyset) \)
T6.65 \(\vdash_{ND} r \times (s + t) = (r \times s) + (r \times t) \quad \text{distributivity} \)
T6.66 \(\vdash_{ND} (s + t) \times r = (s \times r) + (t \times r) \quad \text{distributivity} \)
T6.67 \(\vdash_{ND} (r + s) \times (t + u) = ((r \times t) + (r \times u)) + ((s \times t) + (s \times u)) \)
T6.68 \(\vdash_{ND} (s \times t) \times \emptyset = s \times (t \times \emptyset) \)
T6.69 \(\vdash_{ND} (s \times t) \times r = s \times (t \times r) \quad \text{associativity of multiplication} \)
T6.70 \(\vdash_{ND} r + t = s + t \rightarrow r = s \quad \text{cancellation law for addition} \)
T6.71 \(\vdash_{ND} t \neq \emptyset \rightarrow (r \times t = s \times t) \rightarrow r = s \quad \text{cancellation law for multiplication} \)
a. The rules \(\forall I \) and \(\exists E \), including especially restrictions on the rules.

b. The axioms of \(Q \) and \(PA \) and the way theorems derive from them.

c. The relation between the rules of \(ND \) and the rules of \(ND^+ \).
Part II

Transition: Reasoning About Logic
Introductory

We have expended a great deal of energy learning to do logic. What we have learned constitutes the complete classical predicate calculus with equality. This is a system of tremendous power including for reasoning in foundations of arithmetic.

But our work itself raises questions. In chapter 4 we used truth trees and tables for an account of the conditions under which sentential formulas are true and arguments are valid. In the quantificational case, though, we were not able to use our graphical methods for a general account of truth and validity—there were simply too many branches, and too many interpretations, for a general account by means of trees. Thus there is an open question about whether and how quantificational validity can be shown.

And once we have introduced our notions of validity, many interesting questions can be asked about how they work: are the arguments that are valid in AD the same as the ones that are valid in ND? are the arguments that are valid in ND the same as the ones that are quantificationally valid? Are the theorems of Q the same as the theorems of PA? are theorems of PA the same as the truths on N the standard interpretation for number theory? Is it possible for a computing device to identify the theorems of the different logical systems?

It is one thing to ask such questions, and perhaps amazing that there are demonstrable answers. We will come to that. However, in this short section we do not attempt answers. Rather, we put ourselves in a position to think about answers by introducing methods for thinking about logic. Thus this part looks both backward and forward: By our methods we plug the hole left from chapter 4: in chapter 7 we accomplish what could not be done with the tables and trees of chapter 4, and are able to demonstrate quantificational validity. At the same time, we lay a foundation to ask and answer core questions about logic.

Chapter 7 begins with our basic method of reasoning from definitions. Chapter 8 introduces mathematical induction. These methods are important not only for results, but for their own sakes, as part of the “package” that comes with mathematical logic.
Chapter 7

Direct Semantic Reasoning

It is the task of this chapter to think about reasoning directly from definitions. Frequently, students who already reason quite skillfully with definitions flounder when asked to do so explicitly, in the style of this chapter.¹ Thus I propose to begin in a restricted context—one with which we are already familiar, using a fairly rigid framework as a guide. Perhaps you first learned to ride a bicycle with training wheels, but eventually learned to ride without them, and so to go faster, and to places other than the wheels would let you go. Similarly, in the end, we will want to apply our methods beyond the restricted context in which we begin, working outside the initial framework. But the framework should give us a good start. In this section, then, I introduce the framework in the context of reasoning for specifically semantic notions, and against the background of semantic reasoning we have already done.

In chapter 4 we used truth trees and tables for an account of the conditions under which sentential formulas are true and arguments are valid. In the quantificational case, though, we were not able to use our graphical methods for a general account of truth and validity—there were simply too many branches, and too many interpretations, for a general account by means of trees. For a complete account, we will need to reason more directly from the definitions. But the tables and trees do exhibit the semantic definitions. So we can build on what we have already done with them. Our goal will be to move past the tables and trees, and learn to function without them. After some

¹The ability to reason clearly and directly with definitions is important not only here, but also beyond. From the (often humorous) Philosophers Lexicon, compare the verb to chisholm—after Roderick Chisholm, who was a master of the technique—where one proposes a definition; considers a counterexample; modifies to account for the example; considers another counterexample; modifies again; and so forth. As, “He started with definition (d.8) and kept chisholming away at it until he ended up with (d.8["ed"]).” Such reasoning is impossible to understand apart from explicit attention to consequences of definitions of the sort we have in mind.
CHAPTER 7. DIRECT SEMANTIC REASONING

342
general remarks in section 7.1, we start with the sentential case (section 7.2), and move to the quantificational (section 7.3).

7.1 General

I begin with some considerations about what we are trying to accomplish, and how it is related to what we have done. Consider the following row of a truth table, meant to show that $B \nRightarrow C \not

(A) \begin{array}{c|c|c|c} B & C & B \to C & \sim B \\
T & T & T & T \\
T & F & F & T \\
\end{array}

Since there is an interpretation on which the premise is true and the conclusion is not, the argument is not sententially valid. Now, what justifies the move from $I[B] = T$ and $I[C] = T$, to the conclusion that $B \to C$ is T? One might respond, “the truth table.” But the truth table, $T(\Rightarrow)$ is itself derived from definition $ST(\Rightarrow)$. According to $ST(\Rightarrow)$, for sentences P and Q, $I[P \Rightarrow Q] = T$ iff $I[P] = F$ or $I[Q] = T$ (or both). In this case, $I[C] = T$; so $I[B] = F$ or $I[C] = T$; so the condition from $ST(\Rightarrow)$ is met, and $I[B \to C] = T$. Similarly $ST(\sim)$ justifies the move from $I[B] = T$ to the conclusion that $I[\sim B] = F$. According to $ST(\sim)$, for any sentence \mathcal{P}, $I[\sim \mathcal{P}] = T$ iff $I[\mathcal{P}] = F$, and otherwise $I[\sim \mathcal{P}] = F$. In this case, $I[B] = T$ so that $I[B] \neq F$ and from $ST(\sim)$, $I[\sim B] = F$. And definition SV justifies the conclusion that the argument is not sententially valid. According to SV, $\Gamma \not \vdash \mathcal{P}$ just in case there is no sentential interpretation I such that $I[\Gamma] = T$ but $I[\mathcal{P}] = F$. Since we have produced an I such that $I[B \to C] = T$ but $I[\sim B] = F$, it follows that $B \to C \not \vdash \sim B$.

In chapter 4, we used tables to express these conditions. But we might have reasoned directly.

Presumably, all this is “contained” in the one line of the truth table, when we use it to conclude that the argument is not sententially valid. Note the move from $I[C] = T$ to $I[B] = F$ or $I[C] = T$—even though $I[B] = T$. As for $\forall I$, the move is certainly legitimate—as on a table, we say how values from $I[B]$ and $I[C]$ are such as to satisfy the (disjunctive) condition $ST(\rightarrow)$.

Similarly, consider the following table, meant to show that $\sim A \not \vdash \sim A \to A$.

Thus we might recapitulate reasoning in the table. Perhaps we typically “whip through” tables. And SV lets you conclude that the argument is sententially valid. Since no row makes the premise true and the conclusion false, and any sentential interpretation is like some row in its assignment to \(A \), no sentential interpretation makes the premise true and conclusion false; so, by SV, the argument is sententially valid.

Thus the table represents reasoning as follows (omitting the second row). To follow, notice how we simply reason through each “place” in a row, and then about whether the row shows invalidity.

<table>
<thead>
<tr>
<th>(~A)</th>
<th>(~A) / (\sim A \to A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T) (F) (T) (F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F) (T) (F) (F)</td>
</tr>
</tbody>
</table>

Since there is no row where the premise is true and the conclusion is false, the argument is sententially valid. Again, \(ST(\sim)\) and \(ST(\to)\) justify the way you build the table. And SV lets you conclude that the argument is sententially valid. Since no row makes the premise true and the conclusion false, and any sentential interpretation is like some row in its assignment to \(A \), no sentential interpretation makes the premise true and conclusion false; so, by SV, the argument is sententially valid.

Thus the table represents reasoning as follows (omitting the second row). To follow, notice how we simply reason through each “place” in a row, and then about whether the row shows invalidity.

For any sentential interpretation \(I \), either (i) \(I[\sim A] = T \) or (ii) \(I[\sim A] = F \). Suppose (i): then \(I[\sim A] = T \); so by \(ST(\sim) \), \(I[\sim A] = F \); so by \(ST(\sim) \) again, \(I[\sim A] = T \). But \(I[\sim A] = T \), and by \(ST(\sim) \), \(I[\sim A] = F \); from either of these it follows that \(I[\sim A] = F \) or \(I[\sim A] = T \); so by \(ST(\sim) \), \(I[A \to A] = T \). From this either \(I[\sim A] = F \) or \(I[A \to A] = T \); so it is not the case that \(I[\sim A] = T \) and \(I[A \to A] = F \). Suppose (ii): then by related reasoning... it is not the case that \(I[\sim A] = T \) and \(I[A \to A] = F \). So no interpretation makes it the case that \(I[\sim A] = T \) and \(I[A \to A] = F \). So by SV, \(\sim A \not\models \sim A \rightarrow A \).

Thus we might recapitulate reasoning in the table. Perhaps we typically “whip through” tables without explicitly considering all the definitions involved. But the definitions are involved when we complete the table.

Strictly, though, not all of this is necessary for the conclusion that the argument is valid. Thus, for example, in the reasoning at (i), for the conditional there is no need to establish that both \(I[\sim A] = F \) and \(I[\sim A] = T \). From either, it follows that \(I[\sim A] = F \) or \(I[\sim A] = T \); and so by \(ST(\to) \) that \(I[A \to A] = T \). So we might have omitted one or the other. Similarly at (i) there is no need to make the point that \(I[\sim A] = T \). What matters is that \(I[A \to A] = T \), so that \(I[\sim A] = F \) or \(I[A \to A] = T \), and it is therefore not the case that \(I[\sim A] = T \) and \(I[A \to A] = F \). So reasoning for the full table might be “shortcut” as follows.

For any sentential interpretation either (i) \(I[\sim A] = T \) or (ii) \(I[\sim A] = F \). Suppose (i): then \(I[\sim A] = T \); so \(I[A] = F \) or \(I[A] = T \); so by \(ST(\to) \), \(I[A \to A] = T \). From this either \(I[\sim A] = F \) or \(I[A \to A] = T \); so it is not the case that \(I[\sim A] = T \) and \(I[A \to A] = F \). Suppose (ii): then \(I[A] = F \); so by \(ST(\sim) \), \(I[\sim A] = T \); so by \(ST(\sim) \) again, \(I[\sim A] = F \); so either \(I[\sim A] = F \) or \(I[A \to A] = T \); so it is not the case that \(I[\sim A] = T \) and \(I[A \to A] = F \). So no interpretation makes it the case that \(I[\sim A] = T \) and \(I[A \to A] = F \). So by SV, \(\sim A \not\models \sim A \rightarrow A \).
This is better. These shortcuts may reflect what you have already done when you realize that, say, a true conclusion eliminates the need to think about the premises on some row of a table. Though the shortcuts make things better, however, the idea of reasoning in this way corresponding to a 4, 8 or more (!) row table remains painful. But there is a way out.

Recall what happens when you apply the short truth table method from chapter 4 to valid arguments. You start with the assumption that the premises are true and the conclusion is not. If the argument is valid, you reach some conflict so that it is not, in fact, possible to complete the row. Then, as we said on page 112, you know “in your heart” that the argument is valid. Let us turn this into an official argument form.

Suppose \(\neg \neg A \not\models \neg A \rightarrow A \); then by SV, there is an I such that \(I[\neg \neg A] = T \) and \(I[\neg A \rightarrow A] = F \). From the former, by ST(\(\neg \)), \(I[\neg A] = F \). But from the latter, by ST(\(\rightarrow \)), \(I[\neg A] = T \) and \(I[A] = F \); and since \(I[\neg A] = T \), \(I[A] \neq F \). This is impossible; reject the assumption: \(\neg \neg A \not\models \neg A \rightarrow A \).

This is better still. The assumption that the argument is invalid leads to the conclusion that for some I, \(I[\neg A] = F \) and \(I[\neg A] \neq F \); but this is impossible and we reject the assumption. The pattern is like \(\neg E \) in ND. This approach is particularly important insofar as we do not reason individually about each of the possible interpretations. This is nice in the sentential case, when there are too many to reason about conveniently. And in the quantificational case, we will not be able to argue individually about each of the possible interpretations. So we need to avoid talking about interpretations one-by-one.

Thus we arrive at two strategies: To show that an argument is invalid, we produce an interpretation, and show by the definitions that it makes the premises true and the conclusion not. That is what we did in (B) above. To show that an argument is valid, we assume the opposite, and show by the definitions that the assumption leads to contradiction. Again, that is what we did just above, at (F).

Before we get to the details, let us consider an important point about what we are trying to do: Our reasoning takes place in the metalanguage, based on the definitions—where object-level expressions are uninterpreted apart from the definitions. To see this, ask yourself whether a sentence \(\mathcal{P} \) conflicts with \(\mathcal{P} \vdash \mathcal{P} \). “Well,” you might respond, “I have never encountered this symbol ‘\(\vdash \)’ before, so I am not in a position to say.” But that is the point: whether \(\mathcal{P} \) conflicts with \(\mathcal{P} \vdash \mathcal{P} \) depends entirely on a definition for stroke ‘\(\vdash \)’. As it happens, this symbol is typically read “not both” as given by what might be a further clause of ST,

\[
\text{ST}(\vdash) \quad \text{For any sentences } \mathcal{P} \text{ and } \mathcal{Q}, \quad \text{iff } I[(\mathcal{P} \vdash \mathcal{Q})] = T \text{ iff } I[\mathcal{P}] = F \text{ or } I[\mathcal{Q}] = F \text{ (or both); otherwise } I[(\mathcal{P} \vdash \mathcal{Q})] = F.
\]
The resultant table is,

<table>
<thead>
<tr>
<th>$\mathcal{P} \lor \mathcal{Q}$</th>
<th>$\mathcal{P} \lor \mathcal{Q}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

$\mathcal{P} \lor \mathcal{Q}$ is false when \mathcal{P} and \mathcal{Q} are both T, and otherwise true. Given this, \mathcal{P} does conflict with $\mathcal{P} \lor \mathcal{P}$. Suppose $l[\mathcal{P}] = T$ and $l[\mathcal{P} \lor \mathcal{P}] = T$; from the latter, by $\text{ST}(1)$, $l[\mathcal{P}] = F$ or $l[\mathcal{P}] = F$; either way, $l[\mathcal{P}] = F$; but this is impossible given our assumption that $l[\mathcal{P}] = T$. In fact, $\mathcal{P} \lor \mathcal{P}$ has the same table as $\neg \mathcal{P}$, and $\mathcal{P} \lor (\mathcal{Q} \lor \mathcal{Q})$ the same as $\mathcal{P} \rightarrow \mathcal{Q}$.

<table>
<thead>
<tr>
<th>\mathcal{P}</th>
<th>$\mathcal{P} \lor \mathcal{P}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\mathcal{P}</th>
<th>$\mathcal{P} \lor (\mathcal{Q} \lor \mathcal{Q})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

From this, we might have treated \neg and \rightarrow, and so \land, \lor and \leftrightarrow, all as abbreviations for expressions whose only operator is \lor. At best, however, this leaves official expressions difficult to read. Here is the point that matters: Operators have their significance entirely from the definitions. In this chapter, we make metalinguistic claims about object expressions, where these can only be based on the definitions. \mathcal{P} and $\mathcal{P} \lor \mathcal{P}$ do not themselves conflict, apart from the definition which makes \mathcal{P} with $\mathcal{P} \lor \mathcal{P}$ have the consequence that $l[\mathcal{P}] = T$ and $l[\mathcal{P}] = F$. And similarly operators with which we are more familiar gain their significance from the definition. At every stage, it is the definitions which justify conclusions.

7.2 Sentential

With this much said, it remains possible to become confused about details while working with the definitions. It is one thing to be able to follow such reasoning—as I hope you have been able to do—and another to produce it. The idea now is to make use of something at which we are already good, doing derivations, to further structure and guide the way we proceed. The result will be a sort of derivation system for reasoning with metalinguistic expressions. We build up this system in stages.

7.2.1 Truth

Let us begin with some notation. Where the script characters $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \ldots$ represent object expressions in the usual way, let the Fraktur characters $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \ldots$
represent metalinguistic expressions (‘\mathfrak{I}’ is the Fraktur ‘A’). Thus \mathfrak{I} might represent an expression of the sort $[B] = T$. Then \Rightarrow and \Leftrightarrow are the metalinguistic conditional and biconditional respectively; \neg, \wedge, \vee and \bot are metalinguistic negation, conjunction, disjunction and contradiction. In practice, negation is indicated by the slash (\mathfrak{F}) as well.

Now consider the following restatement of definition ST. Each clause is given in both a positive and a negative form. For any sentences P and Q and interpretation I, $\text{ST}(\mathfrak{I} \in P \in I) = T$, $\text{ST}(\mathfrak{I} \in P \notin I) = T$, $\text{ST}(\mathfrak{I} \in P \ highlighting text
from \(\neg(\mathfrak{A} \land \neg\mathfrak{B})\), to \(\neg\mathfrak{A} \lor \neg\mathfrak{B}\) and then by \text{neg} to \(\neg\mathfrak{B}\lor \mathfrak{A}\), we might move by \text{dem} directly from \(\neg(\mathfrak{A} \land \neg\mathfrak{B})\), to \(\neg\mathfrak{A} \lor \mathfrak{B}\). We will also allow a version of \text{dsj} with a pair of subderivations (as for \(\lor\mathfrak{E}\) in \(\mathfrak{ND}\)). All this will make the reasoning more clear as we proceed.

With definition \text{ST} and these rules, we can begin to reason about consequences of the definition. Suppose we want to show that an interpretation with \(\mathfrak{I}[A] = \mathfrak{I}[B] = \mathfrak{T}\) is such that \(\mathfrak{I}[\neg(A \rightarrow \neg B)] = \mathfrak{T}\).

The reasoning on the left is a metalinguistic \textit{derivation} in the sense that every step is either a premise or results by a definition or rule. These derivations can be worked “bottom-up” in the usual way. You should be able to follow each step. On the right, we simply “tell the story” of the derivation—mirroring it step for step. This latter style is the one we want to develop. As we shall see, it gives us power to go beyond where the derivations will take us. But the derivations serve a purpose. If we can do them, we can \textit{use} them to construct reasoning of the sort we want. Each stage on one side corresponds to one on the other. So the derivations can guide us as we construct our reasoning, and constrain the moves we make. Note: First, on the right, we replace line references with language (“from the latter”) meant to serve the same purpose. Second, the metalinguistic symbols, \(\Rightarrow, \iff, \neg, \lor, \land\), are replaced with ordinary language on the right side. Finally, on the right, though we cite every definition when we use it, we do not cite the additional rules (in this case \text{cnj}). To the extent that you can, it is good to have one line depend on the one before or in the immediate neighborhood, so as to minimize the need for extended references in the written version. And in general, as much as possible, you should strive to put the reader (and yourself at a later time) in a position to follow your reasoning—supposing just a basic familiarity with the definitions.

Consider now another example. Suppose we want to show that an interpretation with \(\mathfrak{I}[B] \neq \mathfrak{T}\) is such that \(\mathfrak{I}[\neg(A \rightarrow \neg B)] \neq \mathfrak{T}\).

\begin{enumerate}
 \item \(\mathfrak{I}[B] \neq \mathfrak{T}\) \hspace{1cm} \text{prem} \hspace{1cm} \text{We are given that } \mathfrak{I}[B] \neq \mathfrak{T}; \text{ so by } \text{ST}(\neg), \mathfrak{I}[\neg B] \neq \mathfrak{T} \text{ or } \mathfrak{I}[\neg B] = \mathfrak{T} \text{; so by } \text{ST}(\lnot), \mathfrak{I}[\lnot(A \rightarrow \lnot B)] \neq \mathfrak{T}.
 \item \(\mathfrak{I}[\lnot B] = \mathfrak{T}\) \hspace{1cm} \text{1 ST(\neg)} \hspace{1cm} \mathfrak{I}[\lnot B] = \mathfrak{T}; \text{ so by } \text{ST}(\lnot), \mathfrak{I}[\lnot A \lor \lnot B] = \mathfrak{T} \text{; so by } \text{ST}(\lor), \mathfrak{I}[\lnot(B \lor \lnot A)] = \mathfrak{T} \text{; so by } \text{ST}(\lnot), \mathfrak{I}[\lnot \lnot B] = \mathfrak{T} \text{; so by } \text{ST}(\lnot), \mathfrak{I}[\lnot B] = \mathfrak{T} \text{; so by } \text{ST}(\neg), \mathfrak{I}[\lnot B] = \mathfrak{T} \text{; so by } \text{ST}(\lnot), \mathfrak{I}[\lnot(A \rightarrow \lnot B)] \neq \mathfrak{T}.
 \item \(\mathfrak{I}[A] \neq \mathfrak{T} \lor \mathfrak{I}[\lnot B] = \mathfrak{T}\) \hspace{1cm} \text{2 dsj} \hspace{1cm} \mathfrak{I}[\lnot(A \rightarrow \lnot B)] \neq \mathfrak{T} \text{; so by } \text{ST}(\lnot), \mathfrak{I}[\lnot(A \rightarrow \lnot B)] \neq \mathfrak{T}.
 \item \(\mathfrak{I}[A \rightarrow \lnot B] = \mathfrak{T}\) \hspace{1cm} \text{3 ST(\lnot)} \hspace{1cm} \mathfrak{I}[\lnot B] = \mathfrak{T}; \text{ so by } \text{ST}(\lnot), \mathfrak{I}[\lnot(A \rightarrow \lnot B)] \neq \mathfrak{T}.
 \item \(\mathfrak{I}[\lnot(B \lor \lnot A)] = \mathfrak{T}\) \hspace{1cm} \text{4 ST(\lnot)} \hspace{1cm} \mathfrak{I}[\lnot(A \rightarrow \lnot B)] \neq \mathfrak{T}.
\end{enumerate}
Observe again that ST(→) requires \(l[A] \neq T \lor l[\neg B] = T \) to obtain \(l[A \to \neg B] = T \). Thus we obtain the disjunctive (3) in order to get (4). In contrast, on (5) of (H), ST(→) takes the conjunctive \(l[A] = T \land l[B] \neq T \) for \(l[A \to \neg B] \neq T \). Keep these cases separate in your mind: a disjunction for the true conditional, and a conjunction for one that is not. Here is another derivation of the same result, this time beginning with assumption of the opposite (with justification, ‘assp’) and breaking down to the parts, for an application of neg.

\[
\begin{align*}
1. & \quad l(\neg A \to \neg B) = T & \text{assp} \\
2. & \quad l(A \to \neg B) \neq T & 1 \text{ ST(\neg)} \\
3. & \quad l[A] = T \land l[\neg B] \neq T & 2 \text{ ST(\neg)} \\
4. & \quad l[\neg B] \neq T & 3 \text{ cnj} \\
5. & \quad l[B] = T & 4 \text{ ST(\neg)} \\
6. & \quad l[B] \neq T & \text{prem} \\
7. & \quad \bot & 5, 6 \text{ bot} \\
8. & \quad l(\neg (A \to \neg B)) \neq T & 1-7 \text{ neg}
\end{align*}
\]

Suppose \(l(A \to \neg B) = T \); then from ST(\neg), \(l[A \to \neg B] \neq T \); so by ST(\neg), \(l[A] = T \) and \(l[\neg B] \neq T \); so \(l[\neg B] \neq T \); so by ST(\neg), \(l[B] = T \). But we are given that \(l[B] \neq T \). This is impossible; reject the assumption: \(l(\neg (A \to \neg B)) \neq T \).

This version takes a couple more lines. But it works as well and provides a useful illustration of the (neg) rule. As usual, reasonings on the one side mirror that on the other. So we can use the metalinguistic derivation as a guide for the reasoning on the right. Again, we leave out the special metalinguistic symbols. And again we cite all instances of definitions, but not the additional rules.

These derivations are structurally much simpler than ones you have seen before from AD and ND. The challenge is accommodating new notation with the different mix of rules. As you work these and other problems, you may find the sentential metalinguistic reference on page 357 helpful.

Some perspective: Our reasoning takes place in the metalanguage. Special symbols, \(\Delta, \lor \) and such just are the metalinguistic ‘and’, ‘or’ and the like. Thus our work is in the usual language we use to state definitions. This language comes with its own interpretation. Taken this way, the metalinguistic derivations themselves constitute metalinguistic reasonings. It is true that metalinguistic rules are given in terms of form. We thus impose formal constraints on our reasoning. But we have not introduced a new language whose symbols require interpretation (as for \(\mathcal{L}_q \)), and do not justify inferences by form (as for ND). So we have not formalized the metalanguage. Rather we have adopted formal constraints on our reasoning in order to structure what we do.

E7.1. Suppose \(l[A] = T, l[B] \neq T \) and \(l[C] = T \). For each of the following, produce a metalinguistic derivation, and then informal reasoning to demonstrate either that
it is or is not true on I. Hint: You may find a quick row of the truth table helpful to let you see which you want to show. Also, (e) is much easier than it looks.

a. \(\sim B \rightarrow C \)

*b. \(\sim B \rightarrow \sim C \)

c. \(\sim[(A \rightarrow \sim B) \rightarrow \sim C] \)

d. \(\sim[A \rightarrow (B \rightarrow \sim C)] \)

e. \(\sim A \rightarrow [(A \rightarrow B) \rightarrow C] \rightarrow \sim(\sim C \rightarrow B)] \)

7.2.2 Validity

So far we have been able to reason about ST and truth. Let us now extend results to validity. For this, we need to augment our metalinguistic derivation system. Let ‘S’ be a metalinguistic existential quantifier—it asserts the existence of some object. For now, ‘S’ will appear only in contexts asserting the existence of interpretations. Thus, for example, \(S(I[[P]] = T) \) says there is an interpretation \(I \) such that \(I[[P]] = T \), and \(\neg S(I[[P]] = T) \) says it is not the case that there is an interpretation \(I \) such that \(I[[P]] = T \).

Given this, we can state SV as follows, again in positive and negative forms.

\[
SV \quad \neg S(I[[P_1]] = T \land \ldots \land I[[P_n]] = T \land I[[Q]] \neq T) \iff P_1 \ldots P_n \models Q \\
S(I[[P_1]] = T \land \ldots \land I[[P_n]] = T \land I[[Q]] \neq T) \iff P_1 \ldots P_n \nmod Q
\]

These should look familiar. An argument is valid when it is not the case that there is some interpretation that makes the premises true and the conclusion not. An argument is invalid if there is some interpretation that makes the premises true and the conclusion not.

Again, we need rules to manipulate the new operator. In general, whenever a metalinguistic term \(t \) first appears outside the scope of a metalinguistic quantifier, it is labeled arbitrary or particular. For the sentential case, terms will be of the sort \(I, J, \ldots \), for interpretations, and mostly labeled ‘particular’ when they first appear apart from the quantifier \(S \). Say \(\mathcal{A}[t] \) is some metalinguistic expression in which term \(t \) appears, and \(\mathcal{A}[[u]] \) is like \(\mathcal{A}[t] \) but with free instances of \(t \) replaced by \(u \). Perhaps \(\mathcal{A}[t] \) is \(I[A] = T \) and \(\mathcal{A}[[u]] \) is \(J[A] = T \). Then,

\[
\text{exs} \quad \mathcal{A}[[u]] \quad u \text{ arbitrary or particular} \quad \quad S \mathcal{A}[t] \\
S \mathcal{A}[t] \quad \mathcal{A}[[u]] \quad u \text{ particular and new}
\]
As an instance of the left-hand “introduction” rule, we might move from $J[A] = T$, for a J labeled either arbitrary or particular, to $SI([A] = T)$. If interpretation J is such that $J[A] = T$, then there is some interpretation I such that $I[A] = T$. For the other “exploitation” rule, we may move from $SI([A] = T)$ to the result that $J[A] = T$ so long as J is identified as particular and is new to the derivation, in the sense required for $\exists E$ in chapter 6. In particular, it must be that the term does not so-far appear outside the scope of a metalinguistic quantifier, and does not appear free in current goal expressions. Given that some I is such that $I[A] = T$, we set up J as a particular interpretation for which it is so.

In addition, it will be helpful to allow a rule which lets us make assertions by inspection about already given interpretations—and we will limit justifications by (ins) just to assertions about interpretations (and, later, variable assignments). Thus, for example, in the context of an interpretation I on which $I[A] = T$, we might allow:

n. $[A] = T \quad \text{ins (I particular)}$

as a line of one of our derivations. In this case, I is a name of the interpretation, and listed as particular on first use.

Now suppose we want to show that $(B \rightarrow \sim D), \sim B \not\models D$. Recall that our strategy for showing that an argument is invalid is to produce an interpretation, and show that it makes the premises true and the conclusion not. So consider an interpretation J such that $J[B] \neq T$ and $J[D] \neq T$. (A quick row of the truth table might help to identify this as the interpretation we want to consider.)

(K)

1. $J[B] \neq T$ \quad \text{ins (J particular)}
2. $J[B] \neq T \lor J[\sim D] = T$ \quad 1 dj
3. $J[B \rightarrow \sim D] = T$ \quad 2 ST(\rightarrow)
4. $J[\sim B] = T$ \quad 1 ST(\sim)
5. $J[D] \neq T$ \quad \text{ins}
6. $J[B \rightarrow \sim D] = T \land J[\sim B] = T \land J[D] \neq T$ \quad 3,4,5 cnj
7. $SI([B \rightarrow \sim D] = T \land [\sim B] = T \land [D] \neq T)$ \quad 6 exs
8. $B \rightarrow \sim D, \sim B \not\models D$ \quad 7 SV

(1) and (5) are by inspection of the interpretation J, where an individual name is always labeled “particular” when it first appears. At (6) we have a conclusion about interpretation J, and at (7) we generalize to the existential, for an application of SV at (8). Here is the corresponding informal reasoning.

2Observe that, insofar as it is quantified, term I may itself be new in the sense that it does not so-far appear outside the scope of a quantifier. Thus we may be justified in moving from $SI([A] = T)$ to $I[A] = T$, with I particular. However, as a matter of style, we will typically switch terms upon application of the exs rule.
\[J[B] \neq T; \text{ so either } J[B] \neq T \text{ or } J[\sim D] = T; \text{ so by } ST(\rightarrow), J[B \rightarrow \sim D] = T. \text{ But since } J[B] \neq T, \text{ by } ST(\sim), J[\sim B] = T. \text{ And } J[D] \neq T. \text{ So } J[B \rightarrow \sim D] = T \text{ and } J[\sim B] = T \text{ but } J[D] \neq T. \text{ So there is an interpretation } I \text{ such that } I[B \rightarrow \sim D] = T \text{ and } I[\sim B] = T \text{ but } I[D] \neq T. \text{ So by } SV, B \rightarrow \sim D, \sim B \not\models D. \]

It should be clear that this reasoning reflects that of the derivation. We show the argument is invalid by showing that there exists an interpretation on which the premises are true and the conclusion is not.

Say we want to show that \(\sim (A \rightarrow B) \not\models A \). To show that an argument is valid, our idea has been to assume otherwise and show that the assumption leads to contradiction. So we might reason as follows.

\[
\begin{align*}
1. & \sim (A \rightarrow B) \not\models A & \text{ assp } \\
2. & ST[[\sim (A \rightarrow B)]] = T \triangleq [A] \neq T & 1 \text{ SV } \\
3. & J[\sim (A \rightarrow B)] = T \triangleq J[A] \neq T & 2 \text{ exs } (J \text{ particular }) \\
4. & J[\sim (A \rightarrow B)] = T & 3 \text{ cnj } \\
5. & J[A \rightarrow B] \neq T & 4 \text{ ST}(\sim) \\
6. & J[A] = T \triangleq J[B] \neq T & 5 \text{ ST}(\rightarrow) \\
7. & J[A] = T & 6 \text{ cnj } \\
8. & J[A] \neq T & 3 \text{ cnj } \\
9. & \bot & 7,8 \text{ bot } \\
10. & \sim (A \rightarrow B) \not\models A & 1-9 \text{ neg }
\end{align*}
\]

Suppose \(\sim (A \rightarrow B) \not\models A \); then by \(SV \) there is some \(I \) such that \(I[\sim (A \rightarrow B)] = T \) and \(I[A] \neq T \). Let \(J \) be a particular interpretation of this sort; then \(J[\sim (A \rightarrow B)] = T \) and \(J[A] \neq T \). From the former, by \(ST(\sim) \), \(J[A \rightarrow B] \neq T \); so by \(ST(\rightarrow) \), \(J[A] = T \) and \(J[B] \neq T \). So both \(J[A] = T \) and \(J[A] \neq T \). This is impossible; reject the assumption: \(\sim (A \rightarrow B) \not\models A \).

At (2) we have the result that there is some interpretation on which the premise is true and the conclusion is not. At (3), we set up to reason about a particular \(J \) for which this is so. \(J \) does not so-far appear in the derivation, and does not appear in the goal at (9). So we instantiate to it. This puts us in a position to reason by \(ST \). The pattern is typical. Given that the assumption leads to contradiction, we are justified in rejecting the assumption, and thus conclude that the argument is valid. It is important that we are able to show an argument is valid without reasoning individually about every possible interpretation of the basic sentences!

Notice that we can also reason generally about forms. Here is a case of that sort.

\[T7.4s. \models (\sim Q \rightarrow \sim P) \rightarrow [(\sim Q \rightarrow P) \rightarrow Q] \]
Suppose \(\models \) \((\neg Q \rightarrow \neg P) \wedge ((\neg Q \rightarrow P) \rightarrow Q)\); then by \(SV \) there is some \(I \) such that \(I(\neg Q \rightarrow \neg P) \wedge ((\neg Q \rightarrow P) \rightarrow Q) \neq T \). Let \(J \) be a particular interpretation of this sort; then \(J(\neg Q \rightarrow \neg P) \wedge ((\neg Q \rightarrow P) \rightarrow Q) \neq T \); so by \(ST(\rightarrow) \), \(J(\neg Q \rightarrow P) \neq T \); from the latter, \(J(\neg Q \rightarrow P) = T \) and \(J[Q] \neq T \); from the second of these, \(ST(\wedge) \), \(J[Q] = T \) and \(J[Q] = T \). Since \(J[Q] = T \), \(J[Q] = T \); so by \(ST(\rightarrow) \), \(J[Q] = T \); \(J[Q] = T \); \(J[Q] = T \) and \(J[Q] = T \); but \(J[Q] = T \), so \(J[Q] = T \); but \(J[Q] = T \), so \(J[Q] = T \); so by \(ST(\rightarrow) \), \(J[Q] = T \). This is impossible; reject the assumption: \(\not\models (\neg Q \rightarrow \neg P) \wedge ((\neg Q \rightarrow P) \rightarrow Q) \).

Observe that the steps represented by (11) and (14) are not by \(cnj \) but by the \(dsj \) rule with \(X \vee Y \) and \(\neg X \) for the result that \(X \).\(^3\) Observe also that contradictions are obtained at the *metalinguistic* level. Thus \(J[\mathcal{P}] = T \) at (11) does not contradict \(J[\neg \mathcal{P}] \neq T \) at (14). Of course, it is a short step to the result that \(J[\mathcal{P}] = T \) and \(J[\mathcal{P}] \neq T \) which do contradict. As a general point of strategy, it is much easier to manage a conditional that is not true than a conditional that is true—for a conditional that is not true yields a conjunctive result, and one that is true a disjunctive result. Thus we begin above at (5) and (6) with the conditional that is not true, and *use* the results to set up applications of \(dsj \). This is typical. Similarly we can show,

\[
\text{T7.1s. } \mathcal{P}, \mathcal{P} \rightarrow Q \models_{\mathcal{S}} Q
\]

\(^3\)Or, rather, we have \(\neg \mathcal{A} \vee \mathcal{B} \) and \(\neg \mathcal{A} \)—and thus skip application of \(\text{neg} \) to obtain the proper \(\neg \neg \mathcal{A} \) for this application of \(dsj \).
T7.2s. $\models_{s} P \rightarrow (Q \rightarrow P)$

T7.3s. $\models_{s} (\theta \rightarrow (P \rightarrow \theta)) \rightarrow ((\theta \rightarrow P) \rightarrow (\theta \rightarrow \theta))$

T7.1s–T7.4s should remind you of the axioms and rule of the sentential system ADs from chapter 3. These results (or, rather, analogues for the quantificational case) play an important role for things to come.

Again to show that an argument is invalid, produce an interpretation; then use it for a demonstration that there exists an interpretation that makes premises true and the conclusion not. To show that an argument is valid, suppose otherwise; then demonstrate that your assumption leads to contradiction. The derivations then provide the pattern for your informal reasoning.

E7.2. Produce a metalinguistic derivation, and then informal reasoning to demonstrate each of the following. To show invalidity, you will have to produce an interpretation to which your argument refers.

*a. $A \rightarrow B, \sim A \not\models_{s} \sim B$

*b. $A \rightarrow B, \sim B \models_{s} \sim A$

c. $A \rightarrow B, B \rightarrow C, C \rightarrow D \models_{s} A \rightarrow D$

d. $A \rightarrow B, B \rightarrow \sim A \models_{s} \sim A$

e. $A \rightarrow B, \sim A \rightarrow \sim B \not\models_{s} \sim (A \rightarrow \sim B)$

f. $(\sim A \rightarrow B) \rightarrow A \models_{3} \sim A \rightarrow \sim B$

g. $\sim A \rightarrow \sim B, B \models_{s} \sim (B \rightarrow \sim A)$

h. $A \rightarrow B, \sim B \rightarrow A \not\models_{s} A \rightarrow \sim B$

i. $\not\models_{s} [(A \rightarrow B) \rightarrow (A \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow C]$

j. $\models_{s} (A \rightarrow B) \rightarrow [(B \rightarrow \sim C) \rightarrow (C \rightarrow \sim A)]$

E7.3. Provide demonstrations for T7.1s–T7.3s in the informal style. Hint: you may or may not find that truth tables, or metalinguistic derivations, would be helpful as a guide.
7.2.3 Derived Rules

Finally, for this section on sentential forms, we expand the range of our results by means of some rules for \Rightarrow and \Leftrightarrow.

\[
\begin{array}{ccc}
\text{cnd} & \text{A} \Rightarrow \text{B}, \text{A} & \text{A} \Rightarrow \text{B}, \text{B} \Rightarrow \text{C} \\
& \text{B} & \text{A} \Rightarrow \text{B} \\
& & \text{A} \Rightarrow \text{C} \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{bcnd} & \text{A} \Leftrightarrow \text{B}, \text{A} & \text{A} \Leftrightarrow \text{B}, \text{B} \Leftrightarrow \text{C} \\
& \text{A} \Leftrightarrow \text{B} & \text{A} \Leftrightarrow \text{B} \\
& & \text{A} \Leftrightarrow \text{C} \\
\end{array}
\]

We will also allow versions of bcnd which move from, say, $\text{A} \Leftrightarrow \text{B}$ and $\neg \text{A}$, to $\neg \text{B}$ (like NB from ND^+. And we will allow generalized versions of these rules moving directly from, say, $\text{A} \Rightarrow \text{B}$, $\text{B} \Rightarrow \text{C}$, and $\text{C} \Rightarrow \text{D}$ to $\text{A} \Rightarrow \text{D}$; and similarly, from $\text{A} \Leftrightarrow \text{B}$, $\text{B} \Leftrightarrow \text{C}$, and $\text{C} \Leftrightarrow \text{D}$ to $\text{A} \Leftrightarrow \text{D}$. In this last case, the natural informal description is, A iff B; B iff C; C iff D; so A iff D. In real cases, however, repetition of terms can be awkward and get in the way of reading. In practice, then, the pattern collapses to, A iff B; iff C; iff D; so A iff D—where this is understood as in the official version.

Also, when demonstrating that $\text{A} \Rightarrow \text{B}$, in many cases, it is helpful to get B by neg; officially, the pattern is as on the left,

\[
\begin{array}{c}
\text{A} \\
\neg \text{B} \\
\bot \\
\text{A} \Rightarrow \text{B}
\end{array}
\]

But the result is automatic once we derive a contradiction from A and $\neg \text{B}$; so, \bot in practice, this pattern collapses into:

\[
\begin{array}{c}
\text{A} \land \neg \text{B} \\
\text{A} \Rightarrow \text{B}
\end{array}
\]

So to demonstrate a conditional, it is enough to derive a contradiction from the antecedent and negation of the consequent. Let us also include among our definitions, (abv) for unpacking abbreviations. This is to be understood as justifying any biconditional $\text{A} \Leftrightarrow \text{A}'$ where A' abbreviates A. Such a biconditional can be used as either an axiom or a rule.

We are now in a position to produce derived clauses for ST. In table form, we have already seen derived forms for ST from chapter 4. Now we demonstrate the conditions.

\[
\text{ST}' \quad (\wedge) \quad \mathcal{I}[\mathcal{P} \land \mathcal{Q}] = T \iff \mathcal{I}[\mathcal{P}] = T \land \mathcal{I}[\mathcal{Q}] = T \\
\mathcal{I}[\mathcal{P} \land \mathcal{Q}] \neq T \iff \mathcal{I}[\mathcal{P}] \neq T \land \mathcal{I}[\mathcal{Q}] \neq T
\]
Again, you should recognize the derived clauses based on what you already know from truth tables.

First, consider the positive form for \(\text{ST}'(\wedge) \). We reason about the arbitrary interpretation. The demonstration begins by abv, and strings together biconditionals to reach the final result.

\[
\begin{align*}
1. \ & \mathcal{I}[\mathcal{P} \land \mathcal{Q}] = T \iff \mathcal{I}[\neg(\mathcal{P} \rightarrow \neg \mathcal{Q})] = T \quad \text{abv (I arbitrary)} \\
2. \ & \mathcal{I}[\neg(\mathcal{P} \rightarrow \neg \mathcal{Q})] = T \iff \mathcal{I}[\mathcal{P} \rightarrow \neg \mathcal{Q}] \neq T \quad \text{ST(\neg)} \\
(M) \ & \mathcal{I}[\mathcal{P} \rightarrow \neg \mathcal{Q}] \neq T \iff \mathcal{I}[\mathcal{P}] = T \land \mathcal{I}[\mathcal{Q}] \neq T \quad \text{ST(\rightarrow)} \\
4. \ & \mathcal{I}[\mathcal{P}] = T \land \mathcal{I}[\neg \mathcal{Q}] \neq T \iff \mathcal{I}[\mathcal{P}] = T \land \mathcal{I}[\mathcal{Q}] = T \quad \text{ST(\rightarrow)} \\
5. \ & \mathcal{I}[\mathcal{P} \land \mathcal{Q}] = T \iff \mathcal{I}[\mathcal{P}] = T \land \mathcal{I}[\mathcal{Q}] = T \quad 1, 2, 3, 4 \text{ bcnd}
\end{align*}
\]

This time the interpretation is arbitrary insofar as the reasoning applies to any interpretation whatsoever. This derivation puts together a string of biconditionals of the form \(\mathcal{A} \leftrightarrow \mathcal{B}, \mathcal{B} \leftrightarrow \mathcal{C}, \mathcal{C} \leftrightarrow \mathcal{D}, \mathcal{D} \leftrightarrow \mathcal{E} \); the conclusion follows by bcnd. Notice that we use the abbreviation and first two definitions as axioms, to state the biconditionals. Technically, (4) results from an implicit \(\mathcal{I}[\mathcal{P}] = T \land \mathcal{I}[\neg \mathcal{Q}] \neq T \iff \mathcal{I}[\mathcal{P}] = T \land \mathcal{I}[\mathcal{Q}] \neq T \) with \(\text{ST}(\neg) \) as a replacement rule, substituting \(\mathcal{I}[\mathcal{Q}] = T \) for \(\mathcal{I}[\neg \mathcal{Q}] \neq T \) on the right-hand side. In the “collapsed” biconditional form, the result is as follows.

By abv, \(\mathcal{I}[\mathcal{P} \land \mathcal{Q}] = T \iff \mathcal{I}[\neg(\mathcal{P} \rightarrow \neg \mathcal{Q})] = T \); by \(\text{ST}(\neg) \), iff \(\mathcal{I}[\mathcal{P} \rightarrow \neg \mathcal{Q}] \neq T \); by \(\text{ST}(\rightarrow) \), iff \(\mathcal{I}[\mathcal{P}] = T \) and \(\mathcal{I}[\neg \mathcal{Q}] \neq T \); by \(\text{ST}(\neg) \), iff \(\mathcal{I}[\mathcal{P}] = T \) and \(\mathcal{I}[\mathcal{Q}] = T \). So \(\mathcal{I}[\mathcal{P} \land \mathcal{Q}] = T \) iff \(\mathcal{I}[\mathcal{P}] = T \) and \(\mathcal{I}[\mathcal{Q}] = T \).

In this abbreviated form, each stage implies the next from start to finish. But similarly, each stage implies the one before from finish to start. So one might think of it as demonstrating conditionals in both directions all at once for eventual application of bcnd. Because we have just shown a biconditional, it follows immediately that \(\mathcal{I}[\mathcal{P} \land \mathcal{Q}] \neq T \) just in case the right hand side fails—just in case one of \(\mathcal{I}[\mathcal{P}] \neq T \) or \(\mathcal{I}[\mathcal{Q}] \neq T \). However, we can also make the point directly.

By abv, \(\mathcal{I}[\mathcal{P} \land \mathcal{Q}] \neq T \iff \mathcal{I}[\neg(\mathcal{P} \rightarrow \neg \mathcal{Q})] \neq T \); by \(\text{ST}(\neg) \), iff \(\mathcal{I}[\mathcal{P} \rightarrow \neg \mathcal{Q}] = T \); by \(\text{ST}(\rightarrow) \), iff \(\mathcal{I}[\mathcal{P}] \neq T \) or \(\mathcal{I}[\neg \mathcal{Q}] = T \); by \(\text{ST}(\neg) \), iff \(\mathcal{I}[\mathcal{P}] \neq T \) or \(\mathcal{I}[\mathcal{Q}] \neq T \). So \(\mathcal{I}[\mathcal{P} \land \mathcal{Q}] \neq T \) iff \(\mathcal{I}[\mathcal{P}] \neq T \) or \(\mathcal{I}[\mathcal{Q}] \neq T \).
Reasoning for $ST'(\lor)$ is similar. For $ST'(\leftrightarrow)$ it will be helpful to introduce, as a derived rule, a sort of distribution principle.

$$dst \quad [\neg A \lor B] \land \neg [A \lor \neg B] \iff [A \land B] \lor [\neg A \land \neg B]$$

To show this, our basic idea will be to obtain the conditional going in both directions, and then apply $bcnd$. Here is the argument from left to right.

1. $[(\neg A \lor B) \land (\neg A \lor B)] \iff [\neg (A \land B) \lor (\neg A \land \neg B)]$ assp
2. $\neg [(A \land B) \lor (\neg A \land \neg B)]$ 1 cnj
3. $\neg (A \land B) \land (\neg A \land \neg B)$ 1 cnj
4. $\neg A \lor B$ 3 cnj
5. $\neg B \lor A$ 3 cnj
6. $\neg (A \land B) \land \neg (\neg A \land \neg B)$ 2 dem
7. $\neg (A \land B)$ 6 cnj
8. $\neg (\neg A \land \neg B)$ 6 cnj
9. $\neg A \lor \neg B$ 7 dem
10. $A \lor B$ 8 dem
11. A assp
12. B 4,11 dsj
13. $\neg B$ 9,11 dsj
14. \bot 12,13 bot
15. $\neg A$ 11-14 neg
16. $\neg B$ 5,15 dsj
17. B 10,15 dsj
18. \bot 16,17 bot
19. $[(\neg A \lor B) \land (\neg A \lor B)] \Rightarrow [\neg (A \land B) \lor (\neg A \land \neg B)]$ 1-18 cnd

The conditional is demonstrated in the “collapsed” form, where we assume the antecedent with the negation of the consequent and go for a contradiction. Note the little subderivation at (11)–(14); we have accumulated disjunctions at (4), (5), (9) and (10), but do not have any of the “sides”; often the way to make headway is to assume the negation of one side; this can feed into dsj and neg (the idea is related to $SC4$). Demonstration of the conditional in the other direction is left as an exercise. Given dst, you should be able to demonstrate $ST(\leftrightarrow)$, also in the collapsed biconditional style. You will begin by observing by abv that $[P \leftrightarrow Q] = T$ iff $[\neg((P \rightarrow Q) \rightarrow (Q \rightarrow P))] = T$; by $ST(\neg)$ iff The negative side is relatively straightforward, and does not require dst.

Having established the derived clauses for ST', we can use them directly in our reasoning. Thus, for example, let us show that $B \lor (A \land \neg C), (C \rightarrow A) \iff B \not\equiv \neg (A \land C)$. For this, consider an interpretation J such that $J[A] = J[B] = J[C] = T$.

Metalinguistic Quick Reference (sentential)

DEFINITIONS:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>$(\sim): I[\sim P] \equiv I[P] \not\equiv T$</td>
</tr>
<tr>
<td></td>
<td>$(\rightarrow): I[P \rightarrow Q] \equiv I[P] \not\equiv T \lor I[Q] = T$</td>
</tr>
<tr>
<td></td>
<td>$(\lor): I[P \lor Q] \equiv I[P] \not\equiv T \lor I[Q] \not\equiv T$</td>
</tr>
<tr>
<td></td>
<td>$(\land): I[P \land Q] \equiv I[P] \land I[Q]$</td>
</tr>
<tr>
<td></td>
<td>$(\neg): I[\neg P] \equiv I[P] \not\equiv T$</td>
</tr>
</tbody>
</table>

RULES:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>com</td>
<td>$A \lor B \leftrightarrow B \lor A$</td>
</tr>
<tr>
<td></td>
<td>$A \land B \leftrightarrow B \land A$</td>
</tr>
<tr>
<td>idm</td>
<td>$A \leftrightarrow A \land A$</td>
</tr>
<tr>
<td>dem</td>
<td>$\neg (A \land B) \leftrightarrow \neg A \lor \neg B$</td>
</tr>
<tr>
<td></td>
<td>$\neg (A \lor B) \leftrightarrow \neg A \land \neg B$</td>
</tr>
<tr>
<td>cnj</td>
<td>$A, B \vdash A \land B$</td>
</tr>
<tr>
<td></td>
<td>$A \land B \vdash A$</td>
</tr>
<tr>
<td></td>
<td>$A \land B \vdash B$</td>
</tr>
<tr>
<td>dsj</td>
<td>$A \vdash B \lor B, \neg A$</td>
</tr>
<tr>
<td></td>
<td>$A \vdash B, \neg B$</td>
</tr>
<tr>
<td>neg</td>
<td>$A \leftrightarrow \neg \neg A$</td>
</tr>
<tr>
<td></td>
<td>$\bot \vdash \bot$</td>
</tr>
<tr>
<td></td>
<td>$A \vdash \bot$</td>
</tr>
<tr>
<td></td>
<td>$\bot \vdash A$</td>
</tr>
<tr>
<td>exs</td>
<td>$A[t] \equiv u$ arbitrary or particular</td>
</tr>
<tr>
<td></td>
<td>$S \equiv A[u]$ particular and new</td>
</tr>
<tr>
<td>cnd</td>
<td>$A \Rightarrow B, A \vdash B$</td>
</tr>
<tr>
<td></td>
<td>$A \Rightarrow B, B \Rightarrow C \vdash A \land \neg B$</td>
</tr>
<tr>
<td>bcnd</td>
<td>$A \equiv B, A \equiv B, B \equiv A \vdash A \equiv B, B \equiv A$</td>
</tr>
<tr>
<td></td>
<td>$A \equiv A \equiv B, B \equiv A \equiv B \equiv C$</td>
</tr>
<tr>
<td>dst</td>
<td>$(\neg A \lor B) \land (\neg B \land A) \equiv ([A \land B] \lor (\neg A \land \neg B))$</td>
</tr>
<tr>
<td>ins</td>
<td>Inspection allows assertions about interpretations and variable assignments.</td>
</tr>
</tbody>
</table>
CHAPTER 7. DIRECT SEMANTIC REASONING

1. \(J[A] = T \)
2. \(J[C] = T \)
3. \(J[A] = T \land J[C] = T \)
4. \(J[A \land C] = T \)
5. \(\sim(A \land C) \neq T \)
6. \(J[B] = T \)
7. \(J[B] = T \lor J[A \land \sim C] = T \)
8. \(J[B \lor (A \land \sim C)] = T \)
9. \(J[C] \neq T \lor J[A] = T \)
10. \(J[C \rightarrow A] = T \)
11. \(J[C \rightarrow A] = T \land J[B] = T \)
12. \((J[C \rightarrow A] = T \land J[B] = T) \lor (J[C \rightarrow A] \neq T \land J[B] \neq T) \)
13. \(J[(C \rightarrow A) \leftrightarrow B] = T \)
14. \(J[B \leftrightarrow (A \land \sim C)] = T \land J[(C \rightarrow A) \leftrightarrow B] = T \land J[\sim(A \land C)] \neq T \)
15. \(S[\sim(B \leftrightarrow (A \land \sim C)) \rightarrow J[(C \rightarrow A) \leftrightarrow B] = T \land J[\sim(A \land C)] \neq T] \)
16. \(B \leftrightarrow (A \land \sim C) \lor (C \rightarrow A) \leftrightarrow B \vdash \sim(A \land C) \)

Since \(J[A] = T \) and \(J[C] = T \), by \(ST'(\land) \), \(J[A \land C] = T \); so by \(ST(\sim) \), \(J[\sim(A \land C)] \neq T \).

Since \(J[B] = T \), either \(J[B] = T \) or \(J[A \land \sim C] = T \); so by \(ST'(\lor) \), \(J[B \lor (A \land \sim C)] = T \).

Since \(J[A] = T \), either \(J[C] \neq T \) or \(J[A] = T \); so by \(ST(\rightarrow) \), \(J[C \rightarrow A] = T \); so both \(J[C \rightarrow A] = T \) and \(J[B] = T \); so either both \(J[C \rightarrow A] = T \) and \(J[B] = T \) or both \(J[C \rightarrow A] \neq T \) and \(J[B] \neq T \); so by \(ST'(\leftrightarrow) \), \(J[(C \rightarrow A) \leftrightarrow B] = T \). So \(J[B \leftrightarrow (A \land \sim C)] = T \) and \(J[(C \rightarrow A) \leftrightarrow B] = T \) but \(J[\sim(A \land C)] \neq T \); so there exists an interpretation \(I \) such that \(I[B \leftrightarrow (A \land \sim C)] = T \) and \(I[(C \rightarrow A) \leftrightarrow B] = T \) but \(I[\sim(A \land C)] \neq T \); so by \(SV \), \(B \lor (A \land \sim C) \land (C \rightarrow A) \leftrightarrow B \not\vdash \sim(A \land C) \).

Observe the use of dsj at (12) to feed into \(ST'(\leftrightarrow) \) at (13). This is no different than we have done before, only with the relatively complex expressions.

Similarly we can show that \(A \rightarrow (B \lor C) \land C \leftrightarrow B \land \sim C \not\vdash \sim A \). As usual, our strategy is to assume otherwise, and go for contradiction.
Suppose $A \rightarrow (B \lor C), C \leftrightarrow B, \neg C \not\models \neg A$; then by SV there is some I such that $[I[A \rightarrow (B \lor C)] = T, \text{ and } [I[C \leftrightarrow B] = T, \text{ and } [I[\neg C] = T, \text{ but } [I[\neg A] \neq T$. Let J be a particular interpretation of this sort; then $J[A \rightarrow (B \lor C)] = T, \text{ and } J[C \leftrightarrow B] = T, \text{ and } J[\neg C] = T, \text{ but } J[\neg A] \neq T$. Since $J[\neg C] = T$, by ST(\neg), $J[C] \neq T$; so either $J[C] \neq T$ or $J[B] \neq T$; so it is not the case that both $J[C] = T$ and $J[B] = T$. But $J[C \leftrightarrow B] = T$; so by ST'($\leftrightarrow$), both $J[C] = T$ and $J[B] = T$, or both $J[C] \neq T$ and $J[B] \neq T$; but not the former, so $J[C] \neq T$ and $J[B] \neq T$. If $J[\neg A] \neq T$, so by ST(\rightarrow), $J[A] = T$. But $J[A \rightarrow (B \lor C)] = T$; so by ST($\rightarrow$), $J[A] \neq T$ or $J[B \lor C] = T$; but $J[A] = T$; so $J[B \lor C] = T$; so by ST'(\lor), $J[B] = T$ or $J[C] = T$; but $J[B] \neq T$; so $J[C] = T$; but $J[C] \neq T$. This is impossible; reject the assumption: $A \rightarrow (B \lor C), C \leftrightarrow B, \neg C \not\models \neg A$.

Note the move on lines (5)–(7) where we use dsj with dem to convert $J[C] \neq T$ into a negation useful at (10).

Though the metalinguistic derivations are useful to discipline the way we reason, in the end, you may find the written versions to be both quicker and easier to follow. As you work the exercises, try to free yourself from the derivations to work the informal versions independently—though you should continue to use derivations as a check for your work.

E7.4. Produce informal reasoning to demonstrate each of the following.
CHAPTER 7. DIRECT SEMANTIC REASONING

360

a. \(A \to (B \land C), \neg C \vdash \neg A \)

*b. \(\neg(A \leftrightarrow B), \neg A, \neg B \vdash C \land \neg C \)

*c. \(\neg(\neg A \land \neg B) \not\vdash A \land B \)

d. \(\neg A \leftrightarrow \neg B \vdash B \to A \)

e. \(A \land (B \to C) \not\vdash (A \land C) \lor (A \land B) \)

f. \([(C \lor D) \land B] \to A, D \vdash B \to A \)

g. \(\not\vdash A \lor ((C \to \neg B) \land \neg A) \)

h. \(D \to (A \to B), \neg A \to \neg D, C \land D \vdash B \)

i. \((\neg A \lor B) \to (C \land D), \neg(\neg A \lor B) \not\vdash \neg(C \land D) \)

j. \(A \land (B \lor C), (\neg C \lor D) \land (D \to \neg D) \vdash A \land B \)

*E7.5. Complete the demonstration of derived clauses of \(ST' \) by completing the demonstration for \(dst \) from right to left, and providing informal reasoning for both the positive and negative parts of \(ST' (\lor) \) and \(ST' (\leftrightarrow) \).

E7.6. Using \(ST(\lor) \) as above on page 344, produce informal reasoning to show each of the following. Again, you may or may not find metalinguistic derivations helpful—but your reasoning should be no less clean than that guided by the rules. Hint, by \(ST(\lor) \), \(I[\mathcal{P} \lor \mathcal{Q}] \neq T \) iff \(I[\mathcal{P}] = T \) and \(I[\mathcal{Q}] = T \).

a. \(I[\mathcal{P} \lor \mathcal{P}] = T \) iff \(I[\neg \mathcal{P}] = T \)

*b. \(I[\mathcal{P} \lor (\mathcal{Q} \lor \mathcal{Q})] = T \) iff \(I[\mathcal{P} \to \mathcal{Q}] = T \)

c. \(I[(\mathcal{P} \lor \mathcal{P}) \lor (\mathcal{Q} \lor \mathcal{Q})] = T \) iff \(I[\mathcal{P} \lor \mathcal{Q}] = T \)

d. \(I[(\mathcal{P} \lor \mathcal{Q}) \lor (\mathcal{P} \lor \mathcal{Q})] = T \) iff \(I[\mathcal{P} \land \mathcal{Q}] = T \)
7.3 Quantificational

So far, we might have obtained sentential results for validity and invalidity by truth tables. But our method positions us to make progress for the quantificational case compared to what we were able to do before. Again we will depend on and gradually expand our metalinguistic derivation system as a guide.

7.3.1 Satisfaction

Given what we have done, it is easy to state definition SF for satisfaction at least as it applies to sentence letters, ~ and →. In this quantificational case, as described in chapter 4, we are reasoning about satisfaction, and satisfaction depends not just on interpretations, but on interpretations with variable assignments. For S an arbitrary sentence letter and P and Q any formulas, where I is an interpretation with variable assignment,

\[SF \quad (s) \quad I_d[S] = S \iff I[S] = T \quad I_d[S] \neq S \iff I[S] \neq T \]

\[\vdash \quad I_d[\sim P] = S \iff I_d[\sim P] \neq S \quad I_d[\sim P] \neq S \iff I_d[\sim P] = S \]

\[\vdash \quad I_d[P \rightarrow Q] = S \iff I_d[P] \neq S \vee I_d[Q] = S \quad I_d[P \rightarrow Q] \neq S \iff I_d[P] = S \wedge I_d[Q] \neq S \]

Again, you should recognize this as a simple restatement of SF from page 125. Rules for manipulating the definitions remain as before. Already, then, we can produce derived clauses for ∨, ∧ and ↔.

\[SF' \quad (\lor) \quad I_d[(P \lor Q)] = S \iff I_d[P] = S \lor I_d[Q] = S \]

\[I_d[(P \lor Q)] \neq S \iff I_d[P] \neq S \lor I_d[Q] \neq S \]

\[(\land) \quad I_d[(P \land Q)] = S \iff I_d[P] = S \land I_d[Q] = S \]

\[I_d[(P \land Q)] \neq S \iff I_d[P] \neq S \land I_d[Q] \neq S \]

\[(\leftrightarrow) \quad I_d[(P \leftrightarrow Q)] = S \iff (I_d[P] = S \land I_d[Q] = S) \lor (I_d[P] \neq S \land I_d[Q] \neq S) \]

All these are like ones from before. For the first,

1. \[I_d[P \lor Q] = S \iff I_d[\sim P \rightarrow Q] = S \quad \text{abv (1.d arbitrary)} \]

2. \[I_d[\sim P \rightarrow Q] = S \iff I_d[\sim P] \neq S \lor I_d[Q] = S \quad SF(\sim) \]

3. \[I_d[\sim P] \neq S \lor I_d[Q] = S \iff I_d[P] = S \lor I_d[Q] = S \quad SF(\sim) \]

4. \[I_d[P \lor Q] = S \iff I_d[P] = S \lor I_d[Q] = S \quad 1,2,3 \text{ bcnd} \]

Again, line (3) results from an implicit I_d[\sim P] \neq S \lor I_d[Q] = S \iff I_d[\sim P] \neq S \lor I_d[Q] = S with ST(\sim) as a replacement rule, substituting I_d[P] = S for I_d[\sim P] \neq S on the right-hand side. The informal reasoning is straightforward.
By abv, \(I_d[P \lor Q] = S \) iff \(I_d[\neg P \rightarrow Q] = S \); by \(SF(\rightarrow) \), iff \(I_d[\neg P] \neq S \) or \(I_d[Q] = S \); by \(SF(\sim) \), iff \(I_d[P] = S \) or \(I_d[Q] = S \). So \(I_d[P \lor Q] = S \) iff \(I_d[P] = S \) or \(I_d[Q] = S \).

The reasoning is as before except that our condition for satisfaction depends on an interpretation with variable assignment rather than an interpretation alone.

Of course, given these definitions, we can use them in our reasoning. As a simple example, let us demonstrate that if \(I_d[P \lor Q] = S \) and \(I_d[\neg Q] = S \), then \(I_d[P] = S \).

\[
\begin{align*}
1. & \quad I_d[P \lor Q] = S \land I_d[\neg Q] = S \quad \text{assp (l, d arbitrary)} \\
2. & \quad I_d[P \lor Q] = S \quad 1 \text{ cnj} \\
3. & \quad I_d[P] = S \lor I_d[Q] = S \quad 2 \text{ SF}(\lor) \\
4. & \quad I_d[\sim Q] = S \quad 1 \text{ cnj} \\
5. & \quad I_d[Q] \neq S \quad 4 \text{ SF}(\sim) \\
6. & \quad I_d[P] = S \quad 3, 5 \text{ dis} \\
7. & \quad (I_d[P \lor Q] = S \land I_d[\neg Q] = S) \Rightarrow I_d[P] = S \quad 1-6 \text{ cnj}
\end{align*}
\]

Suppose \(I_d[P \lor Q] = S \) and \(I_d[\neg Q] = S \). From the former, by \(SF(\lor) \), \(I_d[P] = S \) or \(I_d[Q] = S \); but \(I_d[\neg Q] = S \); so by \(SF(\sim) \), \(I_d[Q] \neq S \); so \(I_d[P] = S \). So if \(I_d[P \lor Q] = S \) and \(I_d[\neg Q] = S \), then \(I_d[P] = S \).

Again, basic reasoning is as in the sentential case, except that we carry along reference to variable assignments.

Observe that given \(I[A] = T \) for a sentence letter \(A \), to show that \(I_d[A \lor B] = S \), we reason,

\[
\begin{align*}
1. & \quad I[A] = T \quad \text{ins (l particular)} \\
2. & \quad I_d[A] = S \quad 1 \text{ SF}(s) (d \text{ arbitrary}) \\
3. & \quad I_d[A] = S \lor I_d[B] = S \quad 2 \text{ dis} \\
4. & \quad I_d[A \lor B] = S \quad 3 \text{ SF}(\lor)
\end{align*}
\]

moving by \(SF(s) \) from the premise that the letter is true, to the result that it is satisfied, so that we are in a position to apply other clauses of the definition for satisfaction. \(SF \) applies to \textit{satisfaction} not \textit{truth}! So we have to bridge from one to the other before \(SF \) can apply.

This much should be straightforward, but let us pause to demonstrate derived clauses for satisfaction, and reinforce familiarity with the quantificational definition \(SF \). As you work these and other problems, you may find the quantificational metalinguistic reference on page 379 helpful.

E7.7. Produce metalinguistic derivations and then informal reasoning to complete demonstrations for the positive parts of \(SF'(\land) \) and \(SF'(\leftrightarrow) \). Hint: you have been through the reasoning before!
*E7.8. Consider some \(I_d \) and suppose \(I_d[A] = T \), \(I_d[B] \neq T \) and \(I_d[C] = T \). For each of the expressions in E7.1, produce the metalinguistic derivation and then informal reasoning to demonstrate either that it is or is not satisfied on \(I_d \).

7.3.2 Validity

In the quantificational case, there is a distinction between satisfaction and truth. We have been working with the definition for satisfaction. But validity is defined in terms of truth. So to reason about validity, we need a bridge from satisfaction to truth that applies beyond the case of sentence letters. For this, let ‘\(A \)’ be a metalinguistic universal quantifier. So, for example, \(Ad(I_d[P] = S) \) says that any variable assignment \(d \) is such that \(I_d[P] = S \). Then we have,

\[
TI \quad I[P] = T \iff Ad(I_d[P] = S) \quad I[P] \neq T \iff Sd(I_d[P] = S)
\]

This restates the definition from 4.2.4. \(P \) is true on \(I \) iff it is satisfied for any variable assignment \(d \). \(P \) is not true on \(I \) iff it is not satisfied for some variable assignment \(d \). The definition QV is like SV.

\[
QV \quad \neg S(I[P_1] = T \land \ldots \land I[P_n] = T \land I[Q] \neq T) \iff P_1 \ldots P_n \models Q \quad S(I[P_1] = T \land \ldots \land I[P_n] = T \land I[Q] \neq T) \iff P_1 \ldots P_n \not\models Q
\]

An argument is quantificationally valid just in case there is no interpretation on which the premises are true and the conclusion is not. Of course, we are now talking about quantificational interpretations as from chapter 4.

To manipulate this metalinguistic universal quantifier, we will need some new rules. In chapter 6, we used \(\forall E \) to instantiate to any term—variable, constant, or otherwise. But \(\forall I \) was restricted—the idea being to generalize only on variables for truly arbitrary individuals. Corresponding restrictions are enforced here by the way terms are introduced. We generalize from variables for arbitrary individuals, but may instantiate to variables or constants of any kind. The universal rules are,

\[
\text{unv} \quad At\forall[t] \quad \forall[u] \quad u \text{ arbitrary and new}
\]

\[
\overline{\forall[u]} \quad u \text{ of any type} \quad At\forall[t]
\]

If some \(\forall \) is true for any \(t \), then it is true for individual \(u \). Thus we might move from the generalization, \(Ad(I_h[A] = S) \) to the particular claim \(I_h[A] = S \) for assignment \(h \).

For the right-hand “introduction” rule, we require that \(u \) be new in the sense required for \(\forall I \) in chapter 6. In particular, if \(u \) is new to a derivation for goal \(At\forall[t] \), \(u \) will not appear free in any undischarged assumption when the universal rule is applied.
(typically, our derivations will be so simple that this will not be an issue). If we can show, say, $I_h[A] = S$ for arbitrary assignment h, then it is appropriate to move to the conclusion $Ad(I_0[A] = S)$. We will also accept a metalinguistic quantifier negation, as in ND^+.

\[
\neg I_d[A] = S / \neg. \]

With these definitions and rules, we are ready to reason about validity—at least for sentential forms. Suppose we want to show,

T7.1. $\mathcal{P}, \mathcal{P} \rightarrow Q \models Q$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\mathcal{P}, \mathcal{P} \rightarrow Q \neq Q$</td>
<td>assp</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$\mathcal{S}(\mathcal{P}) = T \land I_{\mathcal{P} \rightarrow Q} = T \land I_Q \neq T$</td>
<td>1 QV</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$\mathcal{J}(\mathcal{P}) = T \land I_{\mathcal{P} \rightarrow Q} = T \land I_Q \neq T$</td>
<td>2 exs (J particular)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$\mathcal{J}(Q) \neq T$</td>
<td>3 cnj</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$Sd(J_0[Q] \neq S)$</td>
<td>4 TI</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$J_h[Q] \neq S$</td>
<td>5 exs (h particular)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$\mathcal{J}(\mathcal{P} \rightarrow Q) = T$</td>
<td>3 cnj</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$Ad(J_0[\mathcal{P} \rightarrow Q] = S)$</td>
<td>7 TI</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$J_h[\mathcal{P} \rightarrow Q] = S$</td>
<td>8 unv</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$J_h[\mathcal{P}] \neq S \lor J_h[Q] = S$</td>
<td>9 SF(\rightarrow)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$J_h[\mathcal{P}] \neq S$</td>
<td>10,6 dsj</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$\mathcal{J}(\mathcal{P}) = T$</td>
<td>3 cnj</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>$Ad(J_0[\mathcal{P}] = S)$</td>
<td>12 TI</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>$J_h[\mathcal{P}] = S$</td>
<td>13 unv</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>\bot</td>
<td>14,11 bot</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>$\mathcal{P}, \mathcal{P} \rightarrow Q \models Q$</td>
<td>1-15 neg</td>
<td></td>
</tr>
</tbody>
</table>

As usual, we begin with the assumption that the theorem is not valid, and apply the definition of validity for the result that the premises are true and the conclusion not. The goal is a contradiction. What is interesting are the applications of TI to bridge between truth and satisfaction. We begin by working on the conclusion. Since the conclusion is not true, by TI with exs we introduce a new variable assignment h on which the conclusion is not satisfied. Then, because the premises are true, by TI with unv the premises are satisfied on that very same assignment h. Then we use SF in the usual way. All this is like the strategy from ND by which we jump on existentials: If we had started with the premises, the requirement from exs that we instantiate $Sd(J_0[Q] \neq S)$ to a new term would have forced a different variable assignment. But, by beginning with the conclusion, and coming with the universals from the premises after, we bring results into contact for contradiction.
Suppose P, $P \rightarrow Q \neq Q$. Then by QV, there is some I such that $I[P] = T$ and $I[Q] = T$ but $I[Q] = T$; let J be a particular interpretation of this sort; then $J[P] = T$ and $J[Q] = T$ but $J[Q] = T$. From the latter, by $T1$, there is some d such that $J_d[Q] \neq S$; let h be a particular assignment of this sort; then $J_h[Q] = S$. But since $J[P] = T$, by $T1$, for any d, $J_d[P] = S$; so $J_h[P] = S$. This is impossible; reject the assumption: P, $P \rightarrow Q \neq Q$.

Similarly, we can show,

T7.2. $\vdash P \rightarrow (Q \rightarrow P)$

T7.3. $\vdash (Q \rightarrow (P \rightarrow Q)) \rightarrow ((Q \rightarrow P) \rightarrow (Q \rightarrow Q))$

T7.4. $\vdash (\sim Q \rightarrow \sim P) \rightarrow [(\sim Q \rightarrow P) \rightarrow Q]$

T7.5. There is no interpretation I and formula P such that $I[P] = T$ and $I[\sim P] = T$.

Hint: Your goal is to show $\sim[[I[P] = T \Delta I[\sim P] = T])$. You can get this by neg.

In each case, the pattern is the same: Bridge assumptions about truth to definition SF by $T1$ with exs and unv. Reasoning with SF is as before. Given the requirement that the metalinguistic existential quantifier always be instantiated to a new term, it makes sense first to instantiate that which is not true, and so comes out as a metalinguistic existential, and then come with universals on “top” of terms already introduced. This is what we did above, and is like your derivation strategy in ND.

*E7.9. Produce metalinguistic derivations and informal reasoning to show that a,b,d,f,h from E7.4 are quantificationally valid.

Hint: You may or may not decide that metalinguistic derivations would be helpful.
7.3.3 Terms and Atomics

So far, we have addressed only validity for sentential forms, and have not even seen the (r) and (\textforall) clauses for SF. We will get the quantifier clause in the next section. Here we come to the atomic clause for definition SF, but must first address the connection with interpretations via definition TA. As from page 122, for constant \(c\), variable \(x\), and complex term \(h^n t_1 \ldots t_n\), we say \(I[h^n](a_1 \ldots a_n)\) is the thing the function \(l[h^n]\) associates with input \(a_1 \ldots a_n\).

\[
\begin{align*}
TA & \quad (c) \quad l_a[c] = l[c] \\
& \quad (v) \quad l_a[x] = d[x] \\
& \quad (f) \quad l_a[h^n t_1 \ldots t_n] = l[h^n][l_a[t_1] \ldots l_a[t_n]]
\end{align*}
\]

This is a direct restatement of the definition. To manipulate it we need rules for equality.

\[
\begin{align*}
eq & \quad t = t \\
& \quad t = u \leftrightarrow u = t \\
& \quad t = u, u = v \quad t = u, \exists t \[u] \\
& \quad t = v \quad \exists t[u]
\end{align*}
\]

These should remind you of results from ND. We will allow generalized versions so that from \(t = u, u = v, \text{ and } v = w\), we might move directly to \(t = w\). And we will not worry much about order around the equals sign so that, for example, we could move directly from \(u = t\) and \(\exists t[v]\) to \(\exists u[v]\) without first converting \(u = t\) to \(t = u\) as required by the rule as stated. As in other cases, we will treat clauses from TA as both axioms and rules, though as usual, we typically take them as rules.

Let us consider first how this enables us to determine term assignments. Here is a relatively complex case. Suppose \(I\) has \(U = \{1, 2\}\) and,

\[
\begin{align*}
l[a] & = 1. \\
l[g^1] & = \{(1, 2), (2, 1)\} \\
l[f^2] & = \{(1, 1), (1, 2), (2, 1), (2, 1), (2, 2), (2, 2)\}
\end{align*}
\]

Recall that one-tuples are equated with their members so that \(l[g^1]\) is officially \(\{(1, 2), (2, 1)\}\). Suppose \(d[x] = 2\) and consider \(l_d[g^1 f^2 x g^1 a]\). We might do this on a tree as in chapter 4.
Perhaps we whip through this on the tree. But the derivation follows the very same path, with explicit appeal to the definitions at every stage. In the derivation below, lines (1)–(4) cover the top row by application of TA(v) and TA(c). Lines (5)–(7) are like the second row, using the assignment to \(a\) with the interpretation of \(g^1\) to determine the assignment to \(g^1 a\). Lines (8) - (10) cover the third row. And (11)–(13) use this to reach the final result.

1. \(I[a] = 1\) ins (1 particular)
2. \(l_d[a] = 1\) 1 TA(c) (d particular)
3. \(d[x] = 2\) ins
4. \(l_d[x] = 2\) 3 TA(v)
5. \(l_d[g^1 a] = |g^1|\{1\}\) 2 TA(f)
6. \(|g^1|\{1\} = 2\) ins
7. \(l_d[g^1 a] = 2\) 5.6 eq
8. \(l_d[f^2 x g^1 a] = |f^2|\{2, 2\}\) 4,7 TA(f)
9. \(|f^2|\{2, 2\} = 2\) ins
10. \(l_d[f^2 x g^1 a] = 2\) 8,9 eq
11. \(l_d[g^1 f^2 x g^1 a] = |g^1|\{2\}\) 10 TA(f)
12. \(|g^1|\{2\} = 1\) ins
13. \(l_d[g^1 f^2 x g^1 a] = 1\) 11,12 eq

As with trees, to discover that to which a complex term is assigned, we find the assignment to the parts. Beginning with assignments to the parts, we work up to the assignment to the whole. Notice that assertions about the interpretation and the variable assignment are justified by ins. And notice the way we use TA as a rule at (2) and (4), and then again at (5), (8) and (11).
With the ability to manipulate terms by \(\text{TA} \), we can think about satisfaction and truth for arbitrary formulas without quantifiers. This brings us to \(\text{SF(r)} \). Say \(\mathcal{R}^n \) is an \(n \)-place relation symbol, and \(t_1 \ldots t_n \) are terms.

\[
\text{SF(r)} \quad \ell_0[\mathcal{R}^n t_1 \ldots t_n] = S \iff \langle \ell_0[t_1] \ldots \ell_0[t_n] \rangle \in [\mathcal{R}^n]
\]

\[
\ell_0[\mathcal{R}^n t_1 \ldots t_n] \neq S \iff \langle \ell_0[t_1] \ldots \ell_0[t_n] \rangle \notin [\mathcal{R}^n]
\]

This is a simple restatement of the definition from page 125 in chapter 4. In fact, because of the simple negative version, we will apply the definition just in its positive form, and generate the negative case directly from it (as in \(\text{NB} \) from \(\text{ND^+} \)).

Let us expand the above interpretation and variable assignment so that \(\ell_0[A] = f \) and \(\ell_0[B] = \{1, 2\} \). Then \(\ell_0[A/f^2 xa] = S \).

\[
\begin{align*}
1. & \quad \ell_0[x] = 2 \quad \text{(d particular)} \\
2. & \quad \ell_0[x] = 2 \quad 1 \quad \text{TA}(v) \quad \text{(l particular)} \\
3. & \quad \ell_0[a] = 1 \quad \text{ins} \\
4. & \quad \ell_0[a] = 1 \quad 3 \quad \text{TA}(c) \\
5. & \quad \ell_0[f^2 xa] = \ell_0[f^2] = 2, 1 \quad 2, 4 \quad \text{TA}(f) \\
6. & \quad \ell_0[f^2] = 2 \quad 5, 6 \quad \text{eq} \\
7. & \quad \ell_0[Af^2 xa] = S \iff \langle 2 \rangle \in \ell_0[A] \quad 7 \quad \text{SF(r)} \\
8. & \quad \langle 2 \rangle \in \ell_0[A] \quad \text{ins} \\
9. & \quad \ell_0[Af^2 xa] = S \quad 8, 9 \quad \text{bcnd} \\
\end{align*}
\]

Again, this mirrors what we did with trees—moving through term assignments, to the value of the atomic. Observe that satisfaction is not the same as truth! Insofar as \(d \) is particular, \(\text{unv} \) does not apply for the result that \(Af^2 xa \) is satisfied on every variable assignment and so by \(\text{TI} \) that the formula is true. In this case, it is a simple matter to identify a variable assignment other than \(d \) on which the formula is not satisfied, and so to show that it is not true on \(l \). Set \(\ell_0[x] = 1 \).

\[
\begin{align*}
1. & \quad \ell_0[x] = 1 \quad \text{ins (h particular)} \\
2. & \quad \ell_0[x] = 1 \quad 1 \quad \text{TA}(v) \quad \text{(l particular)} \\
3. & \quad \ell_0[a] = 1 \quad \text{ins} \\
4. & \quad \ell_0[a] = 1 \quad 3 \quad \text{TA}(c) \\
5. & \quad \ell_0[f^2 xa] = \ell_0[f^2] = 1, 1 \quad 2, 4 \quad \text{TA}(f) \\
6. & \quad \ell_0[f^2] = 1 \quad 5, 6 \quad \text{eq} \\
7. & \quad \ell_0[Af^2 xa] = S \iff \langle 1 \rangle \in \ell_0[A] \quad 7 \quad \text{SF(r)} \\
8. & \quad \langle 1 \rangle \notin \ell_0[A] \quad \text{ins} \\
9. & \quad \ell_0[Af^2 xa] = S \quad 8, 9 \quad \text{bcnd} \\
10. & \quad \ell_0[Af^2 xa]
eq S \quad 10 \quad \text{exs} \\
11. & \quad \ell_0[Af^2 xa] \neq T \quad 11 \quad \text{TI} \\
\end{align*}
\]
Given that it is not satisfied on the particular variable assignment \(h \), \(\text{exs} \) and \(\text{TI} \) give the result that \(Af^2xa \) is not true. In this case, we simply pick the variable assignment we want: since the formula is not satisfied on this assignment, there is an assignment on which it is not satisfied; so it is not true. To show that an open formula (one that is not a sentence) is not true, this is the way to go. Just as we produce particular interpretations to show that arguments are invalid, so we produce particular variable assignments to show that open formulas are not true.

\[
\begin{align*}
\text{h}[x] &= 1; \text{so by } \text{TA}(v), \text{h}[x] = 1. \quad &\text{And } l[a] = 1; \text{so by } \text{TA}(c), \text{h}[a] = 1. \quad &\text{So by } \text{TA}(f), \text{h}[f^2xa] = l[f^2](1, 1); \text{but } l[f^2](1, 1) = 1; \text{so } \text{h}[f^2xa] = 1. \quad &\text{So by } \text{SF}(r), \text{h}[Af^2xa] = S \text{ iff } (1) \in l[A]; \text{but } (1) \not\in l[A]; \text{so } \text{h}[Af^2xa] \neq S. \quad &\text{So there is a variable assignment } d \text{ such that } \text{h}[Af^2xa] \neq S; \text{so by } \text{TI}, \text{h}[Af^2xa] \neq T.
\end{align*}
\]

In contrast, even though it has free variables, \(Bxg^1x \) is true on this \(l \). Say \(o \) is a metalinguistic variable that ranges over members of \(U \). In this case, it will be necessary to make an assertion by \(\text{ins} \) that \(Ao(o = 1 \lor o = 2) \). This is clear enough, since \(U = \{1, 2\} \).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Ao(o = 1 \lor o = 2))</td>
</tr>
<tr>
<td>2</td>
<td>(\text{h}[x] = 1 \lor \text{h}[x] = 2)</td>
</tr>
<tr>
<td>3</td>
<td>(\text{h}[x] = 1)</td>
</tr>
<tr>
<td>4</td>
<td>(\text{h}[g^1x] = lg^1)</td>
</tr>
<tr>
<td>5</td>
<td>(lg^1 = 2)</td>
</tr>
<tr>
<td>6</td>
<td>(\text{h}[g^1x] = 2)</td>
</tr>
<tr>
<td>7</td>
<td>(\text{h}[Bxg^1x] = S \iff \langle 1, 2 \rangle \in l[B])</td>
</tr>
<tr>
<td>8</td>
<td>(\langle 1, 2 \rangle \in l[B])</td>
</tr>
<tr>
<td>9</td>
<td>(\text{h}[Bxg^1x] = S)</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(\text{h}[x] = 2)</td>
</tr>
<tr>
<td>11</td>
<td>(\text{h}[g^1x] = lg^1)</td>
</tr>
<tr>
<td>12</td>
<td>(lg^1 = 1)</td>
</tr>
<tr>
<td>13</td>
<td>(\text{h}[g^1x] = 1)</td>
</tr>
<tr>
<td>14</td>
<td>(\text{h}[Bxg^1x] = S \iff \langle 2, 1 \rangle \in l[B])</td>
</tr>
<tr>
<td>15</td>
<td>(\langle 2, 1 \rangle \in l[B])</td>
</tr>
<tr>
<td>16</td>
<td>(\text{h}[Bxg^1x] = S)</td>
</tr>
<tr>
<td>17</td>
<td>(\text{h}[Bxg^1x] = S)</td>
</tr>
<tr>
<td>18</td>
<td>(Ao(l[o][Bxg^1x] = S))</td>
</tr>
<tr>
<td>19</td>
<td>(l[Bxg^1x] = T)</td>
</tr>
</tbody>
</table>

Up to this point, by \(\text{ins} \) we have made only particular claims about an assignment or interpretation, for example that \(\langle 2, 1 \rangle \in l[B] \) or that \(l[g^1](2) = 1 \). This is the typical use of \(\text{ins} \). In this case, however, at (1), we make a universal claim about \(U \), any \(o \in U \)
is equal to 1 or 2. Since \(h[x] \) is a metalinguistic term picking out some member of \(U \), we instantiate the universal to it with the result that \(h[x] = 1 \) or \(h[x] = 2 \). When \(U \) is small, this is often helpful: By ins we identify all the members of \(U \); then we are in a position to argue about them individually. Thus we convert the universal claim to a result about the arbitrary assignment, for application of unv and then T1.

Since \(U = \{1, 2\} \), for arbitrary assignment \(h, h[x] = 1 \) or \(h[x] = 2 \). Suppose \(h[x] = 1 \); then by TA(f), \(h_g[g^1 x] = [g^1](1) \); but \([g^1](1) = 2 \); so \(h_g[g^1 x] = 2 \); so by SF(r), \(h_B x g^1 x = S \) iff \(\langle 1, 2 \rangle \in [B] \); but \(\langle 1, 2 \rangle \in [B] \); so \(h_B x g^1 x = S \). Suppose \(h[x] = 2 \); then by TA(f), \(h_g[g^1 x] = [g^1](2) \); but \([g^1](2) = 1 \); so \(h_g[g^1 x] = 1 \); so by SF(r), \(h_B x g^1 x = S \) iff \(\langle 2, 1 \rangle \in [B] \); but \(\langle 2, 1 \rangle \in [B] \); so \(h_B x g^1 x = S \). In either case then \(h_B x g^1 x = S \); and since \(h \) is arbitrary, for any assignment \(d, d_g[B x g^1 x] = S \); so by T1, \([B x g^1 x] = T \).

To show that a formula is not true, we need only find an assignment on which it is not satisfied. To show that a formula is true, we show that it is satisfied on every variable assignment. For this, in the above case with free variables, we have been forced to reason individually about each of the possible assignments to \(x \). This is doable when \(U \) is small. We will have to consider other options when it is larger!

E7.11. Consider an \(I \) and \(d \) such that \(U = \{1, 2\} \),

\[
\begin{align*}
\l[a] &= 1 \\
\l[g^1] &= \{(1, 1), (2, 1)\} \\
\l[f^2] &= \{(1, 1), (2, 1), (1, 2), (1, 1), (2, 1), (2, 2), (2, 1)\}
\end{align*}
\]

where \(d[x] = 1 \) and \(d[y] = 2 \). Produce metalinguistic derivations and informal reasoning to determine the assignment \(l_d \) for each of the following.

\[
\begin{align*}
a. \quad &a \\
b. \quad &g^1 y \\
c. \quad &g^1 g^1 x \\
d. \quad &f^2 g^1 ax \\
e. \quad &f^2 g^1 af^2 y x
\end{align*}
\]

E7.12. Augment the above interpretation for E7.11 so that \(\l[A^1] = \{1\} \) and \(\l[B^2] = \{(1, 2), (2, 2)\} \). Produce (variable assignments as necessary with) metalinguistic derivations and informal reasoning to demonstrate each of the following.
a. \(l_d[Ax] = S \)

*b. \(l[Byx] \neq T \)

c. \(l[Bg^1ay] \neq T \)

d. \(l[Aa] = T \)

e. \(l[\sim Bxg^1x] = T \)

7.3.4 Quantifiers

We are finally ready to think more generally about validity and truth for quantifier forms. For this, we will complete our metalinguistic system by adding the quantifier clause to definition SF.

\[SF(\forall) \quad l_d[\forall x.P] = S \iff Ao(l_d(x|o)[P] = S) \quad l_d[\forall x.P] \neq S \iff So(l_d(x|o)[P] \neq S) \]

This is a simple statement of the definition from page 125. We treat the metalinguistic variable ‘o’ as implicitly restricted to the members of U (for any o \(\in U \ldots \)). You should think about this in relation to trees: From \(l_d[\forall x.P] \) there are branches with \(l_d(x|o)[P] \) for each object o \(\in U \). The universal is satisfied when each branch is satisfied; not satisfied when some branch is unsatisfied. That is what is happening above. We have the derived clause too.

\[SF(\exists) \quad l_d[\exists x.P] = S \iff So(l_d(x|o)[P] = S) \quad l_d[\exists x.P] \neq S \iff Ao(l_d(x|o)[P] \neq S) \]

The existential is satisfied when some branch is satisfied; not satisfied when every branch is not satisfied. For the positive form,

1. \(l_d[\exists x.P] = S \iff l_d[\sim \forall x.\sim P] = S \) \quad abv (l, d arbitrary)
2. \(l_d[\sim \forall x.\sim P] = S \iff l_d[\forall x.\sim P] \neq S \) \quad SF(\sim)
3. \(l_d[\forall x.\sim P] \neq S \iff So(l_d(x|o)[\sim P] \neq S) \) \quad SF(\forall)
4. \(So(l_d(x|o)[\sim P] \neq S) \iff So(l_d(x|o)[P] = S) \) \quad SF(\sim)
5. \(l_d[\exists x.P] = S \iff So(l_d(x|o)[P] = S) \) \quad 1,2,3,4 bend

By abv, \(l_d[\exists x.P] = S \) iff \(l_d[\sim \forall x.\sim P] = S \); by SF(\sim) iff \(l_d[\forall x.\sim P] \neq S \); by SF(\forall), iff for some o \(\in U \), \(l_d(x|o)[\sim P] \neq S \); by SF(\sim), iff for some o \(\in U \), \(l_d(x|o)[P] = S \). So \(l_d[\exists x.P] = S \) iff there is some o \(\in U \) such that \(l_d(x|o)[P] = S \).

Recall that we were not able to use trees to demonstrate validity in the quantificational case because there were too many interpretations to have trees for all of them, and because universes may be too large to have branches for all their members.
CHAPTER 7. DIRECT SEMANTIC REASONING

But this is not a special difficulty for us now. For a simple case, let us show that \(\forall x (Ax \to Ax) \)

1. \(\neg \forall x (Ax \to Ax) \) assp
2. \(\neg \forall [\forall x (Ax \to Ax)] \neq T \) 1 QV
3. \(J[\forall x (Ax \to Ax)] \neq T \) 2 exs (J particular)
4. \(\neg d (J_d [\forall x (Ax \to Ax)] \neq S) \) 3 TI
5. \(J_h [\forall x (Ax \to Ax)] \neq S \) 4 exs (h particular)
6. \(\neg o (J_{o(x)} [Ax \to Ax] \neq S) \) 5 SF(\forall)
7. \(J_{h(x|m)} [Ax \to Ax] \neq S \) 6 exs (m particular)
8. \(J_{h(x|m)} [Ax] = S \land J_{h(x|m)} [Ax] \neq S \) 7 SF(\to)
9. \(J_{h(x|m)} [Ax] = S \) 8 cnj
10. \(J_{h(x|m)} [Ax] \neq S \) 8 cnj
11. \(\bot \) 9,10 bot
12. \(\equiv \forall x (Ax \to Ax) \) 1-11 neg

If \(\forall x (Ax \to Ax) \) is not valid, there has to be some \(l \) on which it is not true. If \(\forall x (Ax \to Ax) \) is not true on some \(l \), there has to be some \(d \) on which it is not satisfied. And if the universal is not satisfied, there has to be some \(o \in U \) for which the corresponding “branch” is not satisfied. But this is impossible—for we cannot have a branch where this is so.

Suppose \(\neg \forall x (Ax \to Ax) \); then by QV, there is some \(l \) such that \(\neg [\forall x (Ax \to Ax)] \neq T \). Let \(J \) be a particular interpretation of this sort; then \(J[\forall x (Ax \to Ax)] \neq T \); so by TI, for some \(d \), \(J_d [\forall x (Ax \to Ax)] \neq S \). Let \(h \) be a particular assignment of this sort; then \(J_h [\forall x (Ax \to Ax)] \neq S \); so by SF(\forall), there is some \(o \in U \) such that \(J_{h(x)} [Ax \to Ax] \neq S \). Let \(m \) be a particular individual of this sort; then \(J_{h(x|m)} [Ax \to Ax] \neq S \); so by SF(\to), \(J_{h(x|m)} [Ax] = S \) and \(J_{h(x|m)} [Ax] \neq S \). But this is impossible; reject the assumption: \(\equiv \forall x (Ax \to Ax) \).

Notice, again, that the general strategy is to instantiate metalinguistic existential quantifiers as quickly as possible. Contradictions tend to arise at the level of atomic expressions and individuals.

Here is a case that is similar, but somewhat more involved. We show \(\forall x (Ax \to Bx), \exists x Ax \equiv \exists z Bz \). Here is a start.
CHAPTER 7. DIRECT SEMANTIC REASONING

1. \(\forall x(Ax \rightarrow Bx), \exists x Ax \neq \exists x Bz \)
 assp
2. \(Sd(\exists x Ax) = T \Delta \exists x Ax = T \Delta \exists x Bz \neq T \)
 1 QV
3. \(J[\forall x(Ax \rightarrow Bx)] = T \Delta J[\exists x Ax] = T \Delta J[\exists x Bz] \neq T \)
 2 exs (J particular)
4. \(J[\exists x Bz] \neq T \)
 3 cnj
5. \(Sd(j_0[\exists x Bz] \neq S) \)
 4 TI
6. \(J_0[\exists x Bz] \neq S \)
 5 exs (h particular)
7. \(J[\exists x Ax] = T \)
 6 TI
8. \(Ad(j_0[\exists x Ax] = S) \)
 7 TI
9. \(J_0[\exists x Ax] = S \)
 8 \text{unv}
10. \(So(J_{h(xio)}[Ax] = S) \)
 9 SF’(3)
11. \(J_{h(x[m])}[Ax] = S \)
 10 exs (m particular)
12. \(J[\forall x(Ax \rightarrow Bx)] = T \)
 11 \text{cnj}
13. \(Ad(j_0[\forall x(Ax \rightarrow Bx)] = S) \)
 12 TI
14. \(J_0[\forall x(Ax \rightarrow Bx)] = S \)
 13 \text{unv}
15. \(Ao(J_{h(xio)}[Ax \rightarrow Bx] = S) \)
 14 SF(\forall)
16. \(J_{h(x[m])}[Ax \rightarrow Bx] = S \)
 15 \text{unv}
17. \(J_{h(x[m])}[Ax] \neq S \lor J_{h(x[m])}[Bx] = S \)
 16 SF(\rightarrow)
18. \(J_{h(x[m])}[Bx] = S \)
 17,11 dsj
19. \(Ao(J_{h(zio)}[Bz] \neq S) \)
 18 SF’(3)
20. \(J_{h(z[m])}[Bz] \neq S \)
 19 \text{unv}

Note again the way we work with the metalinguistic quantifiers: We begin with the conclusion, because it is the one that requires a particular variable assignment; the premises can then be instantiated to that same assignment. Similarly, with that particular variable assignment on the table, we focus on the second premise, because it is the one that requires an instantiation to a particular individual. The other premise and the conclusion then come in later with universal quantifications that go onto the same thing. Also, \(J_{h(x[m])}[Ax] = S \) contradicts \(J_{h(x[m])}[Ax] \neq S \); this justifies \text{dsj} at (18). However \(J_{h(x[m])}[Bx] = S \) at (18) does not contradict \(J_{h(z[m])}[Bz] \neq S \) at (20). There would have been a contradiction if the variable had been the same. But it is not. However, with the distinct variables, we can bring out the contradiction by “forcing the result into the interpretation” as follows.

21.	\(h(x[m])[x] = m \)	ins
22.	\(J_{h(x[m])}[y] = m \)	21 TA(\(v \))
23.	\(J_{h(x[m])}[Bx] = S \leftrightarrow m \in J[B] \)	22 SF(r)
24.	\(m \in J[B] \)	23,18 \text{bcnd}
25.	\(h(z[m])[z] = m \)	ins
26.	\(J_{h(z[m])}[z] = m \)	25 TA(\(v \))
27.	\(J_{h(z[m])}[Bz] = S \leftrightarrow m \in J[B] \)	26 SF(r)
28.	\(m \notin J[B] \)	27,20 \text{bcnd}
29.	\(\bot \)	24,28 \text{bot}
30.	\(\forall x(Ax \rightarrow Bx), \exists x Ax \models \exists x Bz \)	1-29 \text{neg}
The assumption that the argument is not valid leads to the result that there is some interpretation \(J \) and \(m \in U \) such that \(m \in J[B] \) and \(m \not\in J[B] \); so there can be no such interpretation, and the argument is quantificationally valid. Observe that, though we do not know anything else about \(h \), simple inspection reveals that \(h(x|m) \) assigns object \(m \) to \(x \). So we allow ourselves to assert it at (21) by \(\text{ins} \); and similarly at (25). This pattern of moving from facts about satisfaction to facts about the interpretation is typical.

Suppose \(\forall x (Ax \rightarrow Bx) \), \(\exists x Ax \not\iff \exists z Bz \); then by QV, there is some \(l \) such that \(l[\forall x (Ax \rightarrow Bx)] = T \) and \(l[\exists x Ax] = T \) but \(l[\exists z Bz] \not= T \). Let \(J \) be a particular interpretation of this sort; then \(J[\forall x (Ax \rightarrow Bx)] = T \) and \(J[\exists x Ax] = T \) but \(J[\exists z Bz] \not= T \). From the latter, by \(\text{Tl} \), there is some \(d \) such that \(J_d[\exists z Bz] \not= S \); let \(h \) be a particular assignment of this sort; then \(J_h[\exists z Bz] \not= S \). Since \(J[\exists x Ax] = T \), by \(\text{Tl} \), for any \(d \), \(J_d[\exists x Ax] = S \); so \(J_h[\exists x Ax] = S \); so by SF(3) there is some \(o \in U \) such that \(J_{h(x|o)}[Ax] = S \); let \(m \) be a particular individual of this sort; then \(J_{h(x|m)}[Ax] = S \). Since \(J[\forall x (Ax \rightarrow Bx)] = T \), by \(\text{Tl} \), for any \(d \), \(J_d[\forall x (Ax \rightarrow Bx)] = S \); so \(J_h[\forall x (Ax \rightarrow Bx)] = S \); so by SF(\(\forall \)), for any \(o \in U \), \(J_{h(x|o)}[Ax \rightarrow Bx] = S \); so \(J_{h(x|m)}[Ax \rightarrow Bx] = S \); so by SF(\(\rightarrow \)), either \(J_{h(x|m)}[Ax] \not= S \) or \(J_{h(x|m)}[Bx] = S \); but \(J_{h(x|m)}[Ax] = S \), so \(J_{h(x|m)}[Bx] = S \); \(h(x|m)[x] = m \); so by TA(\(v \)), \(J_{h(x|m)}[x] = m \); so by SF(r), \(J_{h(x|m)}[Bx] = S \) iff \(m \in J[B] \); so \(m \in J[B] \). But since \(J_h[\exists z Bz] \not= S \), by SF(3), for any \(o \in U \), \(J_{h(z|o)}[Bz] \not= S \); so \(J_{h(z|m)}[Bz] \not= S \); \(h(z|m)[z] = m \); so by TA(\(v \)), \(J_{h(z|m)}[z] = m \); so by SF(r), \(J_{h(z|m)}[Bz] = S \) iff \(m \in J[B] \); so \(m \not\in J[B] \). This is impossible; reject the assumption: \(\forall x (Ax \rightarrow Bx) \), \(\exists x Ax \not\iff \exists z Bz \).

Observe again the repeated use of the pattern that moves from truth through \(\text{Tl} \) to satisfaction, so that SF gets a grip, and the pattern that moves through satisfaction to the interpretation. These should be nearly automatic.

Here is an example that is particularly challenging in the way quantifier rules apply. We show \(\exists x \forall y Ax y \not\equiv \forall y \exists x A x y \).
When multiple quantifiers come off, variable assignments are simply modified again—just as with trees. Observe again that we instantiate the metalinguistic existential quantifiers before universals. Also, the different existential quantifiers go to different individuals, to respect the requirement that individuals from exs be new. The key to this derivation is getting out both metalinguistic existentials for m and n before applying the corresponding universals—and what makes the derivation difficult is seeing that this needs to be done. Strictly, the variable assignment at (15) is the same as the one at (17), only the names are variants of one another. Thus we observe by ins that the assignments are the same, and apply eq for the contradiction. Another approach would have been to push for contradiction at the level of the interpretation. Thus, after (17) we might have continued,
 CHAPTER 7. DIRECT SEMANTIC REASONING

18. \(h(x, n, y, m)[x] = n \) ins
19. \(h(x, n, y, m)[y] = m \) ins
20. \(J_h(x, n, y, m)[x] = n \) 18 TA(v)
21. \(J_h(x, n, y, m)[y] = m \) 19 TA(v)
22. \(J_h(x, n, y, m)[Axy] = S \leftrightarrow (n, m) \in I[A] \) 20,21 SF(r)
23. \((n, m) \in I[A] \) 22,15 bcnd
24. \(h(y, x, n)[x] = n \) ins
25. \(h(y, x, n)[y] = m \) ins
26. \(J_h(y, x, n)[x] = n \) 24 TA(v)
27. \(J_h(y, x, n)[y] = m \) 25 TA(v)
28. \(J_h(y, x, n)[Axy] = S \leftrightarrow (n, m) \in I[A] \) 26,27 SF(r)
29. \((n, m) \not\in I[A] \) 28,17 bcnd
30. \(\bot \) 23,29 bot

Something along these lines would have been required if the conclusion had been, say, \(\forall w \exists z \exists x \forall y Axy \). In the end, you need to be able to push results into the interpretation like this. In this case we have been given, though, it is not necessary. Here is the informal version.

Suppose \(\exists x \forall y Axy \neq \forall y \exists x Axy \); then by QV there is some I such that \(I[\exists x \forall y Axy] = T \) and \(I[\forall y \exists x Axy] \neq T \); let \(J \) be a particular interpretation of this sort; then \(J[\exists x \forall y Axy] = T \) and \(J[\forall y \exists x Axy] \neq T \). From the latter, by T1, there is some \(d \) such that \(J_d[\forall y \exists x Axy] \neq S \); let \(h \) be a particular assignment of this sort; then \(J_h[\forall y \exists x Axy] \neq S \); so by SF(\(\forall \)), there is some \(o \in U \) such that \(J_h[yo][\exists x Axy] \neq S \); let \(m \) be a particular individual of this sort; then \(J_h[ym][\exists x Axy] \neq S \). Since \(J[\exists x \forall y Axy] = T \), by T1 for any \(d \), \(J_d[\exists x \forall y Axy] = S \); so \(J_h[\exists x \forall y Axy] = S \); so by SF’(3), there is some \(o \in U \) such that \(J_h[xo][\forall y Axy] = S \); let \(n \) be a particular individual of this sort; then \(J_h[xn][\forall y Axy] = S \); so by SF(\(\forall \)), for any \(o \in U \), \(J_h[yn][\forall x Axy] = S \); so \(J_h[yn][\exists x Axy] \neq S \) by SF’(3), for any \(o \in U \), \(J_h[yn][\exists x Axy] \neq S \); so \(J_h[yn][\forall x Axy] \neq S \); but \(h(m, x, n) \) is the same assignment as \(h(x, n, y, m) \); so \(J_h[yn][Axy] \neq S \). This is impossible; reject the assumption: \(\exists x \forall y Axy \not\vdash \forall y \exists x Axy \).

Try reading that to your roommate or parents! If you have followed to this stage, you have accomplished something significant. These are important results, given that we wondered in chapter 4 how this sort of thing could be done at all.

Here is a last trick that can sometimes be useful. Suppose we are trying to show \(\forall x P x \models Pa \). We will come to a stage where we want to use the premise to instantiate a variable \(o \) to the thing that is \(J_h[a] \). So we might move directly from \(Ao(J_h[xo][Px] = S) \) to \(J_h[\lambda x (x_o)a][Px] = S \) by unv. But this is ugly, and hard to follow. An alternative is allow a rule (def) that defines \(m \) as a metalinguistic term for the same object as \(J_h[a] \). The result is as follows.
CHAPTER 7. DIRECT SEMANTIC REASONING

1. \(\forall x P x \not\equiv P a \quad \text{assp} \\
2. S[l[\forall x P x] = T \land l[Pa] \not\equiv T] \quad 1 \text{ QV} \\
3. J[\forall x P x] = T \land J[Pa] \not\equiv T \quad 2 \text{ exs (J particular)} \\
4. J[Pa] \not\equiv T \quad 3 \text{ cnj} \\
5. Sd(J_a[Pa] \not\equiv S) \quad 4 \text{ T1} \\
6. J_h[Pa] \not\equiv S \quad 5 \text{ exs (h particular)} \\
7. J_h[a] = m \quad \text{def (m particular)} \\
8. J_h[Pa] = S \leftrightarrow m \in J[P] \quad 7 \text{ SF(r)} \\
9. m \not\in J[P] \quad 6.8 \text{ bcnd} \\
10. J[\forall x P x] = T \quad 3 \text{ cnj} \\
11. Ad(d_a[\forall x P x] = S) \quad 10 \text{ T1} \\
12. J_h[\forall x P x] = S \quad 11 \text{ unv} \\
13. Ao(J_h(x)[P x] = S) \quad 12 \text{ SF(\forall)} \\
14. J_h(x)[m][P x] = S \quad 13 \text{ unv} \\
15. h(x)(m)(x) = m \quad \text{ins} \\
16. J_h(x)[m] = m \quad 15 \text{ TA(v)} \\
17. J_h(x)[m][P x] = S \leftrightarrow m \in J[P] \quad 16 \text{ SF(r)} \\
18. m \in J[P] \quad 17,14 \text{ bcnd} \\
19. \bot \quad 9,18 \text{ bot} \\
20. \forall x P x \models P a \quad 1-19 \text{ neg} \\

(AA)

The result adds a couple lines, but is perhaps easier to follow. Though an interpretation is not specified, we can be sure that \(J_h[a] \) is some particular member of \(U \); we simply let \(m \) designate that individual, and instantiate the universal to it. Again the contradiction appears as we force results into the interpretation.

Suppose \(\forall x P x \not\equiv P a \); then by QV, there is some \(l \) such that \(l[\forall x P x] = T \) and \(l[Pa] \not\equiv T \); let \(J \) be a particular interpretation of this sort; then \(J[\forall x P x] = T \) and \(J[Pa] \not\equiv T \). From the latter, by T1, there is some \(d \) such that \(J_d[Pa] \not\equiv S \); let \(h \) be a particular assignment of this sort; then \(J_h[Pa] \not\equiv S \); where \(m = J_h[a] \), by SF(r), \(J_h[Pa] = S \iff m \in J[P] \); so \(m \not\in J[P] \). Since \(J_d[\forall x P x] = T \), by T1, for any \(d \), \(d_a[\forall x P x] = S \); so \(J_h[\forall x P x] = S \); so by SF(\forall), for any \(o \in U \), \(J_h(x)[P x] = S \); so \(J_h(x)[m][P x] = S \); \(h(x)(m)(x) = m \); so by TA(v), \(J_h(x)[m] = m \); so by SF(r), \(J_h(x)[m][P x] = S \iff m \in J[P] \); so \(m \in J[P] \). This is impossible; reject the assumption: \(\forall x P x \models P a \).

Since we can instantiate \(Ao(J_h(x)[P x] = S) \) to any object, we can instantiate it to the one that happens to be \(J_h[a] \). The extra name streamlines the process. One can always do without the name. But there is no harm introducing it when it will help.

At this stage, we have the tools for proof of the following theorems that will be useful for later chapters.

T7.6. For any \(l \) and \(\mathcal{P} \), \(l[\mathcal{P}] = T \iff l[\forall x \mathcal{P}] = T \)
CHAPTER 7. DIRECT SEMANTIC REASONING

Hint: If \(\mathcal{P} \) is satisfied for the arbitrary assignment, you may conclude that it is satisfied on one like \(h(x|m) \). In the other direction, if you can instantiate \(o \) to any object, you can instantiate it to the thing that is \(h[x] \). But by ins, \(h \) with \textit{this} assigned to \(x \), just \(is \) \(h \). So after substitution, you can end up with the very same assignment as the one with which you started.

T7.7. Each of the following conditions obtains.

(a) \(\lambda_d[(\forall x : \mathcal{B})\mathcal{P}] = S \) iff for any \(o \in U \), \(\lambda_d(x'O) [\mathcal{B}] \neq S \) or \(\lambda_d(x'O) [\mathcal{P}] = S \).

(b) \(\lambda_d[(\exists x : \mathcal{B})\mathcal{P}] = S \) iff for some \(o \in U \), \(\lambda_d(x'O) [\mathcal{B}] = S \) and \(\lambda_d(x'O) [\mathcal{P}] = S \).

Demonstration of these results is straightforward with definition RQ from page 319.

T7.6 is interesting insofar as it underlies principles like A4 and Gen in AD or \(\forall \mathcal{E} \) and \(\forall \mathcal{I} \) in ND. We further explore this link in following chapters. T7.7 applies to the restricted quantifiers introduced in chapter 6. Reasoning with restricted quantifiers is streamlined by their derived semantic conditions.

E7.13. Produce metalinguistic derivations and informal reasoning to demonstrate each of the following.

a. \(\models \forall x (Ax \rightarrow \sim \forall x) \)

b. \(\models \sim \exists x (Ax \land \sim \forall x) \)

c. \(Pa \models \exists x Px \)

d. \(\forall x (Ax \land Bx) \models \forall y By \)

e. \(\forall y Py \models \forall x Pf^1 x \)

f. \(\exists y Ay \models \exists x (Ax \lor Bx) \)

g. \(\sim \forall x (Ax \rightarrow Dx) \models \exists x (Ax \land \sim Dx) \)

h. \(\forall x (Ax \rightarrow Bx), \forall x (Bx \rightarrow Cx) \models \forall x (Ax \rightarrow Cx) \)

i. \(\forall x \forall y Axy \models \forall y \forall x Axy \)

j. \(\forall x \exists y (Ay \rightarrow Bx) \models \forall x (\forall y Ay \rightarrow Bx) \)

E7.14. Provide demonstrations for T7.6 and T7.7 in the informal style. Hint: You may or may not decide that a metalinguistic derivation will be helpful.
CHAPTER 7. DIRECT SEMANTIC REASONING

DEFINITIONS:

TA

(c) $l_\Delta[c] = l[c]$

(v) $l_\Delta[x] = a[x]$

(i) $l_\Delta[\vec{t}_1 \ldots \vec{t}_n] = l[\vec{t}_1] \ldots l[\vec{t}_n]$

SF

(s) $l_\Delta[S] = S \iff l[S] = T$

(t) $l_\Delta[\vec{t}_1 \ldots \vec{t}_n] = S \iff \langle l_\Delta[\vec{t}_1] \ldots l_\Delta[\vec{t}_n] \rangle \in l[\vec{t}_1 \ldots \vec{t}_n]$

(\sim) $l_\Delta[\neg \vec{p}] = S \iff l_\Delta[\vec{p}] \neq S$

(\to) $l_\Delta[\vec{p} \to \vec{q}] = S \iff l_\Delta[\vec{p}] \neq S \lor l_\Delta[\vec{q}] = S$

(\forall) $l_\Delta[\forall \vec{v} \vec{p}] = S \iff \exists \alpha \langle l_\Delta[\alpha(\vec{v})] \vec{p} \rangle = S$

SF'

(\forall) $l_\Delta[(\vec{p} \lor \vec{q})] = S \iff l_\Delta[\vec{p}] = S \lor l_\Delta[\vec{q}] = S$

(\forall) $l_\Delta[(\vec{p} \land \vec{q})] = S \iff l_\Delta[\vec{p}] = S \land l_\Delta[\vec{q}] = S$

(\leftrightarrow) $l_\Delta[\vec{p} \leftrightarrow \vec{q}] = S \iff l_\Delta[\vec{p}] = S \land l_\Delta[\vec{q}] = S \lor (l_\Delta[\vec{p}] \neq S \land l_\Delta[\vec{q}] \neq S)$

(\exists) $l_\Delta[\exists \vec{x} \vec{p}] = S \iff\exists \alpha \langle l_\Delta[\alpha(\vec{x})] \vec{p} \rangle = S$

TI

$[\vec{p}] = T \iff \exists \alpha \langle l_\Delta[\alpha(\vec{p})] = S \rangle$

$[\vec{p}] \neq T \iff \exists \alpha \langle l_\Delta[\alpha(\vec{p})] \neq S \rangle$

QV

$-S[l(\vec{p}_1) = T \land \ldots \land l(\vec{p}_n) = T] \iff \exists \vec{p}_1 \ldots \vec{p}_n \equiv \vec{q}$

$S[l(\vec{p}_1) = T \land \ldots \land l(\vec{p}_n) = T \land l(\vec{q}) \neq T] \iff \exists \vec{p}_1 \ldots \vec{p}_n \equiv \vec{q}$

RULES:

All the rules from the sentential metalinguistic reference (page 357) plus:

\[\begin{array}{ll}
\text{unv} & At\emptyset[t] \\
\emptyset[s] & s \text{ of any type} \\
At\emptyset[t] & u \text{ arbitrary and new} \\
\end{array}\]

\[\begin{array}{ll}
\text{qn} & At\emptyset \iff st\emptyset \\
At\emptyset & st\emptyset \iff At\neg \emptyset \\
\text{eq} & t = t \iff t = u \\
t = u \iff u = u \\
t = u, u = v \iff t = u, u = v \\
t = u, At\emptyset[t] \iff t = u, At\emptyset[u] \\
t = v \iff \emptyset[u] \\
\end{array}\]

\text{def} \text{ Defines one metalinguistic term } t \text{ by another } u \text{ so that } t = u.
CHAPTER 7. DIRECT SEMANTIC REASONING

On the Semantics of Variables

We have been working with the standard quantifier semantics, essentially due to Tarski, “The Concept of Truth in Formalized Languages.” At the beginning of section 2.3 we suggested that variables work something like pronouns. Correspondingly, as emphasized in section 5.3.1, bound variables function as placeholders—there is no semantic difference between,

\[\exists x (x < \emptyset) \quad \text{ and } \quad \exists y (y < \emptyset) \]

Similarly one might think,

\[\emptyset < x \quad \text{ and } \quad \emptyset < y \]

would say the same thing. But with \(d[x] = 1 \) and \(d[y] = 0 \), \(N_d[\emptyset < x] = S \) and \(N_d[\emptyset < y] \neq S \). So the formulas get different semantic evaluations. This sort of case motivates one half of K. Fine’s antinomy of the variable. In response, Fine and others suggest alternative accounts to preserve the status of variables as mere placeholders (Fine, “The Role of Variables,” see also chapter 1 of Button and Walsh, Philosophy and Model Theory).

It is not clear that we have intuitions about satisfaction that do not come from the semantics itself. So one might respond, “well, that is the way satisfaction works.” But allow that the placeholder intuition applies generally. Button and Walsh prefer an account that substitutes constants for free variables. A quantified sentence \(\forall x \mathcal{P} \) is evaluated in terms of sentences \(\mathcal{P}^c_x \). This does not work if there are objects to which no constant is assigned. One option is to extend \(\mathcal{L} \) by the addition of some constant \(c_0 \) for each \(o \in U \). If \(U \) is large, this results in very many constants. Button and Walsh prefer an account that adds only as many constants as there are variables in \(\mathcal{P} \), considering \(\mathcal{P}^c_x \) for each of the possible interpretations of \(c \). It is then possible to develop derivations much like ours, but with quantifier rules applied to expressions with constants (appropriately constrained). Such an approach is developed also in Boolos, Burgess and Jeffrey, Computability and Logic, chapters 10 and 14.

As Button and Walsh remark, the different approaches are technically equivalent. Reasons to prefer one over another are perhaps more a matter of philosophy than logic. The approach with constants has the advantage that it applies exclusively to sentences, and so bypasses formulas where variables have anything but a placeholder role. A disconcerting feature is that generalization applies between formulas that are not equivalent—and so not related as by our T7.6.

And it is not clear that we need abandon the traditional approach in order to preserve the role of variables as placeholders. Consider a sequence \(x_1, x_2 \ldots \) of metavariables and a function \(k \) that assigns to each an object from \(U \). For some \(\mathcal{P} \) with variables \(z_a \ldots z_b \) (in the order of their first appearance in \(\mathcal{P} \)), let \(m \) be a map that takes \(z_a \ldots z_b \) in that order to \(x_1 \ldots x_n \). So \(m[z_a] = x_1 \) and so forth. Then proceed very much as usual: If \(c \) is a constant, \(k[c] = l[c] \); if \(z \) is a variable, then \(k[z] = k[m(z)] \); if \(t \) is \(h^n t_1 \ldots t_n \) then \(k[t] = l[h^n](k[t_1] \ldots k[t_n]) \).

If \(\mathcal{P} \) is \(R^0 t_1 \ldots t_n \) then \(k[\mathcal{P}] = S \) iff \(k[t_1] \ldots k[t_n] \in l[R^n] \). And, for the quantifier case, \(k[\forall z \mathcal{P}] = S \) iff for every \(o \in U \), \(k(m(x)) \mathcal{P} = S \). Given this, \(\emptyset < x \) and \(\emptyset < y \) get the same evaluation on any \(k \)—for \(x \) and \(y \) both map to \(x_1 \), and so receive the same assignment. Similarly for \(x < y \), \(m[x] = x_1 \) and \(m[y] = x_2 \) while in \(y < x \), \(m[y] = x_1 \) and \(m[x] = x_2 \); and, either way, the question is whether \(k[x_1] \) is less than \(k[x_2] \). Think of variables as marking “slots” in a formula. In effect, we group or lump togethers variable assignments that supply all the same objects to the slots. Once this is done, variables reappear as placeholders.

Given this, we rest content with the traditional approach—though we do not usually worry about the grouping, recognizing that there are other approaches technically equivalent.
7.3.5 Invalidity

We already have in hand concepts required for showing invalidity. Difficulties are mainly strategic and practical. As usual, for invalidity, the idea is to produce an interpretation and show that it makes the premises true and the conclusion not.

Here is a case parallel to one you worked with trees in homework from E4.15. We show $\forall x P f \downarrow x \not\equiv \forall x P x$. For the interpretation J set, $U = \{1, 2\}$, $J[P] = \{1\}$, $J[f \downarrow] = \{(1, 1), (2, 1)\}$. We want to take advantage of the particular features of this interpretation to show that it makes the premise true and the conclusion not. Begin as follows.

1. $h(x)[2][x] = 2$ \hspace{1cm} \text{ins} (h arbitrary)
2. $J_{h(x)[2]}[x] = 2$ \hspace{1cm} 1 TA(\forall) (J particular)
3. $J_{h(x)[2]}[P x] = S \leftrightarrow 2 \in J[P]$ \hspace{1cm} 2 SF(r)
4. $2 \notin J[P]$ \hspace{1cm} \text{ins}
(AB)
5. $J_{h(x)[2]}[P x] \neq S$ \hspace{1cm} 3,4 bcnd
6. $S(J_{h(x)[2]}[P x] \neq S)$ \hspace{1cm} 5 exs
7. $J_{h}[\forall x P x] \neq S$ \hspace{1cm} 6 SF(\forall)
8. $S(J_{h}[\forall x P x] \neq S)$ \hspace{1cm} 7 exs
9. $J[\forall x P x] \neq T$ \hspace{1cm} 8 TI

This much is straightforward. The specifics of assignment h play no role. The important point is just that $h(x)[2][x] = 2$—where this is so no matter what h itself is like. Another option would have been to assume $J[\forall x P x] = T$ and work to a contradiction. The reasoning above, which goes from the parts to the whole, reflects our approach to invalidity for sentential forms. Now to show that the premise is true, one option is to reason individually about each member of U. This is always possible, and sometimes necessary. Thus the argument is straightforward but tedious by methods we have seen before.
10. \(A\omega(o = 1 \lor o = 2) \)
11. \(J_{h(x|m)}[x] = 1 \lor J_{h(x|m)}[x] = 2 \)
12. \(J_{h(x|m)}[x] = 1 \)
13. \(J_{h(x|m)}[f^1x] = J[f^1](1) \)
14. \(J[f^1](1) = 1 \)
15. \(J_{h(x|m)}[f^1x] = 1 \)
16. \(J_{h(x|m)}[Pf^1x] = S \iff 1 \in J[P] \)
17. \(1 \in J[P] \)
18. \(J_{h(x|m)}[Pf^1x] = S \)
19. \(J_{h(x|m)}[x] = 2 \)
20. \(J_{h(x|m)}[f^1x] = J[f^1](2) \)
21. \(J[f^1](2) = 1 \)
22. \(J_{h(x|m)}[f^1x] = 1 \)
23. \(J_{h(x|m)}[Pf^1x] = S \iff 1 \in J[P] \)
24. \(1 \in J[P] \)
25. \(J_{h(x|m)}[Pf^1x] = S \)
26. \(J_{h(x|m)}[Pf^1x] = S \)
27. \(Ao(J_{h(x|m)}[Pf^1x] = S) \)
28. \(J_{h}[\forall x Pf^1x] = S \)
29. \(Ad(d_{\forall x Pf^1x} = S) \)
30. \(J[\forall x Pf^1x] = T \)
31. \(J[\forall x Pf^1x] = T \iff J[\forall x Px] \neq T \)
32. \(S(I[\forall x Pf^1x] = T \iff I[\forall x Px] \neq T) \)
33. \(\forall x Pf^1x \neq \forall x Px \)

\(J_{h(x|m)} \) has to be some member of \(U \), so we instantiate the universal at (10) to it, and reason about the cases individually. This reflects what we have done before.

But on this interpretation, no matter what \(o \) may be, \([f^1](o) = 1 \). And, rather than the simple generalization about the universe of discourse, we might have generalized by \textit{ins} about the interpretation of the function symbol itself. Thus we might have substituted for lines (10)–(26) as follows.

10. \(h(x|m)[x] = m \)
11. \(J_{h(x|m)}[x] = m \)
12. \(J_{h(x|m)}[f^1x] = J[f^1](m) \)
13. \(A\omega(d[f^1](o) = 1) \)
14. \(J[f^1](m) = 1 \)
15. \(J_{h(x|m)}[f^1x] = 1 \)
16. \(J_{h(x|m)}[Pf^1x] = S \iff 1 \in J[P] \)
17. \(1 \in J[P] \)
18. \(J_{h(x|m)}[Pf^1x] = S \)

picking up with (27) after. This is better! Before, we obtained the result when \(J_{h(x|m)} \)
was 1 and again when it was 2. But, in either case, the reason for the result is that the function has output 1. So this version avoids the cases by reasoning directly about the result from the function. Here is the informal version on this latter strategy.

\[h(x|2)[x] = 2; \text{ so by } TA(v), J_{h(x|2)}[x] = 2; \text{ so by } SF(r), J_{h(x|2)}[P x] = S \text{ iff } 2 \in J[P]; \text{ but } 2 \notin J[P] \text{ so } J_{h(x|2)}[P x] \neq S; \text{ so there is some } o \in U \text{ such that } J_{h(x|o)}[P x] \neq S; \text{ so by } SF(\forall), J_o[\forall x P x] \neq S; \text{ so there is an assignment } d \text{ such that } J_d[\forall x P x] \neq S; \text{ so by } TI, J[\forall x P x] \neq T. \]

For arbitrary \(h \) and \(m \), \(h(x|m)[x] = m; \) so by \(TA(v) \), \(J_{h(x|m)}[x] = m; \) so by \(TA(f) \), \(J_{h(x|m)}[f^1 x] = J[f^1](m); \) but for any \(o \in U \), \(J[f^1](o) = 1; \) so \(J[f^1](m) = 1; \) so \(J_{h(x|m)}[f^1 x] = 1; \) so by \(SF(r), J_{h(x|m)}[P f^1 x] = S \text{ iff } 1 \in J[P]; \) but \(1 \in J[P]; \) so \(J_{h(x|m)}[P f^1 x] = S; \) so since \(m \) is arbitrary, for any \(o \in U \), \(J_{h(x|o)}[P f^1 x] = S; \) so by \(SF(\forall), J_o[\forall x P f^1 x] = S; \) and since \(h \) is arbitrary, for any assignment \(d \), \(J_d[\forall x P f^1 x] = S; \) so by \(TI, J[\forall x P f^1 x] = T. \)

So there is an interpretation \(I \) such that \(I[\forall x P f^1 x] = T \) and \(I[\forall x P x] \neq T; \) so by \(QV, \forall x P f^1 x \neq \forall x P x. \)

Reasoning about cases is possible, and sometimes necessary, when the universe is small. But it is often convenient to organize your reasoning by generalizations about the interpretation as above. Such generalizations are required when the universe is large.

Here is a case that requires such generalizations insofar as the universe \(U \) has infinitely many members. Reasoning in \(L_{sf} \), we show \(\forall x \forall y (x \neq y \rightarrow S x \neq S y) \neq \exists x (S x = \emptyset). \) First note that no interpretation with finite \(U \) makes the premise true and conclusion false. For suppose \(U \) has finitely many members and the successor function is represented by arrows as follows,

\[o_0 \longrightarrow o_1 \longrightarrow o_2 \longrightarrow o_3 \longrightarrow o_4 \longrightarrow o_5 \ldots o_n \]

with \(I[\emptyset] = o_0. \) So \(I[S] \) includes \(\langle o_0, o_1 \rangle, \langle o_1, o_2 \rangle, \langle o_2, o_3 \rangle, \) and so forth. But the interpretation of a function symbol is a total function; so \(I[S] \) pairs some object with \(o_n. \) This object cannot be any of \(o_1 \) through \(o_n, \) or the premise is violated insofar as some one thing is the successor of different elements. And if the conclusion is false no successor is equal to zero—so it cannot be \(o_0 \) either. And similarly for any finite universe. But, as should be obvious by consideration of a standard interpretation of the symbols, the argument is not valid. To show this, let the interpretation be \(N, \) where,

\[U = \{0, 1, 2 \ldots\} \]

\[N[\emptyset] = 0 \]
For any \(o \), we assert by ins that for any \(o \) be clear from the initial (automatic) specification of \(m \) that

\[
N[S] = \{\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle \ldots \}
\]

\[
N[\cap] = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle \ldots \}
\]

First we show that \(N[\exists x (Sx = \emptyset)] \neq T \). Note that we might have specified the interpretation for equality by saying something like, \(A_0 \cdot A_{p} ((o, p) \in N[\cap] \iff o = p) \). Similarly, the interpretation of \(S \) is such that no \(o \) has a successor equal to zero—\(A_0 (N[S](o) \neq 0) \). We will simply appeal to these facts by ins in the following.

1. \(N[\emptyset] = 0 \) ins (N particular)
2. \(N_{h(x,m)}[\emptyset] = 0 \) 1 TA(c) (h, m arbitrary)
3. \(h(x,m)[x] = m \) ins
4. \(N_{h(x,m)}[x] = m \) 3 TA(v)
5. \(N_{h(x,m)}[Sx] = N[S](m) \) 4 TA(f)
6. \(N[S](m) = q \) def (q particular)
7. \(N_{h(x,m)}[Sx] = q \) 5,6 eq
8. \(N_{h(x,m)}[Sx = \emptyset] = S \iff (q, 0) \in N[\cap] \) 7,2 SF(r)
9. \(A_0 (N[S](o) \neq 0) \) ins

(AC)

10. \(N[S](m) \neq 0 \) 9 unv
11. \(q \neq 0 \) 10,6 eq
12. \(A_0 \cdot A_{p} ((o, p) \in N[\cap] \iff o = p) \) ins
13. \((q, 0) \in N[\cap] \iff q = 0 \) 12 unv
14. \((q, 0) \neq N[\cap] \) 13,11 bcnd
15. \(N_{h(x,m)}[Sx = \emptyset] \neq S \) 8,14 bcnd
16. \(A_0 (N_{h(x,m)}[Sx = \emptyset] \neq S) \) 15 unv
17. \(N_h[Sx = \emptyset)] \neq S \) 16 SF’(3)
18. \(Sd(N_{h}[Sx = \emptyset)] \neq S) \) 17 exs
19. \(N[Sx = \emptyset]) \neq T \) 18 TI

Most of this is as usual. What is interesting is that at (9) we assert that no \(o \) is such that \((o, 0) \in N[S] \). This should be obvious from the specification of \(N[S] \). And at (12) we assert by ins that for any \(o \) and \(p \) in \(U \), \((o, p) \in N[\cap] \iff o = p \). Again, this should be clear from the initial (automatic) specification of \(N[\cap] \). In this case, there is no way to reason individually about each member of \(U \), on the pattern of what we have been able to do with two-member universes. But we do not have to, as the general facts are sufficient for the result.

\[N[\emptyset] = 0; \text{so by } TA(c), N_{h(x,m)}[\emptyset] = 0. \]

For arbitrary \(h \) and \(m \), \(h(x,m)[x] = m \); so by TA(v), \(N_{h(x,m)}[x] = m \); so by TA(f), \(N_{h(x,m)}[Sx] = N[S](m) \); let \(N[S](m) = q \); then \(N_{h(x,m)}[Sx] = q \). From these, by SF(r), \((\ast) N_{h(x,m)}[Sx = \emptyset] = S \iff (q, 0) \in N[\cap] \). For any \(o \in U \), \(N[S](o) \neq 0 \); so \(N[S](m) \neq 0 \); so \(q \neq 0 \); but for any \(o, p \in U \),
CHAPTER 7. DIRECT SEMANTIC REASONING

Given what we have already seen, this should be straightforward. Demonstration that $N[\forall x \forall y (x \neq y \rightarrow Sx \neq Sy)] = T$, and so that the argument is not valid, is left as an exercise. Hint: In addition to facts about equality, you may find it helpful to assert $AoAp(o \neq p \Rightarrow N[S](o) \neq N[S](p))$. Be sure that you understand this before you assert it! Of course, we have here something that could never have been accomplished with trees insofar as the universe is infinite.

Recall that the interpretation of equality is the same across all interpretations. Thus our general assertion is possible in case of the arbitrary interpretation, and we are positioned to prove some last theorems.

T7.8. $\vdash (t = t)$

Hint: By ins for any l and any $o \in U$, $(o, o) \in N[=]$. Given this, the argument is easy.

*T7.9. $\vdash (x_i = y) \rightarrow (h^n x_1 \ldots x_i \ldots x_n = h^n x_1 \ldots y \ldots x_n)$

Hint: If you have trouble with this, try showing a simplified version: $\vdash (x = y) \rightarrow (h^1 x = h^1 y)$.

T7.10. $\vdash (x_i = y) \rightarrow (\mathcal{R}^n x_1 \ldots x_i \ldots x_n \rightarrow \mathcal{R}^n x_1 \ldots y \ldots x_n)$

Hint: If you have trouble with this, try showing a simplified version: $\vdash (x = y) \rightarrow (Rx \rightarrow Ry)$.

At this stage, we have introduced a method for reasoning about semantic definitions. As you continue to work with the definitions, it should become increasingly clear how they fit together into a coherent (and pleasing) whole. In later chapters, we will leave the metalinguistic derivation system behind as we encounter further definitions in diverse contexts. But from this chapter you should have gained a solid grounding in the sort of thing we will want to do.

E7.15. Produce interpretations (with, if necessary, variable assignments) and then metalinguistic derivations and informal reasoning to show each of the following.
Theorems of Chapter 7

T7.1 $P, P \to Q \vdash Q$

T7.2 $\vdash P \to (Q \to P)$

T7.3 $\vdash (Q \to (P \to Q)) \to ((Q \to P) \to (Q \to Q))$

T7.4 $\vdash (\sim Q \to \sim P) \to [(\sim Q \to P) \to Q]$

T7.1 $P, P \to Q \vdash Q$

T7.2 $\vdash P \to (Q \to P)$

T7.3 $\vdash (Q \to (P \to Q)) \to ((Q \to P) \to (Q \to Q))$

T7.4 $\vdash (\sim Q \to \sim P) \to [(\sim Q \to P) \to Q]$

T7.5 There is no interpretation I and formula P such that $I[P] = T$ and $I[\sim P] = T$.

T7.7 Each of the following conditions obtains:

(a) $I_d[(\forall x : B) P] = S$ iff for any $o \in U$, $I_d(x[o], B) \neq S$ or $I_d(x[o], P) = S$

(b) $I_d[(\exists x : B) P] = S$ iff for some $o \in U$, $I_d(x[o], B) = S$ and $I_d(x[o], P) = S$.

T7.8 $\vdash (i = i)$

T7.9 $\vdash (x_i = y) \to (h^n x_1 \ldots x_i \ldots x_n = h^n x_1 \ldots y \ldots x_n)$

T7.10 $\vdash (x_i = y) \to (R^n x_1 \ldots x_i \ldots x_n = R^n x_1 \ldots y \ldots x_n)$

a. $\exists x P x \nleq P a$

*b. $\nleq f^1 g^1 x = g^1 f^1 x$

c. $\forall x Ax \to C \nleq \forall x (Ax \to C)$

d. $\exists x F x, \exists y G y \nleq \exists z (F z \land G z)$

e. $\forall x \exists y A xy \nleq \exists y \forall x A xy
*E7.16. Provide demonstrations for (simplified versions of) T7.8–T7.10 in the informal style. Hint: You may or may not decide that a metalinguistic derivation would be helpful. Challenge: can you show the theorems in their general form?

E7.17. Show that \(N[\forall x \forall y (x \neq y \rightarrow Sx \neq Sy)] = T \), and so complete the demonstration that \(\forall x \forall y (x \neq y \rightarrow Sx \neq Sy) \not\equiv \exists x (Sx = 0) \). You may simply assert that \(N[\exists x (Sx = 0)] \not= T \) with justification, “from the text.”

E7.18. Here is an interpretation to show \(\not\exists x \forall y [(Axy \land \lnot Ayx) \rightarrow (Axx \iff Ayy)] \).

\[
U = \{1, 2, 3 \ldots \}
\]
\[
I[A] = \{ (m,n) \mid m \leq n \text{ and } m \text{ is odd, or } m < n \text{ and } m \text{ is even} \}
\]
So \(I[A] \) has members,

\[
\{1, 1\}, \{1, 2\}, \{1, 3\} \ldots \quad \{2, 3\}, \{2, 4\}, \{2, 5\} \ldots
\]
\[
\{3, 3\}, \{3, 4\}, \{3, 5\} \ldots \quad \{4, 5\}, \{4, 6\}, \{4, 7\} \ldots
\]
and so forth. Try to understand why this works, and why \(\leq \) or \(< \) will not work by themselves. Then see if you can find an interpretation where \(U \) has four members, and use your interpretation to demonstrate that \(\not\exists x \forall y [(Axy \land \lnot Ayx) \rightarrow (Axx \iff Ayy)] \). Hint: this is challenging.

E7.19. Consider \(\mathcal{L}_{NT} \) and the axioms of Robinson Arithmetic as in chapter 6 (page 324). (a) Use the standard interpretation \(N \) to show \(Q \not\equiv \lnot \forall x \forall y [(x \times y) = (y \times x)] \). And (b) using \(N^ \) from below, show \(Q \not\equiv \forall x \forall y [(x \times y) = (y \times x)] \).

You need only complete parts not worked in the answer to this exercise. For \(N^* \), let \(U^* = N \cup \{a\} \) for some object \(a \) that is not a number; assign 0 to 0 in the usual way; then,

<table>
<thead>
<tr>
<th>+</th>
<th>×</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>i</td>
<td>i+j</td>
</tr>
<tr>
<td>j</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

This result, together with T10.5 is sufficient to show that Robinson Arithmetic is not (negation) complete—there are sentences \(\mathcal{P} \) of \(\mathcal{L}_{NT} \) such that \(Q \) proves neither
\(\mathcal{P} \) nor \(\sim \mathcal{P} \). Hint: Notice that \(N^* \) is the same as \(N \) for \(m, n \in N \) so that reasoning about \(N^* \) partially coincides with reasoning about \(N \). This lets you collapse some of the work: so, for example, when variables are assigned to some \(m, n \in U^* \), there are cases for (i) \(m, n \in N \), (ii) \(m \in N, n = a \), (iii) \(m = a, n \in N \), (iv) \(m = a, n = a \). By itself (i) is sufficient for a result about \(N \).

E7.20. For each of the following concepts, explain in an essay of about two pages, so that (high-school age) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples of your own construction (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. The difference between satisfaction and truth.

b. The definitions \(SF(r) \) and \(SF(\forall) \).

c. The way your reasoning works. For this you can provide an example of some reasonably complex but clean bits of reasoning, (a) for validity, and (b) for invalidity. Then explain to Hannah how your reasoning works. That is, provide her a commentary on what you have done, so that she could understand.
Chapter 8

Mathematical Induction

In chapter 1, (page 12), we distinguished *deductive* from *inductive* arguments. As described there, in a deductive argument, conclusions are supposed to be *guaranteed* by premises. In an inductive argument, conclusions are merely made probable or plausible. Typical cases of inductive arguments involve generalization from cases. Thus, for example, one might reason from the premise that every crow we have ever seen is black, to the conclusion that all crows are black. The premise does not *guarantee* the conclusion, but it does give it some probability or plausibility. Similarly, mathematical induction involves a sort of generalization. But mathematical induction is a *deductive* argument form. The conclusion of a valid argument by mathematical induction is *guaranteed* by its premises. So mathematical induction is to be distinguished from the sort of induction described in chapter 1.

In this chapter, I begin with a general characterization of mathematical induction, and turn to a series of examples. Some of the examples will matter for things to come. But the primary aim is to gain facility with this crucial argument form. After a general characterization in section 8.1, there are some introductory examples (section 8.2) then cases of special interest for part III (section 8.3) and for part IV (section 8.4).

8.1 General Characterization

Arguments by mathematical induction apply to objects that are arranged in *series*. The conclusion of an argument by mathematical induction is that all the elements of the series are of a certain sort. For cases with which we will be concerned, the elements of a series are ordered by natural numbers: there is an initial member, one after that, and so forth (we may thus think of a series as a *function* from the numbers to the members). Consider, for example, a series of dominoes.
This series is ordered spatially. \(d_0 \) is the initial domino, \(d_1 \) the next, and so forth. Alternatively, we might think of the series as defined by a function \(D \) from the natural numbers to the dominoes, with \(D(0) = d_0, D(1) = d_1 \) and so forth—where this ordering is merely exhibited by the spatial arrangement.

Suppose we are interested in showing that all the dominoes fall, and consider the following two claims:

(i) the first domino falls
(ii) for any domino, if all the ones prior to it fall, then it falls.

By itself, (i) does not tell us that all the dominoes fall. For all we know, there might be some flaw in the series so that for some \(k \) dominoes prior to \(d_k \) fall, but \(d_k \) does not. Perhaps the space between \(d_{k-1} \) and \(d_k \) is too large. In this case, under ordinary circumstances, neither \(d_k \) nor any of the dominoes after it fall. (ii) tells us that there is no such flaw in the series—if all the dominoes up to \(d_k \) fall, then \(d_k \) falls. But (ii) is not, by itself, sufficient for the conclusion that all the dominoes fall. From the fact that the dominoes are so arranged, it does not follow that any of the dominoes fall. Perhaps you do the arrangement, and are so impressed with your work, that you leave the setup forever as a memorial!

However, given both (i) and (ii), it is safe to conclude that all the dominoes fall. There are a couple of ways to see this. First, we can reason from one domino to the next. By (i), the first domino falls. This means that all the dominoes prior to the second domino fall. So by (ii), the second falls. But this means all the dominoes prior to the third fall. So by (ii), the third falls. So all the dominoes prior to the fourth fall. And so forth. Thus we reach the conclusion that each domino falls. So all the dominoes fall. Here is another way to make the point: Suppose not every member of the series falls. Then there must be some least member \(d_a \) of the series which does not fall. \(d_a \) cannot be the first member of the series, since by (i) the first member of the series falls. And since \(d_a \) is the least member of the series which does not fall, all the members of the series prior to it do fall. So by (ii), \(d_a \) falls. This is impossible; reject the assumption: every member of the series falls.

Suppose we have some reason for accepting (i) that the first domino falls—perhaps you push it with your finger. Suppose further, that we have some “special reason” for moving from the premise that all the dominoes prior to an arbitrary \(d_k \) fall, to the
conclusion that \(d_k \) falls—perhaps the setup only gets better and better as the series continues, and the builder gains experience. Then we might attempt to show that all the dominoes fall as follows.

\begin{enumerate}
\item \(d_0 \) falls \quad \text{prem (}d_0\text{ particular)}
\item all the dominoes prior to \(d_k \) fall \quad \text{assp (}d_k\text{ arbitrary)}
\item \(\vdots \)
\item \(d_k \) falls \quad \text{“special reason”}
\item if all the dominoes prior to \(d_k \) fall, then \(d_k \) falls \quad \text{b-c cnd}
\item for any domino, if all the dominoes prior to it fall, then it falls \quad \text{d unv}
\item every domino falls \quad \text{a,e induction}
\end{enumerate}

(a) is just (i); \(d_0 \) falls because you push it. (e) is (ii); to get this, we reason from the assumption at (b), and the “special reason,” to the conclusion that \(d_k \) falls, and then move to (e) by \text{cnd} and \text{unv}. The conclusion that every domino falls follows from (a) and (e) by mathematical induction. This is in fact how we reason. However, all the moves are automatic once we complete the subderivation—the moves by \text{cnd} to get (d), by \text{unv} to get (e), and by mathematical induction to get (f) are automatic once we reach (c). In practice, then, those steps are usually left implicit and omitted. Having gotten (a) and, from the assumption that all the dominoes prior to \(d_k \) fall reached the conclusion that \(d_k \) falls, we move directly to the conclusion that all the dominoes fall.

Thus we arrive at a general form for arguments by mathematical induction. Suppose we want to show that \(P \) holds for each member of some series. Then an argument from mathematical induction goes as follows.

\begin{enumerate}
\item \textbf{Basis:} Show that \(P \) holds for the first member of the series.
\item \textbf{Assp:} Assume, for arbitrary \(k \), that \(P \) holds for every member of the series prior to the \(k^{th} \) member.
\item \textbf{Show:} Show that \(P \) holds for the \(k^{th} \) member of the series.
\item \textbf{Indct:} Conclude that \(P \) holds for every member of the series.
\end{enumerate}

In the domino case, for the \textit{basis} we show (i). At the \textit{assp} (assumption) step, we assume that all the dominoes prior to \(d_k \) fall. In the \textit{show} step, we would complete the subderivation with the conclusion that domino \(d_k \) falls. From this, moves by \text{cnd} to the conditional statement, and by \text{unv} to its generalization, are omitted and we move directly to the conclusion that all the dominoes fall. Notice that the assumption is nothing more than a standard assumption for the (suppressed) application of \text{cnd}.

Perhaps the “special reason” is too special, and it is not clear how we might generally reason from the assumption that some \(P \) holds for every member of a series...
prior to the \(k^{th} \), to the conclusion that it holds for the \(k^{th} \). For our purposes, the key is that such reasoning is possible in contexts characterized by recursive definitions. As we have seen, a recursive definition always moves from the parts to the whole. There are some basic elements, and some rules for combining elements to form further elements. In general, it is a fallacy (the fallacy of composition) to move directly from characteristics of parts, to characteristics of a whole. From the fact that the bricks are small, it does not follow that a building made from them is small. But there are cases where facts about parts, together with the way they are arranged, are sufficient for conclusions about wholes. If the bricks are hard, it may be that the building is hard. And similarly with recursive definitions.

To see how this works, let us turn to another example. We show that every term of a certain language has an odd number of symbols. Recall that the recursive definition TR tells us how terms are formed from others. Variables and constants are terms; and if \(h^n \) is a \(n \)-place function symbol and \(t_1 \ldots t_n \) are \(n \) terms, then \(h^n t_1 \ldots t_n \) is a term. On tree diagrams, across the top (row 0) are variables and constants—terms with no function symbols; in the next row are terms constructed out of them, and for any \(n \geq 1 \), terms in row \(n \) are constructed out of terms from earlier rows. Let this series of rows be our series for mathematical induction. Every term must appear in some row of a tree. We consider a series whose first element consists of terms which appear in the top row of a tree, whose second element consists of terms which appear in the next, and so forth. Let \(\mathcal{L}_t \) be a language with variables and constants as usual, but just two function symbols, a two-place function symbol \(f^2 \) and a four-place function symbol \(g^4 \). We show, by induction on the rows in which terms appear, that the total number of symbols in any term \(t \) of this language is odd. Here is the argument:

\[(C)\] Basis: If \(t \) appears in the top row, then it is a variable or a constant; in this case, \(t \) consists of just one variable or constant symbol; so the total number of symbols in \(t \) is odd.

Assp: For any \(i \) such that \(0 \leq i < k \), the total number of symbols in any \(t \) appearing in row \(i \) is odd.

Show: The total number of symbols in any \(t \) appearing in row \(k \) is odd.

If \(t \) appears in row \(k \), then it is of the form \(f^2 t_1 t_2 \) or \(g^4 t_1 t_2 t_3 t_4 \) where \(t_1 \ldots t_4 \) appear in rows prior to \(k \). So there are two cases.

\((f)\) Suppose \(t \) is \(f^2 t_1 t_2 \). Let \(a \) be the total number of symbols in \(t_1 \) and \(b \) be the total number of symbols in \(t_2 \); then the total number of symbols in \(t \) is \((a + b) + 1\): all the symbols in \(t_1 \), all the symbols in \(t_2 \), plus the symbol \(f^2 \). Since \(t_1 \) and \(t_2 \) each appear in rows prior to \(k \), by assumption, both \(a \) and \(b \) are odd. But the sum of two odds is an even, and the sum of an
even plus one is odd; so \((a + b) + 1\) is odd; so the total number of symbols in \(t\) is odd.

(g) Suppose \(t\) is \(g^4 t_1 t_2 t_3 t_4\). Let \(a\) be the total number of symbols in \(t_1\), \(b\) be the total number of symbols in \(t_2\), \(c\) be the total number of symbols in \(t_3\) and \(d\) be the total number of symbols in \(t_4\); then the total number of symbols in \(t\) is \([(a + b) + (c + d)] + 1\). Since \(t_1 \ldots t_4\) each appear in rows prior to \(k\), by assumption \(a\), \(b\), \(c\) and \(d\) are all odd. But the sum of two odds is an even; the sum of two evens is an even, and the sum of an even plus one is odd; so \([(a + b) + (c + d)] + 1\) is odd; so the total number of symbols in \(t\) is odd.

In either case, then, if \(t\) appears in row \(k\), the total number of symbols in \(t\) is odd.

\[\text{Indct: } \text{For any term } t \in \mathbb{L}_t, \text{ the total number of symbols in } t \text{ is odd.}\]

Notice that this argument is entirely structured by the recursive definition for terms. The definition TR includes clauses (v) and (c) for terms that appear in the top row. In the basis stage, we show that all such terms consist of an odd number of symbols. Then, for (suppressed) application of cnd and unv we assume that all terms prior to an arbitrary row \(k\) have an odd number of symbols. After that, the show line simply announces what we plan to do. Observe the way reasoning for the show part works:

\[
\begin{align*}
\text{item at stage } k & \quad \rightarrow \quad \text{result at stage } k \\
\text{items at stages prior to } k & \quad \rightarrow \quad \text{inductive assumption} \\
\text{items at stages prior to } k & \quad \rightarrow \quad \text{results at stages prior to } k
\end{align*}
\]

By the recursive definition, items at stage \(k\) result from items at stages prior to \(k\). The inductive assumption applies to the items at stages prior to \(k\), and so gives a result for those items. And with the recursive definition we put those results together for a conclusion about stage \(k\). Over and over, you will be able to reason according to this pattern. Thus in our argument the sentence after show says how terms at stage \(k\) derive from ones before; in this case, clause (f) of TR gives two ways to construct terms out of other terms: If \(f^2 t_1 t_2\) appears in row \(k\), \(t_1\) and \(t_2\) must appear in previous rows; so by the assumption, they have an odd number of symbols; and since the number of symbols in the parts are odd, the number of symbols in the whole is odd. And similarly for \(g^4 t_1 t_2 t_3 t_4\). So any term in row \(k\) has an odd number of symbols. Then by induction it follows that every term in this language \(\mathbb{L}_t\) consists of an odd number of symbols.
Returning to the domino analogy, the basis is like (i), where we show that the first member of the series falls—terms appearing in the top row always have an odd number of symbols. Then, for arbitrary \(k \), we assume that all the members of the series prior to the \(k^{th} \) fall—that terms appearing in rows prior to the \(k^{th} \) always have an odd number of symbols. We then reason that, given this, the \(k^{th} \) member falls—terms constructed out of others which, by assumption have an odd number of symbols, must themselves have an odd number of symbols. From this, (ii) follows by \texttt{end} and \texttt{unv}, and the general conclusion by mathematical induction.

The argument works for the same reasons as before: Insofar as a variable or constant is regarded as a single element of the vocabulary, it is automatic that variables and constants have an odd number of symbols. So terms in the top row have an odd number of symbols. Given this expressions in the next row of a tree, as \(f^2 xc \), or \(g^4 xyzc \), must have an odd number of symbols—one function symbol, plus two or four variables and constants. But if terms from rows zero and one of a tree have an odd number of symbols, by reasoning from the show step, terms constructed out of them must have an odd number of symbols as well. And so forth. So terms in all the rows have an odd number of symbols. Here is the other way to think about it: Suppose some terms in \(\mathcal{L}_t \) have an even number of symbols; then there must be a least row \(a \) where such terms appear. From the basis, this row \(a \) is not the top row. But since \(a \) is the least row at which terms have an even number of symbols, terms at all the earlier rows must have an odd number of symbols. But then, by reasoning as in the show step, terms at row \(a \) have an odd number of symbols. Reject the assumption, no terms in \(\mathcal{L}_t \) have an even number of symbols.

In practice, for this sort of case, it is common to reason, not based on the row in which a term appears, but on the number of function symbols in the term. This differs in detail, but not in effect, from what we have done. In our trees, it may be that a term in row two, combining one row zero and another from row one, has two function symbols, as \(f^2 xf^2 ab \), or it may be that a term in row two, combining terms from row one, has three function symbols, as \(f^2 f^2 xyf^2 ab \), or five, as \(g^4 f^2 xyf^2 abf^2 zwf^2 cd \), and so forth. However, it remains that the total number of function symbols in each of some terms \(s_1 \ldots s_n \) is fewer than the total number of function symbols in \(h^n s_1 \ldots s_n \); for the latter includes all the function symbols in \(s_1 \ldots s_n \) plus \(h^n \). Thus we may consider the series: terms with no function symbols, terms with one function symbol, and so forth—and be sure that for any \(n > 0 \), terms at stage \(n \) are constructed of ones before. Here is a sketch of the argument modified along these lines.

\[(D) \quad \text{	extit{Basis:}} \quad \text{If} \ t \ \text{has no function symbols, then it is a variable or a constant; in this case,} \ t \ \text{consists of just the one variable or constant symbol; so the total} \]
number of symbols in \(t \) is odd.

Assp: For any \(i \) such that \(0 \leq i < k \), the total number of symbols in \(t \) with \(i \) function symbols is odd.

Show: The total number of symbols in \(t \) with \(k \) function symbols is odd.

If \(t \) has \(k \) function symbols, then it is of the form \(f^2 t_1 t_2 \) or \(g^4 t_1 t_2 t_3 t_4 \) where \(t_1 \ldots t_4 \) have less than \(k \) function symbols. So there are two cases.

\((f) \) Suppose \(t \) is \(f^2 t_1 t_2 \). [As before...] the total number of symbols in \(t \) is odd.

\((g) \) Suppose \(t \) is \(g^4 t_1 t_2 t_3 t_4 \). [As before...] the total number of symbols in \(t \) is odd.

In either case, then, if \(t \) has \(k \) function symbols, then the total number of symbols in \(t \) is odd.

Indct: For any term \(t \) in \(L_t \), the total number of symbols in \(t \) is odd.

Here is the key point: If \(f^2 t_1 t_2 \) has \(k \) function symbols, the number of function symbols in \(t_1 \) and \(t_2 \) combined has to be \(k - 1 \); and since the number of function symbols in \(t_1 \) and in \(t_2 \) must individually be less than or equal to their combined total, the number of function symbols in \(t_1 \) and the number of function symbols in \(t_2 \) must also be less than \(k \). \(^1\) And similarly for \(g^4 t_1 t_2 t_3 t_4 \). That is why the inductive assumption applies to \(t_1 \ldots t_4 \), and reasoning in the cases can proceed as before.

8.2 Preliminary Examples

Let us turn now to a series of examples, meant to illustrate mathematical induction in a variety of contexts. Some of the examples have to do with our subject matter. But some do not. For now, the primary aim is to gain facility with the argument form. As you work through the cases, think about why the induction works. At first, examples may be difficult to follow. But they should be more clear by the end.

8.2.1 Case

First, a case where the conclusion may seem too obvious even to merit argument. We show that any (official) formula \(P \) of a quantificational language has an equal number

\(^1\)If the number of function symbols in \(t_1 \) is \(a \) and the number of function symbols in \(t_2 \) is \(b \) and the number of function symbols in \(f^2 t_1 t_2 \) is \(k \), then \(a + b + 1 = k \) so that \(a = k - b - 1 \) and \(b = k - a - 1 \) and both \(a < k \) and \(b < k \).
Chapter 8. Mathematical Induction

Induction Schemes

Schemes for mathematical induction sometimes appear in different forms. But for our purposes, these amount to the same thing. Suppose a series of objects, and consider the following.

I. (a) Show that P holds for the first member
 (b) Assume that P holds for members $< k$
 (c) Show P holds for member k
 (d) Conclude P holds for every member
 This is the form as we have seen it.

II. (a) Show that P holds for the first member
 (b) Assume that P holds for members $\leq j$
 (c) Show P holds for member $j + 1$
 (d) Conclude P holds for every member
 This comes to the same thing if we think of j as $k - 1$. Then P holds for members $\leq j$ just in case it holds for members $< k$.

III. (a) Show that Q holds for the first member
 (b) Assume that Q holds for member j
 (c) Show Q holds for member $j + 1$
 (d) Conclude Q holds for every member
 This comes to the same thing if we think of j as $k - 1$ and Q as the proposition that P holds for members $\leq j$.

And similarly the other forms follow from ours. So though in a given context one form may be more convenient than another, the forms are equivalent—or at least they are equivalent for sequences corresponding to the natural numbers.

Our form of induction (I) is known as “strong induction,” for its relatively strong inductive assumption, and the third as “weak.” The second is a sometimes-encountered blend of the other two. In PA the weak form is mirrored by axiom PA7; we use that axiom to prove a theorem like (II) in T13.11ah.

It turns out that mathematical induction can be applied not only to sequences corresponding to the natural numbers but also to sequences indexed by infinite ordinals. Though we wave in that direction in section 11.4, our main concerns will be restricted to series ordered by the natural numbers. The infinite ordinals are a topic for a course in set theory.

Still, a remark for the interested: The first infinite ordinal ω is the number of members in the series 0, 1, 2, But there is no finite number α such that $\alpha + 1 = \omega$—for any finite n, $n + 1$ is just another member of the series. So for a sequence ordered by infinite ordinals, our assumption that P holds for all the members $< k$ might hold though there is no $j = k - 1$ as in the second and third cases. So the equivalence between the forms breaks down for series that are so ordered.
of left and right parentheses. Again, the relevant definition FR is recursive. Its basis clause specifies formulas without operator symbols; these occur across the top row of our trees. FR then includes clauses which say how complex formulas are constructed out of those that are less complex. We take as our series, formulas with no operator symbols, formulas with one operator symbol, and so forth; thus the argument is by induction on the number of operator symbols. As in the above case with terms, this orders formulas so that we can use facts from the recursive definition in our reasoning. Let us say $L(P)$ is the number of left parentheses in P, and $R(P)$ is the number of right parentheses in P. Our goal is to show that for any formula P, $L(P) = R(P)$.

(E) **Basis:** If P has no operator symbols, then P is a sentence letter S or an atomic $R^n t_1 \ldots t_n$ for some relation symbol R^n and terms $t_1 \ldots t_n$. In either case, P has no parentheses. So $L(P) = 0$ and $R(P) = 0$; so $L(P) = R(P)$.

Assp: For any i such that $0 \leq i < k$, if P has i operator symbols, then $L(P) = R(P)$.

Show: For every P with k operator symbols, $L(P) = R(P)$.

If P has k operator symbols, then it is of the form $\sim A$, $(A \rightarrow B)$, or $\forall x A$ for variable x and formulas A and B with $< k$ operator symbols.

(\sim) Suppose P is $\sim A$. Then $L(P) = L(A)$ and $R(P) = R(A)$. By the inductive assumption $L(A) = R(A)$. So $L(P) = L(A) = R(A) = R(P)$; so $L(P) = R(P)$.

(\rightarrow) Suppose P is $(A \rightarrow B)$. Then $L(P) = L(A) + L(B) + 1$ and $R(P) = R(A) + R(B) + 1$. By assumption $L(A) = R(A)$, and $L(B) = R(B)$. So $L(P) = L(A) + L(B) + 1 = R(A) + R(B) + 1 = R(P)$; so $L(P) = R(P)$.

(\forall) Suppose P is $\forall x A$. Then as in the case for (\sim), $L(P) = L(A)$ and $R(P) = R(A)$. By assumption $L(A) = R(A)$. So $L(P) = L(A) = R(A) = R(P)$; so $L(P) = R(P)$.

Indct: For any formula P, $L(P) = R(P)$.

No doubt, you already knew that the numbers of left and right parentheses match. But, presumably, you knew it by reasoning of this very sort. Atomic formulas have no parentheses; after that, parentheses are always added in pairs; so, no matter how complex a formula may be, there is never a left parenthesis without a right to match. Reasoning by mathematical induction may thus seem perfectly natural! All we have done is to make explicit the various stages that are required to reach the conclusion.
But it is important to make the stages explicit, for many cases are not so obvious. Notice again: we understand formulas at stage k in terms of formulas from stages before—and so to which the assumption applies—and then put the results together for a conclusion about stage k. Here are some closely related problems.

*E8.1. For any (official) formula \mathcal{P} of a quantificational language, where $A(\mathcal{P})$ is the number of its atomic formulas, and $C(\mathcal{P})$ is the number of its arrow symbols, show that $A(\mathcal{P}) = C(\mathcal{P}) + 1$. Hint: Argue by induction on the number of operator symbols in \mathcal{P}. For the basis, when \mathcal{P} has no operator symbols, it is an atomic, so that $A(\mathcal{P}) = 1$ and $C(\mathcal{P}) = 0$. Then, as above, you will have cases for \neg, \to, and \forall. The hardest case is when \mathcal{P} is of the form $(A \to B)$.

E8.2. Consider now expressions which allow abbreviations (\lor), (\land), (\leftrightarrow), and (\exists). Where $A(\mathcal{P})$ is the number of atomic formulas in \mathcal{P} and $B(\mathcal{P})$ is the number of its binary operators, show that $A(\mathcal{P}) = B(\mathcal{P}) + 1$. Hint: now you have seven cases: (\neg), (\to), and (\forall) as before, but also cases for (\lor), (\land), (\leftrightarrow), and (\exists). This suggests the beauty of reasoning just about the minimal language!

8.2.2 Case

Mathematical induction is so-called because many applications occur in mathematics. It will be helpful to have a couple of examples of this sort. These should be illuminating—at least if you do not get bogged down in the details of the arithmetic! The series of odd positive integers is $1, 3, 5, 7, \ldots$ where the nth odd number is $2n - 1$. (The nth even number is $2n$; to find the nth odd, go to the even just above it, and come down one.) Let $S(n)$ be the sum of the first n odd positive integers. So $S(1) = 1$, $S(2) = 1 + 3 = 4$, $S(3) = 1 + 3 + 5 = 9$, $S(4) = 1 + 3 + 5 + 7 = 16$ and, in general,

$$S(n) = 1 + 3 + \ldots + (2n - 1)$$

We consider the series of these sums, $S(1)$, $S(2)$, and so forth, and show that, for any $n \geq 1$, $S(n) = n^2$. Observe that $S(1) = 1$, and for $n > 1$, $S(n) = S(n - 1) + (2n - 1)$. The sum of all the odd numbers up to the nth odd number is equal to the sum of all the odd numbers up to the $(n - 1)$th odd number plus the nth odd number—and since the nth odd number is $2n - 1$, $S(n) = S(n - 1) + (2n - 1)$. This gives us the required recursive connection between a member of the series and one before. Given this, the argument is straightforward. We argue by induction on the series of sums.

(F) **Basis:** If $n = 1$ then $S(n) = 1$ and $n^2 = 1$; so $S(n) = n^2$.

CHAPTER 8. MATHEMATICAL INDUCTION

Assp: For any \(i \), \(1 \leq i < k \), \(S(i) = i^2 \).

Show: \(S(k) = k^2 \). As above, \(S(k) = S(k-1) + (2k-1) \). But since \(k-1 < k \), by the inductive assumption, \(S(k-1) = (k-1)^2 \); so \(S(k) = (k-1)^2 + (2k-1) = (k^2 - 2k + 1) + (2k - 1) = k^2 \). So \(S(k) = k^2 \).

Indct: For any \(n \), \(S(n) = n^2 \).

As is often the case in mathematical arguments, the \(k^{th} \) element is completely determined by the one immediately before; so we do not need to consider any more than this one way that elements at stage \(k \) are determined by those at earlier stages.\(^2\) Surely this is an interesting result—though you might have wondered about it after testing initial cases, we have a demonstration that it holds for every \(n \).

*E8.3. Let \(S(n) \) be the sum of the first \(n \) even positive integers; that is \(S(n) = 2 + 4 + \ldots + 2n \). So \(S(1) = 2 \), \(S(2) = 2 + 4 = 6 \), \(S(3) = 2 + 4 + 6 = 12 \), and so forth. Show by mathematical induction that for any \(n \geq 1 \), \(S(n) = n(n + 1) \).

E8.4. Let \(S(n) \) be the sum of the first \(n \) positive integers; that is \(S(n) = 1 + 2 + 3 + \ldots + n \). So \(S(1) = 1 \), \(S(2) = 1 + 2 = 3 \), \(S(3) = 1 + 2 + 3 = 6 \), and so forth. Show by mathematical induction that for any \(n \geq 1 \), \(S(n) = n(n + 1)/2 \).

8.2.3 Case

Now a case from geometry. Where a polygon is \textit{convex} iff each of its interior angles is less than \(180^\circ \), we show that the sum of the interior angles in any convex polygon with \(n \) sides is equal to \((n - 2)180^\circ \). Let us consider polygons with three sides, polygons with four sides, polygons with five sides, and so forth. The key is that any \(n \)-sided polygon may be regarded as one with \(n - 1 \) sides combined with a triangle. Thus given an \(n \)-sided polygon \(P \),

\[\text{Construct a line connecting opposite ends of a pair of adjacent sides.} \]

\[\text{R} \]

\(^2\)Thus arguments by induction in arithmetic and geometry are often conveniently cast according to the third “weak” induction scheme from \textit{induction schemes} on page 396. But, as above, our standard scheme applies as well.
The result is a triangle Q and a figure R with \(n - 1 \) sides, where \(a = c + d \) and \(b = e + f \). The sum of the interior angles of P is the same as the sum of the interior angles of Q plus the sum of the interior angles of R. Once we realize this, our argument by mathematical induction is straightforward. For any convex \(n \)-sided polygon P, we show that the sum of the interior angles of P, \(S(P) = (n - 2)180^\circ \). The argument is by induction on the number \(n \) of sides of the polygon.

(G) **Basis:** If \(n = 3 \), then P is a triangle; but by reasoning as follows,

\[
\begin{array}{c}
d \quad c \\
\downarrow \\
b \\
\downarrow \\
a \quad f
\end{array}
\]

By definition, \(a + f = 180^\circ \); but \(b = d \) and if the horizontal lines are parallel, \(c = e \) and \(d + e = f \); so \(b + c = d + e = f \); so \(a + (b + c) = a + f = 180^\circ \).

the sum of the angles in a triangle is \(180^\circ \). So \(S(P) = 180 \). But \((3 - 2)180 = 180 \). So \(S(P) = (n - 2)180 \).

Assp: For any \(i, 3 \leq i < k \), every P with \(i \) sides has \(S(P) = (i - 2)180 \).

Show: For every P with \(k \) sides, \(S(P) = (k - 2)180 \).

For P with \(k \) sides, construct a line connecting opposite ends of a pair of adjacent sides; the result divides P into a triangle Q and polygon R with \(k - 1 \) sides such that \(S(P) = S(Q) + S(R) \). Q is a triangle, so \(S(Q) = 180 \). Since \(k - 1 < k \), the inductive assumption applies to R; so \(S(R) = ((k - 1) - 2)180 \). So \(S(P) = 180 + ((k - 1) - 2)180 = (1 + k - 1 - 2)180 = (k - 2)180 \). So \(S(P) = (k - 2)180 \).

Indct: For any \(n \)-sided polygon P, \(S(P) = (n - 2)180 \).

Perhaps reasoning in the basis brings back good (or bad) memories of high school geometry! But you do not have to worry about that. In this case, the sum of the angles of a figure with \(n \) sides is completely determined once we are given the sum of the angles for a figure with \(n - 1 \) sides. So we do not need to consider any more than this one way that elements at stage \(k \) are determined by those at earlier stages.

It is worth noting however that we do not have to see a \(k \)-sided polygon as composed of a triangle and a figure with \(k - 1 \) sides. For consider any diagonal of a \(k \)-sided polygon; it divides the figure into two, each with \(k > k \) sides. So the inductive assumption applies to each figure. So we might reason about the angles of a \(k \)-sided figure as the sum of angles of these arbitrary parts, as in the exercise that follows.

*E8.5. Using the fact that any diagonal of a \(k \)-sided polygon divides it into two polygons with \(k < k \) sides, show by mathematical induction that the sum of the
interior angles of any convex polygon P, $S(P) = (n - 2)180$. Hint: If a figure has k
 sides, then for some a such that both a and $k - a$ are at least two (>1), a diagonal
divides it into a figure Q with $a + 1$ sides (a sides from P, plus the diagonal), and
a figure R with $(k - a) + 1$ sides (the remaining sides from P, plus the diagonal).
From $a > 1$, $k + a > k + 1$ so that $k > k - a + 1$; and from $k - a > 1$, $k > a + 1$. So
the inductive assumption applies to both Q and R.

E8.6. Where P is a convex polygon with n sides, and $D(P)$ is the number of its
diagonals (where a diagonal is a line from one vertex to another that is not a side), show by
mathematical induction that any P with $n \geq 3$ sides is such that
$D(P) = \frac{n(n - 3)}{2}$.

Hint: For P with k sides, connecting the vertices of adjacent sides divides P
into a triangle Q and a convex figure R with $k - 1$ sides. Then the diagonals
are all the diagonals of R, plus the base of the triangle, plus $k - 3$ lines from
vertices not belonging to the triangle to the apex of the triangle (P has k vertices, and diagonals from the apex go to all but 3 of them). Also, in case
your algebra is rusty, $(k - 1)(k - 4) = k^2 - 5k + 4$.

8.2.4 Case

Finally we take up a couple of cases of real interest for our purposes—though we limit
consideration just to sentential forms. We have seen cases structured by the recursive
definitions TR and FR. Here is one that uses ST. Say a formula is in normal
form iff its only operators are \lor, \land, and \lnot, and the only instances of \lnot are immediately
 prefixed to atomics (of course, any normal form is an abbreviation of a formula whose
only operators are \rightarrow and \lnot). Where P is a normal form, let P' be like P except that
\lor and \land are interchanged and, for a sentence letter δ, δ and $\lnot\delta$ are interchanged.
Thus, for example, if P is an atomic A, then P' is $\lnot A$, if P is $(A \lor (\lnot B \land C))$, then
P' is $(\lnot A \land (B \lor \lnot C))$. We show that if P is in normal form, then $I[P] = T$ iff
$I[P'] = T$. Thus, for the case we have just seen,

$I[(\lnot (A \lor (\lnot B \land C)))] = T$ iff $I[(\lnot A \land (B \lor \lnot C))] = T$

So the result works like a generalized semantic version of DeM in combination with
DN: When you push a negation into a normal form, \land flips to \lor, \lor flips to \land, and
atomics switch between δ and $\lnot\delta$. Our argument is by induction on the number of
operators in a formula P.

(H) Basis: Suppose P has no operators and is in normal form. Then P is an
atomic δ; so $\lnot P = \lnot \delta$ and $P' = \lnot \delta$. So $I[\lnot P] = T$ iff $I[\lnot \delta] = T$;
iff \([\mathcal{P}'] = \top\). So if \(\mathcal{P}\) has no operators then if it is in normal form,
\([\neg \mathcal{P}] = \top\) iff \([\mathcal{P}'] = \top\).

Assp: For any \(i, 0 \leq i < k\), if \(\mathcal{P}\) has \(i\) operator symbols then if it is in normal form,
\([\neg \mathcal{P}] = \top\) iff \([\mathcal{P}'] = \top\).

Show: If \(\mathcal{P}\) has \(k\) operator symbols then if it is in normal form,
\([\neg \mathcal{P}] = \top\) iff
\([\mathcal{P}'] = \top\).

Suppose \(\mathcal{P}\) is in normal form and has \(k\) operator symbols. Then \(\mathcal{P}\) is
\(\neg \delta\), \(\mathcal{A} \lor \mathcal{B}\), or \(\mathcal{A} \land \mathcal{B}\) where \(\delta\) is atomic and \(\mathcal{A}\) and \(\mathcal{B}\) are normal forms with less than \(k\) operator symbols. So there are three cases.

\((\sim)\) \(\mathcal{P}\) is \(\sim \delta\). Then \(\sim \mathcal{P}\) is \(\sim \sim \delta\), and \(\mathcal{P}'\) is \(\delta\). So \([\sim \mathcal{P}] = \top\) iff \([\sim \sim \delta] = \top\);
by \(\text{ST}(\sim)\) iff \([\delta] \neq \top\); by \(\text{ST}(\sim)\) again iff
\([\mathcal{P}'] = \top\); iff \([\mathcal{P}'] = \top\). So
\([\sim \mathcal{P}] = \top\) iff \([\mathcal{P}'] = \top\).

\((\lor)\) \(\mathcal{P}\) is \(\mathcal{A} \lor \mathcal{B}\). Then \(\sim \mathcal{P}\) is \(\sim (\mathcal{A} \lor \mathcal{B})\), and \(\mathcal{P}'\) is \(\mathcal{A'} \land \mathcal{B'}\). So
\([\sim \mathcal{P}] = \top\) iff
\([\sim (\mathcal{A} \lor \mathcal{B})] = \top\); by \(\text{ST}(\sim)\) iff \([\mathcal{A} \lor \mathcal{B}] \neq \top\); by \(\text{ST}(\lor)\) iff \([\mathcal{A}] \neq \top\) and
\([\mathcal{B}] \neq \top\); by \(\text{ST}(\sim)\) iff
\([\sim \mathcal{A}] = \top\) and
\([\sim \mathcal{B}] = \top\); by assumption iff
\([\mathcal{A'}] = \top\) and
\([\mathcal{B'}] = \top\); by \(\text{ST}(\lor)\) iff
\([\mathcal{A'} \land \mathcal{B'}] = \top\); iff \([\mathcal{P}'] = \top\). So
\([\sim \mathcal{P}] = \top\) iff
\([\mathcal{P}'] = \top\).

\((\land)\) Homework.

If \(\mathcal{P}\) has \(k\) operator symbols then if it is in normal form,
\([\neg \mathcal{P}] = \top\) iff
\([\mathcal{P}'] = \top\).

Indct: For any \(\mathcal{P}\), if it is in normal form then
\([\neg \mathcal{P}] = \top\) iff
\([\mathcal{P}'] = \top\).

Since the thesis to be proved is a conditional, we obtain that conditional for the basis and show. Similarly, the *assumption* is a conditional that applies to formulas with less than \(k\) operator symbols that are in normal form. Thus, for application of the assumption at the show step, it is important not only that \(\mathcal{A}\) and \(\mathcal{B}\) have less than \(k\) operator symbols, but that they are in normal form. If they were not, then the inductive assumption would not apply to them. The overall pattern of the show step is as usual: In the cases, we break down to parts to which the assumption applies, apply the assumption, and put the resultant parts back together. In the second case, we assert that if \(\mathcal{P}\) is \(\mathcal{A} \lor \mathcal{B}\), then \(\mathcal{P}'\) is \(\mathcal{A'} \land \mathcal{B'}\). Here \(\mathcal{A}\) and \(\mathcal{B}\) may be complex. We do the conversion on \(\mathcal{P}\) iff we do the conversion on its main operator, and then do the conversion on its parts. And similarly for \((\land)\). It is this which enables us to feed into the inductive assumption. Notice that it is convenient to cast reasoning in the “collapsed” biconditional style.

Where \(\mathcal{P}\) is any form whose operators are \(\sim\), \(\lor\), \(\land\), or \(\rightarrow\), we now show that \(\mathcal{P}\) is equivalent to a normal form. Consider a transform \(\mathcal{T}_{\mathcal{N}}\) defined as follows:
For atomic \mathcal{S}, $\mathcal{S}_n = \mathcal{S}$; for arbitrary formulas \mathcal{A} and \mathcal{B} with just those operators, $(\mathcal{A} \lor \mathcal{B})_n = (\mathcal{A}_n \lor \mathcal{B}_n)$, $(\mathcal{A} \land \mathcal{B})_n = (\mathcal{A}_n \land \mathcal{B}_n)$, and with prime defined as above, $(\neg \mathcal{A} \lor \mathcal{B})_n = ([\mathcal{A}_n]' \lor \mathcal{B}_n)'$, and $[(\neg \mathcal{A})'] = [\mathcal{A}_n]'$. To see how this works, consider how you would construct \mathcal{P}_n on a tree.

These trees work very much like unabbreviating trees from section 2.2.3. For each \mathcal{P} on the left, \mathcal{P}_n is on the right. So for example $(B \lor A)_n$ is just $B \lor A$; then $[(\neg (B \lor A))_n] = [(B \lor A)_n]' = [B \lor A]' = \neg B \land \neg A$. The conversion of a complex formula depends on the conversion of its parts. So starting with the parts, we construct the transform of the whole, one component at a time. Observe that, at each stage of the right-hand tree, the result is a normal form.

We show by mathematical induction on the number of operators in \mathcal{P} that \mathcal{P}_n must be a normal form and that $\mathcal{I}[\mathcal{P}] = \mathcal{T}$ iff $\mathcal{I}[\mathcal{P}_n] = \mathcal{T}$. For the argument it will be important, not only to use the inductive assumption, but also the result from above that for any \mathcal{P} in normal form, $\mathcal{I}[\neg \mathcal{P}] = \mathcal{T}$ iff $\mathcal{I}[\mathcal{P}'] = \mathcal{T}$. In order to apply this result, it will be crucial that every \mathcal{P}_n is in normal form. Let \mathcal{P} be any formula with just operators \neg, \lor, \land and \to. Here is an outline of the argument, with parts left as homework.

T8.1. For any \mathcal{P} whose operators are \neg, \land, \lor and \to, \mathcal{P}_n is in normal form and $\mathcal{I}[\mathcal{P}] = \mathcal{T}$ iff $\mathcal{I}[\mathcal{P}_n] = \mathcal{T}$.

Basis: If \mathcal{P} is an atomic \mathcal{S}, then $\mathcal{P}_n = \mathcal{S}$. An atomic \mathcal{S} is in normal form; so $\mathcal{P}_n = \mathcal{S}$ is in normal form. And $\mathcal{I}[\mathcal{P}] = \mathcal{T}$ iff $\mathcal{I}[\mathcal{S}] = \mathcal{T}$; iff $\mathcal{I}[\mathcal{P}_n] = \mathcal{T}$.

Assp: For any $i, 0 \leq i < k$ if \mathcal{P} has i operator symbols, then \mathcal{P}_n is in normal form and $\mathcal{I}[\mathcal{P}] = \mathcal{T}$ iff $\mathcal{I}[\mathcal{P}_n] = \mathcal{T}$.

Show: If \mathcal{P} has k operator symbols, then \mathcal{P}_n is in normal form and $\mathcal{I}[\mathcal{P}] = \mathcal{T}$ iff $\mathcal{I}[\mathcal{P}_n] = \mathcal{T}$.

If \mathcal{P} has k operator symbols, then \mathcal{P} is of the form $\neg \mathcal{A}, \mathcal{A} \land \mathcal{B}, \mathcal{A} \lor \mathcal{B}$, or $\mathcal{A} \to \mathcal{B}$ for formulas \mathcal{A} and \mathcal{B} with less than k operator symbols.
(\sim) \mathcal{P} is \sim \mathcal{A}. Then \mathcal{P}_N = (\mathcal{A}_N)''. By assumption \mathcal{A}_N is in normal form; so since the prime operation converts a normal form to another normal form, \([\mathcal{A}_N]'' is in normal form; so \(\mathcal{P}_N'' is in normal form. By assumption \(\mathcal{A}'' is in normal form; so since the prime operation converts a normal form to another normal form, \(\mathcal{P}_N'' is in normal form. So \(\mathcal{P}_N'' is in normal form.

\(\land \) Homework.

\(\lor \) Homework.

\(\rightarrow \) Homework.

In any case, if \(\mathcal{P} has k operator symbols, \(\mathcal{P}_N'' is in normal form and \(\mathcal{P}_N'' is in normal form.

Indct: For any \(\mathcal{P} , \mathcal{P}_N'' is in normal form and \(\mathcal{P}_N'' is in normal form.

The inductive assumption applies just to formulas with \(k operator symbols. So it applies just to formulas on the order of \(\mathcal{A}'' and \(\mathcal{B}'' . The result from before applies to any formulas in normal form. So it applies to \(\mathcal{A}_N'' once we have determined that \(\mathcal{A}_N'' is in normal form.

E8.7. Complete induction (H) to show that every \(\mathcal{P} in normal form is such that \(\mathcal{P}'' = \mathcal{P}_N'' is in normal form and \(\mathcal{P}'' = \mathcal{P}_N'' is in normal form. You should set up the whole induction with statements for the basis, assumption and show parts. But then you may appeal to the text for parts already done, as the text appeals to homework. Hint: If \(\mathcal{P} = (\mathcal{A} \land \mathcal{B}) then \(\mathcal{P}'' = (\mathcal{A}' \lor \mathcal{B}'').

E8.8. Complete T8.1 to show that any \(\mathcal{P} with just operators \sim, \land, \lor and \rightarrow has a \(\mathcal{P}_N'' is in normal form such that \(\mathcal{P}_N'' is in normal form. Again, you should set up the whole induction with statements for the basis, assumption and show parts. But then you may appeal to the text for parts already done, as the text appeals to homework.

*E8.9. Show that for any \(\mathcal{P} in normal form, \vdash_{ND^+} \sim \mathcal{P} \leftrightarrow \mathcal{P}'. Hint: the reasoning is parallel to the semantic case, but now about what you can derive.

E8.10. Use the result from the previous problem to show that for any \(\mathcal{P} whose operators are \sim, \lor, \land and \rightarrow , \mathcal{P}_N'' is in normal form and \(\vdash_{ND^+} \mathcal{P} \leftrightarrow \mathcal{P}_N''. Hint: again the reasoning is parallel to the semantic case, but now about what you can derive.
E8.11. Let \(|\mathcal{S}| = T\) for every sentence letter \(\mathcal{S}\). Where \(\mathcal{P}\) is any sentential formula whose only operators are \(\rightarrow, \land, \lor\) and \(\leftrightarrow\), show by induction on the number of operators in \(\mathcal{P}\) that \(|\mathcal{P}| = T\). Use this result to show that \(\not\vDash \sim \mathcal{P}\).

8.2.5 Case

Here is a result like one we will seek later for the quantificational case. It depends on the (recursive) notion of a derivation. Because of their relative simplicity, we will focus on axiomatic derivations. If we were working with “derivations” of the sort described in the diagram on page 73, then we could reason by induction on the row in which a formula appears. Formulas in the top row result directly as axioms, those in the next row from ones before with MP; and so forth. But our official notion of an axiomatic derivation is not this; in an official axiomatic derivation, lines are ordered, where each line is either an axiom, a premise, or follows from previous lines by a rule. But this is sufficient for us to reason about one line of an axiomatic derivation based on ones that come before; that is, we reason by induction on the line number of a derivation. Recall that \(\vDash_{\text{ADs}} \mathcal{P}\) just in case there is a derivation of \(\mathcal{P}\) in the sentential fragment of AD—there is a derivation using just A1, A2, A3 and MP from definition ADs. We show that if \(\mathcal{P}\) is a theorem of \(\text{ADs}\), then \(\mathcal{P}\) is a tautology: if \(\vDash_{\text{ADs}} \mathcal{P}\) then \(\vDash \mathcal{P}\). Thus we establish the (weak) soundness of \(\text{ADs}\).

Suppose \(\vDash_{\text{ADs}} \mathcal{P}\); then there is an \(\text{ADs}\) derivation \(\langle A_1, A_2 \ldots A_n \rangle\) of \(\mathcal{P}\) from no premises, with \(A_n = \mathcal{P}\). By induction on the line numbers of this derivation, we show that for any \(j, \vDash_{\mathcal{I}} A_j\). The case when \(j = n\) is the desired result.

\(J\) Basis: Since \(\langle A_1, A_2 \ldots A_n \rangle\) is a derivation from no premises, \(A_1\) can only be an instance of A1, A2 or A3.

\(A1\) Say \(A_1\) is an instance of A1 and so of the form \(\mathcal{P} \rightarrow (Q \rightarrow \mathcal{P})\).
Suppose \(\not\vDash_{\mathcal{I}} A_1\); then \(\not\vDash_{\mathcal{I}} \mathcal{P} \rightarrow (Q \rightarrow \mathcal{P})\); so by SV, there is an \(I\) such that \(|\mathcal{I} \mathcal{P} \rightarrow (Q \rightarrow \mathcal{P})| \neq T\); let \(J\) be a particular interpretation of this sort; then \(J[\mathcal{P} \rightarrow (Q \rightarrow \mathcal{P})] \neq T\); so by ST(\(\rightarrow\)), \(J[\mathcal{P}] = T\) and \(J[Q \rightarrow \mathcal{P}] \neq T\); from the latter, by ST(\(\rightarrow\)), \(J[Q] = T\) and \(J[\mathcal{P}] \neq T\). This is impossible; reject the assumption: \(\vDash_{\mathcal{I}} A_1\).

\(A2\) Similarly.

\(A3\) Similarly.

Assp: For any \(i, 1 \leq i < k, \vDash_{\mathcal{I}} A_i\).

Show: \(\vDash_{\mathcal{I}} A_k\).
A_k is either an axiom or arises from previous lines by MP. If A_k is an axiom then, as in the basis, \(\models A_k \). So suppose A_k arises from previous lines by MP. In this case, the picture is something like this:

\begin{align*}
 a. & \quad B \rightarrow C \\
 b. & \quad B \\
 k. & \quad C \quad a, b \text{ MP}
\end{align*}

where \(a, b < k \) and C is A_k. Suppose \(\not\models A_k \); then \(\not\models C \) and by SV there is some I such that I[C] \(\neq T \); let J be a particular interpretation of this sort; then J[C] \(\neq T \). But by assumption, \(\models B \) and \(\models B \rightarrow C \); so by SV, for any I, I[B] = T and I[B \rightarrow C] = T; so J[B] = T and J[B \rightarrow C] = T; from the latter, by ST(\(\rightarrow \)), J[B] \(\neq T \) or J[C] = T; so J[C] = T. This is impossible; reject the assumption: \(\not\models A_k \).

Indct: For any line \(j \) of the derivation \(\models A_j \).

We might have continued as above for (A2) and (A3). Alternatively, since we have already done the work, we might have appealed directly to T7.2s, T7.3s and T7.4s for (A1), (A2) and (A3) respectively. From the case when \(A_j = P \) we have \(\models P \). This result is a precursor to one we will obtain in chapter 10. There, we will show strong soundness for the complete system AD, if \(\Gamma \models AD P \), then \(\Gamma \models P \). This tells us that our derivation system can never lead us astray. There is no situation where a derivation moves from premises that are true to a conclusion that is not. Still, what we have is interesting in its own right: It is a first connection between the syntactic notions associated with derivations, and the semantic notions of validity and truth (and it reflects informal reasoning sketched on page 215).

E8.12. Consider the system A* for exercise E3.4 and take MP in its primitive form. Show by mathematical induction that A* is weakly sound. That is show that if \(\models_{A^*} P \) then \(\models P \).

E8.13. Modify your argument for E8.12 to show that A* is strongly sound. That is, modify the argument to show that if \(\models_{A^*} P \) then \(\models P \). You may appeal to reasoning from the previous problem where it is applicable. Hint: When premises are allowed, A_j is either an axiom, a premise, or arises by a rule. So there is one additional case in the basis; but that case is trivial—if all of the premises are true, and A_j is a premise, then A_j cannot be false. And your reasoning for the show will be modified; now the assumption gives you \(\Gamma \models (B \land \sim C) \) and \(\Gamma \models B \) and your goal is to show \(\Gamma \models C \).
E8.14. Modify table $T(\sim)$ to a $T'(\sim)$ that has $I[\sim P] = F$ both when $I[P] = T$ and $I[P] = F$; let table $T(\rightarrow)$ and so $ST(\rightarrow)$ remain as before. Say a formula is select iff it is true on every interpretation given the revised tables. Show by mathematical induction that every consequence in AD of MP with A1 and A2 alone is select. Then by a table show that A3 is not select. It follows that there is no derivation of A3 from A1 and A2 alone (this is an independence result of the sort discussed in section 11.3). Hint: your induction may be a simple modification of argument (J) from above.

E8.15. Where t is a term of L_q, let $X(t)$ be the sum of all the superscripts in t and $Y(t)$ be the number of symbols in t. So, for example, if t is z, then $X(t) = 0$ and $Y(t) = 1$; if t is $g^1 f^2 c x$, then $X(t) = 3$ and $Y(t) = 4$. By induction on the number of function symbols in t, show that for any t in L_q, $X(t) + 1 = Y(t)$.

E8.16. Show by mathematical induction that for any integer $n \geq 0$, 3^n is odd—that is that for any $n \geq 0$, there is some a such that $3^n = 2a - 1$.

E8.17. Show by mathematical induction that for any $n \geq 3$, an n-sided convex polygon P may be decomposed into $n - 2$ triangles (where a triangle is “decomposed” into itself). So, for example, a five-sided figure decomposes into three triangles.

E8.18. If a Hershey bar has n squares, show by mathematical induction that it takes $n - 1$ breaks (along the lines) to divide it into its individual squares.

E8.19. Show by mathematical induction that at a recent convention the number of logicians who shook hands an odd number of times is even. Assume that 0 is even. Hints: Reason by induction on the number of handshakes at the convention. At any stage n, let $O(n)$ be the number of people who have shaken hands an odd number of times. Your task is to show that for any n, $O(n)$ is even. You will want
to consider cases for what happens to $O(n)$ when (i) someone who has already shaken hands an odd number of times shakes with someone who has shaken an odd number of times; (ii) someone who has already shaken hands an even number of times shakes with someone who has shaken an even number of times; and (iii) someone who has already shaken hands an odd number of times shakes with someone who has shaken an even number of times.

E8.20. For any $n \geq 1$, given a $2^n \times 2^n$ checkerboard with any one square deleted, show by mathematical induction that it is possible to cover the board with 3-square L-shaped pieces. For example, a 4×4 board with a corner deleted could be covered as follows,

![Checkerboard Diagram]

Hint: The basis is easy—a 2×2 board with one square missing is covered by a single L-shaped piece. The trick is to see how an arbitrary 2^k board with one square missing can be constructed out of an L-shaped piece and 2^{k-1} size boards with a square missing.

E8.21. Limit attention to sentential forms whose only operators are \sim and \leftrightarrow. Show that under any (sub)formula on a table with at least four rows is an even number of Ts and Fs. Hints: Reason by induction on the number of operators in P where P is a (sub)formula on a table with at least four rows—so for atomics you may be sure that a table with at least four rows has an even number of Ts and Fs. The show step has cases for \sim and \leftrightarrow. The former is easy, the latter is not. Here is a trick that may help (which I learned from a student): Let each T be assigned an even number and each F an odd; assign $A \leftrightarrow B$ the sum of the numbers assigned to A and B; then consider the sum of the numbers in columns of your table.
E8.22. After a few days studying mathematical logic, Zeno hits upon what he thinks is conclusive proof that all is one. He argues by mathematical induction that all the members of any \(n \)-tuple are identical. From this, he considers the \(n \)-tuple consisting of you and Mount Rushmore, and concludes that you are identical; similarly for you and Donald Trump, and so forth. What is the matter with Zeno’s reasoning? Hint: Is the reasoning at the show stage truly arbitrary? does it apply to any \(k \)?

\textit{Basis:} If \(A \) is a 1-tuple, then it is of the sort \(\langle o \rangle \), and every member of \(\langle o \rangle \) is identical. So every member of \(A \) is identical.

\textit{Assp:} For any \(i \), \(1 \leq i < k \), all the members of any \(i \)-tuple are identical.

\textit{Show:} All the members of any \(k \)-tuple are identical.

If \(A \) is a \(k \)-tuple, then it is of the form \(\langle o_1 \ldots o_{k-2}, o_{k-1}, o_k \rangle \). But both \(\langle o_1 \ldots o_{k-2}, o_{k-1} \rangle \) and \(\langle o_1 \ldots o_{k-2}, o_k \rangle \) are \(k-1 \) tuples; so by the inductive assumption, all their members are identical; but these have \(o_1 \) in common and together include all the members of \(A \); so all the members of \(A \) are identical to \(o_1 \) and so to one another.

\textit{Indct:} All the members of any \(A \) are identical.

8.3 Further Examples (for Part III)

We continue our series of examples, moving now to quantificational cases, and to some theorems that will be useful especially if you go on to consider part III.

8.3.1 Case

For variables \(x \) and \(v \), where \(v \) does not appear in term \(t \), it should be obvious that \([t^x_v]_x^v = t \). If we replace every instance of \(x \) with \(v \), and then all the instances of \(v \) with \(x \), we get back to where we started. The restriction that \(v \) not appear in \(t \) is required to prevent putting back instances of \(x \) where there were none in the original—as \(f x v v^v_x \) is \(f v v \), but then \(f v v^v_x \) is \(f xx \). We demonstrate that when \(v \) does not appear in \(t \), \([t^x_v]^v_x = t \) more rigorously by a simple induction on the number of function symbols in \(t \).

(K) \textit{Basis:} If \(t \) has no function symbols then it is a variable or a constant. Suppose \(v \) does not appear in \(t \). If \(t \) is a variable or a constant other than \(x \), then \(t^x_v = t \) (nothing is replaced); and since \(v \) does not appear in \(t \), \(t^v_x = t \)
(nothing is replaced); so $[t^x]_v^v = t^v_X = t$. If t is the variable x, then $t^x_X = v$; and $v^v = v = x$. So if v does not appear in t then $[t^x]_v^v = t$.

Asp: For any i, $0 \leq i < k$, if t has i function symbols and v does not appear in t, then $[t^x]_v^v = t$.

Show: If t has k function symbols and v does not appear in t, then $[t^x]_v^v = t$.

If t has k function symbols, then it is of the form, $h^n \delta_1 \ldots \delta_n$ for some function symbol h^n and terms $\delta_1 \ldots \delta_n$ each of which has $= k$ function symbols. Suppose v does not appear in t; then v does not appear in any of $\delta_1 \ldots \delta_n$; so the inductive assumption applies to $\delta_1 \ldots \delta_n$; so by assumption $[\delta_1]_v^v = \delta_1$, and ... and $[\delta_n]_v^v = \delta_n$. But $[t]_v^v = [h^n \delta_1 \ldots \delta_n]_v^v$; and since replacements only occur within the terms, this is $h^n[\delta_1]_v^v \ldots [\delta_n]_v^v$, and by assumption this is $h^n \delta_1 \ldots \delta_n = t$.

So $[t^x]_v^v = t$.

Indct: For any term t, if v does not appear in t, $[t^x]_v^v = t$.

Consider a concrete application of the point that replacements occur only within the terms. We find $[f^2 x b]_v^v$ if we find $[x]_v^v$ and $[b]_v^v$ and compose the whole from them—for the function symbol f^2 is not affected by substitutions on the variables. It is also worthwhile to note the place where it matters that v is not a variable in t: In the basis case where t is a variable other than x, $t^v = t$ insofar as nothing is replaced; but suppose t is v; then $t^v_X = x \neq t$, and we do not achieve the desired result.

This result can be extended to one with application to formulas. If v is not free in a formula \mathcal{P} and v is free for x in \mathcal{P}, then $[\mathcal{P}^x]_v^v = \mathcal{P}$. We require the restriction that v is not free in \mathcal{P} for the same reason as before: if v were free in \mathcal{P}, we might end up with instances of x where there are none in the original—as R_{xx}^{vv} is R_{vv}, but then R_{vv}^{vv} is R_{xx}. And we need the restriction that v is free for x in \mathcal{P} so that once we have \mathcal{P}^x_v, instances of x will go back for all the instances of v. So for example, $\forall v Rxv^{x} = \forall v Rvv$, but then remains the same when x is substituted for free instances of v. Here is the basic structure of the argument, with parts left for homework.

T8.2. For variables x and v, if v is not free in a formula \mathcal{P} and v is free for x in \mathcal{P}, then $[\mathcal{P}^x]_v^v = \mathcal{P}$.

Basis: If \mathcal{P} has no operator symbols, then it is a sentence letter S or an atomic of the form $\mathcal{R}^n t_1 \ldots t_n$ for some relation symbol \mathcal{R}^n and terms $t_1 \ldots t_n$.
Suppose v is not free in \mathcal{P} and v is free for x in \mathcal{P}. (i) If \mathcal{P} is \emptyset then it has no variables; so $\mathcal{P}^x_v = \mathcal{P}$ and $\mathcal{P}^v_x = \mathcal{P}$. So $[\mathcal{P}^x_v]_x^v = \mathcal{P}^v_x = \mathcal{P}$. (ii) \mathcal{P} is $\mathcal{R}^n t_1 \ldots t_n$. Since v is not free in \mathcal{P}, v does not appear at all in \mathcal{P} or its terms; so by the previous result (K), $[t_1^x]_{v_1}^v = t_1$ and $\ldots [t_n^x]_{v_n}^v = t_n$. So $[\mathcal{P}^x_v]_x^v = [\mathcal{R}^n t_1 \ldots t_n]_{v_1}^v = \mathcal{R}^n [t_1^x]_{v_1}^v \ldots [t_n^x]_{v_n}^v = \mathcal{R}^n t_1 \ldots t_n = \mathcal{P}$. So if v is not free in \mathcal{P} and v is free for x in \mathcal{P} then $[\mathcal{P}^x_v]_x^v = \mathcal{P}$.

Assp: For any $i, 0 \leq i < k$, any \mathcal{P} with i operator symbols is such that if v is not free in \mathcal{P} and v is free for x in \mathcal{P}, then $[\mathcal{P}^x_v]_x^v = \mathcal{P}$.

Show: Any \mathcal{P} with k operator symbols is such that if v is not free in \mathcal{P} and v is free for x in \mathcal{P}, then $[\mathcal{P}^x_v]_x^v = \mathcal{P}$.

If \mathcal{P} has k operator symbols, then it is of the form $\neg \mathcal{A}$, $(\mathcal{A} \rightarrow \mathcal{B})$ or $\forall w \mathcal{A}$ for some variable w and formulas \mathcal{A} and \mathcal{B} with $< k$ operator symbols. Suppose v is not free in \mathcal{P} and v is free for x in \mathcal{P}.

(\sim) \mathcal{P} is $\neg \mathcal{A}$. Then $[\mathcal{P}^x_v]_x^v = [(\neg \mathcal{A})^x]_{v_1}^v = \neg ([\mathcal{A}^x]_{v_1}^v)$. Since v is not free in \mathcal{P}, v is not free in \mathcal{A}; and since v is free for x in \mathcal{P}, v is free for x in \mathcal{A}. So the assumption applies to \mathcal{A} and...[homework].

(\rightarrow) \mathcal{P} is $\forall w \mathcal{A}$. Either x is free in \mathcal{P} or not. (i) If x is not free in \mathcal{P}, then $\mathcal{P}^x = \mathcal{P}$ and since v is not free in \mathcal{P}, $\mathcal{P}^v_x = \mathcal{P}$; so $[\mathcal{P}^x_v]_x^v = \mathcal{P}^v_x = \mathcal{P}$. (ii) Suppose x is free in $\mathcal{P} = \forall w \mathcal{A}$. Then x is other than w; and since v is free for x in \mathcal{P}, v is other than w; so the quantifier does not affect the replacements, and $[\mathcal{P}^x_v]_x^v = \forall w ([\mathcal{A}^x]_{v_1}^v)$. Since v is not free in \mathcal{P} and is not w, v is not free in \mathcal{A}; and since v is free for x in \mathcal{P}, v is free for x in \mathcal{A}. So the inductive assumption applies to \mathcal{A}; so $[\mathcal{A}^x]_{v_1}^v = \mathcal{A}$; so $[\mathcal{P}^x_v]_x^v = \forall w ([\mathcal{A}^x]_{v_1}^v) = \forall w \mathcal{A} = \mathcal{P}$.

If \mathcal{P} has k operator symbols, if v is not free in \mathcal{P} and v is free for x in \mathcal{P}, then $[\mathcal{P}^x_v]_x^v = \mathcal{P}$.

Indct: For any \mathcal{P}, if v is not free in \mathcal{P} and v is free for x in \mathcal{P}, then $[\mathcal{P}^x_v]_x^v = \mathcal{P}$.

There are a few things to note about this argument. First, again, we have to be careful that the formulas \mathcal{A} and \mathcal{B} of which \mathcal{P} is composed are in fact of the sort to which the inductive assumption applies. In this case, the requirement is not only that \mathcal{A} and \mathcal{B} have $< k$ operator symbols, but that they satisfy the additional assumptions, that v is not free but is free for x. It is easy to see that this condition obtains in the cases for \neg and \rightarrow, but it is relatively complicated in the case for \forall, where there is interaction with another quantifier. Observe also that we cannot assume that the
arbitrary quantifier has the same variable as \(x \) or \(v \). In fact, it is because the variable may be different that we are able to reason the way we do. Finally, observe that the arguments of this section for (K) and T8.2 are a “linked pair” in the sense that the result of the first for terms is required for the basis of the next for formulas. This pattern repeats in the next cases. Here is a related theorem that works on this pattern.

T8.3. Where constant \(c \) does not appear in formula \(\mathcal{P} \), \([\mathcal{P}_v]_c = \mathcal{P}_v\).

*E8.23. Provide a complete argument for T8.2, completing cases for \((\sim)\) and \((\rightarrow)\).
You should set up the complete induction, but may appeal to the text at parts that are already completed, just as the text appeals to homework.

*E8.24. Show T8.3. Hint: You will need arguments parallel to (K) and then T8.2.

8.3.2 Case

This example develops another pair of linked results which may seem obvious. Even so, the reasoning is instructive, and we will need the results for things to come. First,

T8.4. For any interpretation \(I \), variable assignments \(d \) and \(h \), and term \(t \), if \(d[x] = h[x] \) for every variable \(x \) in \(t \), then \(l_d[t] = l_h[t] \).

If variable assignments agree at least on assignments to the variables in \(t \), then corresponding term assignments agree on the assignment to \(t \). The reasoning, as one might expect, is by induction on the number of function symbols in \(t \).

Basis: If \(t \) has no function symbols, then it is a variable \(x \) or a constant \(c \). Suppose \(d[x] = h[x] \) for every variable \(x \) in \(t \). (i) Say \(t \) is a constant \(c \); then by \(\text{TA}(c) \), \(l_d[c] = l[c] \) and \(l_h[c] = l[c] \). So \(l_d[t] = l_d[c] = l[c] = l_h[c] = l_h[t] \).
(ii) Say \(t \) is a variable \(x \); then \(d[x] = h[x] \); and by \(\text{TA}(v) \), \(l_d[x] = d[x] \) and \(l_h[x] = h[x] \). So \(l_d[t] = l_d[x] = d[x] = h[x] = l_h[x] = l_h[t] \). So if \(d[x] = h[x] \) for every variable \(x \) in \(t \), then \(l_d[t] = l_h[t] \).

Assp: For any \(i, 0 \leq i < k \), if \(t \) has \(i \) function symbols, and \(d[x] = h[x] \) for every variable \(x \) in \(t \), then \(l_d[t] = l_h[t] \).

Show: If \(t \) has \(k \) function symbols, and \(d[x] = h[x] \) for every variable \(x \) in \(t \), then \(l_d[t] = l_h[t] \).

If \(t \) has \(k \) function symbols, then it is of the form \(h^n \cdot \alpha \ldots \cdot \alpha \) for some function symbol \(h^n \) and terms \(\alpha \ldots \cdot \alpha \) with \(< k \) function symbols. Suppose \(d[x] = h[x] \) for every variable \(x \) in \(t \); then \(d[x] = h[x] \) for every
variable \(x \) in \(s_1 \ldots s_n \); so the inductive assumption applies to \(s_1 \ldots s_n \); so \(t_0[s_1] = h_1[s_1] \), and \(\ldots \) and \(t_0[s_n] = h_n[s_n] \). So with two applications of TA(f), \(t_0[t] = t_0[h^n s_1 \ldots s_n] = l[h^n](t_0[s_1] \ldots t_0[s_n]) = l[h^n](h_n[s_1] \ldots h_n[s_n]) \). So if \(d[x] = h[x] \) for every variable \(x \) in \(t \), then \(t_0[t] = h_n[t] \).

Indct: For any \(t \), if \(d[x] = h[x] \) for every variable \(x \) in \(t \), then \(t_0[t] = h_n[t] \).

It should be clear that we follow our usual pattern to complete the show step: The assumption gives us information about the parts—in this case, about assignments to \(s_1 \ldots s_n \); and that \(T \) applies to \(s_1 \ldots s_n \). So in this case with TA, we move to a conclusion about the whole term \(t \).

Notice that it is important to show that the parts are of the right sort for the inductive assumption to apply: it matters that \(s_1 \ldots s_n \) have \(\langle k \rangle \) function symbols, and that \(d[x] = h[x] \) for every variable in \(s_1 \ldots s_n \). Perhaps the overall result is intuitively obvious: If there is no difference in assignments to relevant variables, then of course, by the way things build from the parts to the whole, there is no difference in assignments to the whole terms. Our proof merely makes explicit how this result follows from the definitions.

We now turn to a result that is very similar, except that it applies to formulas. In this case, \(T_8.4 \) is essential for reasoning in the basis.

T8.5. For any interpretation \(I \), variable assignments \(d \) and \(h \), and formula \(P \), if \(d[x] = h[x] \) for every free variable \(x \) in \(P \), then \(t_0[P] = S \) iff \(h_n[P] = S \).

The argument, as you should expect, is by induction on the number of operator symbols in the formula \(P \).

Basis: If \(P \) has no operator symbols, then it is a sentence letter \(S \) or an atomic of the form \(R^n t_1 \ldots t_n \) for some relation symbol \(R^n \) and terms \(t_1 \ldots t_n \). Suppose \(d[x] = h[x] \) for every variable \(x \) free in \(P \). (i) Say \(P \) is a sentence letter \(S \); then \(t_0[P] = S \) iff \(t_0[S] = S \); by SF(s) iff \(l[S] = T \); by SF(s) again iff \(l_n[S] = S \); iff \(h_n[P] = S \). (ii) Say \(P \) is \(R^n t_1 \ldots t_n \); then since every variable in \(P \) is free, we have \(d[x] = h[x] \) for every variable in \(P \); so \(d[x] = h[x] \) for every variable in \(t_1 \ldots t_n \); so by T8.4, \(t_0[t_1] = h_n[t_1] \), and \(\ldots \) and \(t_0[t_n] = h_n[t_n] \). So \(t_0[P] = S \) iff \(t_0[R^n t_1 \ldots t_n] = S \); by SF(r) iff \(h_n[t_1] \ldots h_n[t_n] \) \(\in [R^n] \); iff \(h_n[P] = S \); iff \(h_n[P] = S \). If \(d[x] = h[x] \) for every variable \(x \) free in \(P \), then \(t_0[P] = S \) iff \(h_n[P] = S \).

Assp: For any \(i, 0 \leq i < k \), if \(P \) has \(i \) operator symbols and \(d[x] = h[x] \) for every free variable \(x \) in \(P \), then \(t_0[P] = S \) iff \(h_n[P] = S \).
Show: If \mathcal{P} has k operator symbols and $d[x] = h[x]$ for every free variable x in \mathcal{P}, then $l_d[\mathcal{P}] = S$ iff $l_h[\mathcal{P}] = S$.

If \mathcal{P} has k operator symbols, then it is of the form $\neg \mathcal{A}$, $\mathcal{A} \to \mathcal{B}$, or $\forall v \mathcal{A}$ for variable v and formulas \mathcal{A} and \mathcal{B} with $< k$ operator symbols. Suppose $d[x] = h[x]$ for every free variable x in \mathcal{P}.

(\neg) Suppose \mathcal{P} is $\neg \mathcal{A}$. Then since $d[x] = h[x]$ for every free variable x in \mathcal{P}, and every variable free in \mathcal{A} is free in \mathcal{P}, $d[x] = h[x]$ for every free variable in \mathcal{A}; so the inductive assumption applies to \mathcal{A}. $l_d[\mathcal{P}] = S$ iff $l_d[\neg \mathcal{A}] = S$; by SF($\neg$) iff $l_d[\mathcal{A}] \neq S$; by assumption iff $l_h[\mathcal{A}] \neq S$; by SF(\neg), iff $l_h[\neg \mathcal{A}] = S$; iff $l_h[\mathcal{P}] = S$.

(\forall) Suppose \mathcal{P} is $\forall v \mathcal{A}$. Then since $d[x] = h[x]$ for every free variable x in \mathcal{P}, $d[x] = h[x]$ for every free variable in \mathcal{A} with the possible exception of v; so for arbitrary $o \in U$, $d(\{v\} o) [x] = h(\{v\} o) [x]$ for every free variable x in \mathcal{A}. Since the assumption applies to arbitrary assignments, it applies to $d(\{v\} o)$ and $h(\{v\} o)$; so for any $o \in U$, by assumption $l_d(\{v\} o) [\mathcal{A}] = S$ iff $l_h(\{v\} o) [\mathcal{A}] = S$.

Now suppose $l_d[\mathcal{P}] = S$ but $l_h[\mathcal{P}] \neq S$; then $l_d[\forall v \mathcal{A}] = S$ but $l_h[\forall v \mathcal{A}] \neq S$; from the latter, by SF(\forall), there is some $o \in U$ such that $l_h(\{v\} o) [\mathcal{A}] \neq S$; let m be a particular individual of this sort; then $l_h(\{v\} m) [\mathcal{A}] \neq S$; so, as above, with the inductive assumption, $l_d(\{v\} m) [\mathcal{A}] \neq S$; so by SF($\forall$), $l_d[\forall v \mathcal{A}] \neq S$. This is impossible; reject the assumption: if $l_d[\mathcal{P}] = S$, then $l_h[\mathcal{P}] = S$.

And similarly [by homework] in the other direction.

If \mathcal{P} has k operator symbols and $d[x] = h[x]$ for every free variable x in \mathcal{P}, then $l_d[\mathcal{P}] = S$ iff $l_h[\mathcal{P}] = S$.

Indct: For any \mathcal{P}, if $d[x] = h[x]$ for every free variable x in \mathcal{P} then $l_d[\mathcal{P}] = S$ iff $l_h[\mathcal{P}] = S$.

Notice again that it is important to make sure the inductive assumption applies. First, in the (\forall) case, we are careful to distinguish the arbitrary variable of quantification v from x of the assumption. Then, for the quantifier case, the condition that d and h agree on assignments to all the free variables in \mathcal{A} is not satisfied merely because they agree on assignments to all the free variables in \mathcal{P}. We solve the problem by switching to assignments $d(\{v\} o)$ and $h(\{v\} o)$, which must agree on all the free variables in \mathcal{A}. (Why?) The overall reasoning in the quantifier case is fairly sophisticated. But you should be in a position to bear down and follow each step.
From T8.5 it is a short step to three quick corollaries that will be useful for things to come: (i) A result that should remind you of A5 from AD,

\[\forall x (P \rightarrow Q) \rightarrow (P \rightarrow \forall x Q) \quad \text{—where } x \text{ is not free in } P \]

Homework.

(ii) A result the proof of which was promised in chapter 4 (page 131). If a sentence \(P \) is satisfied on any variable assignment, then it is satisfied on every variable assignment, and so true.

T8.7. For any interpretation \(I \) and sentence \(P \), \(I[P] = T \) iff there is some assignment \(d \) such that \(I_d[P] = S \).

Consider some sentence \(P \) and interpretation \(I \). (i) Suppose \(I[P] = T \); then by T1, \(I_d[P] = S \) for any \(d \); so there is an assignment \(d \) such that \(I_d[P] = S \). (ii) Suppose there is some assignment \(d \) such that \(I_d[P] = S \), but \(I[P] \neq T \). From the latter, by T1, there is some assignment \(h \) such that \(I_h[P] \neq S \); but if \(P \) is a sentence, it has no free variables; so (vacuously) every assignment agrees with \(h \) in its assignment free variables in \(P \); in particular \(d \) agrees with \(h \) in its assignment to every free variable in \(P \); so by T8.5, \(I_d[P] \neq S \). This is impossible; reject the assumption: if \(I_d[P] = S \) then \(I[P] = T \).

In effect, the reasoning is as sketched in chapter 4. Whether \(\forall x P \) is satisfied by \(d \) does not depend on what particular object \(d \) assigns to \(x \)—for satisfaction of the quantified formula depends on satisfaction for every assignment to \(x \). The key step is contained in the reasoning for the (\(\forall \)) case of the original induction. Given this, the move to T8.7 is straightforward. Finally (iii), for sentences of a quantificational language, we recover simple semantic conditions for operators \(\neg \) and \(\rightarrow \). Reasoning appeals directly to T8.7, though we may think of this as another corollary to T8.5.

*T8.8. For any sentences \(P \) and \(Q \),

(i) \(I[\neg P] = T \) iff \(I[P] \neq T \)

(ii) \(I[P \rightarrow Q] = T \) iff \(I[P] \neq T \) or \(I[Q] = T \).

Homework.

As a quick consequence of this this last theorem, we obtain corresponding results for \(\land \), \(\lor \) and \(\leftrightarrow \). Thus, for the sentential operators, sentences of a quantificational language obey the same semantic conditions as ones from sentential languages.
*E8.25. Provide a complete argument for T8.5, completing the case for \((\rightarrow)\), and expanding the other direction for \((\forall)\). You should set up the complete induction, but may appeal to the text at parts that are already completed, as the text appeals to homework.

*E8.26. Show T8.6 and both parts of T8.8.

E8.27. Show that for any interpretation \(I\) and sentence \(P\), either \(I[P] = T\) or \(I[\neg P] = T\). Hint: This is not an argument by induction, but rather another quick corollary to T8.5; you can begin by supposing the result is false and show that the assumption is impossible.

8.3.3 Case

Finally, we turn to another pair of results, with reasoning like what we have already seen.

T8.9. For any formula \(P\), term \(t\), constant \(c\), and distinct variables \(v\) and \(x\), \([P]_v^c\) is the same formula as \([P]_x^c\).

Notice that \([P]_v^c\) might be different from \([P]_x^c\)—for if \(t\) contains an instance of \(c\), that instance of \(c\) is replaced in the first case, but not in the second. The proof breaks into two parts. (i) By induction on the number of function symbols in an arbitrary term \(r\), we show that \([r]_v^c = [r]_x^c\). Given this, (ii) by induction on the number of operator symbols in an arbitrary formula \(P\), we show that \([P]_v^c = [P]_x^c\). Only part (i) is completed here; (ii) is left for homework.

Suppose \(v \neq x\).

Basis: If \(r\) has no function symbols, then it is either \(v\), \(c\) or some other constant or variable.

(v) Suppose \(r\) is \(v\). Then \([r]_v^c = t\) and \([r]_x^c = t\). But \(r\) is \(v\); so \([r]_x^c = t\) is \(t\). So \([r]_x^c = [r]_x^c\).

(c) Suppose \(r\) is \(c\). Then \([r]_v^c = c\) and \([r]_x^c = x\). But \(r\) is \(c\); and, since \(v \neq x\), \([r]_x^c = x\). So \([r]_x^c = [r]_x^c\).

(oth) Suppose \(r\) is some variable or constant other than \(v\) or \(c\). Then \([r]_v^c = r\). Similarly, \([r]_x^c = [r]_x^c\). Assp: For any \(i\), \(0 \leq i < k\), if \(r\) has \(i\) function symbols, then \([r]_x^c = [r]_x^c\).
Show: If \(r \) has \(k \) function symbols, then \([v^c]_{\bar{x}}^P = [r^c]_{\bar{x}}^P\).

If \(r \) has \(k \) function symbols, then it is of the form, \(h^n s_1 \ldots s_n \) for some function symbol \(h^n \) and terms \(s_1 \ldots s_n \) each of which has < \(k \) function symbols; so by assumption, \([s_1^c]_{\bar{x}}^P = [s_1^c]_{\bar{x}}^P\), and \(\ldots \) and \([s_n^c]_{\bar{x}}^P = [s_n^c]_{\bar{x}}^P\). Then \([r^c]_{\bar{x}}^P = [h^n s_1 \ldots s_n]_{\bar{x}}^P = h^n ([s_1^c]_{\bar{x}}^P \ldots [s_n^c]_{\bar{x}}^P) = [h^n s_1 \ldots s_n]^c_{\bar{x}} = [r^c]_{\bar{x}}^P\); so \([r^c]_{\bar{x}}^P = [r^c]_{\bar{x}}^P\).

Indct: For any \(r \), \([r^c]_{\bar{x}}^P = [r^c]_{\bar{x}}^P\).

You will find this result useful when you turn to the final proof of T8.9. That argument is a straightforward induction on the number of operator symbols in \(\mathcal{P} \). For the case where \(\mathcal{P} \) is of the form \(\forall w \mathcal{A} \), notice that \(v \) is either \(w \) or it is not. On the one hand, if \(v = w \), then \(\mathcal{P} = \forall w \mathcal{A} \) has no free instances of \(v \) so that \([\mathcal{P}]_{\bar{x}}^P = [\mathcal{P}]_{\bar{x}}^P\), and \([\mathcal{P}]_{\bar{x}}^P = [\mathcal{P}]_{\bar{x}}^P\); but, similarly, \([\mathcal{P}]_{\bar{x}}^P \) has no free instances of \(v \), so \([\mathcal{P}]_{\bar{x}}^P = [\mathcal{P}]_{\bar{x}}^P\). On the other hand, if \(v \) is a variable other than \(w \), then \([\mathcal{P}]_{\bar{x}}^P = \forall w ([\mathcal{P}]_{\bar{x}}^P)\) and \([\mathcal{P}]_{\bar{x}}^P = \forall w ([\mathcal{P}]_{\bar{x}}^P)\) and you will be able to use the inductive assumption.

E8.28. Complete the proof of T8.9 by showing by induction on the number of operator symbols in an arbitrary formula \(\mathcal{P} \) that if \(v \) is distinct from \(x \), then \([\mathcal{P}]_{\bar{x}}^P = [\mathcal{P}]_{\bar{x}}^P\).

E8.29. Say a complex term \(r \) is free in an expression \(\mathcal{P} \) just in case no variable in \(r \) is bound; and where \(\mathcal{T} \) is any term or formula, let \(\mathcal{T}^r/s \) be \(\mathcal{T} \) with at most one free instance of \(r \) replaced by \(s \). For an arbitrary expression \(\mathcal{A} \) suppose \(\mathcal{A}^r/s \) and \([\mathcal{A}^r/s]^c_{\bar{x}} \) operate on the same (token) instance of \(r \). Show: (i) For any constant \(c \), variable \(x \) and terms \(r, s, t \), \([t^c/s]_{\bar{x}}^P \) is the same term as \([t^c/s]_{\bar{x}}^P \). (ii) that for any constant \(c \), terms \(r, s \), and variable \(x \) that does not appear in formula \(\mathcal{P} \), \([\mathcal{P}^r/s]_{\bar{x}}^c \) is the same formula as \([\mathcal{P}^r/s]_{\bar{x}}^c \). Hint: In the base cases either an instance of \(r \) is replaced by \(s \) or not; if \(r \) is replaced by \(s \), for (i) \(r = t \), and for (ii) the substitution is into a term of an atomic.

E8.30. Set \(U = \{1\} \), \([S] = T \) for every sentence letter \(S \), \([R^1] = \{1\} \) for every \(R^1 \); \([R^2] = \{1, 1\} \) for every \(R^2 \); and in general, \([R^n] = \{1, \ldots, 1\} \). Notice that \([c] \) can only be 1 for every constant \(c \), and \([h^n] = \{1, \ldots, 1\} \) for every function symbol \(h^n \). Where \(\mathcal{P} \) is any formula whose only operators are \(\rightarrow, \wedge, \vee, \leftrightarrow, \forall \) and \(\exists \), show by induction on the number of operators in \(\mathcal{P} \) that \(I_0[\mathcal{P}] = S \). Use this result to show that \(\mathcal{P} \) is a quantificational version of E8.11; this time you will want to show first that for any term \(t \), \(I_0[t] = 1 \); and with this that \(I_0[\mathcal{P}] = S \).
First Theorems of Chapter 8

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T8.1</td>
<td>For any (P) whose operators are (\sim, \lor, \land, \rightarrow), (P_N) is in normal form and (\models [P] = T) if (\models [P_N] = T).</td>
</tr>
<tr>
<td>T8.2</td>
<td>For variables (x) and (v), if (v) is not free in a formula (P) and (v) is free for (x) in (P), then ([P^x_v]_x = P).</td>
</tr>
<tr>
<td>T8.3</td>
<td>Where constant (c) does not appear in formula (P), ([P^c_x]_x = P).</td>
</tr>
<tr>
<td>T8.4</td>
<td>For any interpretation (I), variable assignments (d) and (h), and term (t), if (d[x] = h[x]) for every variable (x) in (t), then (I_d[t] = h[t]).</td>
</tr>
<tr>
<td>T8.5</td>
<td>For any interpretation (I), variable assignments (d) and (h), and formula (P), if (d[x] = h[x]) for every free variable (x) in (P), then (I_d[P] = S) iff (h[P] = S).</td>
</tr>
<tr>
<td>T8.6</td>
<td>(\models \forall x(P \rightarrow Q) \rightarrow (P \rightarrow \forall x Q)) —where (x) is not free in (P).</td>
</tr>
<tr>
<td>T8.7</td>
<td>For any interpretation (I) and sentence (P), (I[P] = T) iff there is some assignment (d) such that (I_d[P] = S).</td>
</tr>
<tr>
<td>T8.8</td>
<td>For any sentences (P) and (Q), (i) (\models [\sim P] = T) iff (\models [P] \neq T); and (ii) (\models P \rightarrow Q) = T iff (\models [P] \neq T) or (\models [Q] = T). Corollary: Similarly for (\land, \lor) and (\leftrightarrow).</td>
</tr>
<tr>
<td>T8.9</td>
<td>For any formula (P), term (t), constant (c), and distinct variables (v) and (x), ([P^c_v]_x) is the same formula as ([P^c_v]^x).</td>
</tr>
</tbody>
</table>

8.4 Additional Examples (for Part IV)

Again, our primary motivation in this section is to practice doing mathematical induction. This final series of examples develops some results about \(Q \) that will be particularly useful if you go on to consider part IV. As we have already mentioned (page 329, compare E7.19), many true generalizations are not provable in Robinson Arithmetic. However, we shall be able to show that \(Q \) is generally adequate for some interesting classes of results. As you work through these results, you may find it convenient to refer to the final chapter 8 theorems reference on page 432.

First we shall string together a series of results sufficient to show that \(Q \) correctly decides atomic sentences of \(\mathcal{L}_{NT} \): where \(N \) is the standard interpretation for number theory and \(P \) is a sentence \(s = t, s \leq t \) or \(s < t \), if \(N[P] = T \) then \(Q \models_{ND} P \), and if \(N[P] \neq T \) then \(Q \models_{ND} \sim P \). Observe that if \(P \) is atomic and a sentence, it has no variables.
8.4.1 Case

Let \(\overline{n} \) abbreviate \(S \ldots S \emptyset \). So, for example, \(\overline{2} \) is \(SS\emptyset \), and \(\overline{0} \) is just \(\emptyset \). We begin with some simple results for the addition and multiplication of these numerals.

T8.10. For any \(a, b, c \in \mathbb{U} \), if \(a + b = c \), then \(Q \vdash_{\text{ND}} \overline{a} + \overline{b} = \overline{c} \).

By induction on the value of \(b \). Recall that by Q3, \(Q \vdash_{\text{ND}} x + \emptyset = x \) and from Q4, \(Q \vdash_{\text{ND}} x + S\emptyset = S(x \cdot y) \). In addition, we depend on the general fact that, so long as \(a > 0 \), \(S\overline{a} = \overline{a} \).

Basis: Suppose \(b = 0 \) and \(a + b = c \); then \(\overline{b} = \overline{0} \) and \(\overline{a} = \overline{c} \); but by Q3 (T6.44), \(Q \vdash_{\text{ND}} \overline{a} + \overline{b} = \overline{c} \).

Assp: For any \(i, 0 \leq i < k \) if \(a + i = c \), then \(Q \vdash_{\text{ND}} \overline{a} + \overline{i} = \overline{c} \).

Show: If \(a + k = c \), then \(Q \vdash_{\text{ND}} \overline{a} + \overline{k} = \overline{c} \).

Suppose \(a + k = c \). Since \(k > i, k > 0 \) and so \(c > 0 \); let \(k = m + 1 \) and \(c = \overline{m} \); then \(\overline{k} = \overline{m} \). From the latter, by assumption \(Q \vdash_{\text{ND}} (\overline{a} + \overline{m}) = \overline{c} \); by Q4 (T6.45), \(Q \vdash_{\text{ND}} (\overline{a} + \overline{m}) = \overline{a} + \overline{m} \); so by \(=E \) \(Q \vdash_{\text{ND}} (\overline{a} + \overline{m}) = \overline{a} + \overline{m} \); and this is just to say \(Q \vdash_{\text{ND}} \overline{a} + \overline{k} = \overline{c} \).

Indct: For any \(a, b \) and \(c \), if \(a + b = c \), then \(Q \vdash_{\text{ND}} \overline{a} + \overline{b} = \overline{c} \).

The basic idea is simple: From the basis, \(\overline{a} + \overline{0} = \overline{a} \); then given the assumption for one value of \(b \), we use Q4 to get the next. Insofar as the reasoning applies the assumption just to \(k - 1 = m \), it would have been natural to apply scheme III from the induction schemes reference (assume for \(m \), show for \(m + 1 = k \)); however we get the same effect by identifying \(m \) as the member prior to \(k \) and applying our usual assumption to it. The strategy repeats in cases below. Observe that \(a, b \) and \(c \) are numbers—objects in the universe—and we informally manipulate them to conclude that, say, \(a = c \) from \(b = 0 \) and \(a + b = c \). In contrast, \(\overline{a}, \overline{k} \) and \(\overline{c} \) are numerals of the sort \(S \ldots S \emptyset \) and, say, \((\overline{a} + \overline{k}) = \overline{c} \) is a sentence of \(\mathcal{L}_{\text{NT}} \) which we show follows from the axioms of \(Q \). It is not as though we somehow forget how to do arithmetic! Rather we understand arithmetic, and show how \(Q \) is related to it. Note the (slight) typographical difference between ‘+’ in the object language and ‘+’ to express the function.

*T8.11. For any \(a, b, c \in \mathbb{U} \), if \(a \cdot b = c \) then \(Q \vdash_{\text{ND}} \overline{a} \cdot \overline{b} = \overline{c} \). By induction on the value of \(b \).
CHAPTER 8. MATHEMATICAL INDUCTION

Chapter 8. Mathematical Induction

420

Hint: Let \(k - 1 = m \) and \(c - a = d \). By assumption you should be able to obtain \(Q \vdash_{ND} \overline{a} \times \overline{m} = \overline{d} \); then you will be able to apply \(Q6 (T6.47) \) and \(T8.10 \) for the desired result.

E8.31. Provide an argument to show \(T8.11 \).

8.4.2 Case

\(T8.12 \). For any \(a, b \in U \), if \(a \neq b \), then \(Q \vdash_{ND} \overline{a} \neq \overline{b} \)

Whenever \(a \neq b \), there is some \(d > 0 \) that is the *difference* between them, so that \(d + a = b \) (or the other way around). We show that for any \(n \), \(Q \vdash_{ND} \overline{n} \neq \overline{d + n} \).

Then in the case where \(n = a \) and so \(d + n = b \), \(Q \vdash_{ND} \overline{a} \neq \overline{b} \). Recall that according to \(Q1 \), \(Q \vdash_{ND} (Sx = \overline{0}) \); and from \(Q2 \), \(Q \vdash_{ND} (Sx = Sy) \rightarrow (x = y) \).

Suppose \(a \neq b \); then \(a < b \) or \(b < a \); without loss of generality, suppose \(a < b \); then there is some \(d > 0 \) such that \(d + a = b \). By induction on \(n \), we show \(Q \vdash_{ND} \overline{n} \neq \overline{d + n} \); the case when \(n = a \) gives \(Q \vdash_{ND} \overline{a} \neq \overline{d + a} \); which is to say, \(Q \vdash_{ND} \overline{a} \neq \overline{b} \).

Basis: Suppose \(n = 0 \). Then \(\overline{n} = \overline{0} \) and \(\overline{d} = \overline{d + n} \); and since \(d > 0 \), \(\overline{d} = S\overline{d - 1} \); so \(S\overline{d - 1} = \overline{d + n} \). With \(Q1 \) (\(T6.42 \)), \(Q \vdash_{ND} \overline{0} \neq S\overline{d - 1} \); but this is just to say \(Q \vdash_{ND} \overline{n} \neq \overline{d + n} \).

Asst: For \(0 \leq i < k \), \(Q \vdash_{ND} \overline{0} \neq \overline{d + i} \)

Show: \(Q \vdash_{ND} \overline{k} \neq \overline{d + k} \)

In this case, both \(k \) and \(d + k \) are \(> 0 \). Let \(k - 1 = m \); then \(\overline{k} = S\overline{m} + \overline{d + k} \) is \(S\overline{d + m} \). By \(Q2 \) (\(T6.43 \)), \(Q \vdash_{ND} S\overline{m} = S\overline{d + m} \rightarrow \overline{m} = \overline{d + m} \); but by assumption, \(Q \vdash_{ND} \overline{m} \neq \overline{d + m} \); so by reasoning as for \(MT \), \(Q \vdash_{ND} S\overline{m} \neq S\overline{d + m} \); which is to say, \(Q \vdash_{ND} \overline{k} \neq \overline{d + k} \).

Indct: For any \(n \), \(Q \vdash_{ND} \overline{n} \neq \overline{d + n} \).

So \(Q \vdash_{ND} \overline{a} \neq \overline{d + a} = \overline{b} \). In the basis, we show that \(Q \) proves the difference \(d \) between \(a \) and \(b \) is not equal to \(0 \). Given this, at the show, \(Q \) proves that adding one to each side results in an inequality; and similarly adding one again results in an inequality until we get the result that \(Q \) proves that \(\overline{a} \neq \overline{b} \). The demonstration that \(Q \vdash_{ND} \overline{a} \neq \overline{b} \) works so long as we start with \(d \) the difference between \(a \) and \(b \).

The same basic strategy applies in a related case. But we need a preliminary theorem for one of the parts.
CHAPTER 8. MATHEMATICAL INDUCTION

421

T8.13. \(Q \vdash_{ND} Sj + \overline{n} = j + S\overline{n} \).

Hint: this is a simple induction on \(n \). For the show, let \(m = k - 1 \); you will want the assumption in the form, \(Q \vdash_{ND} Sj + \overline{m} = j + S\overline{m} \).

From T6.45 and T6.55, \(PA \vdash Sj + \overline{s} = j + S\overline{s} \) for arbitrary terms \(s \) and \(t \). But we need this result in \(Q \), and so reason by induction where \(s \) is replaced by \(\overline{n} \). Now we are ready for the result related to T8.12.

T8.14. (i) If \(a \not\preceq b \), then \(Q \vdash_{ND} \overline{a} \not\preceq \overline{b} \); and (ii) If \(a \not\preceq b \), then \(Q \vdash_{ND} \overline{a} \not\preceq \overline{b} \).

Recall that \(s \leq t \) is \(\exists v (v + s = t) \) and \(s < t \) is \(\exists v (Sv + s = t) \) for \(v \) not in \(s \) or \(t \). If \(a \not\preceq b \) then \(a > b \), and if \(a \not\preceq b \) then \(a \geq b \); so, again, there is a difference \(d \) between them, which may be 0 in the latter case.

For (i) we need that if \(a \not\preceq b \) then \(Q \vdash_{ND} \exists v (v + \overline{a} = \overline{b}) \). Suppose \(a \not\preceq b \); then \(a > b \); so for \(d > 0 \), \(a = d + b \). By induction on \(n \), we show that for any \(n \), \(Q \vdash_{ND} j + \overline{d} + \overline{n} \not\equiv \overline{a} \); the case when \(n = b \) gives \(Q \vdash_{ND} j + \overline{a} \not\equiv \overline{b} \); then by \(\forall \), \(Q \vdash_{ND} \forall v (v + \overline{a} \not\equiv \overline{b}) \); and the result follows by T6.34 (like \(QN \)).

Basis: Suppose \(n = 0 \); for \(d > 0 \), let \(d - 1 = m \); then \(\overline{d} = S\overline{m} \) and \(\overline{d} + \overline{n} = \overline{a} \), so that \(S\overline{m} = \overline{d} + \overline{n} \). By Q4 (T6.45), \(Q \vdash_{ND} j + S\overline{m} = S(j + \overline{m}) \); and by Q1 (T6.42), \(Q \vdash_{ND} S(j + \overline{m}) \not\equiv \overline{a} \); so by \(=E \), \(Q \vdash_{ND} j + S\overline{m} \not\equiv \overline{b} \); where this is just to say \(Q \vdash_{ND} j + \overline{d} + \overline{n} \not\equiv \overline{a} \).

Assp: For \(0 \leq i < k \), \(Q \vdash_{ND} j + \overline{d} + \overline{i} \not\equiv \overline{T} \).

Show: \(Q \vdash_{ND} j + \overline{d} + \overline{k} \not\equiv \overline{k} \).

In this case \(k \) and \(d + k > 0 \); let \(k - 1 = m \); then \(\overline{k} = S\overline{m} \) and \(\overline{d} + \overline{k} = S\overline{d} + \overline{m} \). By assumption, \(Q \vdash_{ND} j + \overline{d} + \overline{m} \not\equiv \overline{m} \). But by Q2 (T6.43), \(Q \vdash_{ND} S(j + \overline{d} + \overline{m}) = S\overline{m} \rightarrow j + \overline{d} + \overline{m} = \overline{m} \); so by reasoning as for MT, \(Q \vdash_{ND} S(j + \overline{d} + \overline{m}) \not\equiv S\overline{m} \); by Q4 (T6.45), \(Q \vdash_{ND} j + S\overline{d} + \overline{m} = S(j + \overline{d} + \overline{m}) \); so by \(=E \), \(Q \vdash_{ND} j + S\overline{d} + \overline{m} \not\equiv S\overline{m} \); but this is just to say, \(Q \vdash_{ND} j + \overline{d} + \overline{k} \not\equiv \overline{k} \).

Indct: For any \(n \), \(Q \vdash_{ND} j + \overline{d} + \overline{n} \not\equiv \overline{n} \)

So \(Q \vdash_{ND} j + \overline{d} + \overline{b} \not\equiv \overline{b} \) which is to say \(Q \vdash_{ND} j + \overline{a} \not\equiv \overline{b} \). So by \(\forall \), \(Q \vdash_{ND} \forall v (v + \overline{a} \not\equiv \overline{b}) \); and by T6.34, \(Q \vdash_{ND} \exists v (v + \overline{a} = \overline{b}) \); which is to say, \(Q \vdash_{ND} \overline{a} \not\equiv \overline{b} \).

In the basis, we show that for \(d > 0 \), \(Q \) proves \(j + \overline{d} \not\equiv 0 \). Then, at the show, each side is incremented by one until \(Q \) proves \(j + \overline{a} \not\equiv \overline{b} \). Again, this works because we begin with \(d \) the difference between \(a \) and \(b \).
CHAPTER 8. MATHEMATICAL INDUCTION

422

E8.32. Provide arguments to show T8.13 and (ii) of T8.14. Hint: For the latter, the
induction is to show $Q \vdash_{ND} Sj + d + n \neq \bar{n}$. There is a complication, however, in
the basis. From $a \neq b$, $a = b + d$ for $d \geq 0$. So we cannot set $\bar{d} = S \bar{d} - 1$. You can
solve the problem by obtaining $j + S \bar{d} \neq \emptyset$ for an application of T8.13. For the
show, since $k > 0$, the argument remains straightforward.

8.4.3 Case

Up to this stage, we have been dealing entirely with simple atomics whose only terms
are numerals of the sort \bar{n}, and then $a \sim b$ and $a \preceq b$. We now broaden our results to
include atomic sentences of arbitrary complexity. The atomic sentences are of course
still sentences and so remain variable-free.

We have said a formula is true iff it is satisfied on every variable assignment. Let
us introduce a parallel notion for terms.

AI. The assignment of a term on an interpretation $I[\bar{t}] = n$ iff with any
d for I, $I[d][\bar{t}] = n$. In particular, from T8.4, if assignments d and h
agree on assignments to variables in t, then $I[d][\bar{t}] = I[h][\bar{t}] = I[\bar{t}]$. So if t
is without variables, any assignments must agree on
assignments to all the variables in t. So it is automatic that, for a variable-free term,
any $I[d][\bar{t}] = I[h][\bar{t}] = I[\bar{t}]$.

Given this, we start by establishing that Q proves the proper relation between
arbitrary variable-free terms and numerals.

T8.15. For any variable-free term t of \mathcal{L}_{NT}, if $N[\bar{t}] = n$, then $Q \vdash_{ND} t = \bar{n}$

By induction on the number of function symbols in t.

Basis: Suppose $N[\bar{t}] = n$, and variable-free t has no function symbols; then t
can only be the constant \emptyset. So $N[\bar{t}] = N[\emptyset] = 0$; and $\bar{n} = \emptyset$. But by =1,
$Q \vdash_{ND} \emptyset = \emptyset$; so $Q \vdash_{ND} t = \bar{n}$.

Assp: For any $i, 0 \leq i < k$ if t has i function symbols and $N[\bar{t}] = n$, then
$Q \vdash_{ND} t = \bar{n}$.

Show: If t has k function symbols and $N[\bar{t}] = n$, then $Q \vdash_{ND} t = \bar{n}$.

If t has k function symbols, it is of the form, $S r$, $r + s$ or $r \times s$ for r, s
with $< k$ function symbols. Suppose $N[\bar{t}] = n$.

(S) t is $S r$. Since t is variable-free, r is variable-free and $N[r] = N_d[r] = \bar{a}$
for some \bar{a}. Since t is variable-free, $N[\bar{t}] = N_d[\bar{t}] = N_d[S r]$. by TA(f),
\[
N_d[S r] = N[S](a) = a + 1; \text{ so } N[t] = a + 1; \text{ so } a + 1 = n; \text{ so } S\bar{a} = \bar{n}.
\]
By assumption \(Q \vdash_{ND} r = \bar{a};\) and by =I, \(Q \vdash_{ND} S r = S r;\) so by =E, \(Q \vdash_{ND} S r = \bar{S}a;\) which is to say \(Q \vdash_{ND} t = \bar{n}.
\]

(+) \(t \) is \(r + s.\) Since \(t\) is variable-free, \(r \) and \(s \) are variable-free and \(N[r] = N_d[r] = a \) and \(N[s] = N_d[s] = b \) for some \(a \) and \(b.\) Since \(t \) is variable-free, \(N[t] = N_d[t] = N_d[r + s] \); by TA(f). \(N_d[r + s] = N[+]\langle a, b \rangle = a + b; \) so \(N[t] = a + b; \) so \(a + b = n.\) By assumption, \(Q \vdash_{ND} r = \bar{a} \) and \(Q \vdash_{ND} s = \bar{b};\) and by =I, \(Q \vdash_{ND} r + s = r + s;\) so by =E, \(Q \vdash_{ND} r + s = \bar{a} + \bar{b}; \) but since \(a + b = n,\) by T8.10 \(Q \vdash_{ND} \bar{a} + \bar{b} = \bar{n};\) so by =E, \(Q \vdash_{ND} r + s = \bar{n},\) where this is to say \(Q \vdash_{ND} t = \bar{n}.
\]

(\(\check{\times}\)) Similarly by homework.

If \(t\) has \(k\) function symbols and \(N[t] = n,\) then \(Q \vdash_{ND} t = \bar{n}.
\]

Indet: So for any variable-free term \(t,\) if \(N[t] = n,\) \(Q \vdash_{ND} t = \bar{n}\)

Our intended result, that \(Q\) correctly decides atomic sentences of \(L_{NT}\) is not an argument by induction, but rather collects what we have done into a simple argument.

T8.16. \(Q\) correctly decides atomic sentences of \(L_{NT}.\) For any sentence \(P\) of the sort \(s = t, \ s \leq t \) or \(s < t,\) if \(N[P] = T\) then \(Q \vdash_{ND} P;\) and if \(N[P] \neq T\) then \(Q \vdash_{ND} \lnot P.
\]

Since the atoms are sentences, \(s\) and \(t\) are variable-free. A few selected parts are worked as examples.

(a) \(N[s = t] = T.\) Then by TI, for any \(d, \ N_d[s = t] = S; \) so by SF(r), \(\langle N_d[s], N_d[t] \rangle \in N[=]; \) so \(N_d[s] = N_d[t].\) But since \(s\) and \(t\) are variable-free, for some \(a\) and \(b, \ N_d[s] = N[s] = a \) and \(N_d[t] = N[t] = b; \) so \(a = b.\) Then \(\bar{a}\) is the same as \(\bar{b}\) and by =I, \(Q \vdash \bar{a} = \bar{b};\) but by T8.15, \(Q \vdash_{ND} s = \bar{a} \) and \(Q \vdash_{ND} t = \bar{b};\) so by =E, \(Q \vdash_{ND} s = t.
\]

(b) \(N[s = t] \neq T.\)

(c) \(N[s \leq t] = T.\) Then \(N[\exists v(v + s = t)] = T;\) so by TI, for any \(d, \ N_d[\exists v(v + s = t)] = S; \) so by SF(\(\exists\), for some \(m \in U, \ N_d(v|m)[v + s = t] = S. \) d(v|m)[v] = m; so by TA(v), \(N_d(v|m)[v] = m; \) since \(s\) and \(t\) are variable-free, for some \(a\) and \(b, \ N_d(v|m)[s] = N[s] = a \) and \(N_d(v|m)[t] = N[t] = b; \) so by TA(f), \(N_d(v|m)[v + s] = N[+]\langle m, a \rangle = m + a. \) So by SF(r), \((m + a, b) \in N[=];\) so \(m + a = b; \) so by T8.10, \(Q \vdash_{ND} \bar{m} + \bar{a} = \bar{b}; \) so by \(\exists I, \ Q \vdash_{ND} \exists v(v + \bar{a} = \bar{b});\) which is to say, \(Q \vdash_{ND} \bar{a} \leq \bar{b}.\) But since \(N[s] = a \) and \(N[t] = b, \) by T8.15, \(Q \vdash_{ND} s = \bar{a} \) and \(Q \vdash_{ND} t = \bar{b};\) so by =E, \(Q \vdash_{ND} s \leq t.
\]
(d) $N[s \leq t] \neq T$. Then $N[\exists v(v + s = t)] \neq T$; so by TI, for some d, $N[d(v + s = t)] \neq S$; so by $SF(\exists)$, for any $o \in U$, $N[d(v/o)] [v + s = t] \neq S$. Let m be an arbitrary individual of this sort; then $N[d(v/m)] [v + s = t] = S$. So by TI, for some d, $N[d(v/m)] [v + s = t] = T$. Let m be an arbitrary individual of this sort; then $N[d(v/m)] [v + s = t] = S$. So by $TA(v)$, $N[d(v/m)] [v + s = t] = T$.

(e) $N[s < t] \neq T$.

(f) $N[s < t] \neq T$.

Since we are able to correctly decide the required results at the level of numerals, and then establish equalities between numerals and arbitrary terms, we are able to combine the two to correctly decide arbitrary atomic sentences.

E8.33. Complete the argument for T8.15 by completing the case for (x). You should set up the entire induction, but may appeal to the text for parts that are already completed, just as the text appeals to homework.

E8.34. Complete the remaining cases of T8.16 to show that Q correctly decides atomic sentences of L_{S^T}.

8.4.4 Case

We conclude the chapter with some more examples of mathematical induction, this time working toward important results about inequality. We begin with a version of trichotomy, the result that for any n, $Q \vdash_{ND} \forall x (x < \bar{n} \lor x = \bar{n} \lor \bar{n} < x)$. Again, though, we begin with preliminaries. Recall that the bounded quantifiers $(\forall x < t)^{P}$, $(\exists x < t)^{P}$, $(\forall x \leq t)^{P}$, and $(\exists x \leq t)^{P}$, are abbreviations with associated derived introduction and exploitation rules (see page 323). First, a simple argument that introduces a pattern of reasoning we shall see again.

T8.17. For any n and T, if $T \vdash_{ND} x = Sy$ and $T \vdash_{ND} y = \bar{0} \lor y = \bar{1} \lor \ldots \lor y = \bar{n}$, then $T \vdash_{ND} x = S\bar{0} \lor x = S\bar{1} \lor \ldots \lor x = S\bar{n}$.

The argument is by induction on the value of n. Suppose $T \vdash_{ND} x = Sy$.
CHAPTER 8. MATHEMATICAL INDUCTION

425

Basis: n = 0. Suppose T \vdash_{ND} y = \overline{0}; we need that T \vdash_{ND} x = S\overline{0}. But this is immediate by =E.

Assp: For any i, 0 \leq i < k, if T \vdash_{ND} y = \overline{0} \lor y = \overline{1} \lor \ldots \lor y = \overline{1}, then

T \vdash_{ND} x = S\overline{0} \lor x = S\overline{1} \lor \ldots \lor x = S\overline{1}

Show: If T \vdash_{ND} y = \overline{0} \lor y = \overline{1} \lor \ldots \lor y = \overline{k}, then T \vdash_{ND} x = S\overline{0} \lor x = S\overline{1} \lor \ldots \lor x = S\overline{k}. Suppose T \vdash_{ND} y = \overline{0} \lor y = \overline{1} \lor \ldots \lor y = \overline{k}. Let m = k - 1.

1. \(x = Sy\)
given from T
2. \(y = \overline{0} \lor y = \overline{1} \lor \ldots \lor y = \overline{m}\)
given from T
3. \(y = \overline{0} \lor y = \overline{1} \lor \ldots \lor y = \overline{m}\)
A (g, 2vE)
4. \(x = S\overline{0} \lor x = S\overline{1} \lor \ldots \lor x = SM\)
1,3 assp
5. \(x = S\overline{0} \lor x = S\overline{1} \lor \ldots \lor x = S\overline{k}\)
4 vI
6. \(y = \overline{k}\)
A (g, 2vE)
7. \(x = S\overline{k}\)
1,6 =E
8. \(x = S\overline{0} \lor x = S\overline{1} \lor \ldots \lor x = S\overline{k}\)
7 vI
9. \(x = S\overline{0} \lor x = S\overline{1} \lor \ldots \lor x = S\overline{k}\)
2,3,5-6-8 vE

Indct: For any n, if T \vdash_{ND} x = Sy and T \vdash_{ND} y = \overline{0} \lor y = \overline{1} \lor \ldots \lor y = \overline{n}, then T \vdash_{ND} x = S\overline{0} \lor x = S\overline{1} \lor \ldots \lor x = S\overline{n}.

Intuitively, we can use x = Sy together with an extended version of \lor E on y = \overline{0} \lor y = \overline{1} \lor \ldots \lor y = \overline{n} to get the result. The induction works by obtaining the result for the first disjunct, and then showing that no matter how far we have gone, it is always possible to go to the next stage. This theorem is useful for the next.

T8.18. For any n, (i) Q \vdash_{ND} (\forall x \leq \overline{n})(x = \overline{0} \lor x = \overline{1} \ldots \lor x = \overline{n}) and (ii) Q \vdash_{ND} (\forall x < \overline{n})(\emptyset \not= \emptyset \lor x = \overline{0} \lor x = \overline{1} \ldots \lor x = \overline{n-1}).

The first disjunct \emptyset \not= \emptyset in (ii) is to guarantee that the result is a well-formed sentence even when n = 0. When n = 0 the series reduces to \emptyset \not= \emptyset since it contains all the members “up” to n-1 and there are not any; when n = 1 the series is \emptyset \not= \emptyset \lor x = \overline{0}; and so forth. We work part (ii). By induction on n,

Basis: We need to show Q \vdash_{ND} (\forall x < \emptyset)(\emptyset \not= \emptyset). But this is easy with T6.51.

1. \(\emptyset < \emptyset\)
A (g, (\forall I))
2. \(\emptyset \not= \emptyset\)
T6.51
3. \(\bot\)
1,2 LI
4. \(\emptyset \not= \emptyset\)
3 \bot E
5. \((\forall x < \emptyset)(\emptyset \not= \emptyset)\)
1-4 (\forall I)
Assp: For $0 \leq i < k$, $Q \vdash_{ND} (\forall x < \overline{1})(\emptyset \neq \emptyset \lor x = \overline{0} \lor \ldots \lor x = \overline{i-1})$

Show: $Q \vdash_{ND} (\forall x < \overline{k})(\emptyset \neq \emptyset \lor x = \overline{0} \lor \ldots \lor x = \overline{k-1})$. Let $m = k - 1$. Then by assumption $Q \vdash_{ND} (\forall x < \overline{m})(\emptyset \neq \emptyset \lor x = \overline{0} \lor \ldots \lor x = \overline{m-1})$.

Here are the main outlines of the derivation.

1. $(\forall x < \overline{m})(\emptyset \neq \emptyset \lor x = \overline{0} \lor \ldots \lor x = \overline{m-1})$ by assp
2. $j < \overline{m}$ A (g. \rightarrowI)
3. $j = \overline{0} \lor \exists y (j = S y)$ from Q7
4. $j = \overline{0}$ A (g, 3vE)
5. $\emptyset \neq \emptyset \lor j = \overline{0} \lor \ldots \lor j = \overline{m-1}$ 4 v1
6. $\exists y (j = S y)$ A (g, 3vE)
7. $j = S l$ A (g, 63E)
8. $\exists v (S v + j = \overline{m})$ 2 abv
9. $S h + j = \overline{m}$ A (g, 83E)
10. $S h + S l = \overline{m}$ 9,7 =E
11. $S(S h + l) = S \overline{m}$ 10 with Q4 (Sm = k)
12. $S h + l = \overline{m}$ 11 with Q2
13. $\exists v (S v + l = \overline{m})$ 12 3l
14. $l < \overline{m}$ 13 abv
15. $l < \overline{m}$ 8,9-143E
16. $\emptyset \neq \emptyset \lor l = \overline{0} \lor \ldots \lor l = \overline{m-1}$ 115 (VE)
17. $\emptyset \neq \emptyset \lor j = \overline{1} \lor \ldots \lor j = \overline{k-1}$ 17, v1
18. $\emptyset \neq \emptyset \lor j = \overline{1} \lor \ldots \lor j = \overline{k-1}$ 6,7-18 3E
19. $\emptyset \neq \emptyset \lor j = \overline{1} \lor \ldots \lor j = \overline{k-1}$ 3,4-5,6-19 V E
20. $(\forall x < \overline{k})(\emptyset \neq \emptyset \lor x = \overline{0} \lor x = \overline{1} \lor \ldots \lor x = \overline{k-1})$ 2-20 (VI)

Indct: So for any n, $Q \vdash_{ND} (\forall x < \overline{n})(\emptyset \neq \emptyset \lor x = \overline{0} \lor x = \overline{1} \ldots \lor x = \overline{n-1})$

From Q7, either j is zero or it is not. If j is zero, then the result is easy. If j is a successor, then (with a little work), there is an $l < \overline{m}$ to which we may apply the assumption; once we have done that, it is a short step to the result again.

E8.35. Complete the demonstration of T8.18 by showing part (i). Hint: The basis is easy with T6.50.
8.4.5 Case

The next theorem is a sort of mirror to T8.18, and illustrates a pattern of reasoning we have already seen in application to extended disjunctions.

T8.19. For any n, (i) $Q \vdash_{ND} \forall x[(x = \overline{0} \lor x = \overline{1} \lor \cdots \lor x = \overline{n}) \rightarrow x \leq \overline{n}]$ and (ii) $Q \vdash_{ND} \forall x[(\emptyset \neq \emptyset \lor x = \overline{n} - 1) \rightarrow x < \overline{n}]$

Again I illustrate just (ii). For any n and $a \leq n$ we show by induction on the value of a that $Q \vdash_{ND} \forall x[(\emptyset \neq \emptyset \lor j = \overline{0} \lor \cdots \lor j = \overline{a - 1}) \rightarrow j < \overline{n}]$; the case when $a = n$ gives $Q \vdash_{ND} (\emptyset \neq \emptyset \lor j = \overline{0} \lor \cdots \lor j = \overline{n - 1}) \rightarrow j < \overline{n}$; and the desired result follows immediately by $\forall I$. Observe that when $a = 0$ the series reduces to $\forall I$.

Basis: $a = 0$. We need $Q \vdash_{ND} \emptyset \neq \emptyset \rightarrow j < \overline{n}$

\begin{align*}
1. & \emptyset \neq \emptyset & \text{A (g, } \rightarrow I) \\
2. & \emptyset = \emptyset & \top I \\
3. & \bot & 2.1 \bot I \\
4. & j < \overline{n} & 3 \bot E \\
5. & \emptyset \neq \emptyset \rightarrow j < \overline{n} & 1-4 \rightarrow I
\end{align*}

Assp: For any $i, 0 \leq i < k \leq n$, $Q \vdash_{ND} (\emptyset \neq \emptyset \lor j = \overline{0} \lor \cdots \lor j = \overline{i - 1}) \rightarrow j < \overline{n}$

Show: For $k \leq n$, $Q \vdash_{ND} (\emptyset \neq \emptyset \lor j = \overline{0} \lor \cdots \lor j = \overline{k - 1}) \rightarrow j < \overline{n}$. Let $k - 1 = m$.

\begin{align*}
1. & (\emptyset \neq \emptyset \lor j = \overline{0} \lor \cdots \lor j = \overline{m - 1}) \rightarrow j < \overline{n} & \text{assp} \\
2. & \emptyset \neq \emptyset \lor j = \overline{0} \lor \cdots \lor j = \overline{m - 1} \lor j = \overline{m - 1} & \text{A (g, } \rightarrow I) \\
3. & \emptyset \neq \emptyset \lor j = \overline{0} \lor \cdots \lor j = \overline{m - 1} & \text{A (g, } 2 \lor E) \\
4. & j < \overline{n} & 1,3 \lor E \\
5. & j = \overline{k - 1} & \text{A (g, } 1 \lor E) \\
6. & j < \overline{n} & \text{T8.16 (} k \leq n \text{)} \\
7. & j < \overline{n} & 6.5 \lor E \\
8. & j < \overline{n} & 2.3-4,5-7 \lor E \\
9. & (\emptyset \neq \emptyset \lor j = \overline{0} \lor \cdots \lor j = \overline{k - 1}) \rightarrow j < \overline{n} & 2-8 \rightarrow I
\end{align*}

Indct: For any $a \leq n$, $Q \vdash_{ND} (\emptyset \neq \emptyset \lor j = \overline{0} \lor \cdots \lor j = \overline{a - 1}) \rightarrow j < \overline{n}$.

So $Q \vdash_{ND} (\emptyset \neq \emptyset \lor j = \overline{0} \lor \cdots \lor j = \overline{n - 1}) \rightarrow j < \overline{n}$; and by $\forall I$, $Q \vdash_{ND} \forall x[(\emptyset \neq \emptyset \lor x = \overline{0} \lor \cdots \lor x = \overline{n - 1}) \rightarrow x < \overline{n}]$.
CHAPTER 8. MATHEMATICAL INDUCTION

The basis is easy. Once we set it up by \(\forall E \), the show is easy too. Observe the use of T8.16 in the second case: since \(k \leq n \), \(k - 1 < n \); so by T8.16, \(Q \vdash_{ND} k - 1 < \bar{n} \). The next theorem does not require mathematical induction at all, but is required for our trichotomy result.

T8.20. For any \(n \), (i) \(Q \vdash_{ND} \forall x[\bar{n} \leq x \rightarrow (\bar{n} = x \lor S\bar{n} \leq x)] \) and (ii) \(\forall x[\bar{n} < x \rightarrow (S\bar{n} = x \lor S\bar{n} < x)] \).

Again I illustrate (ii).

1. \(\pi < j \quad A \ (g, \rightarrow I) \)
2. \(\exists v(Sv + \bar{n} = j) \quad 1 \ abv \)
3. \(S\pi + \bar{n} = j \quad A \ (g, 2\exists E) \)
4. \(k = \emptyset \lor \exists y(k = Sy) \) from Q7
5. \(k = \emptyset \quad A \ (g, 4\lor E) \)
6. \(S\emptyset + \bar{n} = j \quad 3,5 =E \)
7. \(S\emptyset + \bar{n} = S\bar{n} \) from T8.16
8. \(j = S\bar{n} \quad 6,7 =E \)
9. \(j = S\bar{n} \lor S\bar{n} < j \quad 8 \lor I \)
10. \(\exists y(k = S y) \quad A \ (g, 4\lor E) \)
11. \(k = S \bar{y} \quad A \ (g, 10\exists E) \)
12. \(k + S\bar{n} = j \) from 3 with T8.13
13. \(S\bar{y} + S\bar{n} = j \quad 12,11 =E \)
14. \(\exists v(Sv + S\bar{n} = j) \quad 13 \exists E \)
15. \(S\bar{n} < j \quad 14 \ abv \)
16. \(j = S\bar{n} \lor S\bar{n} < j \quad 15 \lor I \)
17. \(j = S\bar{n} \lor S\bar{n} < j \quad 10,11-16 \exists E \)
18. \(j = S\bar{n} \lor S\bar{n} < j \quad 4,5-9,10-17 \lor E \)
19. \(j = S\bar{n} \lor S\bar{n} < j \quad 2,3-18 \exists E \)
20. \(\pi < j \rightarrow (j = S\bar{n} \lor S\bar{n} < j) \quad 1-19 \rightarrow I \)
21. \(\forall x[\bar{n} < x \rightarrow (x = S\bar{n} \lor S\bar{n} < x)] \quad 20 \forall I \)

From Q7, either \(k \) is zero or it is not. If \(k \) is zero, it is a simple addition problem to show that \(j = S\bar{n} \) and so obtain the desired result. If \(k \) is a successor, then \(S\bar{n} < j \) and again we have the desired result.

With these theorems in hand, we are ready to obtain the result at which we have been aiming.

T8.21. For any \(n \), (i) \(Q \vdash_{ND} \forall x(x \leq \bar{n} \lor \bar{n} \leq x) \) and (ii) \(Q \vdash_{ND} \forall x(x < \bar{n} \lor x = \bar{n} \lor \bar{n} < x) \).
We show (ii). By induction on \(n \) we show \(Q \vdash_{ND} j < \overline{\bar{n}} \lor j = \overline{\bar{n}} \lor \overline{\bar{n}} < j \); the result immediately follows by \(\forall I \).

Basis: \(n = 0 \). We need to show that \(Q \vdash_{ND} j < \overline{\bar{0}} \lor j = \overline{\bar{0}} \lor \overline{\bar{0}} < j \).

1. \(j = \overline{\bar{0}} \lor \exists y (j = Sy) \) from Q7
2. \(j = \overline{\bar{0}} \) A (g, 1\(\lor E \))
3. \(j = \overline{\bar{0}} \lor \overline{\bar{0}} < j \) 2 \(\lor I \)
4. \(\exists y (j = Sy) \) A (g, 1\(\lor E \))
5. \(j = Sk \) A (g, 4\(\exists E \))
6. \(Sk + \overline{\bar{0}} = Sk \) from Q3
7. \(Sk + \overline{\bar{0}} = j \) 6,5 \(\equiv E \)
8. \(\exists v (Sv + \overline{\bar{0}} = j) \) 7 \(\exists I \)
9. \(\overline{\bar{0}} < j \) 8 \(abv \)
10. \(j = \overline{\bar{0}} \lor \overline{\bar{0}} < j \) 9 \(\lor I \)
11. \(j = \overline{\bar{0}} \lor \overline{\bar{0}} < j \) 4,5-10 \(\exists E \)
12. \(j = \overline{\bar{0}} \lor \overline{\bar{0}} < j \) 1,2-3,4-11 \(\lor E \)
13. \(j < \overline{\bar{0}} \lor j = \overline{\bar{0}} \lor \overline{\bar{0}} < j \) 12 \(\lor I \)

Assp: For any \(i \), \(0 \leq i < k \), \(Q \vdash_{ND} j < \overline{\bar{1}} \lor j = \overline{\bar{1}} \lor \overline{\bar{1}} < j \)

Show: \(Q \vdash_{ND} j < \overline{\bar{k}} \lor j = \overline{\bar{k}} \lor \overline{\bar{k}} < j \). Let \(m = k - 1 \).

1. \(j < \overline{\bar{m}} \lor j = \overline{\bar{m}} \lor \overline{\bar{m}} < j \) by assumption
2. \(j < \overline{\bar{m}} \) A (g, 1\(\lor E \))
3. \(\emptyset \neq \emptyset \lor j = \overline{\bar{0}} \lor \ldots \lor j = \overline{\bar{m}} - \overline{\bar{1}} \) from 2 with T8.18
4. \(\emptyset \neq \emptyset \lor j = \overline{\bar{0}} \lor \ldots \lor j = \overline{\bar{m}} - \overline{\bar{1}} \lor j = \overline{\bar{k}} - \overline{\bar{1}} \) 3 \(\lor I \)
5. \(j < \overline{\bar{k}} \) from 4 with T8.19
6. \(j < \overline{\bar{k}} \lor j = \overline{\bar{k}} \lor \overline{\bar{k}} < j \) 5 \(\lor I \)
7. \(j = \overline{\bar{m}} \) A (g, 1\(\lor E \))
8. \(\overline{\bar{m}} < \overline{\bar{k}} \) T8.16 (k - 1 < k)
9. \(j < \overline{\bar{k}} \) 8,7 \(\equiv E \)
10. \(j < \overline{\bar{k}} \lor j = \overline{\bar{k}} \lor \overline{\bar{k}} < j \) 9 \(\lor I \)
11. \(\overline{\bar{m}} < j \) A (g, 1\(\lor E \))
12. \(j = \overline{\bar{k}} \lor \overline{\bar{k}} < j \) from 11 with T8.20 (Sm = k)
13. \(j < \overline{\bar{k}} \lor j = \overline{\bar{k}} \lor \overline{\bar{k}} < j \) 12 \(\lor I \)
14. \(j < \overline{\bar{k}} \lor j = \overline{\bar{k}} \lor \overline{\bar{k}} < j \) 1, etc. \(\lor E \)

Indct: For any \(n \), \(Q \vdash_{ND} j < \overline{\bar{n}} \lor j = \overline{\bar{n}} \lor \overline{\bar{n}} < j \)
And since \(Q \vdash_{ND} j < \bar{n} \lor j = \bar{n} \lor \bar{n} < j \), by \(\forall I \), for any \(n \), \(Q \vdash_{ND} \forall x (x < \bar{n} \lor x = \bar{n} \lor \bar{n} < x) \).

If \(j < \bar{m} \), then \(j < \bar{k} \); if \(j = \bar{m} \), then again \(j < \bar{k} \); and if \(\bar{m} < j \), by T8.20 \(j = \bar{k} \lor \bar{k} < j \); so we get the result in any case. Note the use of theorems T8.18 and T8.19. In the first case of the show we convert from one inequality to another by switching to an extended disjunction, adding a disjunct and then converting back to the second inequality. Also again you should be clear about how the extended disjunctions work. If \(m = 0 \) (\(k = 1 \)), then the disjunction at (3) reduces to \(\emptyset \neq \emptyset \) and the one at (4) to \(\emptyset \neq \emptyset \lor j = \emptyset \). But this is just why we have been sure that there is some formula in these cases, so that the argument continues to work.

E8.36. Complete the demonstration of T8.21 by showing part (i) of T8.19, T8.20 and then T8.21.

8.4.6 Case

Finally, three theorems to round out results about inequality.

T8.22. For any \(n \) and formula \(P(x) \), (i) if \(Q \vdash_{ND} P(\bar{0}) \) or \(Q \vdash_{ND} P(\bar{1}) \) or \(\ldots \) or \(Q \vdash_{ND} P(\bar{n}) \) then \(Q \vdash_{ND} (\exists x \leq \bar{n}) P(x) \), and (ii) if \(0 \neq 0 \) or \(Q \vdash_{ND} P(\bar{0}) \) or \(\ldots \) or \(Q \vdash_{ND} P(\bar{n} - \bar{1}) \) then \(Q \vdash_{ND} (\exists x < \bar{n}) P(x) \).

In the second case, again, we include the first disjunct to keep the conditional defined in the case when \(n = 0 \); then the conditional obtains because the antecedent does not. This theorem is nearly trivial: (i) For some \(m \leq n \) suppose \(Q \vdash P(\bar{m}) \); by T8.16, \(Q \vdash_{ND} \bar{m} \leq \bar{n} \); so by \(\exists I \), \(Q \vdash_{ND} (\exists x \leq \bar{n}) P(x) \). Similarly for (ii).

If \(P \) is provable for some individual \(\leq n \) or \(< n \) then it is immediate that the corresponding bounded existential generalization is provable.

*T8.23. For any \(n \) and formula \(P(x) \), (i) if \(Q \vdash_{ND} P(\bar{0}) \) and \(Q \vdash_{ND} P(\bar{1}) \) and \(\ldots \) and \(Q \vdash_{ND} P(\bar{n}) \) then \(Q \vdash_{ND} (\forall x \leq \bar{n}) P(x) \), and (ii) if \(0 = 0 \) and \(Q \vdash_{ND} P(\bar{0}) \) and \(\ldots \) and \(Q \vdash_{ND} P(\bar{n} - \bar{1}) \) then \(Q \vdash_{ND} (\forall x < \bar{n}) P(x) \).

This time in the second case we include a trivial truth in order to keep the conditional defined when \(n = 0 \); when \(n = 0 \), then the antecedent is trivially true, but the consequent follows from nothing. The argument is by induction on the value of \(n \).
CHAPTER 8. MATHEMATICAL INDUCTION

If Q proves \(P \) for each individual \(\leq n \) or \(< n \) then Q proves the corresponding bounded universal generalization. And, finally, Q proves that the different inequalities are related as we expect.

*T8.24. For any \(n \), (i) \(Q \vdash_{\text{ND}} \forall x [x \leq \bar{n} \leftrightarrow (x < \bar{n} \vee x = \bar{n})] \), and (ii) \(Q \vdash_{\text{ND}} \forall x [x < \bar{n} \leftrightarrow (x \leq \bar{n} \land x \neq \bar{n})] \)

Hint: You will be able to move between the long disjunctions on the one hand, and inequalities of the different types on the other. Part (i) does not require induction. For (ii), it will be helpful to begin by showing, by induction on \(a \), that for any \(a \leq n \), \(Q \vdash_{\text{ND}} j < a \rightarrow j \neq \bar{n} \)—the case when \(a = n \) gives \(Q \vdash_{\text{ND}} j < \bar{n} \rightarrow j \neq \bar{n} \).

In the obvious way, we are able to express \(s \leq t \) in terms of \(s < t \) and similarly, \(s < t \) in terms of \(s \leq t \).

*E8.37. Provide derivations to show both parts of T8.23.

*E8.38. Provide derivations to show both parts of T8.24.

E8.39. For each of the following concepts, explain in an essay of about two pages, so that (high school age) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. The use of the inductive assumption in an argument from mathematical induction.

b. The reason mathematical induction works as a deductive argument form.
Final Theorems of Chapter 8

T8.10 For any $a, b, c \in U$, if $a + b = c$, then $Q \vdash_{ND} a + b = c$.

T8.11 For any $a, b, c \in U$, if $a \times b = c$ then $Q \vdash_{ND} a \times b = c$.

T8.12 For any $a, b \in U$, if $a \neq b$, then $Q \vdash_{ND} a \neq \overline{b}$.

T8.13 $Q \vdash_{ND} Sj + \overline{n} = j + S\overline{n}$.

T8.14 (i) If $a \neq b$, then $Q \vdash_{ND} \overline{a} \neq \overline{b}$; and (ii) If $a \neq b$, then $Q \vdash_{ND} \overline{a} \neq \overline{b}$.

T8.15 For any variable-free term t of L_{at}, if $N[t] = n$, then $Q \vdash_{ND} t = \overline{n}$.

T8.16 Q correctly decides atomic sentences of L_{at}. For any sentence P of the sort $s = t$, $s \leq t$ or $s < t$, if $N[P] = T$ then $Q \vdash_{ND} P$; and if $N[P] \neq T$ then $Q \vdash_{ND} \sim P$.

T8.17 For any n and T, if $T \vdash_{ND} x = S\overline{y}$ and $T \vdash_{ND} y = \overline{\overline{0}} \lor \overline{y} = \overline{\overline{1}} \lor \ldots \lor y = \overline{n}$, then $T \vdash_{ND} x = S\overline{\overline{0}} \lor x = S\overline{\overline{1}} \lor \ldots \lor x = S\overline{n}$.

T8.18 For any n, (i) $Q \vdash_{ND} (\forall x \leq \overline{n})(x = \overline{\overline{0}} \lor x = \overline{\overline{1}} \lor \ldots \lor x = \overline{n} = \overline{n - 1})$ and (ii) $Q \vdash_{ND} (\forall x < \overline{n})(\overline{\overline{0}} \lor x = \overline{\overline{1}} \lor \ldots \lor x = \overline{n - 1})$.

T8.19 For any n, (i) $Q \vdash_{ND} \forall x([x = \overline{\overline{0}} \lor x = \overline{\overline{1}} \lor \ldots \lor x = \overline{n}] \rightarrow x \leq \overline{n})$ and (ii) $Q \vdash_{ND} \forall x([\overline{\overline{0}} \lor x = \overline{\overline{1}} \lor \ldots \lor x = \overline{n - 1}] \rightarrow x < \overline{n})$.

T8.20 For any n, (i) $Q \vdash_{ND} \forall x[\overline{n} \leq x \rightarrow (\overline{n} = x \lor S\overline{n} \leq x)]$ and (ii) $Q \vdash_{ND} \forall x[\overline{n} < x \rightarrow (S\overline{n} = x \lor S\overline{n} < x)]$.

T8.21 For any n, (i) $Q \vdash_{ND} \forall x(x \leq \overline{n} \lor \overline{n} \leq x)$ and (ii) $Q \vdash_{ND} \forall x(x < \overline{n} \lor x = \overline{n} \lor \overline{n} < x)$.

T8.22 For any n and formula $P(x)$, (i) if $Q \vdash_{ND} P(\overline{0})$ or $Q \vdash_{ND} P(\overline{1})$ or ... or $Q \vdash_{ND} P(\overline{n})$ then $Q \vdash_{ND} (\exists x \leq \overline{n})P(x)$, and (ii) if $0 \neq \overline{0}$ or $Q \vdash_{ND} P(\overline{0})$ or ... or $Q \vdash_{ND} P(\overline{n - 1})$ then $Q \vdash_{ND} (\exists x < \overline{n})P(x)$.

T8.23 For any n and formula $P(x)$, (i) if $Q \vdash_{ND} P(\overline{0})$ and $Q \vdash_{ND} P(\overline{1})$ and ... and $Q \vdash_{ND} P(\overline{n})$ then $Q \vdash_{ND} (\forall x \leq \overline{n})P(x)$, and (ii) if $0 = \overline{0}$ and $Q \vdash_{ND} P(\overline{0})$ and ... and $Q \vdash_{ND} P(\overline{n - 1})$ then $Q \vdash_{ND} (\forall x < \overline{n})P(x)$.

T8.24 For any n, (i) $Q \vdash_{ND} \forall x[x \leq \overline{n} \leftrightarrow (x < \overline{n} \lor x = \overline{n})]$, and (ii) $Q \vdash_{ND} \forall x[x < \overline{n} \leftrightarrow (x \leq \overline{n} \land x \neq \overline{n})]$.
Part III

Classical Metalogic: Soundness and Completeness
In part I we introduced four notions of validity. In this part, we set out to show that they are interrelated as follows.

An argument is valid in \(\text{AD} \) iff it is valid in \(\text{ND} \). And an argument is semantically valid iff it is valid in the derivation systems. So the three formal notions apply to exactly the same arguments. And if an argument is semantically valid, then it is logically valid. So any of the formal notions imply logical validity for a corresponding ordinary argument.

More carefully, in part I, we introduced four main notions of validity. There is logical validity from chapter 1, semantic validity from chapter 4, and syntactic validity in the derivation systems \(\text{AD} \) from chapter 3 and \(\text{ND} \) from chapter 6. These notions are \textit{independently defined}. Thus it is not immediate or obvious how they are related. We turn in this part to the task of thinking \textit{about} these notions, and especially about how they are related. The primary result is that \(\Gamma \vdash \mathcal{P} \) iff \(\Gamma \vdash_{\text{AD}} \mathcal{P} \) iff \(\Gamma \vdash_{\text{ND}} \mathcal{P} \) (iff \(\Gamma \vdash_{\text{ND+}} \mathcal{P} \)). Thus our different formal notions of validity are met by just the same arguments, and the derivation systems—defined in terms of \textit{form}, are “faithful” to the semantic notion—defined in terms of truth. What is derivable is neither more nor less than what is semantically valid. And this is just right: If what is derivable were more than what is semantically valid, derivations could lead us from true premises to false conclusions; if it were less, not all semantically valid arguments could be identified.
as such by derivations. That the derivable is no more than what is semantically valid is *soundness* of a derivation system; that it is no less is *completeness*. In addition, we show that if an argument is semantically valid, then a corresponding ordinary argument is *logically valid*. Given the equivalence between the formal notions of validity, it follows that if an argument is valid in any of the formal senses, then it is logically valid. This connects the formal machinery to the notion of validity with which we began.

Notions of *soundness* and *completeness* appear in a variety of contexts. We have seen *sound* arguments from chapter 1; in this part we have *sound* derivation systems, and encounter *sound* theories. Similarly, in this part we have *complete* derivation systems and shall encounter *complete* (and incomplete) theories. These notions of soundness and completeness are separately defined, and apply to different objects. This invites confusion! One option is to introduce new vocabulary. But the weight of tradition is strong. Also, in section 11.4.1 we exhibit a notion of *relative soundness* such that both the soundness of derivation systems and the soundness of theories are instances of it. And similarly, there is a *relative completeness* such that both the completeness of derivation systems and the completeness of theories are instances of it. So the different notions appear as separate instances of a general kind. In order to indicate distinctness at the same time as we (honor tradition and) acknowledge underlying conceptual connections, I introduce a (silent) diacritical mark for each—identifying the notions with application to derivation systems with an enlarged dot, (šoundness, šcompleteness) and ones whose application is to theories with a tilde (šoundness, šcompleteness).

We begin in chapter 9 showing that just the same arguments are valid in the derivation systems ND and AD. This puts us in a position to demonstrate in chapter 10 the core result that the derivation systems are both šound and šcomplete. Chapter 11 fills out this core picture in different directions.
Chapter 9

Preliminary Results

We have said that the aim of this part is to establish the following relations: An argument is semantically valid iff it is valid in AD; iff it is valid in ND; and if an argument is semantically valid, then it is logically valid.

In this chapter, we begin to develop these relations, taking up some of the simpler cases. We consider the leftmost horizontal arrow, and the rightmost vertical ones. Thus we show that quantificational (semantic) validity implies logical validity (section 9.1), that validity in AD implies validity in ND (section 9.2), that validity in ND implies validity in AD (section 9.3), and extend the results to $ND+$ (section 9.4). Implications between semantic validity and the syntactical notions will wait for chapter 10.

9.1 Semantic Validity Implies Logical Validity

Logical validity is defined for arguments in ordinary language. From LV, an argument is logically valid iff there is no consistent story in which all the premises are true and the conclusion is false. Quantificational validity is defined for arguments in a
formal language. From QV, an argument is quantificationally valid iff there is no interpretation on which all the premises are true and the conclusion is not. So our task is to show how facts about formal expressions and interpretations connect with ordinary expressions and stories. In particular, where \(P_1 \ldots P_n \rightarrow Q \) is an ordinary-language argument, and \(P'_1 \ldots P'_n, Q' \) are the formulas of a good translation, we show that if \(P'_1 \ldots P'_n \models \forall Q'_1 \), then the ordinary argument \(P_1 \ldots P_n / Q \) is logically valid. The reasoning itself is straightforward. We will spend a bit more time discussing the result.

Recall our criterion of goodness for translation CG from chapter 5 (page 143). When we identify a (sentential or quantificational) interpretation function \(\Pi \), we thereby identify an intended interpretation \(\Pi \omega \) corresponding to any way \(\omega \) that the world can be. For example, corresponding to the interpretation function,

\[
\begin{align*}
\Pi & : \text{Bill is happy} \\
\Pi & : \text{Hill is happy}
\end{align*}
\]

\(\Pi_\omega[B] = T \) just in case Bill is happy at \(\omega \), and similarly for \(H \). Given this, a formal translation \(\mathcal{A}' \) of some ordinary \(\mathcal{A} \) is good only if at any \(\omega \), \(\Pi_\omega[\mathcal{A}'] \) has the same truth value as \(\mathcal{A} \) at \(\omega \). Given this, we can show,

T9.1. For any ordinary argument \(P_1 \ldots P_n / Q \), with good translation consisting of \(\Pi \) and \(P'_1 \ldots P'_n, Q' \), if \(P'_1 \ldots P'_n \models Q' \), then \(P_1 \ldots P_n / Q \) is logically valid.

Suppose \(P'_1 \ldots P'_n \models Q' \) but \(P_1 \ldots P_n / Q \) is not logically valid. From the latter, by LV, there is some consistent story \(\omega \) where each of \(P_1 \ldots P_n \) is true but \(Q \) is false; and since \(\omega \) is consistent and \(Q \) is false, \(Q \) is not true at \(\omega \). Since \(P_1 \ldots P_n \) are true at \(\omega \), by CG, \(\Pi_\omega[P'_1] = T \), and \(\ldots \) and \(\Pi_\omega[P'_n] = T \); and since \(Q \) is not true at \(\omega \); by CG, \(\Pi_\omega[Q'] \neq T \). So there is an \(\Pi \) that makes each of \([P'_1] = T \), and \(\ldots \) and \([P'_n] = T \) and \([Q'] \neq T \); so by QV, \(P'_1 \ldots P'_n \nV Q' \). This is impossible; reject the assumption: if \(P'_1 \ldots P'_n \models Q' \) then \(P_1 \ldots P_n / Q \) is logically valid.

It is that easy. If there is no interpretation where \(P'_1 \ldots P'_n \) are true but \(Q' \) is not, then there is no intended interpretation where \(P'_1 \ldots P'_n \) are true but \(Q' \) is not; so, by CG, there is no consistent story where the premises are true and the conclusion is not; so \(P_1 \ldots P_n / Q \), is logically valid. So if \(P'_1 \ldots P'_n \models Q' \) then \(P_1 \ldots P_n / Q \) is logically valid.

Let us make a couple of observations: First, CG is stronger than is actually required for our application of semantic validity to logical validity. CG requires a biconditional for good translation.
 CHAPTER 9. PRELIMINARY RESULTS

\[\mathcal{A} \text{ is true at } \omega \iff \ll_\omega[\mathcal{A}'] = T \]

But our reasoning applies to premises just the left-to-right portion of this condition: if \(\mathcal{P} \) is true at \(\omega \) then \(\ll_\omega[\mathcal{P}'] = T \). And for the conclusion, the reasoning goes in the opposite direction: if \(\ll_\omega[\mathcal{Q}'] = T \) then \(\mathcal{Q} \) is true at \(\omega \) (so that if \(\mathcal{Q} \) is not true at \(\omega \), then \(\ll_\omega[\mathcal{Q}'] \neq T \)). The biconditional from CG guarantees both. But, strictly, for premises, all we need is that truth of an ordinary expression at a story guarantees truth for the corresponding formal one at the intended interpretation. And for a conclusion, all we need is that truth of the formal expression on the intended interpretation guarantees truth of the corresponding ordinary expression at the story.

Thus we might use our methods to identify logical validity even where translations are less than completely good. Consider, for example, the following argument.

\[(A) \quad \text{Bob took a shower and got dressed}\]
\[\quad \text{Bob took a shower}\]

As discussed in chapter 5 (page 162), where \(\ll \) gives \(S \) the same value as “Bob took a shower” and \(D \) the same as “Bob got dressed,” we might agree that there are cases where \(\ll_\omega[S \land D] = T \) but “Bob took a shower and got dressed” is false. So we might agree that the right-to-left conditional is false, and the translation is not good.

However, even if this is so, given our interpretation function, there is no situation where “Bob took a shower and got dressed” is true but \(S \land D \) is \(F \) at the corresponding intended interpretation. So the left-to-right conditional is sustained. So even if the translation is not good by CG, it remains possible to use our methods to demonstrate logical validity. Since it remains that if the ordinary premise is true at a story then the formal expression is true at the corresponding intended interpretation, semantic validity implies logical validity. A similar point applies to conclusions. Of course, we already knew that this argument is logically valid. But the point applies to more complex arguments as well.

Second, observe that our reasoning does not work in reverse. It might be that \(\mathcal{P}_1 \ldots \mathcal{P}_n / \mathcal{Q} \) is logically valid, even though \(\mathcal{P}_1' \ldots \mathcal{P}_n' \neq \mathcal{Q}' \). Finding a quantificational interpretation where \(\mathcal{P}_1' \ldots \mathcal{P}_n' \) are true and \(\mathcal{Q}' \) is not shows that \(\mathcal{P}_1' \ldots \mathcal{P}_n' \neq \mathcal{Q}' \). However it does not show that \(\mathcal{P}_1 \ldots \mathcal{P}_n / \mathcal{Q} \) is not logically valid. Here is why: There may be quantificational interpretations which do not correspond to any consistent story. The situation is like this:
Intended interpretations correspond to stories. If no interpretation whatsoever has the premises true and the conclusion not, then no intended interpretation has the premises true and conclusion not, so no consistent story makes the premises true and the conclusion not. But it may be that some (unintended) interpretation makes the premises true and conclusion false, even though no intended interpretation is that way. Thus if we were to attempt to run the above reasoning in reverse, a move from the assumption that $\mathcal{P}_1 \ldots \mathcal{P}_n \not\models \mathcal{Q}'$, to the conclusion that there is a consistent story where $\mathcal{P}_1 \ldots \mathcal{P}_n$ are true but \mathcal{Q} is not would fail.

It is easy to see why there might be unintended interpretations. Consider, first, this standard argument.

$$
\begin{array}{c}
\text{All humans are mortal} \\
\text{(B)} \\
\text{Socrates is human} \\
\hline
\text{Socrates is mortal}
\end{array}
$$

It is logically valid. But consider what happens when we translate into a sentential language. We might try an interpretation function as follows.

$$
\begin{array}{c}
A: \text{All humans are mortal} \\
H: \text{Socrates is human} \\
M: \text{Socrates is mortal}
\end{array}
$$

with translation, $A, H/M$. But, of course, there is a row of the truth table on which A and H are T and M is F. So the argument is not sententially valid. This interpretation is unintended in the sense that it corresponds to no consistent story whatsoever. The interpretation function generates an interpretation corresponding to every consistent story; but this leaves open that there are interpretations not matched to any story. Sentential languages are sufficient to identify validity when validity results from truth functional structure; this argument is valid, but not valid because of truth functional structure.
We are in a position to expose its validity only in the quantificational case. Thus we might have,

\(s: \) Socrates

\(H^1: \) \(\{o \mid o \text{ is human} \}\)

\(M^1: \) \(\{o \mid o \text{ is mortal} \}\)

with translation \(\forall x (H x \rightarrow M x) \), \(Hs/Ms \). The argument is quantificationally valid. And, as above, it follows that the ordinary one is logically valid.

But related problems may arise even for quantificational languages. Thus consider,

\((C)\) Socrates is necessarily human

\[\text{Socrates is human} \]

Again, the argument is logically valid—if Socrates is human according to every consistent story, then Socrates is human according to the real story. But now, with a quantificational language, we end up with something like an additional relation symbol \(N^1 \) for \(\{o \mid o \text{ is necessarily human} \} \), and translation \(Ns/Hs \). And this is not quantificationally valid. Consider, for example, an interpretation with \(U = \{1\} \), \(I[s] = 1 \), \(I[N] = \{1\} \), and \(I[H] = \{\} \). Then the premise is true, but the conclusion is not. Again, the problem is that the interpretation corresponds to no consistent story. And, again, the reason is that the argument includes structure that our quantificational language fails to capture. As it turns out, modal logic is precisely an attempt to work with structure introduced by notions of possibility and necessity. Where ‘□’ represents necessity, this argument, with translation \(\square Hs/Hs \) is valid on standard modal systems.\(^1\)

The upshot of this discussion is that our methods are adequate when they work to identify validity. When an argument is semantically valid, we can be sure that it is logically valid. But we are not in a position to identify all the arguments that are logically valid. Thus quantificational invalidity does not imply logical invalidity. We should not be discouraged by this or somehow put off the logical project. Rather, we have a rationale for expanding the logical project. In part I, we set up formal logic as a “tool” or “machine” to identify logical validity. Beginning with the notion of logical validity, we introduce our formal languages, learn to translate into them, and to manipulate arguments by semantical and syntactical methods. The sentential notions have some utility. But when it turns out that sentential languages miss important

\(^1\)Modal logics are introduced in Priest, *Non-Classical Logics*. His book is profitably read together with Roy, “Natural Derivations for Priest.”
structure, we expand the language to include quantificational structure, developing the semantical and syntactical methods to match. And similarly, if our quantificational languages should turn out to miss important structure, we expand the language to capture that structure, and further develop the semantical and syntactical methods. As it happens, the classical quantificational logic we have seen so far is sufficient to identify validity in a wide variety of contexts—and, in particular, for arguments in mathematics. Also, controversy may be introduced as one expands beyond the classical quantificational level. So the logical project is a live one. But let us return to the kinds of validity we have already seen.

E9.1. (i) Recast the above reasoning to show directly a corollary to T9.1: If Q_0, then Q is necessarily true (that is, there is no consistent story where it is false).

(ii) Suppose $\not\models Q_0$; does it follow that Q is not necessarily true? Explain.

E9.2. On page 158 we informally suggest inductive reasoning to show that our translation procedure (TP) gives the right results. Make this rigorous. That is, for an ordinary P and good formal translation P', show by induction on the number of truth functional operators (operators branching in the parse tree for P) that P is true at world ω iff $l_{\omega}[P'] = T$. Hint: when P has k operators, it is of the sort $Op(A_1 \ldots A_n)$ and P' is $Op'(A'_1 \ldots A'_n)$ for $A_1 \ldots A_n$ with $< k$ operators, for some ordinary operator Op and equivalent formal expression Op'—so, for a simple example, if $Op(A, B)$ is \underline{A} and \underline{B} then $Op'(A', B')$ is $\underline{A'} \land \underline{B'}$.

9.2 Validity in AD Implies Validity in ND

It is easy to see that if $\Gamma \vdash_{AD} P$, then $\Gamma \vdash_{ND} P$. Roughly, anything we can accomplish in AD we can accomplish in ND as well. If a premise appears in an AD derivation, that same premise can be used in ND. If an axiom appears in an AD derivation, that axiom can be derived in ND. And if a line is justified by MP or Gen in AD, that same line may be justified by rules of ND. So anything that can be derived in AD can be derived in ND. Officially, this reasoning is by induction on the line numbers of an AD derivation, and it is appropriate to work out the details more formally. The argument by mathematical induction is longer than anything we have seen so far, but the reasoning is straightforward.

T9.2. If $\Gamma \vdash_{AD} P$, then $\Gamma \vdash_{ND} P$.

Suppose $\Gamma \vdash_{AD} P$. Then there is an AD derivation $A = \langle Q_1 \ldots Q_n \rangle$ of P from premises in Γ, with $Q_n = P$. We show that there is a corresponding ND derivation
CHAPTER 9. PRELIMINARY RESULTS

442

N, such that if \(\mathcal{Q}_i \) appears on line \(i \) of \(A \), then \(\mathcal{Q}_i \) appears, under the scope of the premises alone, on the line numbered ‘\(i \)’ of \(N \). It follows that \(\Gamma \vdash_{ND} \mathcal{P} \). For any premises \(\mathcal{Q}_a, \mathcal{Q}_b, \ldots \mathcal{Q}_j \) in \(A \), let \(N \) begin,

\[
\begin{array}{c|c}
0.a & \mathcal{Q}_a & \mathcal{P} \\
0.b & \mathcal{Q}_b & \mathcal{P} \\
\vdots \\
0.j & \mathcal{Q}_j & \mathcal{P} \\
1 & \mathcal{Q}_i & 0.i \mathcal{R}
\end{array}
\]

Now we reason by induction on the line numbers in \(A \). The general plan is to construct a derivation \(N \) which accomplishes just what is accomplished in \(A \). Fractional line numbers, as above, maintain the parallel between the two derivations.

Basis: \(\mathcal{Q}_1 \) in \(A \) is a premise or an instance of \(A_1, A_2, A_3, A_4, A_5, A_6, A_7 \) or \(A_8 \).

(prem) If \(\mathcal{Q}_1 \) is a premise \(\mathcal{Q}_i \), continue \(N \) as follows,

\[
\begin{array}{c|c}
0.a & \mathcal{Q}_a & \mathcal{P} \\
0.b & \mathcal{Q}_b & \mathcal{P} \\
\vdots \\
0.j & \mathcal{Q}_j & \mathcal{P} \\
1 & \mathcal{Q}_i & 0.i \mathcal{R}
\end{array}
\]

So \(\mathcal{Q}_1 \) appears, under the scope of the premises alone, on the line numbered ‘\(1 \)’ of \(N \).

(A1) If \(\mathcal{Q}_1 \) is an instance of \(A_1 \), then it is of the form, \(\mathcal{B} \rightarrow (\mathcal{C} \rightarrow \mathcal{B}) \), and we continue \(N \) as follows,

\[
\begin{array}{c|c}
0.a & \mathcal{Q}_a & \mathcal{P} \\
0.b & \mathcal{Q}_b & \mathcal{P} \\
\vdots \\
0.j & \mathcal{Q}_j & \mathcal{P} \\
1.1 & \mathcal{B} & \mathcal{A} (g, \rightarrow I) \\
1.2 & \mathcal{C} & \mathcal{A} (g, \rightarrow I) \\
1.3 & \mathcal{B} & 1.1 \mathcal{R} \\
1.4 & \mathcal{C} \rightarrow \mathcal{B} & 1.2-1.3 \rightarrow I \\
1 & \mathcal{B} \rightarrow (\mathcal{C} \rightarrow \mathcal{B}) & 1.1-1.4 \rightarrow I
\end{array}
\]

So \(\mathcal{Q}_1 \) appears, under the scope of the premises alone, on the line numbered ‘\(1 \)’ of \(N \).
(A2) If \(Q_1 \) is an instance of A2, then it is of the form, \((B \to (C \to D)) \to ((B \to C) \to (B \to D))\) and we continue \(N \) as follows,

\[
\begin{array}{c|c}
0.a & Q_a \\
0.b & Q_b \\
\vdots & \\
0.j & Q_j \\
1.1 & B \to (C \to D) \\
1.2 & B \to C \\
1.3 & B \\
1.4 & C \\
1.5 & C \to D \\
1.6 & D \\
1.7 & B \to D \\
1.8 & (B \to C) \to (B \to D) \\
1 & (B \to (C \to D)) \to ((B \to C) \to (B \to D)) \\
\end{array}
\]

So \(Q_1 \) appears, under the scope of the premises alone, on the line numbered ‘1’ of \(N \).

(A3) Homework.

(A4) Homework.

(A5) If \(Q_1 \) is an instance of A5, then it is of the form \(\forall x(\mathcal{P} \to \mathcal{Q}) \to (\mathcal{P} \to \forall x\mathcal{Q}) \) for some variable \(x \) that is not free in \(\mathcal{P} \), and we continue \(N \) as follows,

\[
\begin{array}{c|c}
0.a & Q_a \\
0.b & Q_b \\
\vdots & \\
0.j & Q_j \\
1.1 & \forall x(\mathcal{P} \to \mathcal{Q}) \\
1.2 & \mathcal{P} \\
1.3 & \mathcal{P} \to \mathcal{Q} \\
1.4 & \mathcal{Q} \\
1.5 & \forall x\mathcal{Q} \\
1.6 & \mathcal{P} \to \forall x\mathcal{Q} \\
1 & \forall x(\mathcal{P} \to \mathcal{Q}) \to (\mathcal{P} \to \forall x\mathcal{Q}) \\
\end{array}
\]

\(x \) is sure to be free for \(x \) in \(\mathcal{P} \to \mathcal{Q} \); so (1.3) meets the constraint on \(\forall E \).

In addition, \(x \) is sure to be free for \(x \) in \(\mathcal{Q} \) and \(x \) is not free in \(\forall x\mathcal{Q} \), further
\(x \) is not free in \(\forall x (P \rightarrow Q) \) and we are given that \(x \) is not free in \(P \) so \(x \) is not free in any undischarged assumption; so the restrictions are met for \(\forall I \) at (1.5). So \(Q_1 \) appears, under the scope of the premises alone, on the line numbered ‘1’ of \(N \).

(A6) Homework.

(A7) If \(Q_1 \) is an instance of A7, then it is of the form \((x_i = y) \rightarrow (h^n x_1 \ldots x_i \ldots x_n = h^n x_1 \ldots x_j x_i \ldots x_n)\) for some variables \(x_1 \ldots x_n \) and \(y \) and function symbol \(h^n \); and we continue \(N \) as follows,

\[
\begin{array}{c|c}
0.a & Q_a \\
0.b & Q_b \\
\vdots & \\
0.j & Q_j \\
1.1 & x_i = y \\
1.2 & h^n x_1 \ldots x_i \ldots x_n = h^n x_1 \ldots x_j x_i \ldots x_n \\
1.3 & h^n x_1 \ldots x_i \ldots x_n = h^n x_1 \ldots y \ldots x_n \\
1 & (x_i = y) \rightarrow (h^n x_1 \ldots x_i \ldots x_n = h^n x_1 \ldots x_n) \\
\end{array}
\]

So \(Q_1 \) appears, under the scope of the premises alone, on the line numbered ‘1’ of \(N \).

(A8) Homework.

\textbf{Assp:} For any \(i \), \(1 \leq i < k \), if \(Q_i \) appears on line \(i \) of \(A \), then \(Q_i \) appears, under the scope of the premises alone, on the line numbered ‘i’ of \(N \).

\textbf{Show:} If \(Q_k \) appears on line \(k \) of \(A \), then \(Q_k \) appears, under the scope of the premises alone, on the line numbered ‘k’ of \(N \).

\(Q_k \) in \(A \) is a premise, an axiom, or arises from previous lines by MP or Gen. If \(Q_k \) is a premise or an axiom then, by reasoning as in the basis (with line numbers adjusted to \(k \) in \(A \)), if \(Q_k \) appears on line \(k \) of \(A \), then \(Q_k \) appears, under the scope of the premises alone, on the line numbered ‘k’ of \(A \). So suppose \(Q_k \) arises by MP or Gen.

\textbf{(MP)} If \(Q_k \) arises from previous lines by MP, then \(A \) is as follows,

\[
i \quad B \rightarrow C \\
\vdots \\
j \quad B \\
\vdots \\
k \quad C \\
i, j \text{ MP}
\]

where \(i, j < k \) and \(Q_k \) is \(C \). By assumption, then, there are lines in \(N \),
So we simply continue derivation N,

\[
\begin{array}{c|c}
 i & \mathcal{B} \rightarrow \mathcal{C} \\
 \vdots \\
 j & \mathcal{B} \\
 \vdots \\
 k & \mathcal{C} & i, j \rightarrow \mathcal{E}
\end{array}
\]

So Q_k appears under the scope of the premises alone, on the line numbered ‘k’ of N.

(Gen) If Q_k arises from previous lines by Gen, then A is as follows,

\[
\begin{array}{c|c}
 i & \mathcal{B} \rightarrow \mathcal{C} \\
 \vdots \\
 j & \mathcal{B} \\
 \vdots \\
 k & \forall x \mathcal{B} & i \text{ Gen}
\end{array}
\]

where $i < k$, and Q_k is $\forall x \mathcal{B}$. By assumption N has a line i,

\[
\begin{array}{c|c}
 \vdots \\
 i & \mathcal{B} \\
 \vdots \\
 \vdots
\end{array}
\]

under the scope of the premises alone. So we continue N as follows,

\[
\begin{array}{c|c}
 i & \mathcal{B} \\
 \vdots \\
 k & \forall x \mathcal{B} & i \text{ } \forall l
\end{array}
\]

Since i is under the scope of the premises alone, x is not free in an undischarged assumption. Further, since there is no change of variables, we can be sure that x is free for every free instance of x in \mathcal{B}, and that x is not free in $\forall x \mathcal{B}$. So the restrictions are met on $\forall l$. So Q_k appears under the scope of the premises alone, on the line numbered ‘k’ of N.

In any case then, Q_k appears under the scope of the premises alone, on the line numbered ‘k’ of N.

\textit{Indct}: For any line j of A, Q_j appears under the scope of the premises alone, on the line numbered ‘j’ of N.
So \(\Gamma \vdash_{\text{ND}} Q_i \), where this is just to say \(\Gamma \vdash_{\text{ND}} P \). So if \(\Gamma \vdash_{\text{AD}} P \), then \(\Gamma \vdash_{\text{ND}} P \). Notice the way we use line numbers, \(i.1, i.2, \ldots i.n, i \) in \(N \) to make good on the claim that for each \(Q_i \) in \(A \), \(Q_i \) appears on the line numbered ‘\(i \)’ of \(N \)—where the line numbered ‘\(i \)’ may or may not be the \(i^{th} \) line of \(N \). We need this parallel between the line numbers when it comes to cases for MP and Gen. With the parallel, we are in a position to use line numbers from justifications in derivation \(A \) for the specification of derivation \(N \).

Given an \(AD \) derivation, what we have done shows that there exists an \(ND \) derivation by showing how to construct it. We can see how this works by considering an application. Thus, for example, consider the following derivation of \(T3.2 \).

\[
\begin{align*}
1. & \quad B \rightarrow C \quad \text{prem} \\
2. & \quad (B \rightarrow C) \rightarrow [A \rightarrow (B \rightarrow C)] \quad \text{A1} \\
3. & \quad A \rightarrow (B \rightarrow C) \quad 2,1 \text{ MP} \\
(D) & \quad 4. \quad [A \rightarrow (B \rightarrow C)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow C)] \quad \text{A2} \\
5. & \quad (A \rightarrow B) \rightarrow (A \rightarrow C) \quad 4,3 \text{ MP} \\
6. & \quad A \rightarrow B \quad \text{prem} \\
7. & \quad A \rightarrow C \quad 5,6 \text{ MP}
\end{align*}
\]

Let this be derivation \(A \); we will follow the method of our induction to construct a corresponding \(ND \) derivation \(N \). The first step is to list the premises.

\[
\begin{align*}
0.1 & \quad B \rightarrow C \quad \text{P} \\
0.2 & \quad A \rightarrow B \quad \text{P}
\end{align*}
\]

Now to the induction itself. The first line of \(A \) is a premise. Looking back to the basis case of the induction, we see that we are instructed to produce the line numbered ‘\(1 \)’ by reiteration. So that is what we do.

\[
\begin{align*}
0.1 & \quad B \rightarrow C \quad \text{P} \\
0.2 & \quad A \rightarrow B \quad \text{P} \\
1 & \quad B \rightarrow C \quad 0.1 \text{ R}
\end{align*}
\]

This may strike you as somewhat pointless! But, again, we need \(B \rightarrow C \) on the line numbered ‘\(1 \)’ in order to maintain the parallel between the derivations. So our recipe requires this simple step.

Line 2 of \(A \) is an instance of A1, and the induction therefore tells us to get it “by reasoning as in the basis.” Looking then to the case for A1 in the basis, we continue on that pattern as follows,
Notice that this reasoning for the show step now applies to line 2, so that the line numbers are 2.1, 2.2, 2.3, 2.4, 2 instead of 1.1, 1.2, 1.3, 1.4, 1 as for the basis. Also, what we have added follows exactly the pattern from the recipe in the induction, given the relevant instance of A1.

Line 3 is justified by 2.1 MP. Again, by the recipe from the induction, we continue,

\[
\begin{array}{c|c|c}
0.1 & \mathcal{B} \rightarrow \mathcal{C} & P \\
0.2 & \mathcal{A} \rightarrow \mathcal{B} & P \\
1 & \mathcal{B} \rightarrow \mathcal{C} & 0.1 \mathcal{R} \\
2.1 & \mathcal{B} \rightarrow \mathcal{C} & \mathcal{A} (g, \rightarrow I) \\
2.2 & \mathcal{A} & \mathcal{A} (g, \rightarrow I) \\
2.3 & \mathcal{B} \rightarrow \mathcal{C} & 2.1 \mathcal{R} \\
2.4 & \mathcal{A} \rightarrow (\mathcal{B} \rightarrow \mathcal{C}) & 2.2-2.3 \rightarrow I \\
2 & (\mathcal{B} \rightarrow \mathcal{C}) \rightarrow (\mathcal{A} \rightarrow (\mathcal{B} \rightarrow \mathcal{C})) & 2.1-2.4 \rightarrow I \\
3 & \mathcal{A} \rightarrow (\mathcal{B} \rightarrow \mathcal{C}) & 2.1 \rightarrow E \\
\end{array}
\]

Notice that the line numbers of the justification are identical to those in the justification from \(\mathcal{A}\). And similarly, we are in a position to generate each line in \(\mathcal{A}\). Thus, for example, line 4 of \(\mathcal{A}\) is an instance of A2. So we would continue with lines 4.1–4.8 and 4 to generate the appropriate instance of A2. As it turns out, the resultant ND derivation is not very efficient. But it is a derivation, and our point is merely to show that some ND derivation of the same result exists. So if \(\Gamma \vdash_{\mathcal{AD}} \mathcal{P}\), then \(\Gamma \vdash_{\mathcal{ND}} \mathcal{P}\).

*E9.3. Set up the above induction for T9.2, and complete the unfinished cases to show that if \(\Gamma \vdash_{\mathcal{AD}} \mathcal{P}\), then \(\Gamma \vdash_{\mathcal{ND}} \mathcal{P}\). For cases completed in the text, you may simply refer to the text, as the text refers cases to homework.

E9.4. (i) Where \(\mathcal{A}\) is the derivation (D) from above, complete the process of finding the corresponding derivation \(\mathcal{N}\). Hint: if you follow the recipe correctly, the result should have exactly 21 lines. (ii) This derivation \(\mathcal{N}\) is not very efficient. See if
you can find an ND derivation to show \(\mathcal{A} \rightarrow \mathcal{B}, \mathcal{B} \rightarrow \mathcal{C} \vdash_{\text{ND}} \mathcal{A} \rightarrow \mathcal{C} \) that takes fewer than 10 lines.

E9.5. Extend system \(\mathcal{A}^* \) as described for E3.4 to an \(\mathcal{A}^* \) that has \(\neg, \land \) and \(\exists \) primitive with axioms and rules as follows,

\[
\begin{align*}
\mathcal{A}^* & \quad \text{A1. } \mathcal{P} \rightarrow (\mathcal{P} \land \mathcal{P}) \\
& \quad \text{A2. } (\mathcal{P} \land \mathcal{Q}) \rightarrow \mathcal{P} \\
& \quad \text{A3. } (\mathcal{Q} \rightarrow \mathcal{P}) \rightarrow [\neg(\mathcal{P} \land \mathcal{Q}) \rightarrow \neg(\mathcal{Q} \land \mathcal{Q})] \\
& \quad \text{A4. } \mathcal{P}^x \rightarrow \exists x \mathcal{P} \quad \text{— where } t \text{ is free for } x \text{ in } \mathcal{P} \\
& \quad \text{MP. } \neg(\mathcal{P} \land \neg \mathcal{Q}), \mathcal{P} \vdash_{\mathcal{A}^*} \mathcal{Q} \\
& \quad \exists \mathcal{R}. \mathcal{P} \rightarrow \mathcal{Q} \vdash_{\mathcal{A}^*} \exists x \mathcal{P} \rightarrow \mathcal{Q} \quad \text{— where } x \text{ is not free in } \mathcal{Q}
\end{align*}
\]

Produce a complete demonstration to show that if \(\Gamma \vdash_{\mathcal{A}^*} \mathcal{P} \), then \(\Gamma \vdash_{\text{ND}} \mathcal{P} \).

9.3 Validity in ND Implies Validity in AD

Perhaps the result we have just attained is obvious: Insofar as the resources of ND seem to exceed the resources of AD, whenever \(\Gamma \vdash_{\text{AD}} \mathcal{P} \), we expect \(\Gamma \vdash_{\text{ND}} \mathcal{P} \). But the other direction may be less clear. Insofar as AD may seem to have fewer resources than ND, one might wonder whether it is the case that if \(\Gamma \vdash_{\text{ND}} \mathcal{P} \), then \(\Gamma \vdash_{\text{AD}} \mathcal{P} \). But, in fact, it is possible to do in AD whatever can be done in ND. To show this, we need a couple of preliminary results. I begin with an important result known as the deduction theorem, turn to some substitution theorems, and finally to the intended result that whatever is provable in ND is provable in AD.

9.3.1 Deduction Theorem

According to the deduction theorem—subject to an important restriction—if there is an AD derivation of \(\mathcal{Q} \) from the members of some set of sentences \(\Delta \) plus \(\mathcal{P} \), then there is an AD derivation of \(\mathcal{P} \rightarrow \mathcal{Q} \) from the members of \(\Delta \) alone: if \(\Delta \cup \{ \mathcal{P} \} \vdash_{\text{AD}} \mathcal{Q} \) then \(\Delta \vdash_{\text{AD}} \mathcal{P} \rightarrow \mathcal{Q} \). In practice, this lets us reason just as we do with \(\rightarrow \mathcal{I} \).

\[
\begin{align*}
\text{(E)} & \quad \begin{array}{c|c}
\text{members of } \Delta \\
\hline
\mathcal{P} \\
\mathcal{Q} \\
\mathcal{P} \rightarrow \mathcal{Q}
\end{array} \\
\quad \text{a-b deduction theorem}
\end{align*}
\]
At (b), there is a derivation of Q from the members of Δ plus P. At (c), the assumption is discharged to indicate a derivation of $P \rightarrow Q$ from the members of Δ alone. By the deduction theorem, if there is a derivation of Q from Δ plus P, then there is a derivation of $P \rightarrow Q$ from Δ. Here is the restriction: The discharge of an auxiliary assumption P is legitimate just in case no application of Gen under its scope generalizes on a variable free in P. The effect is like that of the ND restriction on $\forall I$—here, though, the restriction is not on Gen, but rather on the discharge of auxiliary assumptions. In the one case, an assumption available for discharge is one such that no application of Gen under its scope is to a variable free in the assumption; in the other, we cannot apply $\forall I$ to a variable free in an undischarged assumption (so that, effectively, every assumption is always available for discharge).

Again, our strategy is to show that given one derivation, it is possible to construct another. In this case, we begin with an AD derivation (A) as below, with premises $\Delta \cup \{P\}$. Treating P as an auxiliary premise, with scope as indicated in (B), we set out to show that there is an AD derivation (C), with premises in Δ alone, and lines numbered ‘1’, ‘2’, ... corresponding to 1, 2, ... in (A).

<table>
<thead>
<tr>
<th>(A)</th>
<th>1. Q_1</th>
<th>(B)</th>
<th>1. Q_1</th>
<th>(C)</th>
<th>1. $P \rightarrow Q_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Q_2</td>
<td></td>
<td>2. Q_2</td>
<td></td>
<td>2. $P \rightarrow Q_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P \rightarrow P$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$P \rightarrow Q_n$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

That is, we construct a derivation with premises in Δ such that for any formula A on line i of the first derivation, $P \rightarrow A$ appears on the line numbered ‘i’ of the constructed derivation. The last line n of the resultant derivation is the desired result, so $\Delta \models_{AD} P \rightarrow Q$.

T9.3. If $\Delta \cup \{P\} \models_{AD} Q$, and no application of Gen under the scope of P is to a variable free in P, then $\Delta \models_{AD} P \rightarrow Q$. Deduction Theorem.

Suppose $A = \{Q_1, Q_2, \ldots, Q_n\}$ is an AD derivation of Q from $\Delta \cup \{P\}$, where Q is Q_n and no application of Gen under the scope of P is to a variable free in P. By induction on the line numbers in derivation A, we show there is a derivation C with premises only in Δ, such that for any line i of A, $P \rightarrow Q_i$ appears on the line numbered ‘i’ of C. The case when $i = n$ gives the desired result, that $\Delta \models_{AD} P \rightarrow Q$.

Basis: Q_1 of A is an axiom, a member of Δ, or P itself.
(i) If Q_1 is an axiom or a member of Δ, then begin C as follows,

1.1 Q_1 axiom / premise
1.2 $Q_1 \rightarrow (P \rightarrow Q_1)$ A1
1 $P \rightarrow Q_1$ 1.2, 1.1 MP

(ii) Q_1 is P itself. By T3.1, $\vdash_{AD} P \rightarrow P$; which is to say $P \rightarrow Q_1$; so begin derivation C,

1 $P \rightarrow P$ T3.1

In either case, $P \rightarrow Q_1$ appears on the line numbered ‘1’ of C with premises in Δ alone.

Assp: For any i, $1 \leq i < k$, $P \rightarrow Q_i$ appears on the line numbered ‘i’ of C, with premises in Δ alone.

Show: $P \rightarrow Q_k$ appears on the line numbered ‘k’ of C, with premises in Δ alone.

Q_k of A is a member of Δ, an axiom, P itself, or arises from previous lines by MP or Gen. If Q_k is a member of Δ, an axiom or P itself then, by reasoning as in the basis, $P \rightarrow Q_k$ appears on the line numbered ‘k’ of C from premises in Δ alone. So two cases remain.

(MP) If Q_k arises from previous lines by MP, then there are lines in derivation A of the sort,

i $B \rightarrow C$

\vdots

j B

\vdots

k C i,j MP

where i, $j < k$ and Q_k is C. By assumption, there are lines in C,

i $P \rightarrow (B \rightarrow C)$

\vdots

j $P \rightarrow B$

So continue derivation C as follows,
\[i \quad \mathcal{P} \rightarrow (\mathcal{B} \rightarrow \mathcal{C}) \]
\[j \quad \mathcal{P} \rightarrow \mathcal{B} \]
\[k.1 \quad [(\mathcal{P} \rightarrow (\mathcal{B} \rightarrow \mathcal{C})) \rightarrow [(\mathcal{P} \rightarrow \mathcal{B}) \rightarrow (\mathcal{P} \rightarrow \mathcal{C})]] \quad \text{A2} \]
\[k.2 \quad (\mathcal{P} \rightarrow \mathcal{B}) \rightarrow (\mathcal{P} \rightarrow \mathcal{C}) \quad \text{k.1, i MP} \]
\[k.3 \quad \mathcal{P} \rightarrow \mathcal{C} \quad \text{k.2, j MP} \]

So \(\mathcal{P} \rightarrow Q_k \) appears on the line numbered ‘k’ of \(\mathcal{C} \), with premises in \(\Delta \) alone.

(Gen) If \(Q_k \) arises from a previous line by Gen, then there are lines in derivation \(\mathcal{A} \) of the sort,
\[i \quad \mathcal{B} \]
\[j \quad \forall x.\mathcal{B} \]

where \(i < k \) and \(Q_k \) is \(\forall x.\mathcal{B} \). Either line \(k \) is under the scope of \(\mathcal{P} \) in derivation \(\mathcal{A} \) or not.

(i) If line \(k \) is not under the scope of \(\mathcal{P} \), then \(\forall x.\mathcal{B} \) in \(\mathcal{A} \) follows from \(\Delta \) alone. So continue \(\mathcal{C} \) as follows,
\[k.1 \quad Q_1 \quad \text{exactly as in } \mathcal{A} \text{ but with prefix} \]
\[k.2 \quad Q_2 \quad \text{‘k.’ for numeric references} \]
\[\vdots \]
\[k.k \quad \forall x.\mathcal{B} \]
\[k.k+1 \quad \forall x.\mathcal{B} \rightarrow (\mathcal{P} \rightarrow \forall x.\mathcal{B}) \quad \text{A1} \]
\[k \quad \mathcal{P} \rightarrow \forall x.\mathcal{B} \quad \text{k.k+1, k.k MP} \]

Since each of the lines in \(\mathcal{A} \) up to \(k \) is derived from \(\Delta \) alone, we have \(\mathcal{P} \rightarrow Q_k \) on the line numbered ‘k’ of \(\mathcal{C} \) from premises in \(\Delta \) alone.

(ii) If line \(k \) is under the scope of \(\mathcal{P} \), we depend on the assumption, and continue \(\mathcal{C} \) as follows,
\[i \quad \mathcal{P} \rightarrow \mathcal{B} \quad \text{(by inductive assumption)} \]
\[\vdots \]
\[k \quad \mathcal{P} \rightarrow \forall x.\mathcal{B} \quad \text{i T3.29} \]

If line \(k \) in derivation \(\mathcal{A} \) is under the scope of \(\mathcal{P} \) then, since no application of Gen under the scope of \(\mathcal{P} \) is to a variable free in \(\mathcal{P} \), \(x \) is not free in \(\mathcal{P} \); so the restriction on T3.29 is met. So we have \(\mathcal{P} \rightarrow Q_k \) on the line numbered ‘k’ of \(\mathcal{C} \), from premises in \(\Delta \) alone.
\[P \rightarrow Q_k \] appears on the line numbered ‘k’ of C, with premises in \(\Delta \) alone.

Indct: For any \(i \), \(P \rightarrow Q_i \) appears on the line numbered ‘i’ of C, from premises in \(\Delta \) alone.

Outside the scope of \(P \), each of the lines in \(A \), including \(\forall x B \), is already derived from \(\Delta \) alone; so with A1, \(P \rightarrow \forall x B \) from \(\Delta \) alone. Under the scope of \(P \), the restriction guarantees that \(x \) is not free in \(P \), so with T3.29 and \(P \rightarrow B \) from \(\Delta \) alone, \(P \rightarrow \forall x B \) from \(\Delta \) alone.

So given an AD derivation of \(Q \) from \(\Delta \cup \{ P \} \), where no application of Gen under the scope of assumption \(P \) is to a variable free in \(P \), there is sure to be an AD derivation of \(P \rightarrow Q \) from \(\Delta \). Notice that T3.29 and T3.32 abbreviate sequences which include applications of Gen. So the restriction on Gen for the deduction theorem applies to applications of these results as well.\(^2\)

As a sample application of the deduction theorem (DT), let us consider another derivation of T3.2. In this case, \(\Delta = \{ A \rightarrow B, B \rightarrow C \} \), and we argue as follows,

1. \(A \rightarrow B \) prem
2. \(B \rightarrow C \) prem
3. \(A \) assp (g, DT)
4. \(B \) 1,3 MP
5. \(C \) 2,4 MP
6. \(A \rightarrow C \) 3-5 DT

At line (5) we have established that \(\Delta \cup \{ A \} \vdash_{AD} C \); it follows from the deduction theorem that \(\Delta \vdash_{AD} A \rightarrow C \). But we should be careful: this is not an AD derivation of \(A \rightarrow C \) from \(A \rightarrow B \) and \(B \rightarrow C \). And it is not an abbreviation in the sense that we have seen so far—we do not appeal to a result whose derivation could be inserted at that very stage. Rather, what we have is a demonstration, via the deduction theorem, that there exists an AD derivation of \(A \rightarrow C \) from the premises. If there is any abbreviating, the entire derivation abbreviates, or indicates the existence of, another. Our proof of the deduction theorem shows us that, given a derivation of \(\Delta \cup \{ P \} \vdash_{AD} Q \), it is possible to construct a derivation for \(\Delta \vdash_{AD} P \rightarrow Q \).

Let us see how this works in the example. Lines 1–5 become our derivation \(A \), with \(\Delta = \{ A \rightarrow B, B \rightarrow C \} \). For each \(Q_i \) in derivation \(A \), the induction tells us

\(^2\)Some other theorems from T3.28–T3.38 require Gen, but derivation for theorems of the sort \(\vdash_{AD} A \) may be moved to the start, and so outside the scope of \(\mathcal{P} \). So they remain available.
how to derive $A \rightarrow Q_i$ from Δ alone. Thus Q_i on the first line is a member of Δ: reasoning from the basis tells us to use A_1 as follows,

1.1 $A \rightarrow \mathcal{B}$
1.2 $(A \rightarrow \mathcal{B}) \rightarrow (A \rightarrow (A \rightarrow \mathcal{B}))$
1 $A \rightarrow (A \rightarrow \mathcal{B})$

1.2, 1.1 MP

to get $A \rightarrow$ the form on line 1 of A. Notice that we are again using fractional line numbers to make lines in derivation A correspond to lines in the constructed derivation. One may wonder why we bother getting $A \rightarrow Q_i$. And again, the answer is that our “recipe” calls for this ingredient at stages connected to MP and Gen. Similarly, we can use A_1 to get $A \rightarrow$ the form on line (2).

1.1 $A \rightarrow \mathcal{B}$
1.2 $(A \rightarrow \mathcal{B}) \rightarrow (A \rightarrow (A \rightarrow \mathcal{B}))$
1 $A \rightarrow (A \rightarrow \mathcal{B})$
2.1 $\mathcal{B} \rightarrow \mathcal{C}$
2.2 $(\mathcal{B} \rightarrow \mathcal{C}) \rightarrow (A \rightarrow (\mathcal{B} \rightarrow \mathcal{C}))$
2 $A \rightarrow (\mathcal{B} \rightarrow \mathcal{C})$

2.2, 2.1 MP

The form on line (3) is A itself. If we wanted a derivation in the primitive system, we could repeat the steps in our derivation of $T_{3.1}$. But we will simply continue, as in the induction,

1.1 $A \rightarrow \mathcal{B}$
1.2 $(A \rightarrow \mathcal{B}) \rightarrow (A \rightarrow (A \rightarrow \mathcal{B}))$
1 $A \rightarrow (A \rightarrow \mathcal{B})$
2.1 $\mathcal{B} \rightarrow \mathcal{C}$
2.2 $(\mathcal{B} \rightarrow \mathcal{C}) \rightarrow (A \rightarrow (\mathcal{B} \rightarrow \mathcal{C}))$
2 $A \rightarrow (\mathcal{B} \rightarrow \mathcal{C})$
3 $A \rightarrow A$

T3.1

to get $A \rightarrow$ the form on line (3) of A. The form on line (4) arises from lines (1) and (3) by MP; reasoning in our show step tells us to continue,

1.1 $A \rightarrow \mathcal{B}$
1.2 $(A \rightarrow \mathcal{B}) \rightarrow (A \rightarrow (A \rightarrow \mathcal{B}))$
1 $A \rightarrow (A \rightarrow \mathcal{B})$
2.1 $\mathcal{B} \rightarrow \mathcal{C}$
2.2 $(\mathcal{B} \rightarrow \mathcal{C}) \rightarrow (A \rightarrow (\mathcal{B} \rightarrow \mathcal{C}))$
2 $A \rightarrow (\mathcal{B} \rightarrow \mathcal{C})$
3 $A \rightarrow A$
4.1 $(A \rightarrow (A \rightarrow \mathcal{B})) \rightarrow ((A \rightarrow A) \rightarrow (A \rightarrow \mathcal{B}))$
4.2 $(A \rightarrow A) \rightarrow (A \rightarrow \mathcal{B})$
4 $A \rightarrow \mathcal{B}$

A2, 4.1 MP, 4.2, 3 MP
using \(A2 \) to get \(A \rightarrow \beta \). Notice that the original justification from lines (1) and (3) dictates the appeal to (1) at line (4.2) and to (3) at line (4). The form on line (5) arises from lines (2) and (4) by MP; so, finally, we continue,

\[
\begin{align*}
1.1 & \quad A \rightarrow \beta & \text{prem} \\
1.2 & \quad (A \rightarrow \beta) \rightarrow (A \rightarrow (A \rightarrow \beta)) & A1 \\
1 & \quad A \rightarrow (A \rightarrow \beta) & 1.2, 1.1 \text{ MP} \\
2.1 & \quad \beta \rightarrow \gamma & \text{prem} \\
2.2 & \quad (\beta \rightarrow \gamma) \rightarrow (A \rightarrow (\beta \rightarrow \gamma)) & A1 \\
2 & \quad A \rightarrow (\beta \rightarrow \gamma) & 2.2, 2.1 \text{ MP} \\
3 & \quad A \rightarrow A & T3.1 \\
4.1 & \quad (A \rightarrow (A \rightarrow \beta)) \rightarrow ((A \rightarrow A) \rightarrow (A \rightarrow \beta)) & A2 \\
4.2 & \quad (A \rightarrow A) \rightarrow (A \rightarrow \beta) & 4.1, 1 \text{ MP} \\
4 & \quad A \rightarrow \beta & 4.2, 3 \text{ MP} \\
5.1 & \quad (A \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((A \rightarrow \beta) \rightarrow (A \rightarrow \gamma)) & A2 \\
5.2 & \quad (A \rightarrow \beta) \rightarrow (A \rightarrow \gamma) & 5.1, 2 \text{ MP} \\
5 & \quad A \rightarrow \gamma & 5.2, 4 \text{ MP} \\
\end{align*}
\]

And we have the \(AD \) derivation which our proof of the deduction theorem told us there would be. Notice that this derivation is not very efficient. We did it in seven lines (without appeal to T3.1) in Chapter 3. What our proof of the deduction theorem tells us is that there is sure to be some derivation—where there is no expectation that the guaranteed derivation is particularly elegant or efficient.

Here is a last example which makes use of the deduction theorem. First, an alternate derivation of T3.3.

\[
\begin{align*}
\text{(G)} & \\
1. & \quad A \rightarrow (\beta \rightarrow \gamma) & \text{prem} \\
2. & \quad \beta & \text{assp} (g, DT) \\
3. & \quad A & \text{assp} (g, DT) \\
4. & \quad \beta \rightarrow \gamma & 1.3 \text{ MP} \\
5. & \quad \gamma & 4.2 \text{ MP} \\
6. & \quad A \rightarrow \gamma & 3-5 \text{ DT} \\
7. & \quad \beta \rightarrow (A \rightarrow \gamma) & 2-6 \text{ DT} \\
\end{align*}
\]

In Chapter 3 we proved T3.3 in five lines (with an appeal to T3.2). But perhaps this version is relatively intuitive, coinciding as it does with strategies from \(ND \). In this case, there are two applications of DT, and reasoning from the induction therefore applies twice. First, at line (5), there is an \(AD \) derivation of \(\gamma \) from \(\{A \rightarrow (\beta \rightarrow \gamma), \beta\} \cup \{A\} \). By reasoning from the induction, then, there is an \(AD \) derivation from just \(\{A \rightarrow (\beta \rightarrow \gamma), \beta\} \) with \(A \) arrow each of the forms on lines 1–5. So there is a derivation of \(A \rightarrow \gamma \) from \(\{A \rightarrow (\beta \rightarrow \gamma), \beta\} \). But then reasoning from the induction applies again. By reasoning from the induction applied to this new
derivation, there is a derivation from just $A \rightarrow (B \rightarrow \mathcal{C})$ with \mathcal{B} arrow each of the forms in it. So there is a derivation of $B \rightarrow (A \rightarrow \mathcal{C})$ from just $A \rightarrow (B \rightarrow \mathcal{C})$. So the first derivation, lines 1–5 above, is replaced by another by the reasoning from DT. Then it is replaced by another, again given the reasoning from DT. The result is an AD derivation of the desired result.

Here are a couple more cases, where the latter at least, may inspire a certain affection for the deduction theorem.

T9.4. $\vdash_{AD} A \rightarrow (B \rightarrow (A \land B))$

T9.5. $\vdash_{AD} (A \rightarrow C) \rightarrow [(B \rightarrow C) \rightarrow ((A \lor B) \rightarrow \mathcal{C})]$

E9.6. (i) Making use of the deduction theorem, prove T9.4 and T9.5. (ii) Having done so, see if you can prove them in the style of chapter 3, without any appeal to DT.

E9.7. By the method of our proof of the deduction theorem, convert the above derivation (G) for T3.3 into an official AD derivation. Hint: As described above, the method of the induction applies twice: first to lines 1–5, and then to the new derivation. The result should be derivations with 13, and then 37 lines.

E9.8. Consider the axiomatic system A^* from E9.5, and produce a demonstration of the deduction theorem for it. That is show that if $\Delta \cup \{\mathcal{P}\} \vdash_{A^*} \mathcal{Q}$ and no application of $\exists R$ under the scope of \mathcal{P} is to a variable free in \mathcal{P}, then $\Delta \vdash_{A^*} \mathcal{P} \rightarrow \mathcal{Q}$. Because A^* extends A^*, you may appeal to any of the A^* theorems from E3.4.

9.3.2 Substitution Theorems

Toward that result that if $\Gamma \vdash_{ND} \mathcal{P}$, then $\Gamma \vdash_{AD} \mathcal{P}$, the deduction theorem lets AD mimic rules in ND which require subderivations. Now, for equality, we turn to some substitution results. Say a complex term r is free in an expression \mathcal{P} just in case no variable in r is bound; then where \mathcal{T} is any term or formula, let $\mathcal{T}^\mathcal{P}_s$ be \mathcal{T} where at most one free instance of r is replaced by term s (as for E8.29). Having shown in T3.38 that $\vdash_{AD} (q_i = s) \rightarrow (R^n q_1 \ldots q_i \ldots q_n \rightarrow R^n q_1 \ldots s \ldots q_n)$, one might think we have proved that $\vdash_{AD} (r = s) \rightarrow (A \rightarrow A^s_\mathcal{P})$ for any atomic formula A.
and any terms \(r \) and \(s \). But this is not so. Similarly, having proved in T3.37 that
\[
\vdash_{AD} (q_i = s) \rightarrow (h^n q_1 \ldots q_i \ldots q_n = h^n q_1 \ldots s \ldots q_n),
\]
one might think we have proved that \(\vdash_{AD} (r = s) \rightarrow (t = t^r/s) \) for any terms \(r, s \) and \(t \). But this is not so. In each case, the difficulty is that the replaced term \(r \) might be a component of the other terms \(q_1 \ldots q_n \), and so might not be any of \(q_1 \ldots q_n \). What we have shown is only that it is possible to replace any of the whole terms, \(q_1 \ldots q_n \). Thus, \((x = y) \rightarrow (f^1 g^1 x = f^1 g^1 y)\) is not an instance of T3.37 because we do not replace \(g^1 x \) but rather a component of it.

However, as one might expect, it is possible to replace terms in basic parts; use the result to make replacements in terms of which they are parts; and so forth, all the way up to wholes. Both \((x = y) \rightarrow (g^1 x = g^1 y)\) and \((g^1 x = g^1 y) \rightarrow (f^1 g^1 x = f^1 g^1 y)\) are instances of T3.37. (Be clear about these examples in your mind.) From these, with T3.2 it follows that \((x = y) \rightarrow (f^1 g^1 x = f^1 g^1 y)\). This example suggests a method for obtaining the more general results: Using T3.37, we work from equalities at the level of the parts, to equalities at the level of the whole. For the case of terms, the proof is by induction on the number of function symbols in an arbitrary term \(t \).

T9.6. For arbitrary terms \(r, s \) and \(t \), \(\vdash_{AD} (r = s) \rightarrow (t = t^r/s) \).

Basis: If \(t \) has no function symbols, then \(t \) is a variable or a constant. Then either (i) \(t^r/s = t \) (nothing is replaced) or (ii) \(r = t \) and \(t^r/s = s \) (all of \(t \) is replaced). In the first case, by T3.33, \(\vdash_{AD} t = t \); which is to say, \(\vdash_{AD} (t = t^r/s) \); so with A1, \(\vdash_{AD} (r = s) \rightarrow (t = t^r/s) \). In the second case, \((r = s) \rightarrow (t = t^r/s)\) is the same as \((r = s) \rightarrow (r = s)\); so by T3.1, \(\vdash_{AD} (r = s) \rightarrow (t = t^r/s) \).

Assp: For any \(i, 0 \leq i < k \), if \(t \) has \(i \) function symbols, then \(\vdash_{AD} (r = s) \rightarrow (t = t^r/s) \).

Show: If \(t \) has \(k \) function symbols, then \(\vdash_{AD} (r = s) \rightarrow (t = t^r/s) \).

If \(t \) has \(k \) function symbols, then \(t \) is of the form \(h^n q_1 \ldots q_n \) for terms \(q_1 \ldots q_n \) with \(< k \) function symbols. If all of \(t \) is replaced, or no part of \(t \) is replaced, then reason as in the basis. So suppose \(r \) is some sub-component of \(t \); then for some \(q_i, t^r/s \) is \(h^n q_1 \ldots q_i \ldots \ldots q_n \). By assumption, \(\vdash_{AD} (r = s) \rightarrow (q_i = q_i^r/s) \); and by T3.37, \(\vdash_{AD} (q_i = q_i^r/s) \rightarrow (h^n q_1 \ldots q_i \ldots q_n = h^n q_1 \ldots q_i^r/s \ldots q_n) \); so by T3.2, \(\vdash_{AD} (r = s) \rightarrow (h^n q_1 \ldots q_i \ldots q_n = h^n q_1 \ldots q_i^r/s \ldots q_n) \); but this is to say, \(\vdash_{AD} (r = s) \rightarrow (t = t^r/s) \).
CHAPTER 9. PRELIMINARY RESULTS

457

Indet: For any terms r, s and t, $\vdash_{AD} (r = s) \rightarrow (t = s)$.

We might think of this result as a further strengthened or generalized version of the AD axiom A7. Where A7 lets us replace just variables in terms of the sort $h^n x_1 \ldots x_n$, we are now in a position to replace in arbitrary terms with arbitrary terms.

Now we can go after a similarly strengthened version of A8. We show that for any formula \mathcal{A}, if s is free for the replaced instance of r in \mathcal{A}^r / s, then $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r / s)$. The argument is by induction on the number of operators in \mathcal{A}.

T9.7. For any formula \mathcal{A} and terms r and s, if s is free for any replaced instance of r in \mathcal{A}, then $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r / s)$.

Basis: If \mathcal{A} is atomic then (i) $\mathcal{A}^r / s = \mathcal{A}$ (nothing is replaced) or (ii) \mathcal{A} is $\mathcal{R}^n t_1 \ldots t_n$ and \mathcal{A}^r / s is $\mathcal{R}^n t_1 \ldots t_i r / s \ldots t_n$. Suppose s is free for any replaced instance of r in \mathcal{A}^r / s. In the first case, by T3.1, $\vdash_{AD} \mathcal{A} \rightarrow \mathcal{A}$, which is to say $\vdash_{AD} \mathcal{A} \rightarrow \mathcal{A}^r / s$; so with A1, $\vdash_{AD} r = s \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r / s)$.

In the second case, by T9.6, $\vdash_{AD} (r = s) \rightarrow (t_i = t_i r / s)$; and by T3.38, $\vdash_{AD} (t_i = t_i r / s) \rightarrow (\mathcal{R}^n t_1 \ldots t_i \ldots t_n \rightarrow \mathcal{R}^n t_1 \ldots t_i r / s \ldots t_n)$; so by T3.2, $\vdash_{AD} (r = s) \rightarrow (\mathcal{R}^n t_1 \ldots t_i \ldots t_n \rightarrow \mathcal{R}^n t_1 \ldots t_i r / s \ldots t_n)$; and this is just to say, $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r / s)$.

Assp: For any $i, 0 \leq i < k$, if \mathcal{A} has i operator symbols and s is free for any replaced instance of r in \mathcal{A}, then $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r / s)$.

Corollary to the assumption. If \mathcal{A} has $< k$ operators, then \mathcal{A}^r / s has $< k$ operators; and since s replaces only a free instance of r in \mathcal{A}, r is free for the replacing instance of s in \mathcal{A}^r / s. And by T3.34, $\vdash_{AD} (r = s) \rightarrow (s = r)$; so with T3.2, $\vdash_{AD} (r = s) \rightarrow (\mathcal{A}^r / s \rightarrow \mathcal{A})$.

Show: If \mathcal{A} has k operator symbols and s is free for any replaced instance of r in \mathcal{A}, then $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r / s)$.

If \mathcal{A} has k operator symbols, then \mathcal{A} is of the form, $\neg \mathcal{P}$, $\mathcal{P} \rightarrow \mathcal{Q}$ or $\forall x \mathcal{P}$ for variable x and formulas \mathcal{P} and \mathcal{Q} with $< k$ operator symbols. Suppose s is free for any replaced instance of r in \mathcal{A}.

(~) Suppose \mathcal{A} is $\neg \mathcal{P}$. Then \mathcal{A}^r / s is $\neg (\neg \mathcal{P})^r / s$ which is the same as $\neg (\mathcal{P}^r / s)$. Since s is free for a replaced instance of r in \mathcal{A}, it is free for that instance of r in \mathcal{P}; so by the corollary to the assumption, $\vdash_{AD} (r = s) \rightarrow (\mathcal{P}^r / s \rightarrow \mathcal{P})$. But by T3.13, $\vdash_{AD} (\mathcal{P}^r / s \rightarrow \mathcal{P}) \rightarrow (\neg \mathcal{P} \rightarrow \neg (\mathcal{P}^r / s))$; so by T3.2,
\[\vdash_{AD} (r = s) \rightarrow (\neg \mathcal{P} \rightarrow \neg \mathcal{P}^r \mathcal{P}^s) \]; which is to say, \[\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r \mathcal{A}^s). \]

(\rightarrow) Suppose \(\mathcal{A} \) is \(\mathcal{P} \rightarrow \mathcal{Q} \). Then \(\mathcal{A}^r \mathcal{P}^s \) is \(\mathcal{P}^r \mathcal{P}^s \rightarrow \mathcal{Q} \) or \(\mathcal{P} \rightarrow \mathcal{Q}^r \mathcal{P}^s \). (i) In the former case, since \(s \) is free for a replaced instance of \(r \) in \(\mathcal{A} \), it is free for that instance of \(r \) in \(\mathcal{P} \); so by the corollary to the assumption, \[\vdash_{AD} (r = s) \rightarrow (\mathcal{P}^r \mathcal{P}^s \rightarrow \mathcal{P}) \]; so we may reason as follows,

\[
\begin{align*}
1. & \quad (r = s) \rightarrow (\mathcal{P}^r \mathcal{P}^s \rightarrow \mathcal{P}) & \text{prem} \\
2. & \quad r = s & \text{assp (g, DT)} \\
3. & \quad \mathcal{P} \rightarrow \mathcal{Q} & \text{assp (g, DT)} \\
4. & \quad \mathcal{P}^r \mathcal{P}^s \rightarrow \mathcal{P} & \text{assp (g, DT)} \\
5. & \quad \mathcal{P}^r \mathcal{P}^s \rightarrow \mathcal{P} & 1.2 \text{ MP} \\
6. & \quad \mathcal{P}^r \mathcal{P}^s \rightarrow \mathcal{P} & 5.4 \text{ MP} \\
7. & \quad \mathcal{Q} & 3.6 \text{ MP} \\
8. & \quad (\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\mathcal{P}^r \mathcal{P}^s \rightarrow \mathcal{Q}) & 4-7 \text{ DT} \\
9. & \quad (r = s) \rightarrow (\mathcal{P} \rightarrow \mathcal{Q}) & 3-8 \text{ DT} \\
10. & \quad (r = s) \rightarrow [(\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\mathcal{P}^r \mathcal{P}^s \rightarrow \mathcal{Q})] & 2-9 \text{ DT}
\end{align*}
\]

So \[\vdash_{AD} (r = s) \rightarrow [(\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\mathcal{P}^r \mathcal{P}^s \rightarrow \mathcal{Q})]; \] which is to say, \[\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r \mathcal{A}^s). \] (ii) And similarly in the other case [by homework], \[\vdash_{AD} (r = s) \rightarrow [(\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\mathcal{P} \rightarrow \mathcal{Q}^r \mathcal{P}^s)]. \] So in either case, \[\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r \mathcal{A}^s). \]

(\forall) Suppose \(\mathcal{A} \) is \(\forall x \mathcal{P} \). Then a free instance of \(r \) in \(\mathcal{A} \) remains free in \(\mathcal{P} \) and \(\mathcal{A}^r \mathcal{P}^s \) is \(\forall x [\mathcal{P}^r \mathcal{P}^s] \). Since \(s \) is free for \(r \) in \(\mathcal{A} \), \(s \) is free for \(r \) in \(\mathcal{P} \); so by assumption, \[\vdash_{AD} (r = s) \rightarrow (\mathcal{P} \rightarrow \mathcal{P}^r \mathcal{P}^s); \] so we may reason as follows,

\[
\begin{align*}
1. & \quad (r = s) \rightarrow (\mathcal{P} \rightarrow \mathcal{P}^r \mathcal{P}^s) & \text{prem} \\
2. & \quad r = s & \text{assp (g, DT)} \\
3. & \quad \forall x \mathcal{P} \rightarrow \mathcal{P} & A4 \\
4. & \quad \mathcal{P} \rightarrow \mathcal{P}^r \mathcal{P}^s & 1.2 \text{ MP} \\
5. & \quad \forall x \mathcal{P} \rightarrow \mathcal{P}^r \mathcal{P}^s & 3.4 \text{ T3.2} \\
6. & \quad \forall x \mathcal{P} \rightarrow \forall x \mathcal{P}^r \mathcal{P}^s & 5 \text{ T3.29} \\
7. & \quad (r = s) \rightarrow (\forall x \mathcal{P} \rightarrow \forall x \mathcal{P}^r \mathcal{P}^s) & 2-6 \text{ DT}
\end{align*}
\]

Notice that \(x \) is sure to be free for itself in \(\mathcal{P} \), so that (3) is an instance of A4. And \(x \) is bound in \(\forall x \mathcal{P} \), so (6) is an instance of T3.29. And because \(r \) is free in \(\mathcal{A} \), and \(s \) is free for \(r \) in \(\mathcal{A} \), \(x \) cannot be a variable in \(r \) or \(s \); so the restriction on DT is met at (7). So \[\vdash_{AD} (r = s) \rightarrow (\forall x \mathcal{P} \rightarrow \forall x \mathcal{P}^r \mathcal{P}^s); \] which is to say, \[\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r \mathcal{A}^s). \]

So for any \(\mathcal{A} \) with \(k \) operator symbols, \[\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r \mathcal{A}^s). \]
Indct: For any \(A, \vdash_{AD} (r = s) \rightarrow (A \rightarrow A^r/s). \)

So for any formula \(A \), and terms \(r \) and \(s \), if \(s \) is free for a replaced instance of \(r \) in \(A \), then \(\vdash_{AD} (r = s) \rightarrow (A \rightarrow A^r/s). \)

It is a short step from T9.7, which allows substitution of just a single term, to T9.8 which allows substitution of arbitrarily many. Where, as in chapter 6, \(P^t/s \) is \(P \) with some, but not necessarily all, free instances of term \(t \) replaced by term \(s \).

T9.8. For any formula \(A \) and terms \(r \) and \(s \), if \(s \) is free for the replaced instances of \(r \) in \(A \), then \(\vdash_{AD} (r = s) \rightarrow (A \rightarrow A^r/s). \)

By induction on the number of instances of \(r \) that are replaced by \(s \) in \(A \). Say \(A_i \) is \(A \) with \(i \) free instances of \(r \) replaced by \(s \). Suppose \(s \) is free for the replaced instances of \(r \) in \(A \). We show that for any \(i \), \(\vdash_{AD} (r = s) \rightarrow (A \rightarrow A_i). \)

Basis: If no instances of \(r \) are replaced by \(s \) then \(A_0 = A \). But by T3.1, \(\vdash_{AD} A \rightarrow A \), and by A1, \(\vdash_{AD} (A \rightarrow A) \rightarrow [(r = s) \rightarrow (A \rightarrow A)]; \) so by MP, \(\vdash_{AD} (r = s) \rightarrow (A \rightarrow A); \) which is to say, \(\vdash_{AD} (r = s) \rightarrow (A \rightarrow A_0). \)

Assp: For any \(i, 0 \leq i < k, \vdash_{AD} (r = s) \rightarrow (A \rightarrow A_i). \)

Show: \(\vdash_{AD} (r = s) \rightarrow (A \rightarrow A_k). \)

\(A_k \) is of the sort \(A_i^r/s \) for \(i < k \). By assumption, then, \(\vdash_{AD} (r = s) \rightarrow (A \rightarrow A_i), \) and by T9.7, \(\vdash_{AD} (r = s) \rightarrow (A_i \rightarrow A_i^r/s) \), which is the same as \(\vdash_{AD} (r = s) \rightarrow (A_i \rightarrow A_k). \) So reason as follows,

1. \((r = s) \rightarrow (A \rightarrow A_i) \) by assumption
2. \((r = s) \rightarrow (A_i \rightarrow A_k) \) T9.7
3. \(r = s \) assp (g, DT)
4. \(A \rightarrow A_i \) 1,3 MP
5. \(A_i \rightarrow A_k \) 2,3 MP
6. \(A \rightarrow A_k \) 4,5 T3.2
7. \((r = s) \rightarrow (A \rightarrow A_k) \) 3-6 DT

Since \(s \) is free for the replaced instances of \(r \) in \(A \), (2) is an instance of T9.7. So \(\vdash_{AD} (r = s) \rightarrow (A \rightarrow A_k). \)

Indct: For any \(i, \vdash_{AD} (r = s) \rightarrow (A \rightarrow A_i). \)

In effect, the result is by multiple applications of T9.7. No matter how many instances of \(r \) have been replaced by \(s \), we may use T9.7 to replace another.
Some final substitution results allow substitution of formulas rather than terms. We have the result in syntactic and semantic forms. Where A^B/C is A with exactly one instance of a subformula B replaced by formula C,

T9.9. For any formulas A, B and C, if $\vdash_{AD} B \leftrightarrow C$, then $\vdash_{AD} A \leftrightarrow A^B/C$.

The proof is by induction on the number of operators in A. If you have understood the previous two inductions, this one should be straightforward. Observe that, in the basis, when A is atomic, B can only be all of A, and A^B/C is C. For the show, either B is all of A or it is not. If it is, then the result holds by reasoning as in the basis. If B is a proper part of A, then the assumption applies.

*E9.9. Set up the above demonstration for T9.7 and complete the unfinished case to provide a complete demonstration that for any formula A, and terms r and s, if s is free for the replaced instance of r in A, then $\vdash_{AD} (r = s) \rightarrow (A \rightarrow A^r/s)$.

*E9.10. Prove T9.9, to show that for any formulas A, B and C, if $\vdash_{AD} B \leftrightarrow C$, then $\vdash_{AD} A \leftrightarrow A^B/C$. Hint: Where $P \leftrightarrow Q$ abbreviates $(P \rightarrow Q) \land (Q \rightarrow P)$, you can use (abv) along with T3.20, T3.21 and T9.4 to manipulate formulas of the sort $P \leftrightarrow Q$.

E9.12. Where the primitive operators are \sim, \land and \exists, show an analog to T9.9 for derivation system A^* from E9.5—that for any formulas A, B and C, if $\vdash_{A^*} B \leftrightarrow C$, then $\vdash_{A^*} A \leftrightarrow A^B/C$. Again you may appeal to any of the theorems from E3.4.
9.3.3 Intended Result

We are finally ready to show that if $\Gamma \vdash_{ND} \mathcal{P}$ then $\Gamma \vdash_{AD} \mathcal{P}$. As usual, the idea is that the existence of one derivation guarantees the existence of another. In this case, we begin with a derivation in ND, and move to the existence of one in AD. Suppose $\Gamma \vdash_{ND} \mathcal{P}$; then there is an ND derivation N of \mathcal{P} from premises in Γ, with lines $(\mathcal{Q}_1 \ldots \mathcal{Q}_n)$ and $\mathcal{Q}_n = \mathcal{P}$. We show that there is an AD derivation of the same result. Say derivation A, with possible appeal to DT, matches N iff any \mathcal{Q}_i from N appears at the same scope on the line numbered ‘i’ of A; and say derivation A is good iff it has no application of Gen to a variable free in an undischarged auxiliary assumption. Then, given derivation N, we show that there is a good derivation A that matches N. The reason for the restriction on free variables is to be sure that DT is available at any stage in derivation A. The argument is by induction on the line number of N, where we show that for any i, there is a good derivation A_i that matches N through line i. The case when $i = n$ is a good derivation of \mathcal{P} under the scope of the premises alone, from which it follows that $\Gamma \vdash_{AD} \mathcal{P}$.

It will be helpful here (and later) to obtain a preliminary theorem,

T9.11. $\vdash_{AD} \forall v. \mathcal{P}^x_v \rightarrow \forall x.\mathcal{P}$ —where v is not free in $\forall x.\mathcal{P}$ and free for x in \mathcal{P}.

Suppose v is not free in $\forall x.\mathcal{P}$ and free for x in \mathcal{P}. If $x = v$, T9.11 is just an instance of T3.1. So suppose $x \neq v$; then since v is not free in $\forall x.\mathcal{P}$, v is not free in \mathcal{P}. Reason as follows.

1. $\forall v. \mathcal{P}^x_v \rightarrow \forall x.\mathcal{P} \upharpoonright_x$ T3.28
2. $\forall v. \mathcal{P}^x_v \rightarrow \forall x.\mathcal{P}$ 1 with T8.2

Since v is not free in \mathcal{P}, every free instance of v in \mathcal{P}^x_v replaces a free instance of x, and x is free for v in \mathcal{P}^x_v; since every free instance of x is replaced in \mathcal{P}^x_v, x is not free in \mathcal{P}^x_v and so in $\forall v.\mathcal{P}^x_v$, so (1) is an instance of T3.28. It is given that v is free for x in \mathcal{P}, and since v is not free in \mathcal{P}, by T8.2, $(\mathcal{P}^x_v)^x_{\mathcal{P}} = \mathcal{P}$.

Now to the main result.

T9.12. If $\Gamma \vdash_{ND} \mathcal{P}$, then $\Gamma \vdash_{AD} \mathcal{P}$.

Suppose $\Gamma \vdash_{ND} \mathcal{P}$; then there is an ND derivation N of \mathcal{P} from premises in Γ. By induction on the line numbers of N, we show that for any i, there is a good AD derivation A_i that matches N through line i.

Basis: The first line of N is a premise or an assumption. Let A_1 be the same. Then A_1 matches N; and since there is no application of Gen, A_1 is good.
Assp: For any \(i \), \(1 \leq i < k \), there is a good derivation \(A_i \) that matches \(N \) through line \(i \).

Show: There is a good derivation \(A_k \) that matches \(N \) through line \(k \).

Either \(Q_k \) is a premise or an assumption, or arises from previous lines by R, \(\land E, \land I, \rightarrow E, \rightarrow I, \sim E, \sim I, \lor E, \lor I, \leftrightarrow E, \leftrightarrow I, \forall E, \forall I, \exists E, \exists I, =E \) or =I.

(p/a) If \(Q_k \) is a premise or an assumption, let \(A_k \) continue in the same way.

Then, by reasoning as in the basis, \(A_k \) matches \(N \) and is good.

(R) If \(Q_k \) arises from previous lines by R, then \(N \) looks something like this,

\[
\begin{array}{c|c}
 i & B \\
\end{array}
\]

where \(i < k \), \(B \) is accessible at line \(k \), and \(Q_k = B \). By assumption \(A_{k-1} \) matches \(N \) through line \(k - 1 \) and is good. So \(B \) appears at the same scope on the line numbered ‘\(i \)’ of \(A_{k-1} \) and is accessible in \(A_{k-1} \). So let \(A_k \) continue as follows,

\[
\begin{array}{c|c}
 i & B \\
 \vdots & \\
 k.1 & B \rightarrow B & \text{T3.1} \\
 k & B & k.1, i \text{ MP} \\
\end{array}
\]

So \(Q_k \) appears at the same scope on the line numbered ‘\(k \)’ of \(A_k \); so \(A_k \) matches \(N \) through line \(k \). And since there is no new application of Gen, \(A_k \) is good.

(\&E) If \(Q_k \) arises by \(\land E \), then \(N \) is something like this,

\[
\begin{array}{c|c}
 i & B \land C \\
\end{array}
\]

or

\[
\begin{array}{c|c}
 i & B \land C \\
\end{array}
\]

where \(i < k \) and \(B \land C \) is accessible at line \(k \). In the first case, \(Q_k = B \).

By assumption \(A_{k-1} \) matches \(N \) through line \(k - 1 \) and is good. So \(B \land C \) appears at the same scope on the line numbered ‘\(i \)’ of \(A_{k-1} \) and is accessible in \(A_{k-1} \). So let \(A_k \) continue as follows,

\[
\begin{array}{c|c}
 i & B \land C \\
\end{array}
\]

\[
\begin{array}{c|c}
 k.1 & (B \land C) \rightarrow B & \text{T3.21} \\
 k & B & k.1, i \text{ MP} \\
\end{array}
\]
CHAPTER 9. PRELIMINARY RESULTS

So Q_k appears at the same scope on the line numbered ‘k’ of A_k; so A_k matches N through line k. And since there is no new application of Gen, A_k is good. And similarly in the other case, by application of T3.20.

$(\land I)$ If Q_k arises from previous lines by $\land I$, then N is something like this,

\[
\begin{array}{c|c}
 i & B \\
 j & C \\
\end{array}
\]

\[
\begin{array}{c|c}
 k & B \land C \\
\end{array}
\]

where $i, j < k$, B and C are accessible at line k, and $Q_k = B \land C$. By assumption A_{k-1} matches N through line $k - 1$ and is good. So B and C appear at the same scope on the lines numbered ‘i’ and ‘j’ of A_{k-1} and are accessible in A_{k-1}. So let A_k continue as follows,

\[
\begin{array}{c|c}
 i & B \\
 j & C \\
\end{array}
\]

\[
\begin{array}{c|c}
 k.1 & B \rightarrow (C \rightarrow (B \land C)) \quad \text{T9.4} \\
 k.2 & C \rightarrow (B \land C) \quad \text{MP} \\
\end{array}
\]

So Q_k appears at the same scope on the line numbered ‘k’ of A_k; so A_k matches N through line k. And since there is no new application of Gen, A_k is good.

$(\rightarrow E)$ If Q_k arises from previous lines by $\rightarrow E$, then N is something like this,

\[
\begin{array}{c|c}
 i & B \rightarrow C \\
 j & B \\
\end{array}
\]

\[
\begin{array}{c|c}
 k & C \\
\end{array}
\]

where $i, j < k$, $B \rightarrow C$ and B are accessible at line k, and $Q_k = C$. By assumption A_{k-1} matches N through line $k - 1$ and is good. So $B \rightarrow C$ and B appear at the same scope on the lines numbered ‘i’ and ‘j’ of A_{k-1} and are accessible in A_{k-1}. So let A_k continue as follows,

\[
\begin{array}{c|c}
 i & B \rightarrow C \\
 j & B \\
\end{array}
\]

\[
\begin{array}{c|c}
 k & C \\
 i,j & \text{MP} \\
 i,j & \text{MP} \\
\end{array}
\]

So Q_k appears at the same scope on the line numbered ‘k’ of A_k; so A_k matches N through line k. And since there is no new application of Gen, A_k is good.
(→I) If \(Q_k \) arises by →I, then \(N \) is something like this,

\[
\begin{array}{c|c}
i & B \\
j & C \\
k & B \rightarrow C & i-j \rightarrow 1
\end{array}
\]

where \(i, j < k \), the subderivation is accessible at line \(k \) and \(Q_k = B \rightarrow C \). By assumption \(A_{k-1} \) matches \(N \) through line \(k - 1 \) and is good. So \(B \) and \(C \) appear at the same scope on the lines numbered ‘\(i \)’ and ‘\(j \)’ of \(A_{k-1} \); since they appear at the same scope, the parallel subderivation is accessible in \(A_{k-1} \); since \(A_{k-1} \) is good, no application of Gen under the scope of \(B \) is to a variable free in \(B \). So let \(A_k \) continue as follows,

\[
\begin{array}{c|c}
i & B \\
j & C \\
k & B \rightarrow C & i-j \text{ DT}
\end{array}
\]

So \(Q_k \) appears at the same scope on the line numbered ‘\(k \)’ of \(A_k \); so \(A_k \) matches \(N \) through line \(k \). And since there is no new application of Gen, \(A_k \) is good.

(¬E) If \(Q_k \) arises by ¬E, then \(N \) is something like this (reverting to the unab-abbreviated form),

\[
\begin{array}{c|c}
i & \neg B \\
j & C \land \neg C \\
k & B \land \neg C & i-j \neg E
\end{array}
\]

where \(i, j < k \), the subderivation is accessible at line \(k \), and \(Q_k = B \). By assumption \(A_{k-1} \) matches \(N \) through line \(k - 1 \) and is good. So \(\neg B \) and \(C \land \neg C \) appear at the same scope on the lines numbered ‘\(i \)’ and ‘\(j \)’ of \(A_{k-1} \); since they appear at the same scope, the parallel subderivation is accessible in \(A_{k-1} \); since \(A_{k-1} \) is good, no application of Gen under the scope of \(\neg B \) is to a variable free in \(\neg B \). So let \(A_k \) continue as follows,
\[i \quad \sim B \\
\]
\[j \quad C \land \sim C \\
\]
\[k.1 \quad \sim B \rightarrow (C \land \sim C) \quad i-j \text{ DT} \\
\]
\[k.2 \quad (C \land \sim C) \rightarrow C \quad T3.21 \\
\]
\[k.3 \quad (C \land \sim C) \rightarrow \sim C \quad T3.20 \\
\]
\[k.4 \quad \sim B \rightarrow C \quad k.1, k.2 \text{ T3.2} \\
\]
\[k.5 \quad \sim B \rightarrow \sim C \quad k.1, k.3 \text{ T3.2} \\
\]
\[k.6 \quad (\sim B \rightarrow \sim C) \rightarrow ((\sim B \rightarrow C) \rightarrow B) \quad \text{A3} \\
\]
\[k.7 \quad (\sim B \rightarrow C) \rightarrow B \quad k.6, k.5 \text{ MP} \\
\]
\[k \quad B \quad k.7, k.4 \text{ MP} \\
\]

So \(Q_k \) appears at the same scope on the line numbered ‘k’ of \(A_k \); so \(A_k \) matches \(N \) through line \(k \). And since there is no new application of \(\text{Gen} \), \(A_k \) is good.

(\sim I) Homework.

(\lor E) If \(Q_k \) arises by \(\lor E \), then \(N \) is something like this,

\[f \quad B \lor C \\
\]
\[g \quad B \\
\]
\[h \quad D \\
\]
\[i \quad C \\
\]
\[j \quad D \\
\]
\[k \quad D \quad f,g-h,i-j \text{ \lor E} \\
\]

where \(f, g, h, i, j < k \), \(B \lor C \) and the two subderivations are accessible at line \(k \) and \(Q_k = D \). By assumption \(A_{k-1} \) matches \(N \) through line \(k-1 \) and is good. So the formulas at lines \(f, g, h, i, j \) appear at the same scope on corresponding lines in \(A_{k-1} \); since they appear at the same scope, \(B \lor C \) and the corresponding subderivations are accessible in \(A_{k-1} \); since \(A_{k-1} \) is good, no application of \(\text{Gen} \) under the scope of \(B \) is to a variable free in \(B \), and no application of \(\text{Gen} \) under the scope of \(C \) is to a variable free in \(C \). So let \(A_k \) continue as follows,
\[\begin{array}{l|ll} f & B \lor C \\ g & B \\ h & D \\ i & C \\ j & D \\ \hline k.1 & B \rightarrow D & g-h DT \\ k.2 & C \rightarrow D & i-j DT \\ k.3 & (B \rightarrow D) \rightarrow [(C \rightarrow D) \rightarrow ((B \lor C) \rightarrow D)] & T9.5 \\ k.4 & (C \rightarrow D) \rightarrow ((B \lor C) \rightarrow D) & k.3, k.1 MP \\ k.5 & (B \lor C) \rightarrow D & k.4, k.2 MP \\ k & D & k.5, f MP \\ \end{array} \]

So \(Q_k \) appears at the same scope on the line numbered ‘\(k \)’ of \(A_k \); so \(A_k \) matches \(N \) through line \(k \). And since there is no new application of Gen, \(A_k \) is good.

(\(\forall I \)) Homework.
(\(\leftrightarrow E \)) Homework.
(\(\leftrightarrow I \)) Homework.
(\(\forall E \)) Homework.

(\(\forall I \)) If \(Q_k \) arises by \(\forall I \), then \(N \) looks something like this,

\[\begin{array}{l|ll} i & B^x_v \\ \hline k & \forall x B \quad i \forall I \\ \end{array} \]

where \(i < k \), \(B^x_v \) is accessible at line \(k \), and \(Q_k = \forall x B \); further the ND restrictions on \(\forall I \) are met: (i) \(v \) is free for \(x \) in \(B \), (ii) \(v \) is not free in any undischarged auxiliary assumption, and (iii) \(v \) is not free in \(\forall x B \). By assumption \(A_{k-1} \) matches \(N \) through line \(k-1 \) and is good. So \(B^x_v \) appears at the same scope on the line numbered ‘\(i \)’ of \(A_{k-1} \) and is accessible in \(A_{k-1} \). So let \(A_k \) continue as follows,

\[\begin{array}{l|ll} 0.k & \forall v B^x_v \rightarrow \forall x B & T9.11 \\ \hline i & B^x_v \\ k.1 & \forall v B^x_v & i \text{ Gen} \\ k & \forall x B & 0.k, k.1 \text{ MP} \\ \end{array} \]

From constraint (iii) \(v \) is not free in \(\forall x B \) and by (i) \(v \) is free for \(x \) in \(B \), so \(0.k \) is an instance of T9.11. So \(Q_k \) appears at the same scope on the line
numbered ‘k’ of \(A_k \); so \(A_k \) matches \(N \) through line \(k \). This time, there is an application of Gen at \(k.1 \). But \(A_{k-1} \) is good and since \(A_k \) matches \(N \) and \(v \) is free in no undischarged auxiliary assumption of \(N \) (by ii), \(v \) is not free in any undischarged auxiliary assumption of \(A_k \). There is also an application of Gen in T9.11 at \(0.k \); but that derivation is under the scope of no undischarged assumptions. So \(A_k \) is good. (Notice that, in this reasoning, we appeal to each of the restrictions that apply to \(\forall I \) in \(N \).)

(3E) If \(\mathcal{Q}_k \) arises by 3E, then \(N \) looks something like this,

\[
\begin{array}{c}
\hline
h & \exists x \mathcal{B} \\
\mid i & \mathcal{B}_v^x \\
\mid j & \mathcal{C} \\
\mid k & \mathcal{C} \quad h.i-j \ 3E
\end{array}
\]

where \(h, i, j < k, \exists x \mathcal{B} \) and the subderivation are accessible at line \(k \), and \(\mathcal{Q}_k = \mathcal{C} \); further, the ND restrictions on 3E are met: (i) \(v \) is free for \(x \) in \(\mathcal{B} \), (ii) \(v \) is not free in any undischarged auxiliary assumption, and (iii) \(v \) is not free in \(\exists x \mathcal{B} \) or in \(\mathcal{C} \). By assumption \(A_{k-1} \) matches \(N \) through line \(k-1 \) and is good. So the formulas at lines \(h, i \) and \(j \) appear at the same scope on corresponding lines in \(A_{k-1} \); since they appear at the same scope, \(\exists x \mathcal{B} \) and the corresponding subderivation are accessible in \(A_{k-1} \). Since \(A_{k-1} \) is good, no application of Gen under the scope of \(\mathcal{B}_v^x \) is to a variable free in \(\mathcal{B}_v^x \). So let \(A_k \) continue as follows,

\[
\begin{array}{c|c}
0.k & \forall v \sim \mathcal{B}_v^x \rightarrow \forall x \sim \mathcal{B} & T9.11 \\
\mid h & \exists x \mathcal{B} \\
\mid i & \mathcal{B}_v^x \\
\mid j & \mathcal{C} \\
\mid k.1 & \mathcal{B}_v^x \rightarrow \mathcal{C} & i.j DT \\
\mid k.2 & \forall v \mathcal{B}_v^x \rightarrow \mathcal{C} & k.1 T3.32 \\
\mid k.3 & (\forall v \sim \mathcal{B}_v^x \rightarrow \forall x \sim \mathcal{B}) \rightarrow (\sim \forall x \sim \mathcal{B} \rightarrow \sim \forall v \sim \mathcal{B}_v^x) & T3.32 \\
\mid k.4 & \sim \forall x \sim \mathcal{B} \rightarrow \sim \forall v \sim \mathcal{B}_v^x & k.3, 0.k MP \\
\mid k.5 & \exists x \mathcal{B} \rightarrow \exists v \mathcal{B}_v^x & k.4 abv \\
\mid k.6 & \forall v \mathcal{B}_v^x & k.5, h MP \\
\mid k & \mathcal{C} & k.2, k.6 MP
\end{array}
\]

From constraint (iii), that \(v \) is not free in \(\mathcal{C} \), \(k.2 \) meets the restriction on T3.32. By (iii) \(v \) is not free in \(\exists x \mathcal{B} \) and so in \(\forall x \sim \mathcal{B} \) and by (i) \(v \) is free for \(x \) in \(\mathcal{B} \) and so in \(\sim \mathcal{B} \), so \(0.k \) is an instance of T9.11. So \(\mathcal{Q}_k \) appears at the same scope on the line numbered ‘k’ of \(A_k \); so \(A_k \) matches \(N \) through
line k. There is an application of Gen in T3.32 at $k \cdot 2$. But A_{k-1} is good and since A_k matches N and v is free in no undischarged auxiliary assumption of N (by ii), v is not free in any undischarged auxiliary assumption of A_k. There is also an application of Gen in T9.11 at $0 \cdot k$ but that derivation is under the scope of no undischarged assumptions. So A_k is good. (Notice again that we appeal to each of the restrictions that apply to $\exists \forall$ in N.)

($\forall I$) Homework.

($\exists I$) Homework.

($\exists I$) Homework.

In any case, A_k matches N through line k and is good.

\textit{Indct:} Derivation A matches N and is good.

So if there is an ND derivation to show $\Gamma \vdash_{ND} \mathcal{P}$, then there is a matching derivation A to show the same, and with the deduction theorem $\Gamma \vdash_{AD} \mathcal{P}$; so if $\Gamma \vdash_{ND} \mathcal{P}$, then $\Gamma \vdash_{AD} \mathcal{P}$. So with T9.2, AD and ND are equivalent; that is, $\Gamma \vdash_{ND} \mathcal{P}$ iff $\Gamma \vdash_{AD} \mathcal{P}$. Given this, we will often ignore the difference between AD and ND and simply write $\Gamma \vdash \mathcal{P}$ when there is a(n AD or ND) derivation of \mathcal{P} from premises in Γ. Also given the equivalence between the systems, we are in a position to transfer results from one system to the other without demonstrating them directly for both. We will come to appreciate this, especially the relative ease of operating in ND and of operating on AD.

As before, given any ND derivation, we can use the method of our induction to find a corresponding AD derivation. For a simple example, consider the following demonstration that $\sim A \rightarrow (A \land B) \vdash_{ND} A$.

\begin{tabular}{c}
1. $\sim A \rightarrow (A \land B)$ & \mathcal{P} \\
2. $\sim A$ & $A (c, \sim E)$ \\
3. $A \land B$ & 1,2 $\rightarrow E$ \\
4. A & 3 $\land E$ \\
5. $A \land \sim A$ & 4,2 $\land I$ \\
6. A & 2-4 $\sim E$
\end{tabular}

Given relevant cases from the induction, the corresponding AD derivation is as follows,
For the first two lines, we simply take over the premise and assumption from the ND derivation. For (3), the induction uses MP in AD where \(\rightarrow E \) appears in ND; so that is what we do. For (4), our induction shows that we can get the effect of \(\land E \) by appeal to T3.21 with MP. (5) in the ND derivation is by \(\land I \), and, as above, we get the same effect by T9.4 with MP. (6) in the ND derivation is by \(\rightarrow E \). Following the strategy from the induction, we set up for application of A3 by getting the conditional by DT. As usual, the constructed derivation is not very efficient. You should be able to get the same result in just five lines by appeal to T3.21, T3.2 and then T3.7. But, again, the point is just to show that there always is a corresponding derivation.

*E9.13. Set up the above induction for T9.12 and complete the unfinished cases to show that if \(\Gamma \vdash_{ND} \mathcal{P} \), then \(\Gamma \vdash_{AD} \mathcal{P} \). For cases completed in the text, you may simply refer to the text, as the text refers cases to homework.

E9.14. Consider the following ND derivation and, using the method from the induction for T9.12, construct a derivation to show \(\exists x (C \land B x) \vdash_{AD} C \).

1. \(\exists x (C \land B x) \) \hspace{1cm} \text{P}
2. \(C \land B y \) \hspace{1cm} \text{A (g, 1\&E)}
3. \(C \) \hspace{1cm} \text{2 \&E}
4. \(C \) \hspace{1cm} \text{1,2-3 \&E}

Hint: your derivation should have 12 lines.
E9.15. Consider a system N^* which is like ND except that its only rules are $\sim \, E$ and $\sim \, I$, $\land E$, $\land I$, $\exists E$ and $\exists I$, along with the system A^* from E9.5. Produce a complete demonstration that if $\Gamma \vdash_{N^*} P$, then $\Gamma \vdash_{A^*} P$. You have DT from E9.8 and again may use any of the theorems for A from E3.4. Hint: you will want to modify the definition of a good derivation to accommodate $\exists R$. Also, it will be helpful here (and later) to obtain as a preliminary theorem that $\vdash_{A^*} \exists x P \rightarrow \exists \forall P x$ where v is not free in $\exists x P$ and free for x in P.

9.4 Extending to ND^+

ND^+ adds twenty-two rules to ND: The ten inference rules, $\bot I$, $\bot E$, MT, HS, DS, NB ($\forall I$), ($\forall E$), ($\exists I$) and ($\exists E$) and twelve replacement rules, DN, Com, Assoc, Idem, Impl, Trans, DeM, Exp, Equiv, Dist, QN and RQN—where some of these have multiple forms. It might seem tedious to go through all the cases but, as it happens, we have already done most of the work. First, it is easy to see that,

T9.13. If $\Gamma \vdash_{ND} P$ then $\Gamma \vdash_{ND^+} P$.

Suppose $\Gamma \vdash_{ND} P$. Then there is an ND derivation N of P from premises in Γ. But since every rule of ND is a rule of ND^+, N is a derivation in ND^+ as well. So $\Gamma \vdash_{ND^+} P$.

From T9.2 and T9.13, then, the situation is as follows,

$$\Gamma \vdash_{AD} P \xrightarrow{9.2} \Gamma \vdash_{ND} P \xrightarrow{9.13} \Gamma \vdash_{ND^+} P$$

If an argument is valid in AD, it is valid in ND, and in ND^+. From T9.12, the leftmost arrow is a biconditional. Again, however, one might think that ND^+ has more resources than ND, so that more could be derived in ND^+ than ND. But this is not so. To see this, we might begin with the closer systems ND and ND^+, and attempt to show that anything derivable in ND^+ is derivable in ND. Alternatively, we choose simply to expand the induction of the previous section to include cases for all the rules of ND^+. The result is a demonstration that if $\Gamma \vdash_{ND^+} P$, then $\Gamma \vdash_{AD} P$. Given this, the three systems are connected in a “loop”—so that if there is a derivation in any one of the systems, there is a derivation in the others as well.

T9.14. If $\Gamma \vdash_{ND^+} P$, then $\Gamma \vdash_{AD} P$.

Suppose $\Gamma \vdash_{ND^+} P$; then there is an ND^+ derivation N of P from premises in Γ. We show that for any i, there is a good AD derivation A_i that matches N through line i.

 CHAPTER 9. PRELIMINARY RESULTS

Basis: The first line of N is a premise or an assumption. Let A_1 be the same. Then A_1 matches N; and since there is no application of Gen, A_1 is good.

Assp: For any i, $0 \leq i < k$, there is a good derivation A_i that matches N through line i.

Show: There is a good derivation of A_k that matches N through line k.

Either Q_k is a premise or assumption, arises by a rule of ND, or by the ND+ derivation rules $\bot I$, $\bot E$, MT, HS, DS, NB, ($\forall I$), ($\forall E$), ($\exists I$), ($\exists E$) or by replacement rules, DN, Com, Assoc, Idem, Impl, Trans, DeM, Exp, Equiv, Dist, QN or RQN. If Q_k is a premise or assumption or arises by a rule of ND, then by reasoning as for T9.12, there is a good derivation A_k that matches N through line k. So suppose Q_k arises by one of the ND+ rules.

\(-I\). If Q_k arises from previous lines by $\bot I$, then N is something like this,

\[
\begin{array}{c|c}
 i & Q \\
 j & \neg Q \\
 k & \bot & i, j \bot I \\
\end{array}
\]

which is the same as

\[
\begin{array}{c|c}
 i & Q \\
 j & \neg Q \\
 k & \bot & \neg (i \land j) \\
\end{array}
\]

Working on the right-hand version, $i, j < k$, Q and $\neg Q$ are accessible at line k, and $Q_k = \neg (i \land j)$. By assumption A_{k-1} matches N through line $k - 1$ and is good. So Q and $\neg Q$ appear at the same scope on the lines numbered ‘i’ and ‘j’ of A_{k-1} and are accessible in A_{k-1}. So let A_k continue as follows,

\[
\begin{array}{c|c}
 i & Q \\
 j & \neg Q \\
 k.1 & \neg Q \to (Q \to (Z \land \neg Z)) & T3.9 \\
 k.2 & Q \to (Z \land \neg Z) & k.1, j \ MP \\
 k & \neg Z \land \neg Z & k.2, i \ MP \\
\end{array}
\]

So Q_k appears at the same scope on the line numbered ‘k’ of A_k; so A_k matches N through line k. And since there is no new application of Gen, A_k is good.

\(-E\). Homework.

MT. If Q_k arises from previous lines by MT, then N is something like this,

\[
\begin{array}{c|c}
 i & \mathcal{B} \to \mathcal{C} \\
 j & \neg \mathcal{C} \\
 k & \mathcal{B} & i, j \ MT \\
\end{array}
\]
where \(i, j < k\), \(B \rightarrow C\) and \(\sim C\) are accessible at line \(k\), and \(Q_k = \sim B\). By assumption \(A_{k-1}\) matches \(N\) through line \(k-1\) and is good. So \(B \rightarrow C\) and \(\sim C\) appear at the same scope on the lines numbered ‘\(i\)’ and ‘\(j\)’ of \(A_{k-1}\) and are accessible in \(A_{k-1}\). So let \(A_k\) continue as follows,

\[
\begin{align*}
\text{i} & : B \rightarrow C \\
\text{j} & : \sim C \\
\text{k.1} & : (B \rightarrow C) \rightarrow (\sim C \rightarrow \sim B) & \text{T3.13} \\
\text{k.2} & : \sim C \rightarrow \sim B & \text{k.1, i MP} \\
\text{k} & : \sim B & \text{k.2, j MP}
\end{align*}
\]

So \(Q_k\) appears at the same scope on the line numbered ‘\(k\)’ of \(A_k\); so \(A_k\) matches \(N\) through line \(k\). And since there is no new application of Gen, \(A_k\) is good.

HS. Homework.

DS. Homework.

NB. Homework.

(\(\forall I\)). If \(Q_k\) arises from previous lines by (\(\forall I\)), then \(N\) is something like this,

\[
\begin{align*}
\text{i} & : B^x_v \\
\text{j} & : P^x_v \\
\text{k} & : (\forall x : B)P \\
\end{align*}
\]

which is the same as

\[
\begin{align*}
\text{i} & : B^x_v \\
\text{j} & : P^x_v \\
\text{k} & : \forall x (B \rightarrow P)
\end{align*}
\]

Working on the right-hand version, \(i, j < k\), the subderivation is accessible at \(k\), and \(Q_k\) is \(\forall x (B \rightarrow P)\); further, the restrictions on (\(\forall I\)) are met: (i) \(v\) is free for \(x\) in \(B\) and \(P\), (ii) \(v\) is not free in any undischarged assumption and (iii) \(v\) is not free in \(\forall x (B \rightarrow P)\). By assumption \(A_{k-1}\) matches \(N\) through line \(k-1\) and is good. So \(B^x_v\) and \(P^x_v\) appear at the same scope on the lines numbered ‘\(i\)’ and ‘\(j\)’ of \(A_{k-1}\); since they appear at the same scope, the parallel subderivation is accessible in \(A_{k-1}\); since \(A_{k-1}\) is good, no application of Gen under the scope of \(B^x_v\) is to a variable free in \(B^x_v\); so let \(A_k\) continue as follows,
From constraint (iii) \(v \) is not free in \(\forall x.(B \rightarrow \mathcal{P}) \) and by (i) \(v \) is free for \(x \) in \((B \rightarrow \mathcal{P}) \), so \(0.k \) is an instance of T9.11. So \(Q_k \) appears at the same scope on the line numbered ‘\(k \)’ of \(A_k \); so \(A_k \) matches \(N \) through line \(k \). This time, there is an application of Gen at \(k.2 \). But \(A_{k-1} \) is good and since \(A_k \) matches \(N \) and by (ii) \(v \) is free in no undischarged auxiliary assumption of \(N \), \(v \) is not free in any undischarged auxiliary assumption of \(A_k \). There is also an application of Gen at \(0.k \); but that derivation is under the scope of no undischarged assumptions. So \(A_k \) is good.

(\(\forall E \)). Homework.

(\(\exists I \)). Homework.

(\(\exists E \)). Homework.

rep. If \(Q_k \) arises from a replacement rule \(rep \) of the form \(\mathcal{C} \leftrightarrow \mathcal{D} \), then \(N \) is something like this,

\[
\begin{array}{c|c}
0.k & \forall v.(B \rightarrow \mathcal{P})_v^x \rightarrow \forall x.(B \rightarrow \mathcal{P}) \\
\vdots & \\
i & B_v^x \\
j & \mathcal{P}_v^x \\
k.1 & (B \rightarrow \mathcal{P})_v^x \\
k.2 & \forall v.(B \rightarrow \mathcal{P})_v^x \\
k & \forall x.(B \rightarrow \mathcal{P}) & 0.k, k.2 MP
\end{array}
\]

By assumption \(A_{k-1} \) matches \(N \) through line \(k - 1 \) and is good. But by T6.11–T6.29, T6.33, T6.34, and T6.41, \(\vdash_{AD} \mathcal{C} \leftrightarrow \mathcal{D} \); so with T9.12, \(\vdash_{AD} \mathcal{C} \leftrightarrow \mathcal{D} \); so by T9.9, \(\vdash_{AD} B \leftrightarrow B^{C}/D \). Call an arbitrary particular result of this sort, \(Tx \), and augment \(A_k \) as follows,

\[
\begin{array}{c|c}
0.k & B \leftrightarrow B^{C}/D \\
i & B \\
k & B^{C}/D & 0.k, i T3.24
\end{array}
\]

So \(Q_k \) appears at the same scope on the line numbered ‘\(k \)’ of \(A_k \); so \(A_k \) matches \(N \) through line \(k \). There may be applications of Gen in the
CHAPTER 9. PRELIMINARY RESULTS

derivation of T_x, but that derivation is under the scope of no undischarged assumption. And under the scope of any undischarged assumptions, there is no new application of Gen. So A_k is good. And similarly in the other case starting with $\vdash_{AD} D \leftrightarrow C$.

In any case, A_k matches N through line k and is good.

Indct: Derivation A matches N and is good.

That is it! The key is that work we have already done collapses cases for all the replacement rules into one. So each of the derivation systems, AD, ND, and $ND+$ is equivalent to the others. That is, $\Gamma \vdash_{AD} P \iff \Gamma \vdash_{ND} P \iff \Gamma \vdash_{ND+} P$. And that is what we set out to show.

*E9.16. Set up the above induction for T9.14 and complete the unfinished cases to show that if $\Gamma \vdash_{ND+} P$, then $\Gamma \vdash_{AD} P$. For cases completed in the text, you may simply refer to the text, as the text refers cases to homework.

E9.17. Extend the system N^* from E9.15 to an N^* that has rules $\neg E$, $\neg I$, $\land E$, $\land I$, $\exists E$, $\exists I$ along with MT and the replacement rule Com (for \land). Augment your argument from E9.15 to produce a complete demonstration that if $\Gamma \vdash_{N^*} P$ then $\Gamma \vdash_{ND} P$. In addition to E9.15, you may appeal to any of the theorems from E3.4 along with the substitution result from E9.12.

E9.18. For each of the following concepts, explain in an essay of about two pages, so that (college freshman) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. The reason semantic validity implies logical validity, but not the other way around.

b. The notion of a constructive proof by mathematical induction.

c. The equivalence between derivation systems AD, ND and $ND+$.
Theorems of Chapter 9

T9.1 For any ordinary argument \(P_1 \ldots P_n \rightarrow Q \), with good translation consisting of \(II \) and \(P'_1 \ldots P'_n \rightarrow Q' \), if \(P'_1 \ldots P'_n \rightarrow Q' \), then \(P_1 \ldots P_n \rightarrow Q \) is logically valid.

T9.2 If \(\Gamma \vdash_{AD} P \), then \(\Gamma \vdash_{ND} P \).

T9.3 If \(\Delta \cup \{ P \} \vdash_{AD} Q \), and no application of Gen under the scope of \(P \) is to a variable free in \(P \), then \(\Delta \vdash_{AD} P \rightarrow Q \). Deduction Theorem.

T9.4 \(\vdash_{AD} A \rightarrow (B \rightarrow (A \land B)) \)

T9.5 \(\vdash_{AD} (A \rightarrow C) \rightarrow [(B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)] \)

T9.6 For arbitrary terms \(r, s \) and \(t \), \(\vdash_{AD} (r = s) \rightarrow (t^r = t^s) \).

T9.7 For any formula \(A \) and terms \(r, s, t \), if \(s \) is free for any replaced instance of \(r \) in \(A \), then \(\vdash_{AD} (r = s) \rightarrow (A \rightarrow A^r = A^s) \).

T9.8 For any formula \(A \) and terms \(r, s, t \), if \(s \) is free for the replaced instances of \(r \) in \(A \), then \(\vdash_{AD} (r = s) \rightarrow (A \rightarrow A^r = A^s) \).

T9.9 For any formulas \(A, B \) and \(C \), if \(\vdash_{AD} B \leftrightarrow C \), then \(\vdash_{AD} A \leftrightarrow A^B = C \).

T9.10 For any formulas \(A, B \) and \(C \), interpretation \(I \) and variable assignment \(d \), if \(I_d[B] = I_d[C] \) then \(I_d[A] = I_d[A^B = C] \). Corollary: If \(I_d[B \leftrightarrow C] = S \), then \(I_d[A \leftrightarrow A^B = C] = S \).

T9.11 \(\vdash_{AD} \forall v . P^v \rightarrow \forall x . P \) —where \(v \) is not free in \(\forall x . P \) and free for \(x \) in \(P \).

T9.12 If \(\Gamma \vdash_{ND} P \), then \(\Gamma \vdash_{AD} P \).

T9.13 If \(\Gamma \vdash_{ND} P \) then \(\Gamma \vdash_{ND+} P \).

T9.14 If \(\Gamma \vdash_{ND+} P \), then \(\Gamma \vdash_{AD} P \).
Chapter 10

Main Results

We have introduced four notions of validity, and started to think about their interrelations. In chapter 9, we showed that if an argument is semantically valid, then it is logically valid, and that an argument is valid in AD iff it is valid in ND. We turn now to the relation between these derivation systems and semantic validity. This completes the project of demonstrating that the different notions of validity are related as follows.

Since AD and ND are equivalent, it is not necessary separately to establish the relations between AD and semantic validity, and between ND and semantic validity. Because it is relatively easy to reason about AD, we mostly reason about a system like AD to establish that an argument is valid in AD iff it is semantically valid. From the equivalence between AD and ND it then follows that an argument is valid in ND iff it is semantically valid.

The project divides into two parts. First, we take up the arrows from right to left, and show that if an argument is valid in AD, then it is semantically valid: if $\Gamma \vdash_{AD} \mathcal{P}$, then $\Gamma \models \mathcal{P}$. Thus our derivation system is sound (recall from p. 435 that diacritical marks distinguish notions of soundness and completeness). If a derivation system is sound, it never leads from premises that are true on an interpretation, to a conclusion}

476
that is not (section 10.1). Second, moving in the other direction, we show that if an argument is semantically valid, then it is valid in AD: if \(\Gamma \models \mathcal{P} \), then \(\Gamma \vdash_{AD} \mathcal{P} \). Thus our derivation system is \(\text{complete} \). If a derivation system is \(\text{complete} \), there is a derivation from the premises to the conclusion for every argument that is semantically valid. This discussion divides into sentential (section 10.2), basic quantificational (section 10.3) and full quantificational (section 10.4) versions.

10.1 Soundness

It is easy to construct derivation systems that are not \(\text{sound} \). Thus, for example, consider a derivation system like AD but without the restriction on A4 that the substituted term \(t \) be free for the variable \(x \) in formula \(\mathcal{P} \). Given this, we might reason as follows,

\[
\begin{align*}
1. \ & \forall x \exists y \sim (x = y) \quad \text{prem} \\
2. \ & \forall x \exists y \sim (x = y) \rightarrow \exists y \sim (y = y) \quad \text{“A4”} \\
3. \ & \exists y \sim (y = y) \quad 1.2 \text{ MP}
\end{align*}
\]

\(y \) is not free for \(x \) in \(\exists y \sim (x = y) \); so line (2) is not an instance of A4. And it is a good thing: Consider any interpretation with at least two elements in \(U \). Then it is true that for every \(x \) there is some \(y \) not identical to it. So the premise is true. But there is no \(y \) in \(U \) that is not identical to itself. So the conclusion is not true. So the true premise leads to a conclusion that is not true. So the derivation system is not \(\text{sound} \).

We would like to show that AD is \(\text{sound} \)—that there is no sequence of moves, no matter how complex or clever, that would lead from premises that are true to a conclusion that is not true. The argument itself is straightforward: suppose \(\Gamma \vdash_{AD} \mathcal{P} \); then there is an AD derivation \(A = (Q_1 \ldots Q_n) \) of \(\mathcal{P} \) with \(Q_n = \mathcal{P} \). By induction on line numbers in \(A \), we show that for any \(i \), \(\Gamma \models Q_i \). The case when \(i = n \) is the desired result. So if \(\Gamma \vdash_{AD} \mathcal{P} \), then \(\Gamma \models \mathcal{P} \). This general strategy should by now be familiar. However, for the case involving A4, it will be helpful to obtain a pair of preliminary results.

10.1.1 Switching Theorems

In this section, we develop a couple theorems which link substitutions into terms and formulas with substitutions in variable assignments. The results are a matched pair, with a first result for terms that feeds into the basis clause for a result about formulas. Perhaps the hardest part is not so much the proofs of the theorems, as understanding what the theorems say. Let us turn to the first.
CHAPTER 10. MAIN RESULTS

Suppose we have some terms \(t \) and \(r \) with interpretation \(\mathfrak{l} \) and variable assignment \(d \). Say \(\mathfrak{l}_d[r] = \mathfrak{o} \). Then the first proposition is this: term \(t \) is assigned the same object on \(\mathfrak{l}_d(x|\mathfrak{o}) \) as \(t^x_r \) is assigned on \(\mathfrak{l}_d \). Intuitively, this is because the same object is fed into the \(x \)-place of the term in each case. With \(t \) and \(d(x|\mathfrak{o}) \),

\[
\begin{align*}
\mathfrak{l}_d & : h^n \ldots x \ldots \\
\vdots & \\
d(x|\mathfrak{o}) & : \ldots \mathfrak{o} \ldots
\end{align*}
\]

object \(\mathfrak{o} \) is the input to the “slot” occupied by \(x \). But we are given that \(\mathfrak{l}_d[r] = \mathfrak{o} \). So with \(t^x_r \) and \(d \).

\[
\begin{align*}
t^x_r & : h^n \ldots r \ldots \\
\vdots & \\
d & : \ldots \mathfrak{o} \ldots
\end{align*}
\]

object \(\mathfrak{o} \) is the input into the “slot” that was occupied by \(x \). So if \(\mathfrak{l}_d[r] = \mathfrak{o} \), then \(\mathfrak{l}_d(x|\mathfrak{o})[t] = \mathfrak{l}_d[t^x_r] \). In the one case, we guarantee that object \(\mathfrak{o} \) goes into the \(x \)-place by meddling with the variable assignment. In the other, we get the same result by meddling with the term. Be sure you are clear about this in your own mind. This will be our first result.

T10.1. For any interpretation \(\mathfrak{l} \), variable assignment \(d \), with terms \(t \) and \(r \), if \(\mathfrak{l}_d[r] = \mathfrak{o} \), then \(\mathfrak{l}_d(x|\mathfrak{o})[t] = \mathfrak{l}_d[t^x_r] \).

For arbitrary terms \(t \) and \(r \) with interpretation \(\mathfrak{l} \) and variable assignment \(d \), suppose \(\mathfrak{l}_d[r] = \mathfrak{o} \). By induction on the number of function symbols in \(t \), \(\mathfrak{l}_d(x|\mathfrak{o})[t] = \mathfrak{l}_d[t^x_r] \).

Basis: If \(t \) has no function symbols, then it is a constant or a variable. Either \(t \) is the variable \(x \) or it is not. (i) Suppose \(t \) is a constant or variable other than \(x \); then \(t^x_r = t \) (no replacement is made); but \(d \) and \(d(x|\mathfrak{o}) \) assign just the same things to variables other than \(x \); so they assign just the same things to any variable in \(t \); so by T8.4, \(\mathfrak{l}_d[t] = \mathfrak{l}_d(x|\mathfrak{o})[t] \). So \(\mathfrak{l}_d[t^x_r] = \mathfrak{l}_d[t] = \mathfrak{l}_d(x|\mathfrak{o})[t] \). (ii) If \(t \) is \(x \), then \(t^x_r \) is \(r \) (all of \(t \) is replaced by \(r \)); so \(\mathfrak{l}_d[t^x_r] = \mathfrak{l}_d[r] = \mathfrak{o} \). But \(t \) is \(x \); so \(\mathfrak{l}_d(x|\mathfrak{o})[t] = \mathfrak{l}_d(x|\mathfrak{o})[x] \); and by TA(\(\mathfrak{v} \)), \(\mathfrak{l}_d(x|\mathfrak{o})[x] = \mathfrak{d}(x|\mathfrak{o})[x] = \mathfrak{o} \). So \(\mathfrak{l}_d[t^x_r] = \mathfrak{l}_d(x|\mathfrak{o})[t] \).

Assp: For any \(i \), \(0 \leq i < k \), for \(t \) with \(i \) function symbols, \(\mathfrak{l}_d[t^x_r] = \mathfrak{l}_d(x|\mathfrak{o})[t] \).

Show: If \(t \) has \(k \) function symbols, then \(\mathfrak{l}_d[t^x_r] = \mathfrak{l}_d(x|\mathfrak{o})[t] \).

If \(t \) has \(k \) function symbols, then it is of the form, \(\mathfrak{h}^n s_1 \ldots s_n \) where \(s_1 \ldots s_n \) have \(\ll k \) function symbols. In this case, \(t^x_r = [h^n s_1 \ldots s_n]^x_r = [h^n s_1 \ldots s_n]^x_r = [h^n s_1 \ldots s_n]^x_r \) and by assumption, \(\mathfrak{l}_d[s_1 x] = \mathfrak{l}_d(x|\mathfrak{o})[s_1] \), and \(\ldots \) and \(\mathfrak{l}_d[s_n x] = \mathfrak{l}_d(x|\mathfrak{o})[s_n] \). So \(\mathfrak{l}_d[t^x_r] = \mathfrak{l}_d[h^n s_1 x \ldots s_n x] \) by TA(\(\mathfrak{f} \)), this is
we get the same result by meddling with the formula. This is our second result, which

Now, let us consider the proposition that a formula is free for a variable in a formula. With

I

the second proposition is that a formula is satisfied on a sentence letter \(S \) and a variable assignment \(Q \), where \(\mathbf{I} \).

Similarly, suppose we have term \(r \) with interpretation \(\mathbf{I} \) and variable assignment \(d \), where \(\mathbf{I}[r] = \emptyset \) as before. Suppose \(r \) is free for variable \(x \) in formula \(Q \). Then the second proposition is that a formula is satisfied on \(\mathbf{I}(x|o) \) iff \(Q^x_r \) is satisfied on \(\mathbf{I} \). Again, intuitively, this is because the same object is fed into the \(x \)-place of the formula in each case. With \(Q \) and \(d(x|o) \),

\[
Q: \quad Q \ldots x \ldots \\
\begin{array}{c}
\mathbf{d}(x|o): \\
\quad \ldots \ldots \ldots \\
\end{array}
\]

object \(\emptyset \) is the input to the “slot” occupied by \(x \). But \(\mathbf{I}[r] = \emptyset \). So with \(Q^x_r \) and \(d \),

\[
Q^x_r: \quad Q \ldots r \ldots \\
\begin{array}{c}
\mathbf{d}: \\
\quad \ldots \ldots \ldots \\
\end{array}
\]

object \(\emptyset \) is the input into the “slot” that was occupied by \(x \). So if \(\mathbf{I}[r] = \emptyset \) (and \(r \) is free for \(x \) in \(Q \)), then \(\mathbf{I}(x|o)[Q] = S \) iff \(\mathbf{I}[Q^x_r] = S \). In the one case, we guarantee that object \(\emptyset \) goes into the \(x \)-place and variable assignment. In the other, we get the same result by meddling with the variable assignment. This is our second result, which draws directly upon the first.

T10.2. For any interpretation \(\mathbf{I} \), variable assignment \(d \), term \(r \), and formula \(Q \), if \(\mathbf{I}[r] = \emptyset \) and \(r \) is free for \(x \) in \(Q \), then \(\mathbf{I}[Q^x_r] = S \) iff \(\mathbf{I}(x|o)[Q] = S \).

By induction on the number of operator symbols in \(Q \),

\[
\text{Basis:} \quad \text{Suppose } r \text{ is free for } x \text{ in } Q \text{ and } \mathbf{I}[r] = \emptyset. \text{ If } Q \text{ has no operator symbols, then it is a sentence letter } S \text{ or an atomic of the form } \mathcal{R}^{i_1} \ldots i_n. \text{ In the first case, } Q^x_r = \mathcal{R}^{i_1} \ldots i_n = S. \text{ So } \mathbf{I}[Q^x_r] = S \iff \mathbf{I}[S] = S; \text{ by SF}(s), \text{ iff } \mathbf{I}[S] = T; \text{ by SF}(s) \text{ again, iff } \mathbf{I}(x|o)[S] = S; \text{ iff } \mathbf{I}(x|o)[Q] = S. \text{ In the second case, } Q^x_r = [\mathcal{R}^{i_1} \ldots i_n] = \mathcal{R}^{i_1} \ldots i_n = S. \text{ So } \mathbf{I}[Q^x_r] = S \iff \mathbf{I}(x|o)[Q] = S; \text{ by SF}(r), \text{ iff } \mathbf{I}(x|o)[Q] = S.
\]

\[
\text{Assp:} \quad \text{For any } i, \ 0 \leq i < k, \text{ if } Q \text{ has } i \text{ operator symbols, } r \text{ is free for } x \text{ in } Q \text{ and } \mathbf{I}[r] = \emptyset, \text{ then } \mathbf{I}[Q^x_r] = S \iff \mathbf{I}(x|o)[Q] = S.
\]

\[\text{Indct:} \quad \text{For any } t, \mathbf{I}[Q^x_t] = \mathbf{I}(x|o)[t].\]

Since the “switching” leaves assignments to the parts the same, the assignment to the whole remains the same as well.
CHAPTER 10. MAIN RESULTS

Show: If Q has k operator symbols, r is free for x in Q and $l_d[r] = 0$, then $l_d[Q^+_r] = S$ iff $l_{d(x|o)}[Q] = S$.

Suppose r is free for x in Q and $l_d[r] = 0$. If Q has k operator symbols, then Q is of the form $\sim B, B \rightarrow C$, or $\forall v B$ for variable v and formulas B and C with $\prec k$ operator symbols.

(\sim) Suppose Q is $\sim B$. Then $Q^+_r = [\sim B]^+_r = \sim[B^+_r]$. Since r is free for x in Q, r is free for x in B; so the assumption applies to B. $l_d[Q^+_r] = S$ iff $l_d[\sim B]^+_r = S$; by SF(\sim), iff $l_d[B^+_r] \neq S$; by assumption iff $l_{d(x|o)}[B] \neq S$; by SF(\sim), iff $l_{d(x|o)}[\sim B] = S$; iff $l_{d(x|o)}[Q] = S$.

(\rightarrow) Homework.

(\forall) Suppose Q is $\forall v B$. Either there are free occurrences of x in Q or not.

(i) Suppose there are no free occurrences of x in Q. Then $Q^+_r = Q$ (no replacement is made). But since d and $d(x|o)$ make just the same assignments to variables other than x, they make just the same assignments to all the variables free in Q; so by T8.5, $l_d[Q] = S$ iff $l_{d(x|o)}[Q] = S$. So $l_d[Q^+_r] = S$ iff $l_{d(x|o)}[Q] = S$.

(ii) Suppose there are free occurrences of x in Q. Then x is some variable other than v, and $Q^+_r = [\forall v B]^+_r = \forall v[B^+_r]$.

First, since r is free for x in Q, r is free for x in B, and v is not a variable in r; from this, for any $m \in U$, the variable assignments d and $d(v|m)$ agree on assignments to variables other than x, so the requirement of the assumption is met for the assignment $d(v|m)$ and, as an instance of the assumption, for any $m \in U$, $l_{d(v|m)}[B^+_r] = S$ iff $l_{d(v|m,x|o)}[B] = S$.

Now suppose $l_{d(x|o)}[Q] = S$ but $l_d[Q^+_r] \neq S$; then $l_{d(x|o)}[\forall v B] = S$ but $l_d[\forall v B^+_r] \neq S$. From the latter, by SF$(\forall)$, there is some $m \in U$ such that $l_{d(v|m)}[B^+_r] \neq S$; so by the above result, $l_{d(v|m,x|o)}[B] \neq S$; so by SF(\forall), $l_{d(x|o)}[\forall v B] \neq S$; this is impossible. And similarly [by homework] in the other direction. So $l_{d(x|o)}[Q] = S$ iff $l_d[Q^+_r] = S$.

If Q has k operator symbols, if r is free for x in Q and $l_d[r] = 0$, then $l_d[Q^+_r] = S$ iff $l_{d(x|o)}[Q] = S$.

Indet: For any Q, if r is free for x in Q and $l_d[r] = 0$, then $l_d[Q^+_r] = S$ iff $l_{d(x|o)}[Q] = S$.

Perhaps the quantifier case looks more difficult than it is. The key point is that since r is free for x in Q, changes in the assignment to v do not affect the assignment
to \(r \). Thus the assumption applies to \(B \) for variable assignments that differ in their assignments to \(v \). This lets us “take the quantifier off,” apply the assumption, and then “put the quantifier back on” in the usual way. Another way to make this point is to see how the argument fails when \(r \) is not free for \(x \) in \(Q = \forall v B \). If \(r \) is not free for \(x \) in \(Q \), then a change in the assignment to \(v \) may affect the assignment to \(r \). In this case, although \(l_d[r] = o, l_d(v[m])[r] \) might be something else. So there is no reason to think that substituting \(r \) for \(x \) will have the same effect as assigning \(x \) to \(o \).

As we shall see, this restriction corresponds directly to the one on axiom A4.

*E10.1. Complete the cases for \((\to)\) and \((\forall)\) to complete the demonstration of T10.2.

You should set up the complete demonstration, but for cases completed in the text, you may simply refer to the text, as the text refers cases to homework.

10.1.2 Soundness

We are now ready for our main proof of Soundness for \(AD \). Actually, all the parts are already on the table. It is simply a matter of pulling them together into a complete demonstration.

T10.3. If \(\Gamma \vdash_AD P \), then \(\Gamma \models P \). Soundness.

Suppose \(\Gamma \vdash_AD P \). Then there is an AD derivation \(A = \langle Q_1 \ldots Q_n \rangle \) of \(P \) from premises in \(\Gamma \), with \(Q_n = P \). By induction on the line numbers in \(A \), we show that for any \(i \), \(\Gamma \models Q_i \). The case when \(i = n \) is the desired result.

Basis: The first line of \(A \) is a premise or an axiom. So \(Q_1 \) is either a member of \(\Gamma \) or an instance of A1, A2, A3, A4, A5, A6 A7 or A8. The cases for A1, A2, A3, A5, A6, A7 and A8 are parallel.

(prem) Suppose \(Q_1 \) is a member of \(\Gamma \) and \(\Gamma \not\models Q_1 \), then by QV there is some \(l \) such that \(l[\Gamma] = T \) but \(l[Q_1] \neq T \); but since \(l[\Gamma] = T \) and \(Q_1 \in \Gamma \), \(l[Q_1] = T \). This is impossible, reject the assumption, \(\Gamma \not\vdash Q_1 \).

(Ax) Suppose \(Q_1 \) is an instance of A1, A2, A3, A5, A6, A7 or A8 and \(\Gamma \not\models Q_1 \). Then by QV, there is some \(l \) such that \(l[\Gamma] = T \) but \(l[Q_1] \neq T \). But by T7.2, T7.3, T7.4, T8.6, T7.9, and T7.10, \(\vdash Q_1 \); so by QV, \(l[Q_1] = T \). This is impossible, reject the assumption: \(\Gamma \not\vdash Q_1 \).

(A4) If \(Q_1 \) is an instance of A4, then it is of the form \(\forall x B \to B^x_r \) where term \(r \) is free for variable \(x \) in formula \(B \). Suppose \(\Gamma \not\models Q_1 \). Then by QV, there is an \(l \) such that \(l[\Gamma] = T \), but \(l[\forall x B \to B^x_r] \neq T \). From the latter, by T1, there is some \(d \) such that \(l_d[\forall x B \to B^x_r] \neq S \); so by SF(\(\to \)),
l_0[\forall x \mathcal{B}] = S \text{ but } l_0[\mathcal{B}^+_{r}] \neq S; \text{ from the first of these, by SF}(\forall), \text{ for any } m \in U, l_{d(x|m)}[\mathcal{B}] = S; \text{ let } l_{d[r]} = 0; \text{ then } l_{d(x|o)}[\mathcal{B}] = S; \text{ so, since } r \text{ is free for } x \text{ in formula } \mathcal{B}, \text{ by T10.2, } l_{d}[\mathcal{B}^+_{r}] = S. \text{ This is impossible; reject the assumption: } \mathcal{Q}_1.

Assp: \text{ For any } i, 1 \leq i < k, \Gamma \vdash \mathcal{Q}_i.

Show: \Gamma \vdash \mathcal{Q}_k.

\mathcal{Q}_k \text{ is either a premise, an axiom, or arises from previous lines by MP or Gen. If } \mathcal{Q}_k \text{ is a premise or an axiom then as in the basis, } \Gamma \vdash \mathcal{Q}_k. \text{ So suppose } \mathcal{Q}_k \text{ arises by MP or Gen.}

(MP) Homework.

(Gen) If \mathcal{Q}_k \text{ arises by Gen, then } A \text{ is something like this,}

\begin{align*}
i \quad &\mathcal{B} \\
&\vdots \\
k \quad &\forall x \mathcal{B} \quad i \text{ Gen}
\end{align*}

where \(i < k \) and \(\mathcal{Q}_k = \forall x \mathcal{B} \). Suppose \(\Gamma \neq \mathcal{Q}_k \); then \(\Gamma \neq \forall x \mathcal{B} \); so by QV, there is some \(l \) such that \(l[\Gamma] = T \) but \(l[\forall x \mathcal{B}] \neq T \). By assumption, \(\Gamma \vdash \mathcal{B} \); so with \(l[\Gamma] = T \), by QV, \(l[\mathcal{B}] = T \); so by T7.6, \(l[\forall x \mathcal{B}] = T \). This is impossible; reject the assumption: \(\Gamma \vdash \mathcal{Q}_k \).

Indct: \text{ For any } n, \Gamma \vdash \mathcal{Q}_n.

So if \(\Gamma \vdash_{AD} \mathcal{P} \), then \(\Gamma \vdash \mathcal{P} \). So \(AD \) is \(\vdash \) sound. And since \(AD \) is \(\vdash \) sound, with theorems T9.2, T9.13 and T9.14 it follows that \(ND \) and \(ND+ \) are \(\vdash \) sound as well.

*E10.2. Complete the case for (MP) to round out the demonstration that \(AD \) is \(\vdash \) sound. You should set up the complete demonstration, but for cases completed in the text, you may simply refer to the text, as the text refers cases to homework. T8.8 may smooth your reasoning.

E10.3. Consider the derivation system \(A^* \) from E9.5 and provide a complete demonstration that it is \(\vdash \) sound. Notice that (A1)–(A3) and MP are the same as \(A^* \) from E8.12, and you demonstrated the \(\vdash \) soundness of \(A^* \) from E8.12 and E8.13. You may appeal to prior exercises and theorems as appropriate.
CHAPTER 10. MAIN RESULTS

10.1.3 Consistency

The proof of soundness is the main result we set out to achieve in this section. But before we go on, it is worth pausing to make an application to consistency. Say a set Δ of formulas is consistent iff there is no formula A such that $\Delta \vdash A$ and $\Delta \vdash \neg A$. Consistency is thus defined in terms of derivations rather than semantic notions. But we show,

T10.4. If there is an interpretation M such that $M[\Gamma] = T$ (a model for Γ), then Γ is consistent.

Suppose there is an interpretation M such that $M[\Gamma] = T$ but Γ is inconsistent. From the latter, there is a formula A such that $\Gamma \vdash A$ and $\Gamma \vdash \neg A$; so by T10.3, $\Gamma \models A$ and $\Gamma \models \neg A$. But $M[\Gamma] = T$; so by QV, $M[A] = T$ and $M[\neg A] = T$; from the second of these and T8.8, $M[A] \neq T$. This is impossible; reject the assumption: if there is an interpretation M such that $M[\Gamma] = T$, then Γ is consistent.

This is an interesting and important theorem. Suppose we want to show that some set of formulas is inconsistent. For this, it is enough to derive a contradiction from the set. But suppose we want to show that there is no way to derive a contradiction. Merely failing to find a derivation does not show that there is not one! But, with soundness, we can demonstrate that there is no such derivation by finding a model for the set.

Similarly, if we want to show that $\Gamma \vdash A$, it is enough to produce the derivation. But suppose we want to show that $\Gamma \not\models A$. Merely failing to find a derivation does not show that there is not one! Still, given soundness, we can demonstrate that there is no derivation by finding a model on which the premises and negation of the conclusion are true.

T10.5. If there is an interpretation M such that $M[\Gamma \cup \{\neg A\}] = T$, then $\Gamma \not\models A$.

The reasoning is left for homework. But the idea is very much as above. With soundness, it is impossible to have both $M[\Gamma \cup \{\neg A\}] = T$ and $\Gamma \vdash A$.

Again, the result is useful. Suppose, for example, we want to show that $\neg \forall x Ax \not\models \neg \exists x Aa$. You may be unable to find a derivation, and be able to point out flaws in a friend’s attempt. But we show that there is no derivation by finding a model on which both $\neg \forall x Ax$ and $\neg \exists x Aa$ are true. And this is easy. Let $U = \{1, 2\}$ with $M[a] = 1$ and $M[A] = \{1\}$.

(i) Suppose $M[\neg \forall x Ax] \neq T$; then by T1, there is some d such that $M[d[\neg \forall x Ax]] \neq S$; so by $SF(\neg)$, $M[d[\forall x Ax]] = S$; so by $SF(\forall)$, for any $o \in U$, $M[d(x/o)][Ax] = S$; so $M[d[\neg Ax]] = S$.

But \(d(x)[2|x] = 2 \); so by TA(v), \(M_d(x)[2|x] = 2 \); so by SF(r), \(2 \notin M[A] \). This is impossible; reject the assumption: \(M[\sim \forall x.Ax] = T \). (ii) Suppose \(M[a] \neq T \); then by TI, there is some \(d \) such that \(M_d[\sim Aa] \neq S \); so by SF(\(~\)\), \(M_d[\sim Aa] = S \); and by SF(\(~\)\) again, \(M_d[\sim Aa] \neq S \). But \(M[a] = 1 \); so by TA(c), \(M_d[a] = 1 \); so by SF(r), \(1 \notin M[A] \); but \(1 \in M[A] \). This is impossible; reject the assumption: \(M[\sim \forall x.Ax] = T \). So \(M[\sim \forall x.Ax] = T \) and \(M[\sim Aa] = T \). So by T10.5, \(\sim \forall x.Ax \not\vdash \sim Aa \).

If there is a model on which all the members of \(\Gamma \) are true and \(\sim A \) is true, then it is not the case that every model with \(\Gamma \) true has \(A \) true. So, with \(\check{\text{soundness}} \), there cannot be a derivation of \(A \) from \(\Gamma \). For a more substantive example, E7.19, which tells us that \(Q \) does not entail certain results (by finding an interpretation on which the axioms are true and the result is not), gives us that \(Q \) does not prove the results.

*E10.4. Provide an argument to show T10.5. Hint: The reasoning is very much as for T10.4.

E10.5. (a) Show that \(\{ \exists x.Ax, \sim Aa \} \) is consistent. (b) Show that \(\forall x (Ax \rightarrow Bx), \sim Ba \not\vdash \sim \exists x.Ax \).

10.2 Sentential ČCompleteness

A derivation system is Čcomplete when semantically valid results are provable: if \(\Gamma \models P \), then \(\Gamma \vdash P \). It is easy to construct derivation systems that are not Čcomplete. Thus, for example, consider a system like ADs but without A1. It is easy to see that such a system is Čsound, and so that derivations without A1 do not go astray—all we have to do is leave the case for A1 out of the proof that ADs is Čsound. But, as will appear from our section 11.3 discussion of independence (see also E8.14), there is no derivation of A1 from A2 and A3 alone. So without A1 there are sentential expressions \(\mathcal{P} \) such that \(\models \mathcal{P} \), but for which there is no derivation. So the resultant derivation system would not be sententially Čcomplete. We turn now to showing that our derivation systems are in fact Čcomplete. Given this, with Čsoundness, we have \(\Gamma \models \mathcal{P} \) iff \(\Gamma \vdash \mathcal{P} \), so that our derivation systems deliver just the results they are supposed to.

ČCompleteness for a system like AD was first proved by Kurt Gödel in his 1930 doctoral dissertation. While the proof of Čsoundness is straightforward given methods we have used before, the proof of Čcompleteness was revolutionary when Gödel first produced it. The version of the proof that we will consider is the standard one,
essentially due to L. Henkin. An interesting feature of these proofs is that they are not constructive. So far, in proving the equivalence of deductive systems, we have been able to show that there are certain derivations by showing how to construct them. However, just as it is possible to prove an existential \(\exists x P x \) without finding an \(a \) such that \(P a \), we shall be able to prove that there are derivations without showing how to find them. As we shall see in part IV, a constructive proof of completeness for our full predicate logic is impossible. So this is the only way to go.

The proof of completeness is more involved than any we have encountered so far. Each of the parts is comparable to what has gone before; but there are enough parts that it is possible to lose the forest for the trees. I thus propose to do the proof three times. In this section, we will prove sentential completeness—that for expressions in a sentential language, if \(\Gamma \models \mathcal{P} \), then \(\Gamma \vdash \mathcal{P} \). This should enable us to grasp the overall shape of the argument without interference from too many details. We will then consider a basic version of the quantificational argument and, after addressing a few complications, put it all together for the full version. Notation and theorem numbers are organized to preserve parallels between the cases.

10.2.1 Basic Idea

The basic idea is straightforward: Let us restrict ourselves to an arbitrary sentential language \(\mathcal{L}_s \) and to sentential semantic rules. Derivations are automatically restricted to sentential rules by the restricted language. So derivations and semantics are particularly simple. For formulas in this language, our goal is to show that if \(\Gamma \models \mathcal{P} \), then \(\Gamma \vdash \mathcal{P} \). We can see how this works with just a couple of preliminaries.

We begin with a definition and a theorem. As before, let us say,

Con A set \(\Delta \) of formulas is consistent iff there is no formula \(\mathcal{A} \) such that \(\Delta \vdash \mathcal{A} \) and \(\Delta \vdash \lnot \mathcal{A} \).

So consistency is a syntactical notion. A set of formulas is consistent just in case there is no way to derive a contradiction from it. Now for the theorem,

\[T10.6, \text{ For any set of formulas } \Delta \text{ and sentence } \mathcal{P}, \text{ if } \Delta \not\vdash \lnot \mathcal{P}, \text{ then } \Delta \cup \{ \mathcal{P} \} \text{ is consistent.} \]

Suppose \(\Delta \not\vdash \lnot \mathcal{P} \), but \(\Delta \cup \{ \mathcal{P} \} \) is not consistent. From the latter, there is some \(\mathcal{A} \) such that \(\Delta \cup \{ \mathcal{P} \} \vdash \mathcal{A} \) and \(\Delta \cup \{ \mathcal{P} \} \vdash \lnot \mathcal{A} \). So by DT, \(\Delta \vdash \lnot \mathcal{A} \rightarrow \mathcal{A} \) and

\[1 \text{ Henkin, “Completeness of the First-Order Calculus.” Kurt Gödel, “Die Vollständigkeit der Axiome des Logischen Funktionenkalküls.” English translation in From Frege to Gödel, reprint in Gödel’s Collected Works.} \]
CHAPTER 10. MAIN RESULTS

Δ ⊨ P \rightarrow \sim A; by T3.10, ⊨ \sim \sim P \rightarrow P; so by T3.2, Δ ⊨ \sim \sim P \rightarrow A, and
Δ ⊨ \sim \sim P \rightarrow \sim A; but by A3, Δ ⊨ (\sim \sim P \rightarrow \sim A) \rightarrow [(\sim \sim P \rightarrow A) \rightarrow \sim P];
so by two instances of MP, Δ ⊨ \sim P. But this is impossible; reject the assumption:
if Δ \not\vdash \sim P, then Δ \cup \{P\} is consistent.

The idea is simple: if Δ \cup \{P\} is inconsistent, then by reasoning as for \sim I in ND, \sim P
follows from Δ alone; so if \sim P cannot be derived from Δ alone, then Δ \cup \{P\} is
consistent. Notice that, insofar as the language is sentential, derivations do not include
any applications of Gen, so the applications of DT are sure to meet the restriction on
Gen.

In the last section, we saw that any set with a model is consistent. Now suppose
we knew the converse, that any consistent set has a model.

(\ast) For any consistent set of formulas Σ', there is an interpretation M' such that
M'[\Sigma'] = T.

This sets up the key connection between syntactic and semantic notions, between
consistency on the one hand, and truth on the other, that we will need for \textit{completeness}.
Schematically, then, with (\ast) we have the following,

1. Γ \cup \{\sim P\} has a model \implies Γ \not\models P
2. Γ \cup \{\sim P\} is consistent \implies Γ \cup \{\sim P\} has a model (\ast)
3. Γ \cup \{\sim P\} is not consistent \implies Γ \models P

(2) is just (\ast). (1) is by simple semantic reasoning: Suppose Γ \cup \{\sim P\} has a model;
then there is some M such that M[Γ \cup \{\sim P\}] = T; so M[Γ] = T and M[\sim P] = T; from
the latter, by ST(\sim), M[\sim P] \neq T; so M[Γ] = T and M[\sim P] \neq T; so by SV, Γ \not\models P. (3) is
by straightforward syntactic reasoning: Suppose Γ \cup \{\sim P\} is not consistent; then by
an application of T10.6, Γ \models \sim \sim P; but by T3.10, \models \sim \sim P \rightarrow P; so by MP, Γ \models P.

And (1)–(3) together yield the completeness result:

Suppose Γ \models \sim P; then by (1), reading from right to left, Γ \cup \{\sim P\} does not have
a model; so by (2), again from right to left, Γ \cup \{\sim P\} is not consistent; so by (3),
Γ \models \sim P. So if Γ \models \sim P, then Γ \models \sim P.

And this is what we we want. Of course, knowing that there is some way to derive P
is not the same as knowing what that way is. All the same, (\ast) tells us that there must
exist a model of a certain sort, from which it follows that there must exist a derivation.
And the work of our demonstration of completeness reduces to a demonstration of (*).

So we need to show that every consistent set of formulas Σ' has an interpretation M' such that $M' [\Sigma'] = T$. Here is the basic idea: We show that any consistent Σ' is a subset of a corresponding “big” set Σ'' specified in such a way that it must have a model M'—which in turn is a model for the smaller Σ'. Following the arrows,

\[\Sigma'' \quad M' \quad \Sigma' \]

Given a consistent Σ', we show that there is the big set Σ''. From this we show that there must be an M' that is a model not only for Σ'' but for Σ' as well. So if Σ' is consistent, then it has a model. We proceed through a series of theorems to show that this can be done.

10.2.2 Gödel Numbering

In constructing our big sets, we will want to consider formulas, for inclusion or exclusion, serially—one after another. For this, we need to “line them up” for consideration. Thus, in this section we show,

T10.7. There is an enumeration Q_1, Q_2, \ldots of all formulas in L_s.

The proof is by construction. We develop a method by which the formulas can be lined up. The method is interesting in its own right, and foreshadows methods from part IV on Gödel’s incompleteness theorem for arithmetic.

In section 2.2.1, we required that any sentential language L_s has countably many sentence letters, which can be ordered into a series, s_0, s_1, \ldots Assume some such series. We want to show that the formulas of L_s can be so ordered as well. Begin by assigning to each symbol s in the language an integer $g[s]$, called its Gödel Number.

a. $g[\] = 3$

b. $g[\!] = 5$

c. $g[\sim] = 7$

d. $g[\rightarrow] = 9$
e. \(g[8_n] = 11 + 2n \)

So, for example, \(g[8_0] = 11 \) and \(g[8_4] = 11 + 2 \times 4 = 19 \). Clearly each symbol gets a unique Gödel number, and Gödel numbers for individual symbols are \(> 1 \) and odd.

Now we are in a position to assign a Gödel number to each formula as follows: Where \(8_0, 8_1 \ldots 8_n \) are the symbols, in order from left to right, in some expression \(Q \),

\[
g(Q) = 2^g[8_0] \times 3^g[8_1] \times 5^g[8_2] \times \ldots \times \pi_n^g[8_n]
\]

where \(2, 3, 5 \ldots \pi_n \) are the first \(n \) prime numbers. So, for example, \(g[\sim \sim 8_0] = 2^7 \times 3^7 \times 5^{11} \); similarly, \(g[\sim(8_0 \to 8_4)] = 2^7 \times 3^3 \times 5^{11} \times 7^9 \times 11^{19} \times 13^5 = 15463, 36193, 79608, 90364, 71042, 41201, 87066, 87500, 00000 \)—a very big integer! All the same, it is an integer, and it is clear that every expression is assigned to some integer.

Further, different expressions get different Gödel numbers. It is a theorem of arithmetic that every integer \(> 1 \) is uniquely factored into primes (see the arithmetic for Gödel numbering and more arithmetic for Gödel numbering references). So a given integer can correspond to at most one formula: Given a Gödel number, we can find its unique prime factorization; then if there are seven 2s in the factorization, the first symbol is \(\sim \); if there are seven 3s, the second symbol is \(\sim \); if there are eleven 5s, the third symbol is \(8_0 \); and so forth. Notice that numbers for individual symbols are odd, where numbers for expressions always have a multiplier of two and so are even (where the number for an atomic comes out odd when it is thought of as a symbol, but even when it is thought of as a formula).

The point is not that this is a practical, or a fun, procedure. Rather, the point is that we have natural numbers associated with each expression of the language. Given this, we can take the set of all formulas, and order its members according to their Gödel numbers—so that there is an enumeration \(Q_1, Q_2 \ldots \) of all formulas. And this is what was to be shown.

E10.6. Find Gödel numbers for the following sentences (for the last, you need not do the calculation).

\[
8_7 \quad \sim 8_0 \quad 8_0 \to \sim(8_1 \to \sim 8_0)
\]

E10.7. Determine the expressions that have the following Gödel numbers.

\[
49 \quad 1944 \quad 2^7 \times 3^3 \times 5^{11} \times 7^9 \times 11^7 \times 13^{13} \times 17^5
\]
CHAPTER 10. MAIN RESULTS

Some Arithmetic Relevant to Gödel Numbering

Say an integer i has a “representation as a product of primes” if there are some primes $p_a, p_b \ldots p_j$ such that $p_a \times p_b \times \ldots \times p_j = i$. We understand a single prime p to be its own representation.

G1. Every integer > 1 has at least one representation as a product of primes.

\textit{Basis:} 2 is prime and so is its own representation; so the first integer > 1 has a representation as a product of primes.

\textit{Assp:} For any $i, 1 < i < k, i$ has a representation as a product of primes.

\textit{Show:} k has a representation as a product of primes.

If k is prime, the result is immediate; so suppose there are some $i, j < k$ such that $k = i \times j$; by assumption i has a representation as a product of primes $p_a \times \ldots \times p_b$ and j has a representation as a product of primes $q_a \times \ldots \times q_b$; so $k = i \times j = p_a \times \ldots \times p_b \times q_a \times \ldots \times q_b$ has a representation as a product of primes.

\textit{Indct:} Any $i > 1$ has a representation as a product of primes.

Corollary: any integer > 1 is divided by at least one prime.

G2. There are infinitely many prime numbers.

Suppose the number of primes is finite; then there is some list $p_1, p_2 \ldots p_n$ of all the primes; consider $q = p_1 \times p_2 \times \ldots \times p_n + 1$; no p_i in the list $p_1 \ldots p_n$ divides q evenly, since each leaves remainder 1; but by the corollary to (G1), q is divided by some prime; so some prime is not on the list; reject the assumption: there are infinitely many primes.

Note: Sometimes q, calculated this way, is itself prime: when the list is \{2\}, $q = 2 + 1 = 3$, and 3 is prime. Similarly, $2 \times 3 + 1 = 7, 2 \times 3 \times 5 + 1 = 31, 2 \times 3 \times 5 \times 7 + 1 = 211, \text{and } 2 \times 3 \times 5 \times 7 \times 11 + 1 = 2311, \text{where } 7, 31, 211, \text{and } 2311 \text{are all prime. But } 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509. \text{So we are not always finding a prime not on the list, but rather only showing that there is a prime not on it.}

G3. For any $i > 1$, if i is the product of the primes $p_1, p_2 \ldots p_a$, then no distinct collection of primes $q_1, q_2 \ldots q_b$ is such that i is the product of them. \textit{Fundamental Theorem of Arithmetic}.

For a proof, see the more arithmetic for Gödel numbering reference in the corresponding part of the next section.
E10.8. Which would come first in the official enumeration of formulas, $S_1 \rightarrow \sim S_2$ or $S_2 \rightarrow \sim S_2$? Explain. Hint: you should be able to do this without actually calculating the Gödel numbers.

10.2.3 The Big Set

Recall that a set Δ is consistent iff there is no \mathcal{A} such that Δ proves both \mathcal{A} and $\sim \mathcal{A}$. Now say a set Δ is maximal iff for any \mathcal{A} the set proves one or the other.

Max A set Δ of formulas is maximal iff for any sentence \mathcal{A}, $\Delta \vdash \mathcal{A}$ or $\Delta \vdash \sim \mathcal{A}$.

Again, this is a syntactical notion. If a set is maximal, then it proves \mathcal{A} or $\sim \mathcal{A}$ for any sentence \mathcal{A}; if it is consistent, then it does not prove both. We set out to construct a big set Σ'' from Σ', and show that Σ'' is both maximal and consistent.

CnsΣ'' Construct Σ'' from Σ' as follows: By T10.7, there is an enumeration, Q_1, Q_2, \ldots of all the formulas in $L_\mathcal{A}$. Consider this enumeration, and let Ω_0 (Omega0) be the same as Σ'. Then for any $i > 0$, let

$$\Omega_i = \Omega_{i-1} \quad \text{if} \quad \Omega_{i-1} \vdash \sim Q_i$$

else,

$$\Omega_i = \Omega_{i-1} \cup \{Q_i\} \quad \text{if} \quad \Omega_{i-1} \not\vdash \sim Q_i$$

then,

$$\Sigma'' = \bigcup_{i \geq 0} \Omega_i$$

—that is, Σ'' is the union of all the Ω_is.

Beginning with set $\Sigma' = \Omega_0$, we consider the formulas in the enumeration Q_1, Q_2, \ldots one by one, adding a formula to the set just in case its negation is not already derivable. Σ'' contains all the members of Σ' together with all the formulas added this way. Observe that $\Sigma' \subseteq \Sigma''$. One might think of the Ω_is as constituting a big “sack” of formulas, and the Q_is as coming along on a conveyor belt: for a given Q_i, if there is no way to derive its negation from formulas already in the sack, we throw the Q_i in; otherwise, we let it go on by. Of course, this is not a procedure we could complete in finite time. Rather, we give a logical condition which specifies, for any Q_i in the language, whether it is to be included in Σ'' or not. The important point is that some Σ'' meeting these conditions exists.

As an example, suppose $\Sigma' = \{\sim A \rightarrow B\}$ and consider an enumeration which begins $A, \sim A, B, \sim B, \ldots$. Then,
\(\Omega_0 = \Sigma';\) so \(\Omega_0 = \{\neg A \rightarrow B\}\).

\(Q_1 = A,\) and \(\Omega_0 \not\vdash \neg A;\) so \(\Omega_1 = \{\neg A \rightarrow B\} \cup \{A\} = \{\neg A \rightarrow B, A\}\).

\((F)\) \(Q_2 = \neg A,\) and \(\Omega_1 \vdash \neg A;\) so \(\Omega_2 = \{\neg A \rightarrow B, A\}\).

\(Q_3 = B,\) and \(\Omega_2 \not\vdash B;\) so \(\Omega_3 = \{\neg A \rightarrow B, A\} \cup \{B\} = \{\neg A \rightarrow B, A, B\}\).

\(Q_4 = \neg B,\) and \(\Omega_3 \vdash \neg B;\) so \(\Omega_4 = \{\neg A \rightarrow B, A, B\}\).

So we include \(Q_i\) each time its negation is not proved. Ultimately, we will use this set to construct a model. For now, though, the point is simply to understand the condition under which a formula is included or excluded from the set and, with this, to think about its nature.

We now show that if \(\Sigma'\) is consistent, then \(\Sigma''\) is maximal and consistent. Perhaps the first is obvious: We guarantee that \(\Sigma''\) is maximal by including \(Q_i\) as a member whenever \(\neg Q_i\) is not already a consequence. The other is not much more difficult.

T10.8. If \(\Sigma'\) is consistent, then \(\Sigma''\) is maximal and consistent.

The proof comes to the demonstration of three results. Given the assumption that \(\Sigma'\) is consistent, we show, (a) \(\Sigma''\) is maximal; (b) each \(\Omega_i\) is consistent; and use this to show (c), \(\Sigma''\) is consistent. Suppose \(\Sigma'\) is consistent.

(a) \(\Sigma''\) is maximal. Suppose otherwise. Then there is some \(Q_i\) such that both \(\Sigma'' \not\vdash Q_i\) and \(\Sigma'' \not\vdash \neg Q_i\). For this \(i\), by construction, each member of \(\Omega_{i-1}\) is in \(\Sigma''\); so if \(\Omega_{i-1} \vdash \neg Q_i\) then \(\Sigma'' \vdash \neg Q_i\); but \(\Sigma'' \not\vdash \neg Q_i\); so \(\Omega_{i-1} \not\vdash Q_i\); so by construction, \(\Omega_i = \Omega_{i-1} \cup \{Q_i\}\); and by construction again, \(Q_i \in \Sigma''\); so \(\Sigma'' \vdash Q_i\). This is impossible; reject the assumption: \(\Sigma''\) is maximal.

(b) Each \(\Omega_i\) is consistent. By induction on the series of \(\Omega_i\)’s.

\(Basis:\) \(\Omega_0 = \Sigma'\) and \(\Sigma'\) is consistent; so \(\Omega_0\) is consistent.

\(Assp:\) For any \(i, 0 \leq i < k,\) \(\Omega_i\) is consistent.

\(Show:\) \(\Omega_k\) is consistent.

\(\Omega_k\) is either \(\Omega_{k-1}\) or \(\Omega_{k-1} \cup \{Q_k\}\). Suppose the former; by assumption, \(\Omega_{k-1}\) is consistent; so \(\Omega_k\) is consistent. Suppose the latter; then by construction, \(\Omega_{k-1} \not\vdash \neg Q_k\); so by T10.6, \(\Omega_{k-1} \cup \{Q_k\}\) is consistent; so \(\Omega_k\) is consistent. So, either way, \(\Omega_k\) is consistent.

\(Indct:\) For any \(i,\) \(\Omega_i\) is consistent.

(c) \(\Sigma''\) is consistent. Suppose \(\Sigma''\) is not consistent; then there is some \(A\) such that \(\Sigma'' \vdash A\) and \(\Sigma'' \not\vdash \neg A\). Consider derivations \(D1\) and \(D2\) of these results,
and the premises \(Q_i \ldots Q_j \) of these derivations. Where \(Q_j \) is the last of these premises in the enumeration of formulas, by the construction of \(\Sigma'' \), each of \(Q_i \ldots Q_j \) must be a member of \(\Omega_j \); so \(D1 \) and \(D2 \) are derivations from \(\Omega_j \); so \(\Omega_j \) is inconsistent. But by the previous result, \(\Omega_j \) is consistent. This is impossible; reject the assumption: \(\Sigma'' \) is consistent.

Observe that there is something to show at (c). The concern is that members of a sequence might individually be consistent, but the union of them all not. Consider the following example,

\[
P_0 = \{ a \text{ has finitely many members} \}
\]

\[
P_1 = \{ a \text{ has finitely many members, } a \text{ has at least 1 member} \}
\]

\[
P_2 = \{ a \text{ has finitely many members, } a \text{ has at least 1 member, } a \text{ has at least 2 members} \}
\]

and so forth. Intuitively, each \(P_n \) is consistent with the proposition that \(a \) has exactly \(n \) members. But the union of them all is inconsistent—for any finite \(n \), the proposition that \(a \) has \(n \) members is inconsistent with \(P_{n+1} \). We avoid this sort of result insofar as inconsistency must emerge at some finite stage: Because derivations of \(A \) and \(\sim A \) have only finitely many premises, all the premises in a derivation of a contradiction must show up in some \(\Omega_j \); so if \(\Sigma'' \) is inconsistent, then some \(\Omega_j \) is inconsistent. But no \(\Omega_j \) is inconsistent. So \(\Sigma'' \) is consistent. So we have what we set out to show. \(\Sigma' \subseteq \Sigma'' \), and if \(\Sigma' \) is consistent, then \(\Sigma'' \) is both maximal and consistent.

E10.9. (i) Suppose \(\Sigma' = \{ A \rightarrow \sim B \} \) and the enumeration of formulas begins \(A \), \(\sim A \), \(B \), \(\sim B \), … . What are \(\Omega_0 \), \(\Omega_1 \), \(\Omega_2 \), \(\Omega_3 \), and \(\Omega_4 \)? (ii) What are they when the enumeration begins \(B \), \(\sim B \), \(A \), \(\sim A \)… ? In each case, produce a (sentential) model to show that the resultant \(\Omega_4 \) is consistent.

10.2.4 The Model

We now construct a model \(M' \) for \(\Sigma' \). The key is that the maximal and consistent set contains enough information that we can extract from it a specification for a model of the whole. In this sentential case, the specification is particularly simple.

CnsM’ For any atomic \(S \), let \(M'[S] = T \) iff \(\Sigma'' \vdash S \).

Notice that there clearly exists some such interpretation \(M' \): We assign \(T \) to every sentence letter that can be derived from \(\Sigma'' \), and \(F \) to the others. It will not be the case that we are in a position to do all the derivations, and so to know what are all the assignments to the atomics. Still, it must be that any atomic either is or is not
a consequence of Σ'', and so that there exists a corresponding interpretation M' on which those sentence letters either are or are not assigned T.

We now want to show that if Σ' is consistent, then M' is a model for Σ'—that if Σ' is consistent then $M'[\Sigma'] = T$. As we shall see, this results immediately from the following theorem.

T10.9. If Σ' is consistent, then for any sentence P of \mathcal{L}_g, $M'[P] = T$ iff $\Sigma'' \vdash P$.

Suppose Σ' is consistent. Then by T10.8, Σ'' is maximal and consistent. Now by induction on the number of operators in P.

Basis: If P has no operators, then it is an atomic of the sort \mathcal{S}. But by the construction of M', $M'[\mathcal{S}] = T$ iff $\Sigma'' \vdash \mathcal{S}$; so $M'[P] = T$ iff $\Sigma'' \vdash P$.

Assp: For any i, $0 \leq i < k$, if P has i operator symbols, then $M'[P] = T$ iff $\Sigma'' \vdash P$.

Show: If P has k operator symbols, then $M'[P] = T$ iff $\Sigma'' \vdash P$.

If P has k operator symbols, then it is of the form $\neg A$ or $A \rightarrow B$ where A and B have $< k$ operator symbols.

(\rightarrow) Suppose P is $\neg A$. (i) Suppose $M'[P] = T$; then $M'[-A] = T$; so by ST(\neg), $M'[A] \neq T$; so by assumption, $\Sigma'' \not\vdash A$; so by maximality, $\Sigma'' \vdash \neg A$; which is to say, $\Sigma'' \vdash P$. (ii) Suppose $\Sigma'' \vdash P$; then $\Sigma'' \vdash \neg A$; so by consistency, $\Sigma'' \not\vdash \neg A$; so by assumption, $M'[A] \neq T$; so by ST(\neg), $M'[\neg A] = T$; which is to say, $M'[P] = T$. So $M'[P] = T$ iff $\Sigma'' \vdash P$.

(\leftarrow) Suppose P is $A \rightarrow B$. (i) Suppose $M'[P] = T$; then $M'[A \rightarrow B] = T$; so by ST(\rightarrow), $M'[A] \neq T$ or $M'[B] = T$; so by assumption, $\Sigma'' \not\vdash A$ or $\Sigma'' \vdash B$; from the first of these, by maximality, $\Sigma'' \vdash \neg A$; in either case by VL, $\Sigma'' \vdash \neg A \lor B$; so by Imp, $\Sigma'' \vdash A \rightarrow B$ where this is to say, $\Sigma'' \vdash P$. (ii) Suppose $\Sigma'' \vdash P$ but $M'[P] \neq T$; by [homework], this is impossible; so if $\Sigma'' \vdash P$, then $M'[P] = T$. So $M'[P] = T$ iff $\Sigma'' \vdash P$.

If P has k operator symbols, then $M'[P] = T$ iff $\Sigma'' \vdash P$.

Indct: For any P, $M'[P] = T$ iff $\Sigma'' \vdash P$.

The key to this is that Σ'' is both maximal and consistent. Thus, in example (F), $\Omega_0 = \{\neg A \rightarrow B\}$; so $\Omega_0 \not\vdash A$ and $\Omega_0 \not\vdash B$; if we were simply to follow our construction procedure as applied to this set, the result would have $M'[A] \neq T$ and $M'[B] \neq T$; but then $M'[\neg A \rightarrow B] \neq T$ and there is no model for Ω_0. But Ω_4 has A and B as members; so $\Omega_4 \vdash A$ and $\Omega_4 \vdash B$. So by the construction procedure, $M'[A] = T$ and $M'[B] = T$; so $M'[\neg A \rightarrow B] = T$. Thus it is the construction with
maximality and consistency of \(\Sigma'' \) that puts us in a position to draw the parallel
between the consequences of \(\Sigma'' \) and what is true on \(M' \). With this, it will be a short
step to see that we have a model for \(\Sigma' \) and so (*) that we have been after.

*E10.10. Complete (ii) for the conditional case to complete the proof of T10.9s. You
should set up the entire induction, but may refer to the text for parts completed
there, as the text refers to homework.

E10.11. (i) Where \(\Sigma' = \{ A \rightarrow \neg B \} \), and the enumeration of formulas is as in the first
part of E10.9, what assignments does \(M_0 \) make to \(A \) and \(B \)? (ii) What assignments
does it make on the second enumeration? Use a truth table to show, for each case,
that the assignments result in a model for \(\Sigma' \). Explain.

10.2.5 Final Result

The proof of sentential \(\check{\text{c}} \)ompleteness is now a simple matter of pulling together what
we have done. First, it is a simple matter to show,

T10.10s. If \(\Sigma' \) is consistent, then \(M'[\Sigma'] = T. \) \((*)\)

Suppose \(\Sigma' \) is consistent but \(M'[\Sigma''] \neq T \). From the latter, there is some formula
\(\mathcal{P} \in \Sigma' \) such that \(M'[\mathcal{P}] \neq T \). Since \(\mathcal{P} \in \Sigma' \), by construction, \(\mathcal{P} \in \Sigma'' \); so
\(\Sigma'' \vdash \mathcal{P} \); so, since \(\Sigma' \) is consistent, by T10.9s, \(M'[\mathcal{P}] = T \). This is impossible;
reject the assumption: if \(\Sigma' \) is consistent, then \(M'[\Sigma'] = T \).

That is it! Going back to the beginning of our discussion of sentential \(\check{\text{c}} \)ompleteness,
all we needed was \((*)\), and now we have it. So the final argument is as sketched
before:

T10.11s. If \(\Gamma \models \mathcal{P} \), then \(\Gamma \vdash \mathcal{P} \). \textit{Sentential \(\check{\text{c}} \)ompleteness.}

Suppose \(\Gamma \models \mathcal{P} \) but \(\Gamma \not\vdash \mathcal{P} \). Say, for the moment, that \(\Gamma \vdash \neg \neg \mathcal{P} \); by T3.10,
\(\vdash \neg \neg \mathcal{P} \rightarrow \mathcal{P} \); so by MP, \(\Gamma \vdash \mathcal{P} \); but this is impossible; so \(\Gamma \not\vdash \neg \neg \mathcal{P} \). Given
this, by T10.6s, \(\Gamma \cup \{ \neg \mathcal{P} \} \) is consistent; so by T10.10s, there is a model \(M' \) such
that \(M'[\Gamma \cup \{ \neg \mathcal{P} \}] = T \); so \(M'[\neg \mathcal{P}] = T \); so by \textit{ST}(\neg), \(M'[\mathcal{P}] \neq T \); so \(M'[\Gamma] = T \)
but \(M'[\mathcal{P}] \neq T \); so by \textit{SV}, \(\Gamma \not\models \mathcal{P} \). This is impossible; reject the assumption: if
\(\Gamma \models \mathcal{P} \), then \(\Gamma \vdash \mathcal{P} \).

Try again to get the complete picture in your mind: The key is that consistent sets
always have models. If there is no derivation of \(\mathcal{P} \) from \(\Gamma \), then \(\Gamma \cup \{ \neg \mathcal{P} \} \) is
consistent; and if \(\Gamma \cup \{\neg \mathcal{P} \} \) is consistent, then it has a model—so that \(\Gamma \not\vdash_{\mathcal{F}} \mathcal{P} \). Thus, put the other way around, if \(\Gamma \vdash_{\mathcal{F}} \mathcal{P} \), then there is a derivation of \(\mathcal{P} \) from \(\Gamma \). We get the key point, that consistent sets have models, by finding a relation between consistent, and maximal consistent sets. If a set is both maximal and consistent, then it contains enough information about its atomics that a model for its atomics is a model for the whole.

It is obvious that the argument is not constructive—we do not see how to show that \(\Gamma \vdash \mathcal{P} \) whenever \(\Gamma \mid\models \mathcal{P} \). But it is interesting to see why. The argument turns on the existence of our big sets under certain conditions, and so on the existence of models. We show that the sets must exist and have certain properties, though we are not in a position to find all their members. This puts us in a position to know the existence of derivations, though we do not say what they are.\(^2\)

E10.12. Suppose our primitive operators are \(\neg \) and \(\land \) and the derivation system is \(A^* \) from E3.4 on page 82. Present a complete demonstration of completeness for this derivation system—with all the definitions and theorems. You may simply appeal to the text for results that require no change. You have DT from E9.8.

10.3 Quantificational Completeness: Basic Version

As promised, the demonstration of quantificational completeness is parallel to what we have seen. Return to a quantificational language and to our regular quantificational semantic and derivation notions. The goal is to show that if \(\Gamma \vdash \mathcal{P} \), then \(\Gamma \mid\models \mathcal{P} \). Certain complications are avoided if we suppose that the language \(\mathcal{L} \) includes infinitely many constants not in \(\Gamma \), and does not include the ‘=’ symbol for equality. The constants not already in \(\Gamma \) will be required for the construction of our big sets. And without = in the language, the model specification is simplified. We will work through the basic argument in this section and, dropping constraints on the language, return to the general case in the next. If you are confused at any stage, it may help to refer back to the parallel section for the sentential case.

Before launching into the main argument, it will be helpful to have a preliminary theorem. Where \(D = \langle \mathcal{B}_1 \ldots \mathcal{B}_n \rangle \) is an AD derivation, and \(\Sigma' = \{\mathcal{C}_1 \ldots \mathcal{C}_n\} \) is a set of formulas, for some constant \(a \) and variable \(x \), say \(D^a_x = \langle \mathcal{B}_1^a_x \ldots \mathcal{B}_n^a_x \rangle \) and \(\Sigma'^a_x = \{\mathcal{C}_1^a_x \ldots \mathcal{C}_n^a_x\} \). By induction on the line numbers in \(D \), we show,\(^2\)
T10.12. If D is a derivation from Σ', and x is a variable that does not appear in D, then for any constant a, D^a_x is a derivation from Σ'^a_x.

Basis: B_1 is either a member of Σ' or an axiom.

(prem) If B_1 is a member of Σ', then $B_1^a_x$ is a member of Σ'^a_x, so $\langle B_1^a_x \rangle$ is a derivation from Σ'^a_x.

(A1) If B_1 is an instance of A1, then it is of the form, $P \rightarrow (Q \rightarrow P)$; so $B_1^a_x$ is $P^a_x \rightarrow (Q^a_x \rightarrow P^a_x)$; but this is an instance of A1; so if B_1 is an instance of A1, then $B_1^a_x$ is an instance of A1, and $\langle B_1^a_x \rangle$ is a derivation from Σ'^a_x.

(A2) Homework.

(A3) Homework.

(A4) If B_1 is an instance of A4, then it is of the form, $\forall v P \rightarrow P^v_x$, for some variable v and term t that is free for v in P. So $B_1^a_x = [\forall v P \rightarrow P^v_x]^a_x = [\forall v P]^a_x \rightarrow [P^v]^a_x$. But since a is a constant, $[\forall v P]^a_x = \forall v [P^a_x]$. And since x does not appear in D, $x \neq v$; so by T8.9, $[P^v]^a_x = [P^a_x]^v_x$. So $B_1^a_x = \forall v [P^a_x] \rightarrow [P^a_x]^v_x$; and since x is new to D and t is free for v in P, t^a_x is free for v in P^a_x, so $\forall v [P^a_x] \rightarrow [P^a_x]^v_x$ is an instance of A4; so if B_1 is an instance of A4, then $B_1^a_x$ is an instance of A4, and $\langle B_1^a_x \rangle$ is a derivation from Σ'^a_x.

(A5) Homework.

(eq) If B_1 is an equality axiom, A6, A7 or A8, then it includes no constants; so $B_1 = B_1^a_x$; so $B_1^a_x$ is an equality axiom, and $\langle B_1^a_x \rangle$ is a derivation from Σ'^a_x.

Assp: For any i, $1 \leq i < k$, $\langle B_1^a_x \ldots B_i^a_x \rangle$ is a derivation from Σ'^a_x.

Show: $\langle B_1^a_x \ldots B_k^a_x \rangle$ is a derivation from Σ'^a_x.

B_k is a member of Σ', an axiom, or arises from previous lines by MP or Gen. If B_k is a member of Σ' or an axiom then, by reasoning as in the basis, $\langle B_1 \ldots B_k \rangle$ is a derivation from Σ'^a_x. So two cases remain.

MP Homework.

(Gen) If B_k arises by Gen, then there are some lines in D,

\[
\begin{align*}
&i \quad P \\
&\vdots \\
&k \quad \forall v P \quad i \text{ Gen}
\end{align*}
\]

where $i \leq k$ and $B_k = \forall v P$. By assumption P^a_x is a member of the derivation $\langle B_1^a_x \ldots B_{k-1}^a_x \rangle$ from Σ'^a_x, so $\forall v [P^a_x]$ follows in this new deriva-
tion by Gen; but since \(a \) is a constant, this is \([\forall x \mathcal{P}]^a_x\). So \((\mathcal{B}_1^a \ldots \mathcal{B}_k^a)\) is a derivation from \(\Sigma'_x^a\).

So \((\mathcal{B}_1^a \ldots \mathcal{B}_k^a)\) is a derivation from \(\Sigma'_x^a\).

\textbf{Indct:} For any \(n \), \((\mathcal{B}_1^a \ldots \mathcal{B}_n^a)\) is a derivation from \(\Sigma'_x^a\).

The reason this works is that none of the justifications change: switching \(x \) for \(a \) leaves each line justified for the same reasons as before. The only sticking point may be the case for A4. But we did the real work for this by induction in T8.9. And once we see what it says, that result should be intuitive. Given this, the rest is straightforward.

*E10.13. Finish the cases for A2, A3, A5 and MP to complete the proof of T10.12. You should set up the complete demonstration, but may refer to the text for cases completed there, as the text refers cases to homework.

E10.14. Where \(\Sigma' = \{ Ab \}\) and \(D \) is as follows,

1. \(\forall x \sim Ax \rightarrow \sim Ab \) \hspace{1cm} A4
2. \((\forall x \sim Ax \rightarrow \sim Ab) \rightarrow (\sim\sim Ab \rightarrow \sim\sim Ax) \) \hspace{1cm} T3.13
3. \(\sim\sim Ab \rightarrow \sim\forall x\sim Ax \) \hspace{1cm} 2,1 MP
4. \(Ab \rightarrow \sim\sim Ab \) \hspace{1cm} T3.11
5. \(Ab \rightarrow \sim\forall x\sim Ax \) \hspace{1cm} 4,3 T3.2
6. \(Ab \) \hspace{1cm} prem
7. \(\sim\forall x\sim Ax \) \hspace{1cm} 5,6 MP
8. \(\exists x Ax \) \hspace{1cm} 7 abv

apply the method of T10.12 to show that \(D^b_y \) is a derivation from \(\Sigma'_x^b \). Do any of the justifications change? Explain.

10.3.1 Basic Idea

As before, our main argument turns on the idea that every consistent set has a model. Thus we begin with a definition and a theorem.

Con A set \(\Delta \) of formulas is consistent iff there is no formula \(\mathcal{A} \) such that \(\Delta \vdash \mathcal{A} \) and \(\Delta \vdash \sim \mathcal{A} \).
So a set of formulas is consistent just in case there is no way to derive a contradiction from it. Of course, now we are working with full quantificational languages, and so with our full quantificational derivation systems.

For the following theorem, notice that Δ is a set of formulas, and \mathcal{P} a sentence (a distinction without a difference in the sentential case). As before,

T10.6. For any set of formulas Δ and sentence \mathcal{P}, if $\Delta \not\vdash \sim \mathcal{P}$, then $\Delta \cup \{\mathcal{P}\}$ is consistent.

For some sentence \mathcal{P}, suppose $\Delta \not\vdash \sim \mathcal{P}$ but $\Delta \cup \{\mathcal{P}\}$ is not consistent. From the latter, there is some formula \mathcal{A} such that $\Delta \cup \{\mathcal{P}\} \vdash \mathcal{A}$ and $\Delta \cup \{\mathcal{P}\} \vdash \sim \mathcal{A}$; since \mathcal{P} is a sentence, it has no free variables; so by DT, $\Delta \vdash \mathcal{P} \rightarrow \mathcal{A}$ and $\Delta \vdash \sim \mathcal{P} \rightarrow \sim \mathcal{A}$; by T3.10, $\Delta \vdash \sim \mathcal{P} \rightarrow \sim \mathcal{A}$, and by T3.2, $\Delta \vdash \sim \mathcal{P} \rightarrow \sim \mathcal{A}$; but by A3, $\vdash (\sim \mathcal{P} \rightarrow \sim \mathcal{A}) \rightarrow [(\sim \mathcal{P} \rightarrow \mathcal{A}) \rightarrow \sim \mathcal{A}]$; so by two instances of MP, $\Delta \vdash \sim \mathcal{P}$. This is impossible; reject the assumption: if $\Delta \not\vdash \sim \mathcal{P}$, then $\Delta \cup \{\mathcal{P}\}$ is consistent.

Insofar as \mathcal{P} is required to be a sentence, the restriction on applications of DT is sure to be met: since \mathcal{P} has no free variables, no application of Gen is to a variable free in \mathcal{P}. So T10.6 does not apply to arbitrary formulas.

To the extent that T10.6 plays a direct role in our basic argument for completeness, this point that it does not apply to arbitrary formulas might seem to present a problem about reaching our general result, that if $\Gamma \vdash \mathcal{P}$ then $\Gamma \vdash \mathcal{P}$, which is supposed to apply in the arbitrary case. But there is a way around the problem. For any formula \mathcal{P}, let its (universal) closure \mathcal{P}^c be \mathcal{P} prefixed by a universal quantifier for every variable free in \mathcal{P}. To make \mathcal{P}^c unique, for some enumeration of variables, $x_1, x_2 \ldots$ let the quantifiers be in order of ascending subscripts. So if \mathcal{P} has no free variables, $\mathcal{P}^c = \mathcal{P}$; if x_1 is free in \mathcal{P}, then $\mathcal{P}^c = \forall x_1 \mathcal{P}$; if x_1 and x_3 are free in \mathcal{P}, then $\mathcal{P}^c = \forall x_1 \forall x_3 \mathcal{P}$; and so forth. So for any formula \mathcal{P}, \mathcal{P}^c is a sentence. As it turns out, we will be able to argue about arbitrary formulas \mathcal{P} by using their closures \mathcal{P}^c as intermediaries.

Suppose that the members of $\Gamma \cup \{\sim \mathcal{P}^c\} = \Sigma'$ are formulas of \mathcal{L}'. Then it will be sufficient for us to show that any consistent set of this sort has a model.

\[\text{(⋆) For any consistent set } \Sigma' \text{ of formulas in } \mathcal{L}', \text{ there is an interpretation } M' \text{ such that } M'[\Sigma'] = T.\]

Again, this sets up the key connection between syntactic and semantic notions—between consistency on the one hand, and truth on the other—that we will need for completeness. Supposing (⋆) we have the following,
1. $\Gamma \cup \{\sim \mathcal{P}^c\}$ has a model $\implies \Gamma \not\vdash \mathcal{P}$
2. $\Gamma \cup \{\sim \mathcal{P}^c\}$ is consistent $\implies \Gamma \cup \{\sim \mathcal{P}^c\}$ has a model (*)&
3. $\Gamma \cup \{\sim \mathcal{P}^c\}$ is not consistent $\implies \Gamma \not\vdash \mathcal{P}$

(2) is just (*). Observe that (1) and (3) switch between \mathcal{P}^c and \mathcal{P}. (1) is by semantic reasoning: Suppose $\Gamma \cup \{\sim \mathcal{P}^c\}$ has a model; then there is some M such that $M[\Gamma \cup \{\sim \mathcal{P}^c\}] = T$; so $M[\Gamma] = T$ and $M[\sim \mathcal{P}^c] = T$; from the latter, by T8.8, $M[\mathcal{P}] \neq T$; so by repeated applications of T7.6, $M[\mathcal{P}] \neq T$; so by QV, $\Gamma \not\vdash \mathcal{P}$. (3) is by syntactic reasoning: Suppose $\Gamma \cup \{\sim \mathcal{P}^c\}$ is not consistent; then since \mathcal{P}^c is a sentence, by an application of T10.6, $\Gamma \vdash \sim \mathcal{P}^c$; but by T3.10, $\vdash \sim \mathcal{P}^c \rightarrow \mathcal{P}^c$; so by MP, $\Gamma \vdash \mathcal{P}^c$; and by repeated applications of A4 and MP, $\Gamma \vdash \mathcal{P}$. Thus reasoning for (1) and (3) is as before except that T7.6 (from left to right) and A4 provide the required bridge between \mathcal{P}^c and \mathcal{P}.

Now suppose $\Gamma \vdash \mathcal{P}$; then from (1), $\Gamma \cup \{\sim \mathcal{P}^c\}$ does not have a model; so by (2), $\Gamma \cup \{\sim \mathcal{P}^c\}$ is not consistent; so by (3), $\Gamma \vdash \mathcal{P}$. So if $\Gamma \vdash \mathcal{P}$, then $\Gamma \vdash \mathcal{P}$. Again, it remains to show (*), that every consistent set Σ' of formulas has a model. And, again, our strategy is to find a “big” set related to Σ' which can be used to specify a model for Σ'.

10.3.2 Gödel Numbering

As before, in constructing our big sets, we will want to line up expressions serially—one after another. The method merely expands our approach for the sentential case.

T10.7. There is an enumeration $Q_1, Q_2 \ldots$ of all the formulas, terms, and the like in \mathcal{L}'.

The proof is again by construction: We develop a method by which all the expressions of \mathcal{L}' can be lined up. Then the collection of all formulas, taken in that order, is an enumeration of all formulas; the collection of all terms, taken in that order, is an enumeration of all terms; and so forth.

Insofar as the collections of variable symbols, constant symbols, function symbols, sentence letters, and relation symbols in any quantificational language are countable, they are capable of being sorted into series, $x_0, x_1 \ldots$ and $a_0, a_1 \ldots$ and $h_0^n, h_1^n \ldots$ and $R_0^n, R_1^n \ldots$ for variables, constants, function symbols and relation symbols, respectively (where we think of sentence letters as 0-place relation symbols). Supposing that they are sorted into such series, begin by assigning to each symbol s in \mathcal{L}' an integer $g(s)$ called its Gödel Number.
CHAPTER 10. MAIN RESULTS

500

a. \(g[()] = 3 \)

b. \(g[\square] = 5 \)

c. \(g[\sim] = 7 \)

d. \(g[\rightarrow] = 9 \)

e. \(g[=] = 11 \)

f. \(g[\forall] = 13 \)

g. \(g[x_i] = 15 + 10i \)

h. \(g[a_i] = 17 + 10i \)

i. \(g[h^n_i] = 19 + 10(2^n \times 3^i) \)

j. \(g[R^n_i] = 21 + 10(2^n \times 3^i) \)

Officially, we do not yet have ‘=’ in the language, but it is easy enough to leave it out for now. So, for example, \(g[x_0] = 15 \), \(g[x_1] = 15 + 10 \times 1 = 25 \), and \(g[R^3_1] = 21 + 10(2^2 \times 3^1) = 141 \).

To see that each symbol gets a distinct Gödel number, first notice that numbers in different categories cannot overlap: Each of (a)–(f) is obviously distinct and \(\leq 13 \). But (g)–(j) are all greater than 13, and when divided by 10, the remainder is 5 for variables, 7 for constants, 9 for function symbols, and 1 for relation symbols; so variables, constants, function symbols, and relation symbols all get different numbers.

Second, different symbols get different numbers within the categories. This is obvious except in cases (i) and (j). For these we need to see that each \(n/i \) combination results in a different multiplier.

Suppose this is not so, that there are some combinations \(n, i \) and \(m, j \) such that \(2^n \times 3^i = 2^m \times 3^j \) but \(n \neq m \) or \(i \neq j \). If \(n = m \) then, dividing both sides by \(2^n \), we get \(3^i = 3^j \), so that \(i = j \). So suppose \(n \neq m \) and, without loss of generality, that \(n > m \). Dividing each side by \(2^m \) and \(3^j \), we get \(2^{n-m} = 3^{i-j} \); since \(n > m \), \(n - m \) is a positive integer; so \(2^{n-m} \) is \(> 1 \) and even. But \(3^{i-j} \) is either \(\leq 1 \) or odd. Reject the assumption: if \(2^n \times 3^i = 2^m \times 3^j \), then \(n = m \) and \(i = j \).

So each \(n/i \) combination gets a different multiplier, and we conclude that each symbol gets a different Gödel number. (This result is a special case of the fundamental theorem of arithmetic treated in the arithmetic for Gödel numbering and more arithmetic for Gödel numbering references.)

Now, as before, assign Gödel numbers to expressions as follows: Where \(s_0, s_1, \ldots, s_n \) are the symbols, in order from left to right, in some expression \(Q \),

\[
g[Q] = 2^{g[s_0]} \times 3^{g[s_1]} \times 5^{g[s_2]} \times \ldots \times \pi_n g[s_n]
\]

where \(2, 3, 5, \ldots, \pi_n \) are the first \(n \) prime numbers. So, for example, \(g[\sim R^3_1 x_0 x_1] = 2^7 \times 3^7 \times 5^{141} \times 7^{15} \times 11^{25} \)—a relatively large integer (one with over 130 digits)!

All the same, it is an integer, and different expressions get different Gödel numbers. Given a Gödel number, we can find the corresponding expression by finding its prime factorization; then if there are seven 2s in the factorization, the first symbol is \(\sim \); if there are seven 3s, the second symbol is \(\sim \); if there are one hundred forty one 5s, the
CHAPTER 10. MAIN RESULTS

More Arithmetic Relevant to Gödel Numbering

G3. For any \(i > 1 \), if \(i \) is the product of the primes \(p_1, p_2 \ldots p_a \), then no distinct collection of primes \(q_1, q_2 \ldots q_b \) is such that \(i \) is the product of them. *Fundamental Theorem of Arithmetic.*

Basis: The first integer \(> 1 = 2 \); but the only collection of primes such that their product is equal to 2 is the collection containing just 2 itself; so no distinct collection of primes is such that 2 is the product of them.

Assp: For any \(i, 1 \leq i < k \), if \(i \) is the product of primes \(p_1 \ldots p_a \), then no distinct collection of primes \(q_1 \ldots q_b \) is such that \(i \) is the product of them.

Show: \(k \) is such that if it is the product of the primes \(p_1 \ldots p_a \), then no distinct collection of primes \(q_1 \ldots q_b \) is such that \(k \) is the product of them.

Suppose there are distinct collections of primes \(p_1 \ldots p_a \) and \(q_1 \ldots q_b \) such that \(k = p_1 \times \ldots \times p_a = q_1 \times \ldots \times q_b \); divide out terms common to both lists of primes; then for some subclasses of the original lists, \(n = p_1 \times \ldots \times p_c = q_1 \times \ldots \times q_d \), where no member of \(p_1 \ldots p_c \) is a member of \(q_1 \ldots q_d \) and vice versa (of course this \(p_1 \) may be distinct from the one in the original list, and so forth). So \(p_1 \neq q_1 \); suppose, without loss of generality, that \(p_1 > q_1 \); and let \(m = q_1(n/q_1- n/p_1) = (p_1-q_1)(n/p_1) = n-(q_1/p_1)n = n-q_1 \times p_2 \times \ldots \times p_c \).

Some preliminary results: (i) \(m < n < k \); so \(m < k \). Further, \(n/q_1 \) and \(n/p_1 \) are integers, with the first greater than the second; so the difference is an integer \(> 0 \); any prime is \(> 1 \); so \(q_1 \) is \(> 1 \); so the product of \(q_1 \) and \((n/q_1 - n/p_1)\) is \(> 1 \); so \(m > 1 \). So the inductive assumption applies to \(m \). (ii) \(q_1 \) divides \(n \) and \(q_1 \) divides \(q_1 \times p_2 \times \ldots \times p_c \); so \([n-q_1 \times p_2 \times \ldots \times p_c]/q_1\) is an integer; so \(m/q_1 \) is an integer, and \(q_1 \) divides \(m \). (iii) \((p_1-q_1)/q_1 = p_1/q_1 - 1 \); since \(p_1 \) is prime, this is no integer; so \(q_1 \) does not divide \((p_1-q_1)\).

Either \(p_1 - q_1 = 1 \) or it has some prime factorization, and \(n/p_1 \) has a prime factorization, \(p_2 \times \ldots \times p_c \); since \(m = (p_1-q_1)(n/p_1) \), the product of these factorization(s) is a prime factorization of \(m \). Given the cancellation of common terms to get \(n, q_1 \) is not a member of \(p_2 \times \ldots \times p_c \); by (iii), \(q_1 \) is not a member of the factorization of \(p_1 - q_1 \); so \(q_1 \) is not a member of this factorization of \(m \). By (ii), \(q_1 \) divides \(m \), and however many times it goes into \(m \), by (G1), that number has a prime factorization; the product of \(q_1 \) and this factorization is a prime factorization of \(m \); so \(q_1 \) is a member of some prime factorization of \(m \). But by (i), the inductive assumption applies to \(m \); so \(m \) has only one prime factorization. Reject the assumption: there are no distinct collections of primes, \(p_1 \ldots p_a \) and \(q_1 \ldots q_b \) such that \(k = p_1 \times \ldots \times p_a = q_1 \times \ldots \times q_b \).

Indct: For any \(i > 1 \), if \(i \) is the product of the primes \(p_1, p_2 \ldots p_a \), then no distinct collection of primes \(q_1, q_2 \ldots q_b \) is such that \(i \) is the product of them.
third symbol is R^2_1; and so forth. Notice that numbers for individual symbols are odd, where numbers for expressions always have a multiplier of two and so are even.

So we can take the set of all formulas, the set of all terms, or whatever, and order their members according to their Gödel numbers—so that there is an enumeration Q_1, Q_2, \ldots of all formulas, terms, and so forth. And this is what was to be shown.

E10.15. Find Gödel numbers for each of the following. Treat the first as a simple symbol. (For the last, you need not do the calculation!)

$$R^2_3 \quad h^1_1 x_1 \quad \forall x_2 R^2_1 a_2 x_2$$

E10.16. Determine the objects that have the following Gödel numbers.

$$61 \quad 2^{13} \times 3^{15} \times 5^3 \times 7^{15} \times 11^{11} \times 13^{15} \times 17^5$$

10.3.3 The Big Set

This section, along with the next, constitutes the heart of our demonstration of completeness. Last time, to build our big set we added formulas to Σ' to form a Σ'' that was both maximal and consistent. A set of formulas is consistent just in case there is no formula A such that both A and $\sim A$ are consequences. To accommodate restrictions from T10.6, maximality is defined in terms of sentences.

Max A set Δ of formulas is maximal iff for any sentence A, $\Delta \vdash A$ or $\Delta \vdash \sim A$.

This time, however, we need an additional property for our big sets. If a maximal and consistent set has $\forall x P$ as a member, then it has P^x_a as a consequence for every constant a. (Be clear about why this is so.) But in a maximal and consistent set, the status of a universal $\forall x P$ is not always reflected at the level of its instances. Thus, for example, though a set has P^x_a as a consequence for every constant a, it may consistently include $\sim \forall x P$ as well—for it may be that a universal is falsified by some individual to which no constant is assigned. But when we come to showing by induction that there is a model for our big set, it will be important that the status of a universal is reflected at the level of its instances. We guarantee this by building the set to satisfy the following condition.

Segt A set Δ of formulas is a scapegoat set iff for any sentence $\sim \forall x P$, if $\Delta \vdash \sim \forall x P$, then there is some constant a such that $\Delta \vdash \sim P^x_a$.
CHAPTER 10. MAIN RESULTS

503

Equivalently, Δ is a scapegoat set just in case any sentence $\exists x \mathcal{P}$ is such that if $\Delta \models \exists x \mathcal{P}$, then there is some constant a such that $\Delta \models \mathcal{P}_a^x$. In a scapegoat set, we assert the existence of a particular individual (a scapegoat) corresponding to any existential claim. Notice that since $\exists x \mathcal{P}$ is a sentence, $\exists x \mathcal{P}^a$ is a sentence too.

So we set out to construct from Σ' a maximal consistent scapegoat set. As before, the idea is to line the formulas up, and consider them for inclusion one by one. In addition, this time, we consider an enumeration of constants $c_1, c_2 \ldots$ and for any included sentence of the form $\exists x \mathcal{P}$, we include $\exists x \mathcal{P}^a$ where c is a constant that does not so-far appear in the construction. Notice that if, as we have assumed, \mathcal{L}' includes infinitely many constants not in Γ, there are sure to be infinitely many constants not already in a Σ' built on Γ.

CnsΣ'' Construct Σ'' from Σ' as follows: By T10.7, there is an enumeration, Q_1, Q_2, \ldots of all the sentences in \mathcal{L}' and also an enumeration $c_1, c_2 \ldots$ of constants not in Σ'. Let $\Omega_0 = \Sigma'$. Then for any $i > 0$, let

$$
\Omega_i = \Omega_{i-1} \quad \text{if} \quad \Omega_{i-1} \models \neg Q_i \\
\text{else,} \\
\Omega_i^* = \Omega_{i-1} \cup \{Q_i\} \quad \text{if} \quad \Omega_{i-1} \not\models \neg Q_i \\
\text{and,} \\
\Omega_i = \Omega_i^* \quad \text{if} \quad Q_i \text{ is not of the form } \neg \forall x \mathcal{P} \\
\Omega_i = \Omega_i^* \cup \{\neg \mathcal{P}_{c}^x\} \quad \text{if} \quad Q_i \text{ is of the form } \neg \forall x \mathcal{P}; \ c \text{ the first constant not in } \Omega_i^* \\
\text{then,} \\
\Sigma'' = \bigcup_{i \geq 0} \Omega_i \quad \text{—that is, } \Sigma'' \text{ is the union of all the } \Omega_i \text{s }
$$

Beginning with set Σ' (= Ω_0), we consider the sentences in the enumeration Q_1, Q_2, \ldots one by one, adding a sentence just in case its negation is not already derivable. In addition, if Q_i is of the sort $\neg \forall x \mathcal{P}$, we add an instance of it, using a new constant. This time, Ω_i^* functions as an intermediate set. Observe that if c is not in Ω_i^*, then c is not in $\neg \forall x \mathcal{P}$. Σ'' contains all the members of Σ', together with all the formulas added this way.

It remains to show that if Σ' is consistent, then Σ'' is a maximal consistent scapegoat set.

T10.8. If Σ' is consistent, then Σ'' is a maximal consistent scapegoat set.

The proof comes to showing (a) Σ'' is maximal. (b) If Σ' is consistent then each Ω_i is consistent. From this, (c) if Σ' is consistent then Σ'' is consistent. And (d) if Σ' is consistent, then Σ'' is a scapegoat set. Suppose Σ' is consistent.
(a) Σ'' is maximal. Suppose Σ'' is not maximal. Then there is some sentence Q_i such that both $\Sigma'' \not\vdash Q_i$ and $\Sigma'' \not\vdash \neg Q_i$. For this i, by construction, each member of Ω_{i-1} is in Σ''; so if $\Omega_{i-1} \vdash \neg Q_i$ then $\Sigma'' \vdash \neg Q_i$; but $\Sigma'' \not\vdash Q_i$; so $\Omega_{i-1} \not\vdash Q_i$; so by construction, $\Omega_{i+1} = \Omega_{i-1} \cup \{Q_i\}$; and by construction again, $Q_i \in \Sigma''$; so $\Sigma'' \vdash Q_i$. This is impossible; reject the assumption: Σ'' is maximal.

(b) Each Ω_i is consistent. By induction on the series of Ω_i.

Basis: $\Omega_0 = \Sigma'$ and Σ' is consistent; so Ω_0 is consistent.

Assp: For any i, $0 \leq i < k$, Ω_i is consistent.

Show: Ω_k is consistent.

Ω_k is either (i) Ω_{k-1}, (ii) $\Omega_{k+} = \Omega_{k-1} \cup \{Q_k\}$, or (iii) $\Omega_{k*} = \Omega_{k-} \cup \{\neg P^x_c\}$.

(i) Suppose Ω_k is Ω_{k-1}. By assumption, Ω_{k-1} is consistent; so Ω_k is consistent.

(ii) Suppose Ω_k is $\Omega_{k*} = \Omega_{k-1} \cup \{Q_k\}$. Then by construction, $\Omega_{k-1} \not\vdash \neg Q_k$; so, since Q_k is a sentence, by T10.6, $\Omega_{k-1} \cup \{Q_k\}$ is consistent; so $\Omega_{k*} = \Omega_k$ is consistent.

(iii) Suppose Ω_k is $\Omega_{k*} \cup \{\neg P^x_c\}$ for c not in Ω_{k*} and so not in $\neg \forall x P$. In this case, as in (ii) above, Ω_{k*} is consistent; and by construction $\neg \forall x P \in \Omega_{k*}$; so $\Omega_{k*} \vdash \neg \forall x P$.

Suppose Ω_k is inconsistent; then there are formulas A and $\neg A$ such that $\Omega_k \vdash A$ and $\Omega_k \vdash \neg A$; so $\Omega_{k*} \cup \{\neg P^x_c\} \vdash A$ and $\Omega_{k*} \cup \{\neg P^x_c\} \vdash \neg A$.

But since $\neg P^x_c$ is a sentence, the restriction on DT is met, and both $\Omega_{k*} \vdash \neg P^x_c \rightarrow A$ and $\Omega_{k*} \vdash \neg P^x_c \rightarrow \neg A$; by A3, $(\neg P^x_c \rightarrow \neg A) \rightarrow [\neg P^x_c \rightarrow A) \rightarrow \neg P^x_c];$ so by two instances of MP, $\Omega_{k*} \vdash \neg P^x_c$. Consider some derivation of this result; by T10.12, we can switch c for some variable v that does not occur in Ω_{k*} or in the derivation, and the result is a derivation; so $\Omega_{k*} \vdash [\neg P^x_c]_v$; but since c does not occur in Ω_{k*}, $\Omega_{k*} \vdash v = \neg P^x_c$ and from T8.3, $[\neg P^x_c]_v = P^x_c; \Omega_{k*} \vdash P^x_c; \Omega_{k*} \vdash \neg P^x_c; \Omega_{k*} \vdash \forall v P^x_c; since v is new it is free for x in P and not free in $\forall x P$ and by T9.11, $\vdash \forall v P^x_c \rightarrow \forall x P; so by MP, \Omega_{k*} \vdash \forall x P$. But $\Omega_{k*} \vdash \neg \forall x P$. So Ω_{k*} is inconsistent. This is impossible; reject the assumption: Ω_k is consistent.

Ω_k is consistent

Indct: For any i, Ω_i is consistent.

(c) Σ'' is consistent. Suppose Σ'' is not consistent; then there is some A such that $\Sigma'' \vdash A$ and $\Sigma'' \vdash \neg A$. Consider derivations $D1$ and $D2$ of these results, and the
premises \(\varphi_i \ldots \varphi_j \) of these derivations. Where \(\varphi_j \) is the last of these premises in the enumeration of formulas, by the construction of \(\Sigma'' \), each of \(\varphi_i \ldots \varphi_j \) must be a member of \(\Omega_j \); so \(D1 \) and \(D2 \) are derivations from \(\Omega_j \); so \(\Omega_j \) is inconsistent. But by (b), \(\Omega_j \) is consistent. This is impossible; reject the assumption: \(\Sigma'' \) is consistent.

(d) \(\Sigma'' \) is a scapegoat set. Suppose \(\Sigma'' \models \varphi_i \), for \(\varphi_i \) of the form \(\forall x \varphi \). By (c), \(\Sigma'' \) is consistent; so \(\Sigma'' \not\models \neg \forall x \varphi \); which is to say, \(\Sigma'' \not\models \neg \varphi_i \); so, \(\Omega_{i-1} \not\models \neg \varphi_i \); so by construction, \(\Omega_i = \Omega_{i-1} \cup \{ \neg \forall x \varphi \} \) and \(\Omega_i = \Omega_{i*} \cup \{ \neg \varphi_i \} \); so by construction, \(\neg \varphi_i \in \Sigma'' \); so \(\Sigma'' \models \neg \varphi_i \). So if \(\Sigma'' \models \neg \forall x \varphi \), then \(\Sigma'' \models \neg \varphi_i \), and \(\Sigma'' \) is a scapegoat set.

In a pattern that should be familiar by now, we guarantee maximal scapegoat sets by including instances as required. The most difficult case is (iii) for consistency. Having shown that \(\Omega_{k+} \models \varphi \) for \(c \) not in \(\Omega_{k+} \) or in \(P \), we want to generalize to show that \(\Omega_{k+} \models \forall x \varphi \). But in our derivation systems generalization is on variables, not constants. To get the generalization we want, we first use T10.12 to replace \(c \) with an arbitrary variable \(v \) to obtain \(\forall v \varphi \) and so by Gen \(\forall v \forall \varphi \). From this, \(\forall x \varphi \) follows by exchange of bound variables.

E10.17. Let \(\Sigma' = \{ \forall x \neg Bx, C \} \) and consider enumerations of sentences and constants in \(\mathcal{L}' \) that begin, \(Ab, Ba, \neg \forall xCx \ldots \) and \(b, c \ldots \). What are \(\Omega_0, \Omega_{1*}, \Omega_1, \Omega_{2*}, \Omega_2, \Omega_{3*}, \Omega_3 \)? Produce a model to show that the resultant set \(\Omega_3 \) is consistent.

E10.18. Suppose some \(\Omega_{i-1} = \{ Ac, \forall x (Ax \rightarrow Bx) \} \). Show that \(\Omega_{i*} \) is consistent, but \(\Omega_i \) is not, if \(\varphi_j = \neg \forall x Bx \), and we add \(\neg \forall x Bx \) with \(\neg Bc \) to form \(\Omega_{i*} \) and \(\Omega_i \). Why cannot this happen in the construction of \(\Sigma''' \)?

10.3.4 The Model

We turn now to constructing the model \(M' \) for \(\Sigma' \). Again the key is that the maximal consistent scapegoat set contains enough information to extract a specification for a model of the whole. As it turns out, the construction is simplified by our assumption that ‘\(= \)’ does not appear in the language. A quantificational interpretation has a universe, with assignments to sentence letters, constants, function symbols, and relation symbols.

\(^3\)As remarked in the variable semantics reference some presentations allow generalization on constants (subject to appropriate constraints). In this case one might generalize directly from \(\forall v \forall \varphi \).
CnsM' Let the universe U be the set of natural numbers, \{0, 1 \ldots\}. Then, where a variable-free term consists just of function symbols and constants, consider an enumeration \(t_0, t_1, \ldots\) of all the variable-free terms in \(\mathcal{L}'\). If \(t_z\) is a constant, set \(M'[t_z] = z\). If \(t_z = h^n t_{a_1} \ldots t_{a_n}\) for some function symbol \(h^n\) and \(n\) variable-free terms \(t_{a_1} \ldots t_{a_n}\), then let \(\langle \langle a_1 \ldots a_n, z \rangle \rangle \in M'[h^n]\). For a sentence letter \(S\), let \(M'[S] = T\) iff \(\Sigma'' \vdash S\). And for a relation symbol \(R^n\), let \(\langle a_1 \ldots a_n \rangle \in M'[R^n]\) iff \(\Sigma'' \vdash R^n.t_a \ldots t_b\).

Thus, for example, where \(t_1\) and \(t_3\) from the enumeration of terms are constants and \(\Sigma'' \vdash \mathcal{R}t_1 t_3\), then \(M'[t_1] = 1, M'[t_3] = 3\) and \(\langle 1, 3 \rangle \in M'[\mathcal{R}]\). Given this, it should be clear why \(\mathcal{R}t_1 t_3\) comes out satisfied on \(M'\): Put generally, where \(t_a \ldots t_b\) are constants, we set \(M'[t_a] = a, \ldots, M'[t_b] = b\); so by TA(c), for any variable assignment \(d, M'_d[t_a] = a, \ldots, M'_d[t_b] = b\). So by SF(r), \(M'_d[R^n.t_a \ldots t_b] = S\) iff \(\langle a_1 \ldots a_n \rangle \in M'[R^n]\); by construction, iff \(\Sigma'' \vdash R^n.t_a \ldots t_b\). Just as in the sentential case, our idea is to make atomic sentences true on \(M'\) just in case they are proved by \(\Sigma''\).

Our aim has been to show that if \(\Sigma'\) is consistent, then \(\Sigma'\) has a model. We have constructed an interpretation \(M'\), and now show what sentences are true on it. As in the sentential case, the main weight is carried by a preliminary theorem. And, as in the sentential case, the key is that we can appeal to special features of \(\Sigma''\), this time that it is a maximal, consistent, scapegoat set. Notice that \(\mathcal{P}\) is a sentence.

T10.9. If \(\Sigma'\) is consistent, then for any sentence \(\mathcal{P}\) of \(\mathcal{L}'\), \(M'[\mathcal{P}] = T\) iff \(\Sigma'' \vdash \mathcal{P}\).

Suppose \(\Sigma'\) is consistent and \(\mathcal{P}\) is a sentence of \(\mathcal{L}'\). By T10.8, \(\Sigma''\) is a maximal consistent scapegoat set. We begin with a preliminary result, which connects arbitrary variable-free terms to our treatment of constants in the example above: for any variable-free term \(t_z\) and variable assignment \(d, M'_d[t_z] = z\).

Suppose \(t_z\) is a variable-free term and \(d\) is an arbitrary variable assignment. By induction on the number of function symbols in \(t_z, M'_d[t_z] = z\).

Basis: If \(t_z\) has no function symbols, then it is a constant. In this case, by construction, \(M'[t_z] = z\); so by TA(c), \(M'_d[t_z] = z\).

Assp: For any \(i, 0 \leq i < k\), if \(t_z\) has \(i\) function symbols, then \(M'_d[t_z] = z\).

4It is common to let \(U\) just be the set of variable-free terms in \(\mathcal{L}'\), and the interpretation of a term be itself. There is nothing the matter with this. However, working with the natural numbers emphasizes continuity with other models we have seen, and positions us for further results.
CHAPTER 10. MAIN RESULTS

507

Show: If \(t_z \) has \(k \) function symbols, then \(M'_d[t_z] = z \).

If \(t_z \) has \(k \) function symbols, then it is of the form \(h^n t_a \ldots t_b \) for function symbol \(h^n \) and variable-free terms \(t_a \ldots t_b \) each with \(< k \) function symbols. By TA(f), \(M'_d[t_z] = M'_d[h^n t_a \ldots t_b] = M'[h^n]\{M'_d[t_a] \ldots M'_d[t_b]\} \); but by assumption, \(M'_d[t_a] = a \), and \(\ldots \) and \(M'_d[t_b] = b \); so \(M'_d[t_z] = M'[h^n]\{a \ldots b\} \). But since \(t_z = h^n t_a \ldots t_b \) is a variable-free term, by construction, \(\langle a \ldots b, z \rangle \in M'[h^n] \); so we have \(M'_d[t_z] = M'[h^n]\{a \ldots b\} = z \).

Indct: For any \(t_z, M'_d[t_z] = z \).

Given this, we are ready to show, by induction on the number of operators in \(\mathcal{P} \), that \(M'[\mathcal{P}] = T \iff \Sigma'' \vdash \mathcal{P} \). Suppose \(\mathcal{P} \) is a sentence.

Basis: If \(\mathcal{P} \) is a sentence with no operators, then it is a sentence letter \(s \), or an atomic \(\mathcal{R}^n t_a \ldots t_b \) for relation symbol \(\mathcal{R}^n \) and variable-free terms \(t_a \ldots t_b \).

In the first case, by construction, \(M'[s] = T \iff \Sigma'' \vdash s \). In the second case, by T1, \(M'[\mathcal{R}^n t_a \ldots t_b] = T \iff \mathcal{R}^n \vdash s \); by SF(r), \(\langle M'_d[t_a] \ldots M'_d[t_b]\rangle \in M'[\mathcal{R}^n] \); since \(t_a \ldots t_b \) are variable-free terms, by the above result, \(\langle \mathcal{R}^n \rangle \vdash s \); by construction, \(\Sigma'' \vdash t_a \ldots t_b \). In either case, then, \(M'[\mathcal{P}] = T \iff \Sigma'' \vdash \mathcal{P} \).

Assp: For any \(i \), \(0 \leq i < k \) if a sentence \(\mathcal{P} \) has \(i \) operator symbols, then \(M'[\mathcal{P}] = T \iff \Sigma'' \vdash \mathcal{P} \).

Show: If a sentence \(\mathcal{P} \) has \(k \) operator symbols, then \(M'[\mathcal{P}] = T \iff \Sigma'' \vdash \mathcal{P} \).

If \(\mathcal{P} \) has \(k \) operator symbols, then it is of the form, \(\neg \mathcal{A}, \mathcal{A} \rightarrow \mathcal{B} \) or \(\forall x \mathcal{A} \), for variable \(x \) and \(\mathcal{A} \) and \(\mathcal{B} \) with \(< k \) operator symbols.

\((\neg)\) Suppose \(\mathcal{P} \) is \(\neg \mathcal{A} \). Homework. Hint: given T8.8, your reasoning may be very much as in the sentential case.

\((\rightarrow)\) Suppose \(\mathcal{P} \) is \(\mathcal{A} \rightarrow \mathcal{B} \). Homework.

\((\forall)\) Suppose \(\mathcal{P} \) is \(\forall x \mathcal{A} \). Then since \(\mathcal{P} \) is a sentence, \(x \) is the only variable that could be free in \(\mathcal{A} \).

(i) Suppose \(M'[\mathcal{P}] = T \) but \(\Sigma'' \not\vdash \mathcal{P} \); from the latter, \(\Sigma'' \not\vdash \forall x \mathcal{A} \); since \(\Sigma'' \) is maximal, \(\Sigma'' \vdash \forall x \mathcal{A} \); and since \(\Sigma'' \) is a scapegoat set, for some constant \(c \), \(\Sigma'' \vdash \forall c \mathcal{A}_c \); so by consistency, \(\Sigma'' \not\vdash \mathcal{A}_c \); but \(\mathcal{A}_c \) is a sentence; so by assumption, \(M'[\mathcal{A}_c] \neq T \); so by T1, for some \(d \), \(M'_d[\mathcal{A}_c] \neq S \); but, where \(c \) is some \(t_a \), by construction, \(M'[c] = a \); so by TA(c), \(M'_d[c] = a \); so, since \(c \) is free for \(x \) in \(\mathcal{A} \), by T10.2, \(M'_d[\forall x \mathcal{A}] \neq S \); so by SF(\(\forall \)), \(M'_d[\forall x \mathcal{A}] \neq S \); so by T1, \(M'[\forall x \mathcal{A}] \neq T \); and this is just to say,
10.3.5 Final Result

And now we are in a position to get the final result. With some care about the assumption: if \(M'[\mathcal{P}] = T \), then \(\Sigma'' \models \mathcal{P} \).

(ii) Suppose \(\Sigma'' \models \mathcal{P} \) but \(M'[\mathcal{P}] \neq T \); from the latter, \(M'[^{\forall x} \mathcal{A}] \neq T \); so by T11, there is some \(a \in U \) such that \(M'_d[^{\forall x} \mathcal{A}] \neq S \); so by SF(\(\forall \)), there is some \(a \in U \) such that \(M'_d[^{\forall x} \mathcal{A}] \neq S \); but for variable-free term \(t_a \), by our above result, \(M'_d[t_a] = a \), and since \(t_a \) is variable-free, it is free for \(x \) in \(\mathcal{A} \), so by T10.2, \(M'_d[\mathcal{A}^x_{t_a}] \neq S \); so by T11, \(M'[\mathcal{A}^x_{t_a}] \neq T \); but \(\mathcal{A}^x_{t_a} \) is a sentence; so by assumption, \(\Sigma'' \not\models \mathcal{A}^x_{t_a} \); so by the maximality of \(\Sigma'' \), \(\Sigma'' \models \sim \mathcal{A}^x_{t_a} \); but \(t_a \) is free for \(x \) in \(\mathcal{A} \), so by A4, \(\sim \mathcal{A}^x_{t_a} \); so by MT (or T3.13 with a couple instances of MP) \(\Sigma'' \models \sim \forall x \mathcal{A} \); so by the consistency of \(\Sigma'' \), \(\mathcal{A}^x_{t_a} \); which is to say, \(\Sigma'' \not\models \mathcal{P} \). This is impossible; reject the assumption: if \(\Sigma'' \models \mathcal{P} \), then \(M'[\mathcal{P}] = T \).

If \(\mathcal{P} \) has \(k \) operator symbols, then \(M'[\mathcal{P}] = T \) iff \(\Sigma'' \models \mathcal{P} \).

Indct: For any sentence \(\mathcal{P} \), \(M'[\mathcal{P}] = T \) iff \(\Sigma'' \models \mathcal{P} \).

So if \(\Sigma' \) is consistent, then for any sentence \(\mathcal{P} \) of \(\mathcal{L}' \), \(M'[\mathcal{P}] = T \) iff \(\Sigma'' \models \mathcal{P} \). We are now just one step away from (*) and it will be easy to see that \(M'[\Sigma'] = T \), and so to reach the final result.

E10.19. Complete the \(\sim \) and \(\rightarrow \) cases to complete the demonstration of T10.9. You should set up the complete demonstration, but may refer to the text for cases completed there, as the text refers cases to homework.

10.3.5 Final Result

And now we are in a position to get the final result. With some care about the distinction between formulas and sentences, this works just as before. First,

T10.10. If \(\Sigma' \) is consistent, then \(M'[\Sigma'] = T \). (*)

Suppose \(\Sigma' \) is consistent, but \(M'[\Sigma'] \neq T \). From the latter, there is some formula \(\mathcal{P} \in \Sigma' \) such that \(M'[\mathcal{P}] \neq T \). Since \(\mathcal{P} \in \Sigma' \), by construction, \(\mathcal{P} \in \Sigma'' \), so \(\Sigma'' \models \mathcal{P} \); so, where \(\mathcal{P}^c \) is the universal closure of \(\mathcal{P} \), by application of Gen as necessary, \(\Sigma'' \models \mathcal{P}^c \); so since \(\Sigma' \) is consistent, by T10.9, \(M'[\mathcal{P}^c] = T \); so by applications of T7.6 as necessary, \(M'[\mathcal{P}] = T \). This is impossible; reject the assumption: if \(\Sigma' \) is consistent, then \(M'[\Sigma'] = T \).

Notice that this result applies to arbitrary sets of formulas. This time, we bridge between \(\mathcal{P}^c \) and \(\mathcal{P} \) by T7.6 (from right to left) and Gen. But now we have the (*) that we have needed for completeness.
So that is it! All we needed for the proof of completeness was \((\ast)\). And we have it. So here is the final argument. Suppose the members of \(\Gamma\) and \(\mathcal{P}\) are formulas of \(\mathcal{L}'\).

T10.11. If \(\Gamma \models \mathcal{P}\), then \(\Gamma \vdash \mathcal{P}\). *Quantificational Completeness.*

Suppose \(\Gamma \models \mathcal{P}\) but \(\Gamma \not\vdash \mathcal{P}\). Say, for the moment that \(\Gamma \vdash \neg \neg \mathcal{P}^c\); by T3.10, \(\Gamma \vdash \neg \neg \mathcal{P}^c \rightarrow \mathcal{P}^c\); so by MP, \(\Gamma \vdash \mathcal{P}^c\); so by repeated applications of A4 and MP, \(\Gamma \vdash \mathcal{P}\); but this is impossible; so \(\Gamma \not\vdash \neg \neg \mathcal{P}^c\). Given this, since \(\neg \neg \mathcal{P}^c\) is a sentence, by T10.6, \(\Gamma \cup \{\neg \mathcal{P}^c\} = \Sigma'\) is consistent; so by T10.10, there is a model \(M'\) constructed as above such that \(M'[\Sigma'] = T\). So \(M'[\Gamma] = T\) and \(M'[\neg \neg \mathcal{P}^c] = T\); from the latter, by T8.8, \(M'[\mathcal{P}^c] \neq T\); so by repeated applications of T7.6, \(M'[\mathcal{P}] \neq T\); so by QV, \(\Gamma \not\vdash \mathcal{P}\). This is impossible; reject the assumption: if \(\Gamma \models \mathcal{P}\) then \(\Gamma \vdash \mathcal{P}\).

Again, you should try to get the complete picture in your mind: The key is that consistent sets always have models. If \(\Gamma \cup \{\neg \mathcal{P}\}\) is not consistent, then there is a derivation of \(\mathcal{P}\) from \(\Gamma\). So if there is no derivation of \(\mathcal{P}\) from \(\Gamma\), \(\Gamma \cup \{\neg \mathcal{P}\}\) is consistent and so must have a model—with the result that \(\Gamma \not\vdash \mathcal{P}\). We get the key point, that consistent sets have models, by finding a relation between consistent, and maximal consistent scapegoat sets. If a set is maximal and consistent and a scapegoat set, then it contains enough information to specify a model for the whole. The model for the big set then guarantees the existence of a model \(M\) for the original \(\Gamma\). All of this is very much parallel to the sentential case.

E10.20. Consider again \(A^*\) of E9.5. Provide a complete demonstration that \(A^*\) is complete—that if \(\Gamma \models \mathcal{P}\) then \(\Gamma \vdash A^* \mathcal{P}\). You may suppose the language has no symbol for equality, and there are infinitely many constants not in \(\Gamma\); and you may appeal to any results from the text whose demonstration remains unchanged, but should recreate parts whose demonstration is not the same.

Hints: Redefine consistency, maximality, and scapegoat set for the new context. Where the free variables of \(\mathcal{P}\) are \(x_a, x_b, \ldots, x_m, x_n\), let the (existential) closure of \(\mathcal{P}\) be \(\exists x_a \exists x_b \ldots \exists x_m \exists x_n \neg \mathcal{P}\). You have DT from E9.8 and may appeal to theorems from E3.4 as well as the preliminary result from E9.15. It will be helpful to establish as a preliminary to the theorem that \(\mathcal{P} \vdash A^* \exists x \mathcal{P}\); for this you will find it helpful to obtain \(\mathcal{P} \vdash A^* \mathcal{P} \rightarrow (Z \land \neg Z)\) as an intermediate result. Also you will reach a point where it will be helpful to have \(\neg \exists x \mathcal{P} \vdash A^* \neg \mathcal{P}\) and, as a corollary to T7.6, that for any \(l\) and \(\mathcal{P}\), \(l[\neg \mathcal{P}] = T\) iff \(l[\exists x \mathcal{P}] = T\).
10.4 Quantificational Completeness: Full Version

So far, we have shown that if $\Gamma \models \mathcal{P}$, then $\Gamma \vdash \mathcal{P}$ where the members of Γ and \mathcal{P} are formulas of an \mathcal{L}' which has infinitely many constants not in Γ and does not include `='. Now allow that the members of Γ and \mathcal{P} are in an arbitrary quantificational language \mathcal{L}. Then we shall require not (*) according to which a consistent set in \mathcal{L} has a model \mathcal{M}', but the more general,

(★★) For any consistent set of formulas Σ in \mathcal{L}, there is an interpretation \mathcal{M} such that $\mathcal{M}[\Sigma] = T$.

Given this, reasoning is exactly as before.

1. $\Gamma \cup \{\neg \mathcal{P}^c\}$ has a model $\implies \Gamma \not\vdash \mathcal{P}$
2. $\Gamma \cup \{\neg \mathcal{P}^c\}$ is consistent $\implies \Gamma \cup \{\neg \mathcal{P}^c\}$ has a model (★★)
3. $\Gamma \cup \{\neg \mathcal{P}^c\}$ is not consistent $\implies \Gamma \vdash \mathcal{P}$

Reasoning for (1) and (3) remains the same. (2) is (★★). Now suppose $\Gamma \models \mathcal{P}$; then from (1), $\Gamma \cup \{\neg \mathcal{P}^c\}$ does not have a model; so by (2), $\Gamma \cup \{\neg \mathcal{P}^c\}$ is not consistent; so by (3), $\Gamma \vdash \mathcal{P}$. So if $\Gamma \models \mathcal{P}$, then $\Gamma \vdash \mathcal{P}$. Supposing that (★★) has application to arbitrary sets of formulas from \mathcal{L}, the result has application to arbitrary premises and conclusion from \mathcal{L}. So we are left with two issues relative to our reasoning from before: \mathcal{L} might lack the infinitely many constants not in the premises, and \mathcal{L} might include equality.

10.4.1 Adding Constants

Suppose \mathcal{L} does not have infinitely many constants not in Γ. This can happen in different ways. Perhaps \mathcal{L} simply does not have infinitely many constants. Or perhaps the constants of \mathcal{L} are $a_0, a_1 \ldots$ and $\Gamma = \{Ra_0, Ra_1 \ldots\}$; then \mathcal{L} has infinitely many constants, but there are not any constants in \mathcal{L} that do not appear in Γ. And we need the extra constants for construction of the maximal consistent scapegoat set. To avoid this sort of worry, we simply add infinitely many constants to form a language \mathcal{L}' out of \mathcal{L}.

Cns\mathcal{L}' Where \mathcal{L} is a language whose constants are some of $a_0, a_1 \ldots$ let \mathcal{L}' be like \mathcal{L} but with the addition of new constants $c_0, c_1 \ldots$
By reasoning as in the countability reference on page 36, insofar as they can be lined up, \(a_0, c_0, a_1, c_1 \ldots\) the collection of constants remains countable, so that \(\mathcal{L}'\) remains a perfectly legitimate quantificational language. Clearly, every formula of \(\mathcal{L}\) remains a formula of \(\mathcal{L}'\). Thus, where \(\Sigma\) is a set of formulas in language \(\mathcal{L}\), let \(\Sigma'\) be like \(\Sigma\) except that its members are formulas of language \(\mathcal{L}'\).

Our reasoning for (*) has application to sets of the sort \(\Sigma'\). That is, where \(\mathcal{L}'\) has infinitely many constants not in \(\Sigma'\), we have been able to find a maximal consistent scapegoat set \(\Sigma''\), and from this a model \(M'\) for \(\Sigma'\). But given an arbitrary \(\Sigma\) of formulas in \(\mathcal{L}\), we need that it has a model \(M\). That is, we shall have to establish a bridge between \(\Sigma\) and \(\Sigma'\), and between \(M'\) and \(M\). Thus, to obtain (**), we show,

2a. \(\Sigma\) is consistent \(\implies\) \(\Sigma'\) is consistent
2b. \(\Sigma'\) is consistent \(\implies\) \(\Sigma'\) has a model \(M'\)
2c. \(\Sigma'\) has a model \(M'\) \(\implies\) \(\Sigma\) has a model \(M\)

(2b) is just (*) from before. And by a sort of hypothethical syllogism, together these yield (**). So we need (2a) and (2c).

For the first result, we need that if \(\Sigma\) is consistent, then \(\Sigma'\) is consistent. Of course, \(\Sigma\) and \(\Sigma'\) contain just the same formulas, only formulas of the one are in a language with extra constants. But there might be derivations in \(\mathcal{L}'\) from \(\Sigma'\) that are not derivations in \(\mathcal{L}\) from \(\Sigma\). So we need to show that these extra derivations do not result in contradiction. For this, the overall idea is simple: If we can derive a contradiction from \(\Sigma'\) in the enriched language then, by a modified version of that very derivation, we can derive a contradiction from \(\Sigma\) in the reduced language. So if there is no contradiction in the reduced language \(\mathcal{L}\), then there can be no contradiction in the enriched language \(\mathcal{L}'\). The argument is straightforward given the preliminary result T10.12. Let \(\Sigma\) be a set of formulas in \(\mathcal{L}\), and \(\Sigma'\) those same formulas in \(\mathcal{L}'\). We show,

T10.13. If \(\Sigma\) is consistent, then \(\Sigma'\) is consistent.

Suppose \(\Sigma\) is consistent. If \(\Sigma'\) is not consistent, then there is a formula \(A\) in \(\mathcal{L}'\) such that \(\Sigma' \vdash A\) and \(\Sigma' \vdash \sim A\); so by \(\land I\) (or T9.4 and MP), \(\Sigma' \vdash A \land \sim A\). So if \(\Sigma'\) is not consistent, there is a derivation of a contradiction from \(\Sigma'\). By induction on the number of new constants which appear in a derivation \(D = (B_1, B_2 \ldots)\), we show that no such \(D\) is a derivation of a contradiction from \(\Sigma'\).

Basis: Suppose \(D\) contains no new constants and \(D\) is a derivation of some contradiction \(A \land \sim A\) from \(\Sigma'\). Since \(D\) contains no new constants, every
member of D is also a formula of L, so $D = (\mathcal{B}_1, \mathcal{B}_2 \ldots)$ is a derivation of $\mathcal{A} \land \lnot \mathcal{A}$ from Σ; so by $\land E$ (or T3.20 and T3.21 with MP), $\Sigma \vdash \mathcal{A}$ and $\Sigma \vdash \lnot \mathcal{A}$; so Σ is not consistent. This is impossible; reject the assumption: D is not a derivation of a contradiction from Σ'.

Assp: For any i, $0 \leq i < k$, if D contains i new constants, then it is not a derivation of a contradiction from Σ'.

Show: If D contains k new constants, then it is not a derivation of a contradiction from Σ'.

Suppose D contains k new constants and is a derivation of a contradiction $\mathcal{A} \land \lnot \mathcal{A}$ from Σ'. Where c is one of the new constants in D and x is a variable not in D, by T10.12, D^c_x is a derivation of $[\mathcal{A} \land \lnot \mathcal{A}]^c_x$ from Σ^c_x. But all the members of Σ' are in L; so c does not appear in any member of Σ'; so $\Sigma^c_x = \Sigma'$. And $[\mathcal{A} \land \lnot \mathcal{A}]^c_x = \mathcal{A}^c_x \land \lnot \mathcal{A}^c_x$. So D^c_x is a derivation of a contradiction from Σ'. But D^c_x has $k - 1$ new constants and so, by assumption, is not a derivation of a contradiction from Σ'. This is impossible; reject the assumption: D is not a derivation of a contradiction from Σ'.

Indct: No derivation D is a derivation of a contradiction from Σ'.

So if Σ is consistent, then Σ' is consistent. So if we have a consistent set of sentences in L, and convert to L' with additional constants, we can be sure that the converted set is consistent as well.

With the extra constants in hand, all our reasoning goes through as before to show that there is a model M' for Σ'. Officially, though, an interpretation for some sentences in L' is not a model for some sentences in L: a model for sentences in L has assignments for its constants, function symbols and relation symbols, where a model for L' has assignments for its constants, function symbols and relation symbols. A model M' for Σ', then, is not the same as a model M for Σ. But it is a short step to a solution.

CnsM Let M be like M' but without assignments to constants not in L.

M is an interpretation for language L. M and M' have exactly the same universe of discourse, and exactly the same interpretations for all the symbols that are in L. It turns out that the evaluation of any formula in L is therefore the same on M as on M'—that is, for any P in L, $M[P] = T$ iff $M'[P] = T$. Perhaps this is obvious. However, it is worthwhile to consider a proof. Thus we need the following matched
For any variable assignment \(\mathbf{d} \), and for any term \(t \) in \(\mathcal{L} \), \(\mathcal{M}_d[t] = \mathcal{M}'_d[t] \).

The argument is by induction on the number of function symbols in \(t \). Let \(\mathbf{d} \) be a variable assignment, and \(t \) a term in \(\mathcal{L} \).

Basis: If \(t \) has no function symbols, then \(\mathcal{M}_d[t] = \mathcal{M}'_d[t] \). Homework.

Assp: For any \(i \) with \(0 \leq i < k \), if \(t \) has \(i \) function symbols, then \(\mathcal{M}_d[t] = \mathcal{M}'_d[t] \).

Show: If \(t \) has \(k \) function symbols, then \(\mathcal{M}_d[t] = \mathcal{M}'_d[t] \).

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>(k = 0)</td>
</tr>
<tr>
<td>Assp</td>
<td>(0 < k)</td>
</tr>
</tbody>
</table>

Indct: For any \(t \) in \(\mathcal{L} \), \(\mathcal{M}_d[t] = \mathcal{M}'_d[t] \).

For any variable assignment \(\mathbf{d} \), and for any formula \(\mathcal{P} \) in \(\mathcal{L} \), \(\mathcal{M}_d[\mathcal{P}] = \mathbf{S} \) if \(\mathcal{M}'_d[\mathcal{P}] = \mathbf{S} \).

The argument is by induction on the number of operator symbols in \(\mathcal{P} \). Let \(\mathbf{d} \) be a variable assignment, and \(\mathcal{P} \) a formula in \(\mathcal{L} \).

Basis: If \(\mathcal{P} \) has no operator symbols, then it is a sentence letter \(\mathbf{s} \) or an atomic \(\mathcal{R}^n t_1 \ldots t_n \) for relation symbol \(\mathcal{R}^n \) and terms \(t_1 \ldots t_n \) in \(\mathcal{L} \). In the first case, \(\mathcal{M}_d[\mathcal{P}] = \mathbf{S} \) iff \(\mathcal{M}_d[\mathbf{s}] = \mathbf{S} \); by **SF**(s), iff \(\mathcal{M}[\mathbf{s}] = \mathbf{T} \); by construction iff \(\mathcal{M}'[\mathbf{s}] = \mathbf{T} \); by **SF**(s), iff \(\mathcal{M}'_d[\mathbf{s}] = \mathbf{S} \); iff \(\mathcal{M}'_d[\mathcal{P}] = \mathbf{S} \). For the second case, by construction, \(\mathcal{M}[\mathcal{R}^n] = \mathcal{M}'[\mathcal{R}^n] \); and by T10.14, \(\mathcal{M}_d[t_1] = \mathcal{M}'_d[t_1] \), and \(\ldots \) and \(\mathcal{M}_d[t_n] = \mathcal{M}'_d[t_n] \). So \(\mathcal{M}_d[\mathcal{P}] = \mathbf{S} \) iff \(\mathcal{M}_d[\mathcal{R}^n t_1 \ldots t_n] = \mathbf{S} \); by **SF**(r) iff \(\langle \mathcal{M}_d[t_1] \ldots \mathcal{M}_d[t_n] \rangle \in \mathcal{M}[\mathcal{R}^n] \); iff \(\langle \mathcal{M}'_d[t_1] \ldots \mathcal{M}'_d[t_n] \rangle \in \mathcal{M}'[\mathcal{R}^n] \); by **SF**(r) iff \(\mathcal{M}'_d[\mathcal{R}^n t_1 \ldots t_n] = \mathbf{S} \); iff \(\mathcal{M}'_d[\mathcal{P}] = \mathbf{S} \). In either case, then, \(\mathcal{M}_d[\mathcal{P}] = \mathbf{S} \) iff \(\mathcal{M}'_d[\mathcal{P}] = \mathbf{S} \).
CHAPTER 10. MAIN RESULTS

Assp. For any i, $0 \leq i < k$, and any variable assignment d, if P has i operator symbols, $M_d[P] = S$ iff $M'_d[P] = S$.

Show. For any variable assignment d for M, if P has k operator symbols, $M_d[P] = S$ iff $M'_d[P] = S$. **Homework.**

And now we are in a position to show that M is indeed a model for Σ. In particular, it is easy to show,

T10.16. If $M'[\Sigma'] = T$, then $M[\Sigma] = T$.

Suppose $M'[\Sigma'] = T$, but $M[\Sigma] \neq T$. From the latter, there is some formula $P \in \Sigma$ such that $M[P] \neq T$; so by T1, for some d, $M_d[P] \neq S$; so by T10.15, $M'_d[P] \neq S$; so by T1, $M'[P] \neq T$; and since $P \in \Sigma$, we have $P \in \Sigma'$; so $M'[\Sigma'] \neq T$. This is impossible; reject the assumption: if $M'[\Sigma'] = T$, then $M[\Sigma] = T$.

Finally, T10.13, T10.10, and T10.16 together yield,

T10.17a. If Σ is consistent, then Σ has a model M (L without equality).

Suppose Σ is consistent; then by T10.13, Σ' is consistent; so by T10.10, Σ' has a model M'; so by T10.16, Σ has a model M.

And that is what we needed to recover the completeness result for L without the constraint on constants. Where L does not include infinitely many constants not in Γ', we simply add them to form L'. Our theorems from this section ensure that the results go through as before.

E10.21. Complete the proof of T10.14. You should set up the complete induction, but may refer to the text, as the text refers to homework.

E10.22. Complete the proof of T10.15. As usual, you should set up the complete induction, but may refer to the text for cases completed there, as the text refers to homework.

E10.23. Adapt the demonstration of T10.11 for the supposition that L need not be the same as L'. You may appeal to theorems from this section.
10.4.2 Accommodating Equality

Dropping the assumption that language \mathcal{L} lacks the symbol ‘$=$’ for equality results in another sort of complication. In constructing our models, where t_1 and t_3 from the enumeration of variable-free terms are constants and $\Sigma'' \vdash R t_1 t_3$, we set $M'[t_1] = 1$, $M'[t_3] = 3$ and $\{1, 3\} \in M'[R]$. Suppose R is the equal sign, ‘$=$’; then by our procedure, $\{1, 3\} \in M'['=]$. But this is wrong! Where $U = \{0, 1 \ldots\}$, the proper interpretation of ‘$=$’ is $\{(0, 0), (1, 1) \ldots\}$, and $\{1, 3\}$ is not a member of this set. So our procedure does not result in the specification of a legitimate model. The procedure works fine for relation symbols other than equality. There are no restrictions on assignments to other relation symbols, so nothing stops us from specifying interpretations as above. But there is a restriction on the interpretation of ‘$=$’. So we cannot proceed blindly this way.

Here is the nub of a solution: Say $\Sigma'' \vdash a_1 = a_3$; then let the set $\{1, 3\}$ be an element of U, and let $M'[a_1] = M'[a_3] = \{1, 3\}$. Similarly, if $a_2 = a_4$ and $a_4 = a_5$ are consequences of Σ'', let $\{2, 4, 5\}$ be a member of U, and $M'[a_2] = M'[a_4] = M'[a_5] = \{2, 4, 5\}$. That is, let U consist of certain sets of natural numbers—where these sets are specified by atomic equalities that are consequences of Σ''. Then let $M'[a_2]$ be the set of which z is a member. Given this, if $\Sigma'' \vdash R^n t_a \ldots t_b$, then include the tuple consisting of the set assigned to t_a, and \ldots and the set assigned to t_b, in the interpretation of R^n. So on the above interpretation of the constants, if $\Sigma'' \vdash R a_1 a_4$, then $\{\{1, 3\}, \{2, 4, 5\}\} \in M'[R]$. And if $\Sigma'' \vdash a_1 = a_3$, then $\{\{1, 3\}, \{1, 3\}\} \in M'[=]$. You should see why this is so. And it is just right! If $\{1, 3\} \in U$, then $\{\{1, 3\}, \{1, 3\}\}$ should be in $M'[=]$. So we respond to the problem by a revision of the specification for CnsM'.

Let us now turn to the details. Put abstractly, the reason the basis of T10.9 works is that our model M' assigns each t in the enumeration of variable-free terms an object m such that whenever $\Sigma'' \vdash R t$ then $m \in M'[R]$. Additionally, for the quantifier case, it is important that for each object there is a t to which it is assigned. We want an interpretation that preserves these features. A model consists of a universe U, along with assignments to constants, function symbols, sentence letters, and relation symbols. We take up these elements, one after another.

The universe. The elements of our universe U are to be certain sets of natural numbers.\(^5\) Consider an enumeration $t_0, t_1 \ldots$ of all the variable-free terms in \mathcal{L}', and let there be a relation \simeq on the set $\{0, 1 \ldots\}$ of natural numbers such that $i \simeq j$ if $\Sigma'' \vdash t_i = t_j$. Let \bar{n} be the set of natural numbers which stand in the \simeq relation to

\(^5\) Again, it is common to let the universe be sets of terms in \mathcal{L}' (see page 506n4).
n—that is, \(\bar{n} = \{z \in \mathbb{N} | z \simeq n\}\). So \(z \in \bar{n}\) iff \(z \simeq n\). Notice that if the things which stand in the \(\simeq\) relation to \(m\) are the same as the ones that stand in that relation to \(n\) then \(\bar{m} = \bar{n}\). The universe \(U\) of \(M'\) is then the collection of all these sets—that is,

\[\text{Cns}M' \quad \text{For any natural number, the universe includes the class corresponding to it.} \]

\[U = \{\bar{n} | n \in \mathbb{N}\}. \]

The way this works is really quite simple. If according to \(\Sigma''\), \(t_1\) equals only itself, then the only \(z\) such that \(z \simeq 1\) is \(1\); so \(\bar{1} = \{1\}\), and this is a member of \(U\). If, according to \(\Sigma''\), \(t_1\) equals just itself and \(t_2\), then \(1 \simeq 2\) so that \(\bar{1} = \bar{2} = \{1, 2\}\), and this set is a member of \(U\). If, according to \(\Sigma''\), \(t_1\) equals itself, \(t_2\) and \(t_3\), then \(1 \simeq 2 \simeq 3\) so that \(\bar{1} = \bar{2} = \bar{3} = \{1, 2, 3\}\), and this set is a member of \(U\). And so forth.

In order to make progress, it will be convenient to establish some facts about the \(\simeq\) relation, and about the sets in \(U\). Recall that \(\simeq\) is a relation on the natural numbers which is specified relative to expressions in \(\Sigma''\), so that \(i \simeq j\) iff \(\Sigma'' \vdash t_i = t_j\). First we show that \(\simeq\) is reflexive, symmetric, and transitive.

Reflexivity. For any \(i \in \mathbb{N}\), \(i \simeq i\). By T3.33, \(\vdash t_i = t_i\); so \(\Sigma'' \vdash t_i = t_i\); so by construction, \(i \simeq i\).

Symmetry. For any \(i, j \in \mathbb{N}\), if \(i \simeq j\), then \(j \simeq i\). Suppose \(i \simeq j\); then by construction, \(\Sigma'' \vdash t_i = t_j\); but by T3.34, \(\vdash t_i = t_j \rightarrow t_j = t_i\); so by MP, \(\Sigma'' \vdash t_j = t_i\); so by construction, \(j \simeq i\).

Transitivity. For any \(i, j, k \in \mathbb{N}\), if \(i \simeq j\) and \(j \simeq k\), then \(i \simeq k\). Suppose \(i \simeq j\) and \(j \simeq k\); then by construction, \(\Sigma'' \vdash t_i = t_j\) and \(\Sigma'' \vdash t_j = t_k\); but by T3.35, \(\vdash t_i = t_j \rightarrow (t_j = t_k \rightarrow t_i = t_k)\); so by two instances of MP, \(\Sigma'' \vdash t_i = t_k\); so by construction, \(i \simeq k\).

A relation which is reflexive, symmetric and transitive is an equivalence relation. As an equivalence relation, it divides or partitions the members of \(\{0, 1 \ldots\}\) into mutually exclusive classes such that each member of a class bears \(\simeq\) to each of the others in its partition, but not to members outside the partition. More particularly, because \(\simeq\) is an equivalence relation, the collections \(\bar{n} = \{z \in \mathbb{N} | z \simeq n\}\) in \(U\) are characterized as follows.

Self-membership. For any \(n \in \mathbb{N}\), \(n \in \bar{n}\). By reflexivity, \(n \simeq n\); so by construction, \(n \in \bar{n}\). Corollary: Every natural number \(n\) is a member of at least one class.
Uniqueness. For any \(i \in \mathbb{N} \), \(i \) is an element of at most one class. Suppose \(i \) is an element of more than one class; then there are some \(m \) and \(n \) such that \(i \in m \) and \(i \in n \) but \(m \neq n \). Since \(m \neq n \) there is some \(j \) such that \(j \in m \) and \(j \notin n \), or \(j \in n \) and \(j \notin m \); without loss of generality, suppose \(j \in m \) and \(j \notin n \). Since \(j \in m \), by construction, \(j \simeq m \); and since \(i \in m \), by construction \(i \simeq m \); so by symmetry, \(m \simeq i \); so \(j \simeq m \) and \(m \simeq i \) and by transitivity, \(j \simeq i \). Since \(i \in n \), by construction \(i \simeq n \); so by transitivity again, \(j \simeq n \); so by construction, \(j \in n \). This is impossible; reject the assumption: \(i \) is an element of at most one class.

Equality. For any \(m, n \in \mathbb{N} \), \(m \simeq n \) iff \(m = n \). (i) Suppose \(m \simeq n \). Then by construction, \(m \in n \); but by self-membership, \(m \in m \); so by uniqueness, \(m = n \). Suppose \(m \equiv n \); by self-membership, \(m \in m \); so \(m \in n \); so by construction, \(m \simeq n \).

Corresponding to the relations by which they are formed, classes characterized by self-membership, uniqueness and equality are equivalence classes. From self-membership and uniqueness, every natural number \(n \) is a member of exactly one such class. And from equality, \(m \simeq n \) just when \(m \) is the very same thing as \(n \). So, for example, if \(1 \simeq 1 \) and \(2 \simeq 1 \) (and nothing else), then \(T = \{1, 2\} \). You should be able to see that these formal specifications develop just the informal picture with which we began.

Terms. The specification for constants is simple:

\[CnsM' \] If \(t_z \) in the enumeration of variable-free terms \(t_1, t_2 \ldots \) is a constant, then \(M'[t_z] = z \).

Thus, with self-membership, any constant \(t_z \) designates the equivalence class of which \(z \) is a member. In this case, we need to be sure that the specification picks out exactly one member of \(U \) for each constant. The specification would fail if the relation \(\simeq \) generated classes such that some natural number was an element of no class, or some was an element of more than one. But, as we have just seen, by self-membership and uniqueness, every natural number \(z \) is a member of exactly one class. So far, so good!

\[CnsM' \] If \(t_z \) in the enumeration of variable-free terms \(t_1, t_2 \ldots \) is \(h^n t_a \ldots t_b \) for function symbol \(h^n \) and variable-free terms \(t_a \ldots t_b \), then \(\langle \langle \bar{a} \ldots \bar{b} \rangle, z \rangle \in M'[h^n] \).
Thus when the input to \(h^n \) is \(\langle \bar{a} \ldots \bar{b} \rangle \), the output is \(\bar{z} \). This time, we must be sure that the result is a function—that (i) there is at least one output object for every input \(n \)-tuple, and (ii) there is at most one output object associated with any one input \(n \)-tuple. The former worry is easily dispatched. The second concern is that we might have \(\langle \bar{a}, \bar{m} \rangle \), \(\langle \bar{b}, \bar{n} \rangle \in M'[h] \) but with \(\bar{a} = \bar{b} \) and \(\bar{m} \neq \bar{n} \); in this case, we fail to specify a function.

(i) There is at least one output object. Corresponding to any \(\langle \bar{a} \ldots \bar{b} \rangle \) where \(\bar{a} \ldots \bar{b} \) are members of \(U \), there is some variable-free \(t_z = h^n t_{a_1} \ldots t_{b_1} \) in the sequence \(t_1, t_2, \ldots \); so by construction, \(\langle \bar{a}, \ldots, \bar{b}, \bar{z} \rangle \in M'[h^n] \). So \(M'[h^n] \) has an output object when the input is \(\langle \bar{a} \ldots \bar{b} \rangle \).

(ii) There is at most one output object. Suppose \(\langle \langle \bar{a} \ldots \bar{c} \rangle, \bar{m} \rangle \in M'[h^n] \) and \(\langle \langle \bar{d} \ldots \bar{f} \rangle, \bar{n} \rangle \in M'[h^n] \), where \(\langle \bar{a} \ldots \bar{c} \rangle = \langle \bar{d} \ldots \bar{f} \rangle \), but \(\bar{m} \neq \bar{n} \). Since \(\langle \bar{a} \ldots \bar{c} \rangle = \langle \bar{d} \ldots \bar{f} \rangle \), \(\bar{a} = \bar{d} \), and \(\ldots \) and \(\bar{c} = \bar{f} \); so by equality, \(a \simeq d \), and \(\ldots \) and \(c \simeq f \); so by construction, \(\Sigma' \vdash t_a = t_d \), and \(\ldots \) and \(\Sigma' \vdash t_c = t_f \). So \(\langle \langle \bar{a} \ldots \bar{c} \rangle, \bar{m} \rangle \in M'[h^n] \) and \(\langle \langle \bar{d} \ldots \bar{f} \rangle, \bar{n} \rangle \in M'[h^n] \), by construction, there are some variable-free terms, \(t_m = h^n t_{a_1} \ldots t_{c_1} \) and \(t_n = h^n t_{d_1} \ldots t_{f_1} \) in the enumeration. By \(=I \), \(\Sigma' \vdash h^n t_{a_1} \ldots t_{c_1} = h^n t_{d_1} \ldots t_{f_1} \); so by repeated applications of \(=E \), \(\Sigma' \vdash h^n t_{a_1} \ldots t_{c_1} = h^n t_{d_1} \ldots t_{f_1} \) (alternatively, we might use T3.37); but this is to say \(\Sigma' \vdash t_m = t_n \); so by construction, \(m \simeq n \); so by equality, \(\bar{m} = \bar{n} \). This is impossible; reject the assumption: if \(\langle \langle \bar{a} \ldots \bar{c} \rangle, \bar{m} \rangle \in M'[h^n] \) and \(\langle \langle \bar{d} \ldots \bar{f} \rangle, \bar{n} \rangle \in M'[h^n] \), where \(\langle \bar{a} \ldots \bar{c} \rangle = \langle \bar{d} \ldots \bar{f} \rangle \), then \(\bar{m} = \bar{n} \).

So, as they should be, function symbols are well-defined.

We are now in a position to recover an analogue to the preliminary result for demonstration of T10.9: For any variable-free term \(t_z \) and variable assignment \(d \), \(M'_d[t_z] = \bar{z} \). The argument is very much as before. Suppose \(t_z \) is a variable-free term. By induction on the number of function symbols in \(t_z \).

Basis: If \(t_z \) has no function symbols, then it is a constant. In this case, by construction, \(M'[t_z] = \bar{z} \); so by TA(c), \(M'_d[t_z] = \bar{z} \).

Assp: For any \(i, 0 \leq i < k \), if \(t_z \) has \(i \) function symbols, then \(M'_d[t_z] = \bar{z} \).

Show: If \(t_z \) has \(k \) function symbols, then \(M'_d[t_z] = \bar{z} \).

If \(t_z \) has \(k \) function symbols, then it is of the form, \(h^n t_{a_1} \ldots t_{b_1} \) where \(t_{a_1} \ldots t_{b_1} \) have \(< k \) function symbols. Since \(t_z = h^n t_{a_1} \ldots t_{b_1} \) is a variable-free term, \(\langle \langle \bar{a} \ldots \bar{b} \rangle, \bar{z} \rangle \in M'[h^n] \); and by assumption, \(M'_d[t_{a_1}] = \bar{a}, \ldots \) and \(M'_d[t_{b_1}] = \bar{b} \). So with TA(0), \(M'_d[t_z] = M'_d[h^n t_{a_1} \ldots t_{b_1}] = M'[h^n] \{ M'_d[t_{a_1}] \ldots M'_d[t_{b_1}] \} = M'[h^n] \{ \langle \bar{a} \ldots \bar{b} \rangle \} = \bar{z} \); so \(M'_d[t_z] = \bar{z} \).
Indct: For any variable-free term \(t_z \), \(M'_0[\langle t_z \rangle] = 2 \).

So the interpretation of any variable-free term is the equivalence class corresponding to its position in the enumeration of terms.

Atomics. The result we have just seen for terms makes the specification for atomics particularly natural. Sentence letters are easy. As before,

\[CnsM' \text{ For a sentence letter } S, M'_0[\langle S \rangle] = \text{T} \iff \Sigma'' \vdash S. \]

Then for relation symbols, the idea is as sketched above. We simply let the assignment be such as to make a variable-free atomic come out true iff it is a consequence of \(\Sigma'' \).

\[CnsM' \text{ For a relation symbol } R^n, \text{ where } t_a \ldots t_b \text{ are } n \text{ members of the enumeration of variable-free terms, let } \langle \overline{a} \ldots \overline{b} \rangle \in M'[\langle R^n \rangle] \iff \Sigma'' \vdash R^n t_a \ldots t_b. \]

To see that the specification for relation symbols is legitimate, we need to be clear that the specification is consistent—that we do not both assert and deny that some tuple is in the extension of \(R^n \), and we need to be sure that \(M'[=] = \{ \langle \overline{n}, \overline{n} \rangle \mid \overline{n} \in U \} \). The case for equality is easy. The former concern is that we might have \(\langle \overline{a} \rangle \in M'[R] \) and \(\langle \overline{b} \rangle \not\in M'[R] \) but \(\overline{a} = \overline{b} \).

(i) \(\langle \overline{m}, \overline{n} \rangle \in M[=] \iff \overline{m} = \overline{n} \). By equality, \(\overline{m} = \overline{n} \iff m \simeq n \); by construction \(\Sigma'' \vdash t_m = t_n \); by construction \(\langle \overline{m}, \overline{n} \rangle \in M'[=] \).

(ii) The specification is consistent. Suppose otherwise. Then there is some \(\langle \overline{a} \ldots \overline{c} \rangle \in M'[\langle R^n \rangle] \) and \(\langle \overline{d} \ldots \overline{f} \rangle \not\in M'[\langle R^n \rangle] \), where \(\langle \overline{a} \ldots \overline{c} \rangle = \langle \overline{d} \ldots \overline{f} \rangle \). From the latter, \(\overline{a} = \overline{d} \), and \(\ldots \) and \(\overline{c} = \overline{f} \); so by equality, \(a \simeq d \), and \(\ldots \) and \(c \simeq f \); so by construction, \(\Sigma'' \vdash t_a = t_d \); and \(\ldots \) and \(\Sigma'' \vdash t_c = t_f \). But since \(\langle \overline{a} \ldots \overline{c} \rangle \in M'[\langle R^n \rangle] \); by construction, \(\Sigma'' \vdash R^n t_a \ldots t_c \); so by repeated applications of \(=E \), \(\Sigma'' \vdash R^n t_a \ldots t_f \) (alternatively, we might use T3.38); so by construction \(\langle \overline{d} \ldots \overline{f} \rangle \in M'[\langle R^n \rangle] \); this is impossible; reject the assumption: if \(\langle \overline{a} \ldots \overline{c} \rangle \in M'[\langle R^n \rangle] \) and \(\langle \overline{d} \ldots \overline{f} \rangle \not\in M'[\langle R^n \rangle] \), then \(\langle \overline{a} \ldots \overline{c} \rangle \not= \langle \overline{d} \ldots \overline{f} \rangle \).

This completes the specification of \(M' \). The specification is more complex than for the basic version, and we have had to work to demonstrate its consistency. Still, the result is a perfectly ordinary model \(M' \), with a domain, assignments to constants, assignments to function symbols, and assignments to relation symbols.
With this revised specification for M', the demonstration of T10.9 proceeds as before. Here is the key portion of the basis. We are showing that $M'[P] = T$ iff $\Sigma'' \vdash P$.

Suppose P is an atomic $\mathcal{R}^n t_a \ldots t_b$; then by T1, $M'[\mathcal{R}^n t_a \ldots t_b] = T$ iff for arbitrary d, $M'_d[\mathcal{R}^n t_a \ldots t_b] \subseteq S$; by SF(r), iff $[M'_d[t_a] \ldots M'_d[t_b]] \in M'[\mathcal{R}^n]$; since $t_a \ldots t_b$ are variable-free terms, by the preliminary result for terms, iff $\langle \exists \ldots \exists \rangle \subseteq M'[\mathcal{R}^n]$; by construction, iff $\Sigma'' \vdash \mathcal{R}^n t_a \ldots t_b$. So $M'[P] = T$ iff $\Sigma'' \vdash P$.

So all that happens is that we depend on the conversion from individuals to sets of individuals for both assignments to terms and assignments to relation symbols. Given this, the argument is exactly parallel to the one from before.

E10.24. Suppose the enumeration of variable-free terms begins, $a, b, f^1 a, f^1 b \ldots$ (so these are $t_0 \ldots t_3$) and, for these terms, Σ'' proves just $a = a, b = b, f^1 a = f^1 a, f^1 b = f^1 b, a = f^1 a, \text{ and } f^1 a = a$. (i) What objects stand in the \approx relation? (ii) What are $\bar{1}, \bar{2}, \bar{3}, \text{ and } \bar{4}$? (iii) Given this much, what things must be in U?

E10.26. Where Σ'' and U are as in the previous two exercises, what are $M'[a], M'[b]$ and $M'[f]$? Supposing that $\Sigma'' \vdash R^1 a, R^1 f^1 a \text{ and } R^1 f^1 b$, but $\Sigma'' \nvdash R^1 b$, what is $M'[R^1]$? Given the consequences from E10.24, by the method, what is $M'[\equiv]$? Is this as it should be? Explain.

E10.27. Complete the demonstration of T10.9 on this revised model.

10.4.3 The Final Result

We are really done with the demonstration of completeness. Perhaps, though, it will be helpful to draw some parts together. Begin with some basic definitions and the construction of \mathcal{L}'.

Con A set Δ of formulas is consistent iff there is no formula A such that $\Delta \vdash A$ and $\Delta \vdash \neg A$.
Max A set \(\Delta \) of formulas is maximal iff for any sentence \(\mathcal{A} \), \(\Delta \vdash \mathcal{A} \) or \(\Delta \vdash \neg \mathcal{A} \).

Sctg A set \(\Delta \) of formulas is a scapegoat set iff for any sentence \(\neg \forall x \mathcal{P} \), if \(\Delta \vdash \neg \forall x \mathcal{P} \), then there is some constant \(a \) such that \(\Delta \vdash \neg \mathcal{P}^x_a \).

Cns\(\mathcal{L}' \) Where \(\mathcal{L} \) is a language whose constants are some of \(a_0, a_1 \ldots \) let \(\mathcal{L}' \) be like \(\mathcal{L} \) but with the addition of new constants \(c_0, c_1 \ldots \).

Where \(\Sigma \) is a set of formulas in language \(\mathcal{L} \), let \(\Sigma' \) be like \(\Sigma \) except that its members are formulas of language \(\mathcal{L}' \). Then we proceed in language \(\mathcal{L}' \), for a maximal consistent scapegoat set \(\Sigma'' \) constructed from any consistent \(\Sigma' \).

T10.6 For any set of formulas \(\Delta \) and sentence \(\mathcal{P} \), if \(\Delta \not\vdash \neg \mathcal{P} \), then \(\Delta \cup \{ \mathcal{P} \} \) is consistent.

T10.7 There is an enumeration \(\mathcal{Q}_1, \mathcal{Q}_2 \ldots \) of all the formulas, terms, and the like in \(\mathcal{L}' \).

Cns\(\Sigma'' \) Construct \(\Sigma'' \) from \(\Sigma' \) as follows: By T10.7, there is an enumeration, \(\mathcal{Q}_1, \mathcal{Q}_2 \ldots \) of all the formulas in \(\mathcal{L}' \) and also an enumeration \(c_1, c_2 \ldots \) of constants not in \(\Sigma' \). Let \(\Omega_0 = \Sigma' \). Then for any \(i > 0 \), let \(\Omega_{i} = \Omega_{i-1} \cup \{ \mathcal{Q}_i \} \) if \(\Omega_{i-1} \not\vdash \neg \mathcal{Q}_i \). Otherwise, \(\Omega_{i} = \Omega_{i-1} \cup \{ \mathcal{Q}_i \} \) if \(\Omega_{i-1} \not\vdash \neg \mathcal{Q}_i \). Then \(\Omega_i = \Omega_i^* \) if \(\mathcal{Q}_i \) is not of the form \(\neg \forall x \mathcal{P} \), and \(\Omega_i = \Omega_i^* \cup \{ \neg \mathcal{P}^x_e \} \) if \(\mathcal{Q}_i \) is of the form \(\neg \forall x \mathcal{P} \), where \(e \) is the first constant not in \(\Omega_i^* \). Then \(\Sigma'' = \bigcup_{i \geq 0} \Omega_i \).

T10.8 If \(\Sigma' \) is consistent, then \(\Sigma'' \) is a maximal consistent scapegoat set.

Given the maximal consistent scapegoat set \(\Sigma'' \), we turn to the model \(M' \) such that \(M'[\Sigma'] = T \): Consider an enumeration \(t_0, t_1 \ldots \) of all the variable-free terms in \(\mathcal{L}' \), and let \(\simeq \) be the relation on the set \(\{ 0, 1 \ldots \} \) of natural numbers such that \(i \simeq j \) iff \(\Sigma'' \vdash t_i = t_j \). Let \(\overline{n} = \{ z \in \mathbb{N} \mid z \simeq n \} \).

Cns\(M' \) \(U = \{ \overline{n} \mid n \in \mathbb{N} \} \). If \(t_z \) in the enumeration of variable-free terms \(t_0, t_1 \ldots \) is a constant, then \(M'[t_z] = z \). If \(t_z \) is \(h^n t_a \ldots t_b \) for function symbol \(h^n \) and variable-free terms \(t_a \ldots t_b \), then \(\langle \overline{a} \ldots \overline{b} \rangle \in M'[h^n] \). For a sentence letter \(\delta \), \(M'[\delta] = T \) iff \(\Sigma'' \vdash \delta \). For a relation symbol \(R^n \), where \(t_a \ldots t_b \) are \(n \) members of the enumeration of variable-free terms, \(\langle \overline{a} \ldots \overline{b} \rangle \in M'[R^n] \) iff \(\Sigma'' \vdash R^n t_a \ldots t_b \).

This modifies the relatively simple version where \(U = \{ 0, 1 \ldots \} \). And for an enumeration of variable-free terms, if \(t_z \) is a constant, \(M'[t_z] = z \). If \(t_z =
CHAPTER 10. MAIN RESULTS

$h^n t_a \ldots t_b$ for some relation symbol h^n and n variable-free terms $t_a \ldots t_b$, $(a \ldots b), z \in M'[h^n]$. For a sentence letter S, $M'[S] = T$ iff $\Sigma'' \vdash S$. And for a relation symbol R^n, $(a \ldots b) \in M'[R^n]$ iff $\Sigma'' \vdash R^n t_a \ldots t_b$.

T10.9 If Σ' is consistent, then for any sentence P of \mathcal{L}', $M'[P] = T$ iff $\Sigma'' \vdash P$.

T10.10 If Σ' is consistent, then $M'[\Sigma'] = T$. (*)&

Then we have had to connect results for Σ' in \mathcal{L}' to an arbitrary Σ in language \mathcal{L}.

T10.13 If Σ is consistent, then Σ' is consistent.

This is supported by T10.12 on which if D is a derivation from Σ', and x is a variable that does not appear in D, then for any constant a, D^a_x is a derivation from $\Sigma' a_x$.

T10.16 If $M'[\Sigma'] = T$, then $M[\Sigma] = T$.

This is supported by the matched pair of theorems, T10.14 on which, if d is a variable assignment, then for any term t in \mathcal{L}, $M_d[t] = M'_d[t]$, and T10.15 on which, if d is a variable assignment, then for any formula P in \mathcal{L}, $M_d[P] = S$ iff $M'_d[P] = S$.

And we are in a position for the key result.

T10.17. If Σ is consistent, then Σ has a model M. (\mathcal{L} unconstrained) (**)

From T10.13, T10.10 and T10.16.

This puts us in a position to recover the completeness result. Recall that our argument runs through P^c the universal closure of P.

T10.11. If $\Gamma \vdash P$, then $\Gamma \vdash P$. Quantificational Completeness.

Suppose $\Gamma \vdash P$ but $\Gamma \not\vdash \sim \sim P^c$; by T3.10, $\vdash \sim \sim P^c \rightarrow P^c$; so by MP, $\Gamma \vdash P^c$; so by repeated applications of A4 and MP, $\Gamma \vdash P$; but this is impossible; so $\Gamma \not\vdash \sim \sim P^c$. Given this, since $\sim \sim P^c$ is a sentence, by T10.6, $\Gamma \cup \{\sim P^c\}$ is consistent. Since $\Sigma = \Gamma \cup \{\sim P^c\}$ is consistent, by T10.17, there is a model M constructed as above such that $M[\Sigma] = T$. So $M[\Gamma] = T$ and $M[\sim P^c] = T$; from the latter, by T8.8, $M[P^c] \neq T$; so by repeated applications of T7.6, $M[P] \neq T$; so by QV, $\Gamma \not\vdash P$. This is impossible; reject the assumption: if $\Gamma \vdash P$ then $\Gamma \vdash P$.
The sentential version had parallels to Con, Max, Cns\(\Sigma''\) and Cns\(M'\) along with theorems T10.6\(_s\)–T10.11\(_s\). (The distinction between \((\ast)\) and \((\ast\ast)\) is a distinction without a difference in the sentential case.) The basic quantificational version requires these along with Scgt, T10.12 and the simple version of Cns\(M'\). For the full version, we have had to appeal also to T10.13 and T10.16 (and so T10.17), and use the relatively complex specification for Cns\(M'\).

Again, you should try to get the complete picture in your mind: As always, the key is that consistent sets have models. If \(\Gamma \cup \{\neg \mathcal{P}\}\) is not consistent, then there is a derivation of \(\mathcal{P}\) from \(\Gamma\). So if there is no derivation of \(\mathcal{P}\) from \(\Gamma\), then \(\Gamma \cup \{\neg \mathcal{P}\}\) is consistent, and so has a model—and the existence of a model for \(\Gamma \cup \{\neg \mathcal{P}\}\) is sufficient to show that \(\Gamma \not\models \mathcal{P}\). Put the other way around, if \(\Gamma \models \mathcal{P}\), then there is a derivation of \(\mathcal{P}\) from \(\Gamma\). We get the key point, that consistent sets have models, by finding a relation between consistent, and maximal consistent scapegoat sets. If a set is a maximal consistent scapegoat set, then it contains enough information to specify a model for the whole. The model for the big set then guarantees the existence of a model \(M\) for the original \(\Gamma\).

E10.28. Augment \(A^*\) from E9.5 (and E10.20) to an \(A^\#\) which has A1–A4, MP and \(\exists\mathcal{R}\) as before with,

\[
\begin{align*}
A5 & \quad t = t \\
A6 & \quad r = s \rightarrow (\mathcal{P} \rightarrow \mathcal{P}^s_{/s}) & \text{—where } s \text{ is free for the replaced instance of } r \text{ in } \mathcal{P}
\end{align*}
\]

Now without assumptions that the language has no symbol for equality, and has infinitely many constants not in \(\Gamma\), provide a complete demonstration that \(A^\#\) is \(\vdash\)complete. Because axioms are treated together, you still have DT from E9.8. You may appeal to any results from the text or E10.20 whose demonstration remains unchanged, but should recreate parts whose demonstration is not the same. In addition to results for E10.20, you should find E8.29 useful.

E10.29. A derivation system \(D\) is \(\vdash\)sound and \(\vdash\)complete just in case \(\Gamma \vdash_D \mathcal{P} \iff \Gamma \vDash \mathcal{P}\). By T10.3 and T10.11, \(\Gamma \vDash \mathcal{P} \iff \Gamma \vdash_{AD} \mathcal{P}\). So if \(D\) is \(\vdash\)sound and \(\vdash\)complete then \(\Gamma \vdash_D \mathcal{P} \iff \Gamma \vDash \mathcal{P} \iff \Gamma \vdash_{AD} \mathcal{P}\); so \(\Gamma \vdash_D \mathcal{P} \iff \Gamma \vdash_{AD} \mathcal{P}\) (iff \(\Gamma \vdash_{ND} \mathcal{P}\) iff \(\Gamma \vdash_{ND^+} \mathcal{P}\)). Thus we have a means for demonstrating equivalence of derivation systems in addition to the “direct” approach of chapter 9. By E10.28, if \(\Gamma \vDash \mathcal{P}\) then \(\Gamma \vdash_{A^\#} \mathcal{P}\). We lack the biconditional only because the demonstration of \(\vdash\)soundness from E10.3 is for \(A^*\) not \(A^\#.\) Extend your argument from E10.3 to
provide a complete demonstration that $A^\#$ is equivalent to AD. Hint: you will require a semantic substitution result related to ones in chapter 9.

E10.30. We have shown from T10.4 that if a set of formulas has a model, then it is consistent; and now that if an arbitrary set of formulas is consistent, then it has a model—and one whose U is this set of sets of natural numbers. Notice that any such U is countable insofar as its members can be put into correspondence with the natural numbers (since the sets are disjoint, we might order them by their least elements). But by reasoning related to that in the more on countability reference the real numbers are uncountable. How might this be a problem for the logic of real numbers? Hint: Think about the consequences sentences in an arbitrary Γ may have about the number of elements in U.

E10.31. For each of the following concepts, explain in an essay of about two pages, so that (college freshman) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. The soundness of a derivation system, and its demonstration by mathematical induction.

b. The completeness of a derivation system, and the basic strategy for its demonstration.

c. Maximality and consistency, and the reasons for them.

d. Scapegoat sets, and the reasons for them.

6A real number is the limit of a decimal representation. But the limit of $.5000\ldots$ is the same as that of $.4999\ldots$ so that these are representations of the same real number. Explicitly the more on countability reference shows that there are uncountably many decimal representations. But the argument converts to demonstration that the real numbers themselves are uncountable if we exclude duplicate representations (say ones ending in an infinite string of 9s).
Theorems of Chapter 10

T10.1 For any interpretation I, variable assignment d, with terms t and r, if $I[d] = o$, then $I[d(x)] = I[t[x]]$.

T10.2 For any interpretation I, variable assignment d, term r, and formula Q, if $I[d] = o$, and r is free for x in Q, then $I[d][Q[x]] = S$ iff $I[d(x)] = S$.

T10.3 If $\Gamma \vdash_{AD} P$, then $\Gamma \vdash P$. \textit{Soundness}.

T10.4 If there is an interpretation M such that $M[\Gamma] = T$ (a model for Γ), then Γ is consistent.

T10.5 If there is an interpretation M such that $M[\Gamma \cup \{\sim A\}] = T$, then $\Gamma \not\vdash A$.

T10.6 For any set of formulas Δ and sentence P, if $\Delta \not\vdash \sim P$, then $\Delta \cup \{P\}$ is consistent.

T10.7 There is an enumeration Q_1, Q_2, \ldots of all formulas in \mathcal{L}.

T10.8 If Σ' is consistent, then Σ'' is maximal and consistent.

T10.9 If Σ' is consistent, then $M'[\Sigma'] = T$. \textit{(*)}

T10.10 If Σ' is consistent, then $M'[\Sigma'] = T$. \textit{(**)}

T10.11 If $\Gamma \vdash P$, then $\Gamma \vdash P$. \textit{Sentential Completeness}.

T10.12 If D is a derivation from Σ', and x is a variable that does not appear in D, then for any constant a, D^a_x is a derivation from Σ'^a_x.

T10.13 If Σ is consistent, then Σ' is consistent.

T10.14 For any variable assignment d, and for any term t in \mathcal{L}, $M_d[t] = M'_d[t]$.

T10.15 For any variable assignment d, and for any formula P in \mathcal{L}, $M_d[P] = S$ iff $M'_d[P] = S$.

T10.16 If $M'[\Sigma'] = T$, then $M[\Sigma] = T$.

T10.17a If Σ is consistent, then Σ has a model M. \textit{(\mathcal{L} without equality)}

T10.17b If Σ is consistent, then Σ has a model M. \textit{(\mathcal{L} unconstrained)}
Chapter 11

More Main Results

In this chapter, we take up some results which deepen our understanding of the power and limits of logic. The first short sections restrict discussion to sentential forms, for results about expressive completeness (11.1), unique readability (11.2), and independence (11.3). The last more extended section (11.4) develops basic results from model theory, concluding with some \(\sim \)completeness results that serve as a background and counterpart to part IV. These sections are independent of one another and may be taken in any order.

11.1 Expressive Completeness

In chapter 5 we introduced the idea of a truth functional operator, where the truth value of the whole is a function of the truth values of the parts. We exhibited operators as truth functional by tables. Thus, if some ordinary expression \(\mathcal{P} \) with components \(\mathcal{A} \) and \(\mathcal{B} \) has table,

\[
\begin{array}{c|c|c}
\mathcal{A} \cdot \mathcal{B} & \mathcal{P} \\
\hline
\text{T} & \text{T} & \text{T} \\
\text{T} & \text{F} & \text{F} \\
\text{F} & \text{T} & \text{F} \\
\text{F} & \text{F} & \text{F} \\
\end{array}
\]

(A)

then it is truth functional. And we translate by an equivalent formal expression: in this case \(\mathcal{A} \land \mathcal{B} \) does fine. Of course, not every such table, or truth function, is directly represented by one of our operators. Thus, suppose some expression \(\mathcal{P} \) has the table,

\[
\begin{array}{c|c|c}
\mathcal{A} \cdot \mathcal{B} & \mathcal{P} \\
\hline
\text{T} & \text{T} & \text{T} \\
\text{T} & \text{F} & \text{F} \\
\text{F} & \text{T} & \text{F} \\
\text{F} & \text{F} & \text{F} \\
\end{array}
\]
CHAPTER 11. MORE MAIN RESULTS

None of our operators is equivalent to this. But it takes only a little ingenuity to see that, say, $\sim(A \leftrightarrow B)$ has the same table, and so results in a good translation. It turns out that for any table a truth functional operator may have, there is always some way to generate that table by means of our formal operators—and, in fact, by means of just the operators \sim and \rightarrow, or just the operators \sim and \wedge, or just the operators \sim and \vee. It is also possible to express any truth function by means of just the operator \rightarrow from page 344. In this section, we prove these results. First, a result weaker than the ones announced.

T11.1. It is possible to represent any truth function by means of an expression with just the operators \sim, \land, and \lor.

The proof is by construction. Given an arbitrary truth function, we provide a recipe for constructing an expression with the same table.

Suppose we are given an arbitrary truth function, in this case with four basic sentences as on the left.

\[
\begin{array}{c|cccc|c}
\delta_1 & \delta_2 & \delta_3 & \delta_4 & \mathcal{P} \\
1 & T & T & T & T & F \\
2 & T & T & T & F & F \\
3 & T & T & F & T & T \\
4 & T & T & F & F & F \\
5 & T & F & T & T & F \\
6 & T & F & T & F & F \\
7 & T & F & F & T & F \\
8 & T & F & F & F & F \\
9 & F & T & T & T & F \\
10 & F & T & T & F & F \\
11 & F & T & F & T & F \\
12 & F & T & F & F & F \\
13 & F & F & T & T & T \\
14 & F & F & T & F & F \\
15 & F & F & F & T & F \\
16 & F & F & F & F & F \\
\end{array}
\]

For a sentence \mathcal{P} with basic sentences $\delta_1 \ldots \delta_n$, corresponding to each row j there is a characteristic sentence $\mathcal{C}_j = \delta_1' \land \ldots \land \delta_n'$ (with appropriate parentheses). If the interpretation of δ_i on row j is T, then $\delta_i' = \delta_i$; if the interpretation of δ_i on row j
is \(F \), then \(\delta'_i = \neg \delta_i \). Then the characteristic sentence \(C_j \) is the conjunction of each \(\delta'_i \). The characteristic sentences are true only on their corresponding rows. Thus \(C_4 \) above is true only when \(\llbracket \delta_1 \rrbracket = T \), \(\llbracket \delta_2 \rrbracket = T \), \(\llbracket \delta_3 \rrbracket = F \), and \(\llbracket \delta_4 \rrbracket = F \).

Now, if \(P \) is \(F \) on every row, \(\delta_1 \land \neg \delta_1 \) has the same table as \(P \). Otherwise, given the characteristic sentences, where \(P \) is \(T \) on rows \(a \), \(b \), \(\ldots \), \(d \), \(C_a _ C_b _ _ _ C_d \) has the same table as \(P \). Thus, for example, \(C_3 _ C_5 _ C_12 _ C_13 \), that is,

<table>
<thead>
<tr>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
<th>((C_3 \lor C_5) \lor (C_{12} \lor C_{13}))</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

(D)

And we have constructed an expression with the same table as \(P \). And similarly for any truth function with which we are confronted. So given any truth function, there is a formal expression with the same table.

In a by now familiar pattern, the expressions produced by this method are not particularly elegant or efficient. Thus for the table,

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

(E)

by our method we get the expression \((A \land B) \lor (\neg A \land B) \lor (\neg A \land \neg B)\). It has the right table. But, of course, \(A \rightarrow B \) is much simpler! The point is not that the resultant expressions are elegant or efficient, but that for any truth function, there exists a formal expression that works the same way.
We have shown that we can represent any truth function by an expression with operators ~, & and v. But any such expression is an abbreviation of one whose only operators are ~ and →. So we can represent any truth function by an expression with just operators ~ and →. And we can argue for other cases. Thus, for example,

T11.2. It is possible to represent any truth function by means of an expression with just the operators ~ and →, with just the operators ~ and & and with just the operators ~ and v.

The first is immediate from T11.1 and abbreviation. The last is left as an exercise. For the other, again, the proof is simple. Given T11.1, if we can show that any P whose operators are ~, & and v corresponds to a P^* whose operators are just ~ and & such that P and P^* have the same table (such that $l[P] = l[P^*]$ for any l), we will have shown that any truth function can be represented by an expression with just ~ and &. To see that this is so, where P is an atomic S, set $P^* = S$; where P is $\neg A$, set $P^* = A^*$; where P is $A & B$, set $P^* = A^* & B^*$; and where P is $A v B$, set $P^* = (\neg A^* & \neg B^*)$. Suppose the only operators in P are ~, &, and v, and consider an arbitrary interpretation l.

Basis: Where P is a sentence letter S, then P^* is S. So $l[P] = l[P^*]$.
Assp: For any i, $0 \leq i < k$, if P has i operator symbols, then $l[P] = l[P^*]$.

Show: If P has k operator symbols, then $l[P] = l[P^*]$.

If P has k operator symbols, then it is of the form $\neg A$, $A & B$, or $A v B$ where A and B have < k operator symbols.

(~) Suppose P is $\neg A$; then P^* is A^*. $l[P] = T$ iff $l[\neg A] = T$ by ST(~), iff $l[A] \neq T$; by assumption iff $l[A^*] \neq T$ by ST(~), iff $l[A^*] = T$; iff $l[P^*] = T$.

(\lor) Suppose P is $A v B$; then P^* is $(\neg A^* & \neg B^*)$. $l[P] = T$ iff $l[A v B] = T$; by ST'(\lor), iff $l[A] = T$ or $l[B] = T$; by assumption iff $l[A^*] = T$ or $l[B^*] = T$; by ST'(\lor), iff $l[\neg A^* & \neg B^*] \neq T$; by ST'(\lor), iff $l[\neg A^* & \neg B^*] \neq T$; by ST'(\lor), iff $l[(\neg A^* & \neg B^*)] = T$; iff $l[P^*] = T$.

Indct: For any P, $l[P] = l[P^*].$
So if the operators in \(P\) are \(\sim, \land\) and \(\lor\), there is a \(P^*\) with just operators \(\sim\) and \(\land\) that has the same table. Perhaps this was obvious as soon as we saw that \(\sim(A \land \sim B)\) has the same table as \(A \lor B\). Since we can represent any truth function by an expression whose only operators are \(\sim, \land\) and \(\lor\), and we can represent any such \(P\) by a \(P^*\) whose only operators are \(\sim\) and \(\land\), we can represent any truth function by an expression with just operators \(\sim\) and \(\land\). And, by similar reasoning, we can represent any truth function by expressions whose only operators are \(\sim\) and \(\lor\), and by expressions whose only operator is \(\lnot\). This is left for homework.

In E8.11, we showed that if the operators in \(P\) are limited to \(\rightarrow, \land, \lor\), and \(\leftrightarrow\) then when the interpretation of every atomic is \(T\), the interpretation of \(P\) is \(T\). Perhaps this is obvious by consideration of the tables. It follows that not every truth function can be represented by expressions whose only operators are \(\rightarrow, \land, \lor\), and \(\leftrightarrow\); for there is no way to represent a function that is \(F\) on the top row. Though it is more difficult to establish, we showed in E8.21 that any expression whose only operators are \(\sim\) and \(\leftrightarrow\) (with at least four rows in its truth table) has an even number of \(T\)s and \(F\)s under its main operator. It follows that not every truth function can be represented by expressions whose only operators are \(\sim\) and \(\leftrightarrow\).

E11.1. Use the method of this section to find expressions whose operators are \(\sim, \land, \lor\) with tables corresponding to \(P_1, P_2,\) and \(P_3\). Then show on a table that your expression for \(P_1\) in fact has the same truth function as \(P_1\).

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

E11.2. (i) Show that we can represent any truth function by expressions whose only operators are \(\sim\) and \(\lor\) and so complete the demonstration of T11.2. (ii) Show that we can represent any truth function by expressions whose only operator is \(\lnot\), where \(\models \{P \land Q\} = T\) iff \(\models \{P\} \neq T\) or \(\models \{Q\} \neq T\) (or both). Hint: Given what we have shown above, it is enough to show that you can represent expressions whose only operators are \(\sim\) and \(\rightarrow\).
CHAPTER 11. MORE MAIN RESULTS

E11.3. Show that is not possible to represent arbitrary truth functions by expressions whose only operators are $*$ and \circ with tables TFFT and FTTF respectively. Hint: think about E8.21.

11.2 Unique Readability

Unique readability is one of those results whose the conclusion may seem too obvious to merit argument. Still, it is a result upon which we depend at every stage: We show that every formula of \mathcal{L}_4 is parsed uniquely. Things are set up so that this is so. But suppose that instead of $\text{FR}(\rightarrow)$ and $\text{ST}(\rightarrow)$ we had,

$\text{FR}(\rightarrow)^* \text{ If } P \text{ and } Q \text{ are formulas, then } P \rightarrow Q \text{ is a formula.}$

$\text{ST}(\rightarrow)^* \text{ Let } [P] = T \text{ iff } [P] = F \text{ or } [Q] = T$

without parentheses. For some atomics A, B, and C, suppose $[A] = [B] = [C] = F$. Then $A \rightarrow B$ is a formula, and $[A \rightarrow B] = T$; so $A \rightarrow B \rightarrow C$ is a formula, and $[A \rightarrow B \rightarrow C] = F$. But again, $B \rightarrow C$ is a formula, and $[B \rightarrow C] = T$; so $A \rightarrow B \rightarrow C$ is a formula, and $[A \rightarrow B \rightarrow C] = T$. So something is wrong! It is thus important for our definitions that there is just one way to understand $(P \rightarrow Q)$.

We shall demonstrate that this is so. Though the result is straightforward, the argument is surprisingly involved. For the sentential case, according to unique readability, for any formula P of \mathcal{L}_4 exactly one of the following holds.

(s) P is a sentence letter.

(~) There is a unique formula A such that $P = \neg A$.

(→) There are unique formulas A and B such that $P = (A \rightarrow B)$.

We build to this result by some preliminary theorems. First, ignoring uniqueness,

T11.3. For any formula P of \mathcal{L}_4, exactly one of the following holds: (i) P is a sentence letter; (ii) there is a formula A such that $P = \neg A$; (iii) there are formulas A and B such that $P = (A \rightarrow B)$.

First, it is a trivial consequence of definition FR that at least one of (i), (ii) or (iii) hold. And, nearly as easy, at most one of (i), (ii) or (iii): If P is a sentence letter it begins with a sentence letter; if P begins with ‘\neg’; and if P begins with ‘$(A \rightarrow B)$’ it begins with ‘\neg’ or ‘$($’; so not (ii) and not (iii). Suppose P is $\neg A$; then it does not
begin with a sentence letter or ‘(‘; so not (i) or (iii). Suppose P is $(A \rightarrow B)$; then it does not begin with a sentence letter or ‘~’ so not (i) or (ii).

Say B is an initial segment of an expression A just in case there is some (possibly empty) C such that $A = BC$—just in case A is the concatenation of B and C. If C is a non-empty sequence so that B is not all of A, then B is a proper initial segment of A. So AB is a proper initial segment of ABC. To make progress on the uniqueness conditions, we show the following.

T11.4. If A is a formula of L_s, then no proper initial segment of A is a formula.
Suppose A is a formula.

Basis: If A is atomic, then $A = BC$ only if (i) $A = B$ and C is empty, or (ii) $A = C$ and B is empty. In the first case, B is not a proper initial segment. In the second case B is an (empty) proper initial segment; but from T11.3 no empty segment is a formula; so B is not a formula. In either case then, no proper initial segment of A is a formula.

Assp: For any i, $0 \leq i < k$, if A has i operator symbols, then no proper initial segment of A is a formula.
Show: If A has k operator symbols, then no proper initial segment of A is a formula. If A has k operator symbols then it is $\sim P$ or $(P \rightarrow Q)$ for formulas P and Q with $< k$ operator symbols.

(\sim) A is $\sim P$ for some formula P. Suppose some proper initial segment of A is a formula; then for some formula B, $A = BC$. B is either empty or starts with ‘\sim’; so with T11.3, B is $\sim D$ for some formula D. So $A = \sim P = \sim D C$; so $P = D C$; so D is a proper initial segment of P; so by assumption, D is not a formula. Reject the assumption: no proper initial segment of A is a formula.

(\rightarrow) A is $(P \rightarrow Q)$. Suppose some proper initial segment of A is a formula; then for some formula B, $A = (P \rightarrow Q) = BC$. B is either empty or starts with ‘$\$’; so with with T11.3, B is $(D \rightarrow E)$ for some formulas D and E; so $A = (P \rightarrow Q) = (D \rightarrow E) C$; so dropping the initial parenthesis, $P \rightarrow Q = D \rightarrow E C$; given their position at the start, either P is identical to D, or P overlaps D, or D overlaps P—that is, either $P = D$ or one is a proper initial segment of the other; suppose one is a proper initial segment of the other; then by assumption one or the other is not a formula; this is impossible. So $P = D$; so $\rightarrow Q = \rightarrow E C$; so $Q = E C$; so the last character of C is $\$ and E is a proper initial segment
of \(Q \); so by assumption \(E \) is not a formula. Reject the assumption, no proper initial segment of \(A \) is a formula.

If \(A \) has \(k \) operator symbols, then no proper initial segment of \(A \) is a formula.

Indct: For any formula \(A \), no proper initial segment of \(A \) is a formula.

Observe that we “add” and “subtract” from sequences so that, for example \(\neg P = \neg Q \) iff \(P = Q \). It is worth noting the point at which parentheses matter for the \((\to) \) case. At the stage where \((Q) = E)C \), suppose \(C \) is just \) and there were no \) between \(E \) and \(C \); then \(Q = E = E)E \); so \(Q = E \)—and there is no contradiction. The parentheses makes it the case that \(C \) must be a proper initial segment of \(Q \), which is impossible.

And now we are ready to establish unique readability.

T11.5. For any formula \(P \) of \(L_4 \), exactly one of the following holds.

\((s)\) \(P \) is a sentence letter.

\((\neg)\) There is a unique formula \(A \) such that \(P \) is \(\neg A \).

\((\to)\) There are unique formulas \(A \) and \(B \) such that \(P \) is \((A \to B) \).

For any formula \(P \) of \(L_4 \), by T11.3, exactly one of \(i) \) \(P \) is a sentence letter, \(ii) \) there is a formula \(A \) such that \(P \) is \(\neg A \), \(iii) \) there are formulas \(A \) and \(B \) such that \(P \) is \((A \to B) \). We are now in a position to establish uniqueness constraints for cases \(ii) \) and \(iii) \).

\((\neg)\) Suppose \(P = \neg A \) and there is some formula \(B \) such that \(P = \neg B \); then \(\neg A = \neg B \); so, dropping the initial symbol, \(A = B \). So there is a unique formula \(A \) such that \(P = \neg A \).

\((\to)\) Suppose \(P = (A \to B) \) and there are formulas \(C \) and \(D \) such that \(P = (C \to D) \); then \((A \to B) = (C \to D) \); so \(A \to B = C \to D \); so either \(A = C \) or one is a proper initial segment of the other; but by T11.4, neither is a proper initial segment of the other; so \(A = C \); so \(B = D \). So there are unique formulas \(A \) and \(B \) such that \(P = (A \to B) \).

Thus unique readability is established.

*E11.4. Show unique readability for the terms of \(L_q \)—that for every term \(t \) of \(L_q \), exactly one of the following holds,
(v) \(t \) is a variable.
(c) \(t \) is a constant.
(f) There is unique function symbol \(h^n \) and terms \(s_1 \ldots s_n \) such that \(t = h^n s_1 \ldots s_n \).

Hint: The argument is based on TR; you will want to show that no proper initial segment of a term is a term.

E11.5. Show unique readability for the formulas of \(\mathcal{L}_q \)—that for every formula \(P \) of \(\mathcal{L}_q \), exactly one of the following holds,

(s) \(P \) is a sentence letter.
(r) There is unique relation symbol \(R^n \) and terms \(t_1 \ldots t_n \) such that \(P = R^n t_1 \ldots t_n \).
(\(\neg \)) There is a unique formula \(A \) such that \(P = \neg A \).
(\(\rightarrow \)) There are unique formulas \(A \) and \(B \) such that \(P = (A \rightarrow B) \).
(\(\forall \)) There is unique variable \(x \) and formula \(A \) such that \(P = \forall x A \).

Hint: This time the argument is based on FR.

11.3 Independence

As we have seen, axiomatic systems are convenient insofar as their compact form makes reasoning about them relatively easy. Also, theoretically, axiomatic systems are attractive insofar as they expose what is at the base or foundation of logical systems. Given this latter aim, it is natural to wonder whether we could get the same results without one or more of our axioms. Say an axiom or rule is \textit{independent} in a derivation system just in case its omission matters for what can be derived. In particular, then, an axiom is independent in a derivation system if it cannot be derived from the other axioms and rules. For suppose otherwise: that it can be derived from the other axioms and rules; then it is a theorem of the derivation system without the axiom, and any result of the system with the axiom can be derived using the theorem in place of the axiom; so the omission of the axiom does not matter for what can be derived, and the axiom is not independent. In this section, we show that A1, A2 and A3 of the sentential fragment of \(AD \) are independent of one another.

Say we want to show that A1 is independent of A2 and A3. When we showed, in chapter 8, that the sentential part of \(AD \) is weakly sound, we showed that A1, A2, A3
and their consequences have a certain feature—that there is no interpretation where an axiom or one of their consequences is false. The basic idea here is to find a sort of "interpretation" with some feature sustained by A2, A3 and their consequences, but not by A1. It follows that A1 is not among the consequences of A2 and A3, and so is independent of A2 and A3. Here is the key point: Any "interpretation" will do. In particular, consider the following tables which define a sort of numerical property for forms involving ~ and →.

<table>
<thead>
<tr>
<th>P</th>
<th>~P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P → Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

By A1(∼) row 1

<table>
<thead>
<tr>
<th>P</th>
<th>~P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

By A1(→) row 6

Do not worry about what these tables “say”; it is sufficient that, given a numerical interpretation of the parts, we can always calculate the numerical value N of the whole. Thus, for example,

\[
\begin{align*}
A(0) & \quad B(2) \\
~A(1) & \quad By A1(∼) row 1 \\
~A \rightarrow B(0) & \quad By A1(→) row 6
\end{align*}
\]

if \(N[A] = 0\) and \(N[B] = 2\), then \(N[~A \rightarrow B] = 0\). The calculation is straightforward based on the tables. And similarly for sentential forms of arbitrary complexity. Say a form is select iff it takes the value 0 on every numerical interpretation of its parts. (Compare the notion of semantic validity on which a form is valid iff it is T on every interpretation of its parts.) Again, do not worry about what the tables mean. They are constructed for the special purpose of demonstrating independence: We show that every consequence of A2 and A3 is select, but A1 is not. It follows that A1 is not a consequence of A2 and A3.

To see that A3 is select, and that A1 is not, all we have to do is complete the tables.
CHAPTER 11. MORE MAIN RESULTS

Since A_1 has twos in the second and sixth rows, A_1 is not select. Since A_3 has zeros in every row, it is select. Alternatively, for A_1, we might have reasoned as follows,

Suppose $N[A] = 0$ and $N[B] = 1$. Then by $A_1(\rightarrow)$, $N[B \rightarrow A] = 2$; so by $A_1(\rightarrow)$ again, $N[A \rightarrow (B \rightarrow A)] = 2$. Since there is such an assignment, $A \rightarrow (B \rightarrow A)$ is not select.

And the result is the same. To see that A_2 is select, again, it is enough to complete the table—it is painful, but we can do it. See the table on page 537. So both A_2 and A_3 are select. But now we are in a position to show,

T11.6. In the sentential fragment of AD, axiom A_1 is independent of A_2 and A_3.

Consider any derivation $\langle Q_1, Q_2 \ldots Q_n \rangle$ where there are no premises, and the only axioms are instances of A_2 and A_3. By induction on line number, for any i, Q_i is select.

Basis: Q_1 is an instance of A_2 or A_3, and as we have just seen, instances of A_2 and A_3 are select. So Q_1 is select.

Assp: For any i, $0 \leq i < k$, Q_i is select.

Show: Q_k is select.

Q_k is an instance of A_2 or A_3 or arises from previous lines by MP. If Q_k is an instance of A_2 or A_3 then by reasoning as in the basis, Q_k is select. If Q_k arises from previous lines by MP, then the derivation has some lines,

\begin{align*}
a. & \ B \\
b. & \ B \rightarrow C \\
c. & \ C \quad a,b \text{ MP}
\end{align*}

where $a, b < k$ and C is Q_k. By assumption, $\ B$ and $\ B \rightarrow C$ are select. But from $A_1(\rightarrow)$ the only case where both $B \rightarrow C$ and B evaluate to 0 is the top row where C evaluates to 0 as well; so if both $B \rightarrow C$ and B are select, then C is select as well. So Q_k is select.
A2 is Select

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>((A \rightarrow (B \rightarrow C))) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>2 2 0</td>
<td>0 0 2</td>
<td>2 2</td>
</tr>
<tr>
<td>0 0 2</td>
<td>2 2 0</td>
<td>0 0 2</td>
<td>2 2</td>
</tr>
<tr>
<td>0 1 0</td>
<td>2 2 0</td>
<td>2 0 2</td>
<td>0 0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>2 2 0</td>
<td>2 0 2</td>
<td>0 0</td>
</tr>
<tr>
<td>0 1 2</td>
<td>0 0 0</td>
<td>2 0 2</td>
<td>0 0</td>
</tr>
<tr>
<td>0 2 0</td>
<td>0 0 0</td>
<td>2 0 2</td>
<td>0 0</td>
</tr>
<tr>
<td>0 2 1</td>
<td>0 0 0</td>
<td>2 0 2</td>
<td>0 0</td>
</tr>
<tr>
<td>0 2 2</td>
<td>0 0 0</td>
<td>2 0 2</td>
<td>0 0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>2 0 0</td>
<td>2 0 2</td>
<td>0 0</td>
</tr>
<tr>
<td>1 0 1</td>
<td>0 2 0</td>
<td>2 0 2</td>
<td>0 0</td>
</tr>
<tr>
<td>1 0 2</td>
<td>0 2 0</td>
<td>2 0 2</td>
<td>0 0</td>
</tr>
<tr>
<td>1 1 0</td>
<td>0 2 0</td>
<td>2 0 2</td>
<td>0 0</td>
</tr>
<tr>
<td>1 1 1</td>
<td>0 2 0</td>
<td>2 0 2</td>
<td>0 0</td>
</tr>
<tr>
<td>1 1 2</td>
<td>2 0 0</td>
<td>2 0 2</td>
<td>0 0</td>
</tr>
<tr>
<td>1 2 0</td>
<td>2 0 0</td>
<td>0 2 2</td>
<td>0 0</td>
</tr>
<tr>
<td>1 2 1</td>
<td>2 0 0</td>
<td>0 2 2</td>
<td>0 0</td>
</tr>
<tr>
<td>1 2 2</td>
<td>2 0 0</td>
<td>0 2 2</td>
<td>0 0</td>
</tr>
<tr>
<td>2 0 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>2 0 1</td>
<td>0 2 0</td>
<td>0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>2 0 2</td>
<td>0 2 0</td>
<td>0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>2 1 0</td>
<td>0 2 0</td>
<td>0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>2 1 1</td>
<td>0 2 0</td>
<td>0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>2 1 2</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>2 2 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>2 2 1</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>2 2 2</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Indct: For any \(n\), \(Q_n\) is select.

So A1 cannot be derived from A2 and A3—which is to say, A1 is independent of A2 and A3.

In fact multiple tables of the sort A1(\(\sim\)) and A1(\(\rightarrow\)) are sufficient for the result. We pick just one option. Similarly we may show,

T11.7. In the sentential fragment of AD, A2 is independent of A1 and A3, and A3 is independent of A1 and A2.

Homework.
Our independence results apply to the axioms of a derivation system. But independence results might also apply to axioms of a theory (like \(Q\) or \(PA\)). An important example is the demonstration that both the \textit{continuum hypothesis} and its negation are independent of the axioms of ZF set theory (see page 570n7). Such demonstrations often require considerable creativity—and results for the continuum hypothesis were a major achievement. Still, the basic idea of such demonstrations remains the same: independence is demonstrated by a structure on which other axioms and their consequences have some feature that the independent one lacks.

E11.6. Use the following tables to show that \(A_2\) is independent of \(A_1\) and \(A_3\).

\[
\begin{array}{c|c|c}
\mathcal{P} & \mathcal{Q} & \mathcal{P} \rightarrow \mathcal{Q} \\
0 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 1 \\
1 & 0 & 2 \\
1 & 1 & 0 \\
2 & 0 & 1 \\
2 & 1 & 0 \\
2 & 2 & 0 \\
\end{array}
\]

E11.7. Explain how E8.14 already shows that \(A_3\) is independent of \(A_1\) and \(A_2\) and so, with the previous exercise, complete the demonstration of T11.7.

E11.8. Produce tables to show that the axioms of \(A^*\) from E3.4 are independent of one another. You need not demonstrate independence by induction, but should briefly explain how your tables suffice. Hint: This exercise requires considerable ingenuity (and patience). Alternatively, given requisite background, you might employ a computing device to search by “brute force” for (three-valued) tables that do the job.

11.4 Beginning Model Theory

Model theory investigates relations between formal expressions and models. Put this way, soundness and completeness are already results in model theory. But many interesting results of this kind are possible, so that soundness and completeness are only a beginning. Introductions to model theory (for example Manzano, \textit{Model Theory}) typically presuppose a background including to groups, rings and fields (such
as would be part of a course in abstract algebra) and to transfinite arithmetic (such as would appear in a course on set theory). These supply examples and extend the range of results. The examples and results are beneficial given the required background, but a stumbling block without. Though I shall wave in the direction of some such results, our main discussion is restricted to more generally accessible applications and to the sets with which we are already familiar. Inevitably, notions from set theory extend what we have seen so far. However, I make every effort to explain concepts as they arise. The results remain interesting, and shall be sufficient for our purposes. After this brief introduction, we turn to some basic concepts (11.4.1), results from compactness (11.4.2), and some completeness results (11.4.3).

Let \(\Sigma \) be a set of sentences and \(\mathcal{M} \) a class of models. \(\Sigma \) is an \textit{axiomatization} of \(\mathcal{M} \) just in case \(\mathcal{M}[\Sigma] = T \) iff \(M \in \mathcal{M} \). So the members of \(\mathcal{M} \) are the models that make members of \(\Sigma \) true. \(\mathcal{M} \) is \textit{axiomatizable} iff it is axiomatized by some \(\Sigma \); \(\mathcal{M} \) is \textit{finitely axiomatizable} iff it is axiomatized by some finite \(\Sigma \) (if \(\mathcal{M} \) is finitely axiomatizable then it is also axiomatized by \(\{ P \} \) for \(P \) the conjunction of all the members of the finite set). Let \(\mathcal{M}(\Sigma) \) be the class of models axiomatized by \(\Sigma \). Notice that there must be some such class. In the extreme, if \(\Sigma \) is empty then (vacuously) the members of \(\Sigma \) are true on any model and \(\mathcal{M}(\Sigma) \) is the class of all models; if \(\Sigma \) is inconsistent, then by T10.4 its members are not true on any model and \(\mathcal{M}(\Sigma) \) is the empty class.

Given these notions, we may raise questions in two directions: We might start with a set of sentences and ask about the models axiomatized by it; or we might start with some models, and ask about sentences to axiomatize them. Thus, for example, we may ask if there is a \(\Sigma \) such that \(\mathcal{M}(\Sigma) \) is,

- the class of models whose only member is \(\mathbb{N} \)
- the class of all models with an infinite universe
- the class of all models with a finite universe

and, with vocabulary to be introduced below,

- the class of all models \textit{isomorphic} to \(\mathbb{N} \)
- the class of all models \textit{elementarily equivalent} to \(\mathbb{N} \)

The first four are among questions answered in this part. An answer to the last will have to wait for \textit{part IV}.
A qualification: On the usual account there is no set of all sets. This is a consequence of the way sets appear in an unending hierarchy such that the members of sets at any “rank” come from ranks below. The universe of an interpretation may be any set. Thus there is no set of all universes, and no set of all interpretations. Some theorists introduce proper classes as entities which may have sets from every rank as members. But then it is difficult to resist the suggestion that proper classes are themselves members of sets and are thus so many more members of the hierarchy of sets. We shall not enter into this controversy. For we may regard references to proper classes as an eliminable manner of speaking: By the metalanguage, we identify some feature of sets or models and talk about ones that have it. So, for example, where \mathcal{M} is the class of all models with a finite universe, $M \in \mathcal{M}$ just in case M has a finite universe. Talk of classes permits pleasingly concise specifications of that which would otherwise be awkward (and the use of Fraktur variables reminds us of the underlying metalinguistic specification).

11.4.1 Basic Concepts

I introduce some basic concepts and prove some results about them. We begin with a short section introducing relative notions of soundness and completeness. Then we turn to isomorphism and equivalence, and to submodels and embeddings.

Relative Soundness and Completeness

We shall be able locate different concepts of soundness and completeness under the single umbrella of a relative soundness and completeness.

As a preliminary, let $|\mathcal{M}|$ be the set of sentences that are true on each $M \in \mathcal{M}$, so $|\mathcal{M}| = \{P \mid \forall M \in \mathcal{M}, M[P] = T\}$. Roughly, as a class of models expands, the class of sentences true on all its members contracts. In the extreme, if \mathcal{M} is empty, then vacuously every P is true on each $M \in \mathcal{M}$, and $|\mathcal{M}|$ is the set of all sentences; if \mathcal{M} is the class of all models, then the members of $|\mathcal{M}|$ are just the tautologies, true on every M. In one direction, this sort of relation holds generally. In the other, we obtain a result for classes \mathcal{M} and $\mathcal{M}b(\Sigma)$.

T11.8. (i) If $\mathcal{A} \subseteq \mathcal{B}$ then $|\mathcal{B}| \subseteq |\mathcal{A}|$. And (ii) if $|\mathcal{M}b(\Sigma)| \subseteq |\mathcal{M}|$ then $\mathcal{M} \subseteq \mathcal{M}b(\Sigma)$.

(i) Suppose $\mathcal{A} \subseteq \mathcal{B}$. To show that $|\mathcal{B}| \subseteq |\mathcal{A}|$, suppose $P \in |\mathcal{B}|$, but $P \notin |\mathcal{A}|$. From the latter, there is some $M \in \mathcal{A}$ such that $M[P] \neq T$; but since $\mathcal{A} \subseteq \mathcal{B}$, $M \in \mathcal{B}$; so $P \notin |\mathcal{B}|$. This is impossible; reject the assumption; if $P \in |\mathcal{B}|$, then $P \in |\mathcal{A}|$; so $|\mathcal{B}| \subseteq |\mathcal{A}|$.

(ii) Suppose $|\mathcal{M}b(\Sigma)| \subseteq |\mathcal{M}|$. To show that $\mathcal{M} \subseteq \mathcal{M}b(\Sigma)$, suppose $M \in \mathcal{M}$ but $M \not\in \mathcal{M}b(\Sigma)$; from the latter, $M[\Sigma] \neq \top$; so there is some $P \in \Sigma$ such that $M[P] \neq \top$; so $P \not\in |\mathcal{M}|$. But since $P \in \Sigma$, $P \in |\mathcal{M}b(\Sigma)|$; and since $|\mathcal{M}b(\Sigma)| \subseteq |\mathcal{M}|$, $P \in |\mathcal{M}|$. This is impossible; reject the assumption: if $M \in \mathcal{M}$ then $M \in \mathcal{M}b(\Sigma)$; so $\mathcal{M} \subseteq \mathcal{M}b(\Sigma)$.

From the parts together, $\mathcal{M} \subseteq \mathcal{M}b(\Sigma)$ iff $|\mathcal{M}b(\Sigma)| \subseteq |\mathcal{M}|$. It is not always the case that if $|\mathcal{A}| \subseteq |\mathcal{B}|$ then $\mathcal{B} \subseteq \mathcal{A}$. To see this, suppose 1, J and K make all the same formulas true (we will meet cases of this kind below) where $\mathcal{A} = \{1, J\}$ and $\mathcal{B} = \{J, K\}$; then $|\mathcal{A}| \subseteq |\mathcal{B}|$ just because the sets are the same, but $\mathcal{B} \not\subseteq \mathcal{A}$. The key to (ii) of our theorem is that $\mathcal{M}b(\Sigma)$ includes all the models that make members of Σ true.

Say Σ is sound with respect to \mathcal{M} just in case for any sentence P, if $\Sigma \vdash P$ then $P \in |\mathcal{M}|$. Then Σ is sound with respect to \mathcal{M} just in case $|\mathcal{M}|$ includes all the members of $|\mathcal{M}b(\Sigma)|$.

T11.9. Σ is sound with respect to \mathcal{M} iff $|\mathcal{M}b(\Sigma)| \subseteq |\mathcal{M}|$.

(i) Suppose Σ is sound with respect to \mathcal{M}. To show that $|\mathcal{M}b(\Sigma)| \subseteq |\mathcal{M}|$ suppose $P \in |\mathcal{M}b(\Sigma)|$. Consider an arbitrary I such that $I[\Sigma] = \top$; then $I \in \mathcal{M}b(\Sigma)$; and since $P \in |\mathcal{M}b(\Sigma)|$, $I[P] = \top$; so since I is arbitrary, $\Sigma \vdash P$; so by completeness, $\Sigma \vdash P$; and since Σ is sound with respect to \mathcal{M}, $P \in |\mathcal{M}|$. And since this is so for any P, $|\mathcal{M}b(\Sigma)| \subseteq |\mathcal{M}|$.

(ii) Suppose $|\mathcal{M}b(\Sigma)| \subseteq |\mathcal{M}|$. To show that Σ is sound with respect to \mathcal{M}, suppose $\Sigma \vdash P$. Consider an arbitrary $M \in \mathcal{M}b(\Sigma)$; then $M[\Sigma] = \top$; so by soundness $M[P] = \top$; and since this is so for arbitrary $M \in \mathcal{M}b(\Sigma)$, $P \in |\mathcal{M}b(\Sigma)|$; and since $|\mathcal{M}b(\Sigma)| \subseteq |\mathcal{M}|$, $P \in |\mathcal{M}|$. And since this is so for any P, Σ is sound with respect to \mathcal{M}.

As immediate corollaries: From $|\mathcal{M}b(\Sigma)| \subseteq |\mathcal{M}b(\Sigma)|$ it follows that Σ is sound with respect to $\mathcal{M}b(\Sigma)$. And by T11.8, $\mathcal{M} \subseteq \mathcal{M}b(\Sigma)$ iff $|\mathcal{M}b(\Sigma)| \subseteq |\mathcal{M}|$, so Σ is sound with respect to \mathcal{M} iff $\mathcal{M} \subseteq \mathcal{M}b(\Sigma)$. Σ is sound with respect to some models just in case they are among the models on which all the members of Σ are true.

Our reasoning appeals to soundness and completeness. Correspondingly there is a sort of equivalence between soundness and relative soundness. Say derivations are sound for sentences just in case for any sentence P, if $\Sigma \vdash P$ then $\Sigma \vdash P$.

T11.10. Derivations are sound for sentences iff every set Σ is sound with respect to $\mathcal{M}b(\Sigma)$.
(i) Suppose soundness for sentences. To show that every \(\Sigma \) is sound with respect to \(\mathcal{M}(\Sigma) \), consider arbitrary \(\Sigma \) and \(\mathcal{P} \) and suppose \(\Sigma \vdash \mathcal{P} \). Consider an arbitrary \(M \in \mathcal{M}(\Sigma) \); then \(M[\Sigma] = T \); so by soundness \(M[\mathcal{P}] = T \); and since this is so for any \(M \in \mathcal{M}(\Sigma) \), \(\mathcal{P} \in |\mathcal{M}(\Sigma)| \). So \(\Sigma \) is sound with respect to \(\mathcal{M}(\Sigma) \).

(ii) Suppose every \(\Sigma \) is sound with respect to \(\mathcal{M}(\Sigma) \). To show soundness for sentences, consider arbitrary \(\Sigma \) and \(\mathcal{P} \) and suppose \(\Sigma \vdash \mathcal{P} \). Consider an arbitrary \(I \) such that \(I[\Sigma] = T \); then \(I \in \mathcal{M}(\Sigma) \), and since \(\Sigma \) is sound with respect to \(\mathcal{M}(\Sigma) \), \(\mathcal{P} \in |\mathcal{M}(\Sigma)| \); so \(I[\mathcal{P}] = T \); so since \(I \) is arbitrary, \(\Sigma \vdash \mathcal{P} \). So derivations are sound.

Now say \(\Sigma \) is complete with respect to \(\mathcal{M} \) just in case for any sentence \(\mathcal{P} \), if \(\mathcal{P} \in |\mathcal{M}| \) then \(\Sigma \vdash \mathcal{P} \). Trivially, \(|\mathcal{M}| \) is complete with respect to \(\mathcal{M} \)—if \(\mathcal{P} \in |\mathcal{M}| \) then \(|\mathcal{M}| \vdash \mathcal{P} \). So specified, however, there may be no reasonable way to identify the individual sentences that are members of \(|\mathcal{M}| \). Ordinarily, we shall be interested in cases where there is some reasonable syntactic method for identifying the members of \(\Sigma \) (a notion to be made precise in part IV). The (universal closures of) axioms of Q and PA are examples sets identified in this way. And now we have theorems like ones for relative soundness. Say derivations are complete for sentences just in case for any sentence \(\mathcal{P} \), if \(\Sigma \vdash \mathcal{P} \), then \(\Sigma \vdash \mathcal{P} \).

*T11.11. \(\Sigma \) is complete with respect to \(\mathcal{M} \) iff \(|\mathcal{M}| \subseteq |\mathcal{M}(\Sigma)| \).

Homework.

*T11.12. Derivations are complete for sentences iff every set \(\Sigma \) is complete with respect to \(\mathcal{M}(\Sigma) \).

Homework.

Again as immediate corollaries, \(\Sigma \) is complete with respect to \(\mathcal{M}(\Sigma) \). And from T11.8, if \(\mathcal{M}(\Sigma) \subseteq \mathcal{M} \) then \(|\mathcal{M}| \subseteq |\mathcal{M}(\Sigma)| \); so if \(\mathcal{M}(\Sigma) \subseteq \mathcal{M} \) then \(\Sigma \) is complete with respect to \(\mathcal{M} \). \(\Sigma \) is complete with respect to some models if they include the models on which \(\Sigma \) is true.

T11.10 and T11.12 connect soundness and completeness to relative soundness and completeness. We make the connection to soundness and completeness in the next section.

*E11.9. Show T11.11 and T11.12
Isomorphism and Equivalence

In general, a (total) function f from r^n to s maps each member of r^n to some member of s. Very often we have seen cases where both r and s are the universe of an interpretation and so the same set, but this is not required. f is onto iff for every member of s, there is some member of r^n that maps to it. And f is one-to-one (1:1) iff different members of r^n never map to the same member of s. So, for example, each of the following satisfy the described conditions.

<table>
<thead>
<tr>
<th>r^n</th>
<th>s</th>
<th>r^n</th>
<th>s</th>
<th>r^n</th>
<th>s</th>
<th>r^n</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>![Diagram](1:1, onto)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each is total. The first is neither onto nor 1:1; the second is onto but not 1:1; the third is 1:1 but not onto; and the last is 1:1 and onto. So a (total) 1:1 function from r^n onto s "matches" the members of r^n with the members of s.

Given this, interpretations are isomorphic when they have a sort of structural similarity that results by a 1:1 function from the universe of one onto the universe of the other.

IS For some language L, interpretation I is ι-isomorphic to interpretation I' ($I \cong I'$) iff ι (iota) is a 1:1 function from the universe of I onto the universe of I' and,

(s) For any sentence letter δ, $I[\delta] = I'[\delta]$.
(c) For any constant c, $I[c] = m$ iff $I'[c] = \iota(m)$.
(r) For any relation symbol R^n, $\langle m_a \ldots m_b \rangle \in I[R^n]$ iff $\langle \iota(m_a) \ldots \iota(m_b) \rangle \in I'[R^n]$.
(f) For any function symbol h^n, $\langle \langle m_a \ldots m_b \rangle, o \rangle \in I[h^n]$ iff $\langle \langle \iota(m_a) \ldots \iota(m_b) \rangle, \iota(o) \rangle \in I'[h^n]$.

If there is some ι such that $I \cong I'$, then I is isomorphic to I' ($I \cong I'$). For an isomorphism, the interpretation of sentence letters is the same. Then ι maps one interpretation into the other. Notice that the condition on constants sets $I'[c] = \iota(m) = \iota(I[c])$ insofar as $I[c]$ just is m. And similarly, the condition on function symbols sets $I'[h^n](\iota(m_a) \ldots \iota(m_b)) = \iota(o) = \iota(I[h^n](m_a \ldots m_b))$ insofar as $I[h^n](m_a \ldots m_b)$ just

1 A function which is onto is very often called a surjection, a function which is 1:1 an injection and one which is both 1:1 and onto a bijection.
is 0. We might think of the two interpretations as already existing, and finding a function \(\iota \) to exhibit them as isomorphic. Alternatively, given an interpretation \(I \) and 1:1 function \(\iota \) from the universe of \(I \) onto some set \(U' \), we might think of \(I' \) as resulting from application of \(\iota \) to \(I \).

Here are some examples. In the first, it is perhaps particularly obvious that \(I \) and \(I' \) have the described structural similarity.

\[
\begin{array}{cccc}
U & \text{Balto} & \text{Fido} & \text{Coco} & \text{Milo} \\
(\text{H}) & \Downarrow & \Downarrow & \Downarrow & \Downarrow \\
U' & \text{Benji} & \text{Fang} & \text{Cookie} & \text{Morris}
\end{array}
\]

\(U = \{ \text{Balto, Fido, Coco, Milo} \} \). As represented by the arrows, function \(\iota \) maps these onto a disjoint set \(U' \). Then given the intended interpretation \(I \) as below, the corresponding isomorphic interpretation is \(I' \) as on the right.

\[
\begin{align*}
|b| &= \text{Balto} & I'[b] &= \text{Benji} \\
|c| &= \text{Coco} & I'[c] &= \text{Cookie} \\
|D| &= \{ \text{Balto, Fido} \} & I'[D] &= \{ \text{Benji, Fang} \} \\
|C| &= \{ \text{Coco, Milo} \} & I'[C] &= \{ \text{Cookie, Morris} \} \\
|P| &= \{ \{ \text{Balto, Coco} \}, \{ \text{Fido, Milo} \} \} & I'[P] &= \{ \{ \text{Benji, Cookie} \}, \{ \text{Fang, Morris} \} \}
\end{align*}
\]

On interpretation \(I \), where Balto and Fido are dogs, and Coco and Milo are cats, and \(P \) represents pursuit, we have that every dog pursues at least one cat. So \(Db \) and \(Cc \) and \(\forall x (Dx \rightarrow \exists y (Cy \land Py)) \). And, supposing that Benji and Fang are dogs, and Cookie and Morris are cats, the same properties and relations are preserved on \(I' \)—with only the particular individuals switched.

For a second case, let \(U \) be the same, but \(U'' \) the very same set, only permuted or shuffled so that each object in \(U \) has a mate in \(U'' \).

\[
\begin{array}{cccc}
U & \text{Balto} & \text{Fido} & \text{Coco} & \text{Milo} \\
(\text{I}) & \Downarrow & \Downarrow & \Downarrow & \Downarrow \\
U'' & \text{Balto} & \text{Coco} & \text{Fido} & \text{Milo}
\end{array}
\]

So \(\iota \) maps members of \(U \) to members of the very same set. Then given \(I \) as before, the corresponding isomorphic interpretation is \(I'' \) is as follows.

\[
\begin{align*}
|b| &= \text{Balto} & I''[b] &= \text{Balto} \\
|c| &= \text{Coco} & I''[c] &= \text{Fido} \\
|D| &= \{ \text{Balto, Fido} \} & I''[D] &= \{ \text{Balto, Coco} \} \\
|C| &= \{ \text{Coco, Milo} \} & I''[C] &= \{ \text{Fido, Milo} \} \\
|P| &= \{ \{ \text{Balto, Coco} \}, \{ \text{Fido, Milo} \} \} & I''[P] &= \{ \{ \text{Balto, Fido} \}, \{ \text{Coco, Milo} \} \}
\end{align*}
\]

This time, there is no simple way to understand \(I''[D] \) as the set of all dogs, and \(I''[C] \) as the set of all cats. And we cannot say that the interpretation of \(P \) reflects dogs
pursuing cats. But Coco plays the same role in I" as Fido in I; and similarly Fido plays the same role in I" as Coco in I. Thus, on I", it remains that \(Db \) and \(Cc \) and that each thing in the interpretation of \(D \) stands in the relation \(P \) to at least one thing in the interpretation of \(C \) so that \(\forall x (Dx \rightarrow \exists y (Cy \land Pxy)) \)—and this is just as in interpretation I.

A final example switches to \(L_{NT} \) and has an infinite \(U \). We let \(U \) be the set \(\mathbb{N} \) of natural numbers, \(U' \) the set \(\mathbb{P} \) of positive integers, and \(i \) be the function \(n + 1 \).

Then where \(N \) is the standard interpretation for the symbols of \(L_{NT} \),
\[
\begin{align*}
N[0] &= 0 \\
N[S] &= \{ (m, n) \mid m, n \in \mathbb{N}, \text{ and } n \text{ is the successor of } m \} \\
N[+] &= \{ (m, n, o) \mid m, n, o \in \mathbb{N}, \text{ and } m \text{ plus } n \text{ equals } o \} \\
N[x] &= \{ (m, n, o) \mid m, n, o \in \mathbb{N}, \text{ and } m \text{ times } n \text{ equals } o \}
\end{align*}
\]
we obtain \(N' \) as follows,
\[
\begin{align*}
N'[0] &= 1 \\
N'[S] &= \{ (m + 1, n + 1) \mid m, n \in \mathbb{N}, \text{ and } n \text{ is the successor of } m \} \\
N'[+] &= \{ (m + 1, n + 1, o + 1) \mid m, n, o \in \mathbb{N}, \text{ and } m \text{ plus } n \text{ equals } o \} \\
N'[x] &= \{ (m + 1, n + 1, o + 1) \mid m, n, o \in \mathbb{N}, \text{ and } m \text{ times } n \text{ equals } o \}
\end{align*}
\]
We build \(N' \) explicitly by the rule for isomorphisms—simply finding \(i(m) = m + 1 \) for each object in \(N \). In this case, we cannot understand \(N'[+] \) and \(N'[x] \) as the ordinary addition and multiplication functions: for example, since \(\langle 1, 1, 2 \rangle \in N[+] \), \(\langle 2, 2, 3 \rangle \in N'[+] \)—and, of course, \(\langle 2, 2, 3 \rangle \not\in N[+] \). Nevertheless, insofar as matched objects play the same role on the different interpretations, the same sentences come out true on \(N \) as on \(N' \). So, for example, \(S0 + S0 = SS0 \) is true on \(N \) and, insofar as \(N[S0] = 2 \) and \(N'[SS0] = 3 \), on \(N' \) as well. This is very much as for examples (H) and (I).

We shall be able to show that this sort of relation holds in general for isomorphic interpretations. First,

\[
\text{EE For some language } \mathcal{L}, \text{ interpretations } I \text{ and } I' \text{ are elementarily equivalent } (I \equiv I') \iff \text{for any sentence } \mathcal{P}, I[\mathcal{P}] = T \iff I'[\mathcal{P}] = T.
\]

We show that isomorphic interpretations are elementarily equivalent. This is straightforward given a matched pair of results, of the sort we have seen before.
CHAPTER 11. MORE MAIN RESULTS

T11.13. For some language \(\mathcal{L} \), if interpretations \(D \parallel H \), and assignments \(d \) for \(D \) and \(h \) for \(H \) are such that for any \(x \), \(\iota(d[x]) = h[x] \), then for any term \(t \), \(\iota(D_d[t]) = H_h[t] \).

Suppose \(D \parallel H \), and corresponding assignments \(d \) and \(h \) are such that for any \(x \), \(\iota(d(x)) = h(x) \). By induction on the number of operator symbols in \(t \).

Basis: If \(t \) has no function symbols, then it is a variable or a constant. If \(t \) is a variable \(x \), then by \(\text{TA}(v) \), \(D_d[x] = d(x) \); so \(\iota(D_d[x]) = \iota(d(x)) \); but we have supposed \(\iota(d(x)) = h[x] \); and by \(\text{TA}(v) \) again, \(h[x] = H_h[x] \); so \(\iota(D_d[x]) = H_h[x] \). If \(t \) is a constant \(c \), then by \(\text{TA}(c) \), \(D_d[c] = D[c] \); so \(\iota(D_d[c]) = \iota(D[c]) \); but since \(D \parallel H \), \(\iota(D[c]) = H[c] \); and by \(\text{TA}(c) \) again, \(H[c] = H_h[c] \); so \(\iota(D_d[c]) = H_h[c] \).

Assp: For any \(i \), \(0 \leq i < k \) if \(t \) has \(i \) function symbols, then \(\iota(D_d[t]) = H_h[t] \).

Show: If \(t \) has \(k \) function symbols, then \(\iota(D_d[t]) = H_h[t] \).

If \(t \) has \(k \) function symbols, then it is of the form \(h^n s_1 \ldots s_n \) for relation symbol \(h^n \) and terms \(s_1 \ldots s_n \) with \(< k \) function symbols. Then \(D_d[t] = D_d[h^n s_1 \ldots s_n] \); by \(\text{TA}(f) \), \(D_d[h^n s_1 \ldots s_n] = D[h^n][D_d[s_1] \ldots D_d[s_n]] \). So \(\iota(D_d[t]) = \iota(D[h^n][D_d[s_1] \ldots D_d[s_n]]) \); but since \(D \parallel H \), \(\iota(D[h^n][D_d[s_1] \ldots D_d[s_n]]) = H[h^n][\iota(D_d[s_1]) \ldots \iota(D_d[s_n])] \); and by the assumption, \(\iota(D_d[s_1]) = H_h[s_1] \), and \(\ldots \) and \(\iota(D_d[s_n]) = H_h[s_n] \); so \(H[h^n][\iota(D_d[s_1]) \ldots \iota(D_d[s_n])] = H[h^n][H_h[s_1] \ldots H_h[s_n]] \); and by \(\text{TA}(f) \), \(H[h^n][H_h[s_1] \ldots H_h[s_n]] = H_h[h^n s_1 \ldots s_n] \); which is just \(H_h[t] \); so \(\iota(D_d[t]) = H_h[t] \).

Indct: For any \(t \), \(\iota(D_d[t]) = H_h[t] \).

So when \(D \) and \(H \) are \(\iota \)-isomorphic and for any variable \(x \), \(\iota \) maps \(d[x] \) to \(h[x] \), then for any term \(t \), \(\iota \) maps \(D_d[t] \) to \(H_h[t] \).

Now we are in a position to extend the result to one for satisfaction of formulas. If \(D \) and \(H \) are \(\iota \)-isomorphic, and for any variable \(x \), \(\iota \) maps \(d[x] \) to \(h[x] \), then a formula \(\mathcal{P} \) will be satisfied on \(D \) with \(d \) just in case it is satisfied on \(H \) with \(h \).

*T11.14. For some language \(\mathcal{L} \), if interpretations \(D \parallel H \) and assignments \(d \) for \(D \) and \(h \) for \(H \) are such that for any \(x \), \(\iota(d[x]) = h[x] \), then for any formula \(\mathcal{P} \), \(D_d[\mathcal{P}] = S \) iff \(H_h[\mathcal{P}] = S \).

By induction on the number of operators in \(\mathcal{P} \). Suppose \(D \parallel H \).

Basis: Suppose \(\mathcal{P} \) has no operator symbols and \(d \) and \(h \) are such that for any \(x \), \(\iota(d[x]) = h[x] \). Then \(\mathcal{P} \) is sentence letter \(S \) or an atomic \(R^n t_1 \ldots t_n \) for
relation symbol R^n and terms $t_1 \ldots t_n$. Suppose the former; then by $SF(s)$, $D_d[\delta] = S$ iff $D[\delta] = T$; since $D \not\models H$ iff $H[\delta] = T$; by $SF(s)$, iff $H_n[\delta] = S$. Suppose the latter; by $SF(r)$, $D_d[R^n t_1 \ldots t_n] = S$ iff $(D_d[t_1] \ldots D_d[t_n]) \in D[R^n]$; since $D \not\models H$, iff $(t(D_d[t_1]) \ldots t(D_d[t_n])) \in H[R^n]$; since $D \not\models H$ and $t(d[x]) = h[x]$, by T11.13, iff $(H_n[t_1] \ldots H_n[t_n]) \in H[R^n]$; by $SF(r)$, iff $H_n[R^n t_1 \ldots t_n] = S$.

Ass: For any i, $0 \leq i < k$, for P with i operator symbols and any d and h such that for any x, $t(d[x]) = h[x]$, $D_d[P] = S$ iff $H_n[P] = S$.

Show: For any P with k operator symbols and any d and h such that for any x, $t(d[x]) = h[x]$, $D_d[P] = S$ iff $H_n[P] = S$.

If P has k operator symbols, then it is of the form $\neg A$, $A \rightarrow B$, or $\forall x A$ for variable x and formulas A and B with $< k$ operator symbols. Suppose for any x, $t(d[x]) = h[x]$.

(\neg) Suppose P is of the form $\neg A$. Then $D_d[P] = S$ iff $D_d[\neg A] = S$; by $SF(\neg)$, iff $D_d[A] \neq S$; by assumption, iff $H_n[A] \neq S$; by $SF(\neg)$, iff $H_n[\neg A] = S$; iff $H_n[P] = S$.

(\forall) Suppose P is of the form $\forall x A$. (i) Suppose $H_n[P] = S$ but $D_d[P] \neq S$; then $H_n[\forall x A] = S$ but $D_d[\forall x A] \neq S$; from the latter, by $SF(\forall)$, there is some $m \in U_d$ such that $D_d(x|m)[A] \neq S$; but $d(x|m)$ and $h(x|t(m))$ have all their members related by t; so by assumption $H_n(x|m)[A] \neq S$; so there is an $a \in U_d$ such that $H_n(x|a)[A] \neq S$; so by $SF(\forall)$, $H_n[P] \neq S$. This is impossible; reject the assumption: if $H_n[P] = S$, then $D_d[P] = S$. (ii) And similarly, [by homework] in the other direction.

For d and h such that for any x, $t(d[x]) = h[x]$ and P with k operator symbols, $D_d[P] = S$ iff $H_n[P] = S$.

Induct: For d and h such that for any x, $t(d[x]) = h[x]$, and any P, $D_d[P] = S$ iff $H_n[P] = S$.

As often occurs, the most difficult case is for the quantifier. The key is that the assumption applies to $D_d[P]$ and $H_n[P]$ for *any* assignments d and h related so that for any x, $t(d[x]) = h[x]$. Supposing that d and h are so related, there is no reason to think that $d(x|m)$ and h remain in that relation. The problem is solved with a corresponding modification to h: with $d(x|m)$; we modify h so that the assignment to x simply is $t(m)$. Thus $d(x|m)$ and $h(x|t(m))$ are related so that the assumption applies.

Now it is a simple matter to show that isomorphic models are elementarily equivalent.
T11.15. If $D \models H$, then $D \equiv H$.

Suppose $D \models H$; then there is some ι such that $D \not\models H$; and where d and h are related as in T11.14, $D_d[\mathcal{P}] = S$ iff $H_h[\mathcal{P}] = S$. Consider an arbitrary sentence \mathcal{P}; by T8.7, $D_d[\mathcal{P}] = T$ iff there is some assignment d such that $D_d[\mathcal{P}] = S$; iff $H_h[\mathcal{P}] = S$; by T8.7 again iff $H[\mathcal{P}] = T$. So $D_d[\mathcal{P}] = T$ iff $H[\mathcal{P}] = T$; so $D \models H$.

Suppose $M \in \mathcal{N}(\Sigma)$ and $L \equiv M$; then $M[\Sigma] = T$, and by this theorem, $L \models M$; so $L(\Sigma) = T$ and $L \in \mathcal{N}(\Sigma)$. At best, then, a set of formulas characterizes models “up to isomorphism”—if $M \in \mathcal{N}(\Sigma)$ then $\mathcal{N}(\Sigma)$ includes all the models isomorphic to M. This already answers the first question posed in the introduction to section 11.4: if $N \in \mathcal{N}(\Sigma)$ then any $L \equiv N$ is in $\mathcal{N}(\Sigma)$ as well; so there is no Σ such that $\mathcal{N}(\Sigma)$ is the class whose only member is N (that there are interpretations isomorphic to N is immediate from example (J)). Note also that we now have the definitions at least to understand the last two questions.

Given notions of isomorphism and equivalence, let us briefly return to relative soundness and completeness. This time we connect relative soundness and completeness with soundness and completeness. Associate Σ with a class \mathcal{F} of intended models. Then Σ is sound iff it is sound with respect to \mathcal{F}, so for any sentence \mathcal{P} if $\Sigma \vdash \mathcal{P}$, then $\mathcal{P} \in \mathcal{F}$. One option is to specify \mathcal{F} by the members of Σ and set $\mathcal{F} = \mathcal{N}(\Sigma)$; then by T11.9, it is immediate that Σ is sound with respect to \mathcal{F}. Alternatively, and more relevantly for our purposes, \mathcal{F} might be independently specified; thus the intended interpretation for Q and PA is just N. In general, from T11.9, Σ is sound iff $\mathcal{F} \subseteq \mathcal{N}(\Sigma)$. From this, soundness is closely related to logical soundness from chapter 1: given soundness, Σ entails whatever it proves—soundness then adds the requirement that the members of Σ be true on intended models.

Σ is (negation) complete iff $\Sigma \vdash \mathcal{P}$ or $\Sigma \vdash \sim \mathcal{P}$ for every sentence \mathcal{P} of its language. So completeness is like maximality from chapter 10. Drawing on the soundness and completeness of Σ relative to $\mathcal{N}(\Sigma)$ from T11.9 and T11.11, we show that Σ is complete iff all the members of $\mathcal{N}(\Sigma)$ are elementarily equivalent.

*T11.16. Σ is complete iff for all $L, M \in \mathcal{N}(\Sigma)$, $L \models M$.

The left-to-right direction is homework. For the other direction, suppose that for all $L, M \in \mathcal{N}(\Sigma)$, $L \models M$.

2In Reason, Truth and History, Hilary Putnam makes this point to show that truth values of sentences are not sufficient to fix the interpretation of a language. The technical point is clear enough. It is another matter whether it bears the philosophical weight he means for it to bear!
Suppose $\mathbb{M}(\Sigma) = \phi$; then Σ does not have any model; so by T10.17, Σ is inconsistent; so for any $\mathcal{P} \in \mathbb{L}$, $\Sigma \vdash \mathcal{P}$ (and $\Sigma \vdash \sim \mathcal{P}$); so for any $\mathcal{P} \in \mathbb{L}$, $\Sigma \vdash \mathcal{P}$ or $\Sigma \vdash \sim \mathcal{P}$. So Σ is complete.

Suppose $\mathbb{M}(\Sigma) \neq \phi$; then there is some $M \in \mathbb{M}(\Sigma)$; and $M[\Sigma] = T$. For any sentence \mathcal{P}, either $M[\mathcal{P}] = T$ or $M[\mathcal{P}] \neq T$. Suppose $M[\mathcal{P}] = T$ and consider an arbitrary $L \in \mathbb{M}(\Sigma)$; since $L \equiv M$, $L[\mathcal{P}] = T$; and since L is arbitrary $\mathcal{P} \in |\mathbb{M}(\Sigma)|$; so by relative completeness, $\Sigma \vdash \mathcal{P}$; so $\Sigma \vdash \mathcal{P}$ or $\Sigma \vdash \sim \mathcal{P}$. Suppose $M[\mathcal{P}] \neq T$ and consider an arbitrary $L \in \mathbb{M}(\Sigma)$; then by T8.8, $M[\sim \mathcal{P}] = T$; since $L \equiv M$, $L[\sim \mathcal{P}] = T$; and since L is arbitrary, $\sim \mathcal{P} \in |\mathbb{M}(\Sigma)|$; so by relative completeness, $\Sigma \vdash \sim \mathcal{P}$; so $\Sigma \vdash \mathcal{P}$ or $\Sigma \vdash \sim \mathcal{P}$. In either case $\Sigma \vdash \mathcal{P}$ or $\Sigma \vdash \sim \mathcal{P}$; so Σ is complete.

Say Σ is categorical iff it characterizes models up to isomorphism, iff for any $L, M \in \mathbb{M}(\Sigma)$, $L \simeq M$. Then as a quick corollary to T11.16, if Σ is categorical, it is complete.

Suppose Σ is categorical; and consider arbitrary $L, M \in \mathbb{M}(\Sigma)$, since Σ is categorical, $L \simeq M$; so by T11.15, $L \equiv M$; and since L and M are arbitrary, for all $L, M \in \mathbb{M}(\Sigma)$, $L \equiv M$; so by T11.16, Σ is complete.

E11.10. (i) Explain what truth value the sentence $\sim \exists x (Dx \land \forall y (Cy \rightarrow Pxy))$ has on interpretation I and then I' in example (H). Explain what truth value it has on I'' in example (I). (ii) Explain what truth value the sentence $\exists x (x + x = x)$ has on interpretations N and N' in example (J). Are these results as you expect? Explain.

*E11.11. Complete the proof of T11.14 including the cases for \rightarrow and \forall. You should set up the complete induction, but may refer to the text, as the text refers to homework. Hint for the quantifier case: Since ι is onto U_Σ, for any $m \in U_\Sigma$ there must be some $n \in U_D$ such that $\iota(n) = m$; so $d(x|n)$ and $h(x|m)$ are related as the assumption requires.

*E11.12. Complete the proof of T11.16.
First Theorems of Chapter 11

T11.1 It is possible to represent any truth function by means of an expression with just the operators $\neg, \land,$ and \lor.

T11.2 It is possible to represent any truth function by means of an expression with just the operators \neg and \rightarrow, with just the operators \neg and \land, and with just the operators \neg and \lor.

T11.3 For any formula P of L_4, exactly one of the following holds: (i) P is a sentence letter; (ii) there is a formula A such that P is $\neg A$; (iii) there are formulas A and B such that P is $(A \rightarrow B)$.

T11.4 If A is a formula of L_4, then no proper initial segment of A is a formula.

T11.5 For any formula P of L_4, exactly one of the following holds: (i) P is a sentence letter; (ii) there is a unique formula A such that P is A; (iii) there are unique formulas A and B such that P is $A \rightarrow B$.

T11.6 In the sentential fragment of AD, axiom A1 is independent of A2 and A3.

T11.7 In the sentential fragment of AD, A2 is independent of A1 and A3, and A3 is independent of A1 and A2.

T11.8 (i) If $\mathfrak{A} \subseteq \mathfrak{B}$ then $|\mathfrak{B}| \leq |\mathfrak{A}|$. And (ii) if $|\mathfrak{M}b(\Sigma)| \subseteq |\mathfrak{M}|$ then $\mathfrak{M} \subseteq \mathfrak{M}b(\Sigma)$.

T11.9 Σ is sound with respect to \mathfrak{M} iff $|\mathfrak{M}b(\Sigma)| \subseteq |\mathfrak{M}|$.

T11.10 Derivations are sound for sentences iff every set Σ is sound with respect to $\mathfrak{M}b(\Sigma)$.

T11.11 Σ is complete with respect to \mathfrak{M} iff $|\mathfrak{M}| \subseteq |\mathfrak{M}b(\Sigma)|$.

T11.12 Derivations are complete for sentences iff every set Σ is complete with respect to $\mathfrak{M}b(\Sigma)$.

T11.13 For some language L, if interpretations $D \cong H$, and assignments d for D and h for H are such that for any x, $\iota(d[x]) = h[x]$, then for any term t, $\iota(D_d[t]) = H_h[t]$.

T11.14 For some language L, if interpretations $D \cong H$ and assignments d for D and h for H are such that for any x, $\iota(d[x]) = h[x]$, then for any formula P, $D_d[P] = S$ iff $H_h[P] = S$.

T11.15 If $D \equiv H$, then $D \equiv H$.

T11.16 Σ is complete iff for all $L, M \in \mathfrak{M}b(\Sigma)$, $L \equiv M$.

Corollary: If Σ is categorical then Σ is complete.
Submodel and Embedding

The notions of submodel, elementary submodel, embedding, and elementary embedding play an important role in model theory. We introduce them here.

First submodel. For a relation r^n say the \textit{restriction} of r^n to set s, $r^n \upharpoonright s = \{(m_1 \ldots m_n) \mid (m_1 \ldots m_n) \in r^n \text{ and } (m_1 \ldots m_n) \in s^n\}$. We take just the members of r^n that are included in s^n. Similarly, for a function f^n, the \textit{restriction} of f^n to s, $f^n \upharpoonright s = \{(\langle m_1 \ldots m_n \rangle, a) \mid (m_1 \ldots m_n) \in r^n \text{ and } (m_1 \ldots m_n) \in s^n\}$. We take the members of f^n whose inputs are included in s^n. A set s is \textit{closed} under f^n just in case whenever $\langle (m_1 \ldots m_n), a \rangle \in f^n \upharpoonright s$, then $a \in s$. So, for example, let $2\mathbb{N}$ be the set $\{0, 2, 4 \ldots\}$ of even numbers. Then the usual addition function $+$ restricted to $2\mathbb{N}$ includes pairs $\langle (2, 2), 4 \rangle, \langle (2, 4), 6 \rangle$ and so forth; and insofar as the sum of two evens is always even, $2\mathbb{N}$ is closed under $+$. The usual successor function suc restricted to $2\mathbb{N}$ has members $\langle 0, 1 \rangle, \langle 2, 3 \rangle, \langle 4, 5 \rangle, \langle 6, 7 \rangle$ and so forth; but insofar as successors of evens are odd, $2\mathbb{N}$ is not closed under suc. For model M of some language \mathcal{L}, and some $V \subseteq U$, say V is \textit{closed under the constants of} M just in case for any constant symbol c, $M[c] \in V$. And V is \textit{closed under the functions of} M just in case for any function symbol \dot{h}, V is closed under $M[\dot{h}]$.

Given this, the relations and functions in a \textit{submodel} of M restrict the functions and relations of M to a subset of the universe of M.

\textbf{SM} A model L of a language \mathcal{L} is a \textit{submodel} of model M ($L \subseteq M$) iff

- (u) $U_L \subseteq U_M$, and U_L is closed under the constants and functions of M.
- (s) For any sentence letter δ, $L[\delta] = M[\delta]$.
- (c) For any constant c, $L(c) = M(c)$.
- (r) For any relation symbol R^n, $L[R^n] = M[R^n] \upharpoonright U_L$.

So $L \subseteq M$ when the relations and functions of L are restrictions of the relations and functions of M to U_L. Insofar as we require that the interpretation of any constant be a member of the universe, and that the elements in members of a function be from the universe, \textbf{SM} would fail to specify an interpretation apart from the requirements on U_L from (u). If M lacks constants and function symbols, then the restriction to any $U_L \subseteq U_M$ results in a submodel (because the constraints from (u) are trivially met). If there are no constants and all the functions are such that $\langle (m_1 \ldots m_n), a \rangle \in f$ only if a is among $m_1 \ldots m_n$ then, again, the constraints are automatically met. Otherwise, not every subset of U_M results in a submodel. But for any subset of U_M that meets the
conditions from (u), there is a submodel of M that restricts the relations and functions of M to that set.

For an example, consider a language like $\mathcal{L}_{\mathbb{N}}$ but without S, where $U_M = \mathbb{N}$ and $U_L = 2\mathbb{N}$. Then $U_L \subseteq U_M$. Let,

$$M[\emptyset] = 0$$

$$M[<] = \{ (m, n) \mid m, n \in \mathbb{N}, \text{ and } m \text{ is less than } n \}$$

(K) $$M[+] = \{ ((m, n), \alpha) \mid m, n, \alpha \in \mathbb{N}, \text{ and } m \text{ plus } n \text{ equals } \alpha \}$$

$M[x] = \{ ((m, n), \alpha) \mid m, n, \alpha \in \mathbb{N}, \text{ and } m \times n \text{ equals } \alpha \}$

$$L[\emptyset] = 0 : L[<] = M[<] \uparrow U_L : L[+] = M[+] \uparrow U_L : L[x] = M[x] \uparrow U_L$$

So M is the standard interpretation of these symbols, and L restricts its functions and relation to $2\mathbb{N}$. Insofar as the assignment to \emptyset is the same on M and L, and the sum of two evens is even, and the product of two evens is even, U_L is closed under the constants and functions of M; so $L \subseteq M$. For this submodel L, it remains that $L[+]$ and $L[x]$ work like (part of) the usual functions plus and times. If S were to have remained in the language (given its usual interpretation for M), then $L \not\subseteq M$ insofar as $2\mathbb{N}$ is not closed under succ. As specified, $L \neq \mathbb{N}$—so, for example, $\exists x (\emptyset < x \land x \times x = x)$ is true on M insofar as $1 \times 1 = 1$, but not true on L insofar as $1 \not\in U_L$. And since the interpretations are not elementarily equivalent, by T11.15 they are not isomorphic. If we were to have omitted \times from the language it would remain that $L \subseteq M$. In this case, however, $L \equiv M$—for $\epsilon(m) = 2m$ becomes a 1:1 function from \mathbb{N} to $2\mathbb{N}$ that maps one model into the other—and since these models are isomorphic, they are elementarily equivalent. So a submodel of M may but need not be isomorphic and/or equivalent to M.

But submodels may be restricted so that elementary submodels of M are elementarily equivalent to M.

ES L is an elementary submodel of M ($L \preceq M$) iff $L \subseteq M$ and for any formula \mathcal{P} of \mathcal{L} and variable assignment d into U_L, $L_d[\mathcal{P}] = S$ iff $M_d[\mathcal{P}] = S$.

So an elementary submodel is a submodel such that $L_d[\mathcal{P}] = M_d[\mathcal{P}]$ for any assignment d into U_L. Observe that $L \subseteq M$ and $L \equiv M$ do not imply $L \preceq M$. For consider (K) above without \times in the language. Then $L \equiv M$. But any d into $2\mathbb{N}$ such that $d[y] = 2$ has $M_d[\exists x (x + x = y)] = S$ just because $1 + 1 = 2$; but there is no $m \in 2\mathbb{N}$ such that $m + m = 2$ so that $L_d[\exists x (x + x = y)] \neq S$. So L is not an elementary submodel of M. The implication does, however, go the other way: an elementary submodel of M is elementarily equivalent to M.

T11.17. If $L \preceq M$ then $L \equiv M$.

Suppose \(L \preceq M \) and consider some sentence \(\mathcal{P} \). By T8.7, \(L[\mathcal{P}] = T \) iff there is some \(d \) such that \(L_d[\mathcal{P}] = S \); since \(L \preceq M \), iff \(M_d[\mathcal{P}] = S \); by T8.7 again, iff \(M[\mathcal{P}] = T \). So \(L[\mathcal{P}] = T \) iff \(M[\mathcal{P}] = T \), which is to say \(L \equiv M \).

This much is clear. As we have seen (K), even without \(\times \) in the language, is an example of a submodel not an elementary submodel. Trivially, for any \(M, M \preceq M \). Beyond that, though, given the universal requirements that ES places on formulas and variable assignments, it is not easy to produce an obvious example of a submodel that is an elementary submodel. The following matched pair of theorems focus the question.

T11.18. Suppose \(L \preceq M \) and \(d \) is a variable assignment into \(U_L \). Then for any term \(t \),
\[
L_d[t] = M_d[t].
\]

By induction on the number of function symbols in \(t \). Suppose \(L \preceq M \) and \(d \) is a variable assignment into \(U_L \).

Basis: Suppose \(t \) has no function symbols. Then \(t \) is a variable \(x \) or a constant \(c \). (i) Suppose \(t \) is a constant \(c \). Then \(L_d[t] = L_d[c] \); by TA(c) this is \(L[c] \); and since \(L \subseteq M \), this is \(M[c] \); by TA(c) again, this is \(M_d[c] \); which is just \(M_d[t] \). (ii) Suppose \(t \) is a variable \(x \). Then \(L_d[t] = L_d[x] \); by TA(v), this is \(d[x] \) and by TA(v) again, this is \(M_d[x] \); which is just \(M_d[t] \).

Assp: For any \(i \), \(0 \leq i < k \), if \(t \) has \(i \) function symbols, then \(L_d[t] = M_d[t] \).

Show: If \(t \) has \(k \) function symbols, \(L_d[t] = M_d[t] \).

If \(t \) has \(k \) function symbols, then it is of the form \(h^n \cdot s_1 \ldots s_n \) for some terms \(s_1 \ldots s_n \) with \(< k \) function symbols. Since \(L \subseteq M \), (\(\ast \)) if \(\langle \langle m_1 \ldots m_n \rangle, a \rangle \in L \), then \(\langle \langle m_1 \ldots m_n \rangle, a \rangle \in M \); \(L_d[t] = L_d[h^n \cdot s_1 \ldots s_n] \); by TA(f) this is \(L[h^n](L_d[s_1] \ldots L_d[s_n]) \); with (\(\ast \)) this is \(M[h^n](L_d[s_1] \ldots L_d[s_n]) \); and with the assumption, this is \(M[h^n](M_d[s_1] \ldots M_d[s_n]) \); by TA(f), this is \(M_d[h^n \cdot s_1 \ldots s_n] \); which is just \(M_d[t] \).

Indct: For any term \(t \), \(L_d[t] = M_d[t] \).

T11.19. Suppose that \(L \preceq M \) and that for any formula \(\mathcal{P} \) and every variable assignment \(d \) such that \(M_d[\exists x \mathcal{P}] = S \) there is an \(m \in U_L \) such that \(M_d(x|m)[\mathcal{P}] = S \). Then \(L \preceq M \).

Suppose \(L \preceq M \) and that for any formula \(\mathcal{P} \) and every variable assignment \(d \) such that \(M_d[\exists x \mathcal{P}] = S \) there is an \(m \in U_L \) such that \(M_d(x|m)[\mathcal{P}] = S \). We show by...
induction on the number of operators in \mathcal{P} that for d any assignment into the members of U_L, $L_d[\mathcal{P}] = S$ iff $M_d[\mathcal{P}] = S$ and so that $L \leq M$.

Basis: Suppose d is an assignment into the members of U_L. If \mathcal{P} is atomic then it is either a sentence letter δ or an atomic of the form $R^n t_1 \ldots t_n$ for some relation symbol R^n and terms $t_1 \ldots t_n$. (i) Suppose \mathcal{P} is δ. Then $L_d[\mathcal{P}] = S$ iff $L_d[\delta] = S$; by $SF(s)$, iff $L[\delta] = T$; since $L \subseteq M$, iff $M[\delta] = T$; by $SF(s)$, iff $M_d[\mathcal{P}] = S$. (ii) Suppose \mathcal{P} is $R^n t_1 \ldots t_n$. Then $L_d[\mathcal{P}] = S$ iff $L_d[R^n t_1 \ldots t_n] = S$; by $SF(r)$ iff $(L_d[t_1] \ldots L_d[t_n]) \in L[R^n]$; since $L \subseteq M$ with T11.18 iff $(M_d[t_1] \ldots M_d[t_n]) \in M[R^n]$; by $SF(r)$ iff $M_d[R^n t_1 \ldots t_n] = S$; iff $M_d[\mathcal{P}] = S$.

Assp: For any i, $0 \leq i < k$, if \mathcal{P} has i operator symbols, then for d any assignment into the members of U_L, $L_d[\mathcal{P}] = S$ iff $M_d[\mathcal{P}] = S$.

Show: If \mathcal{P} has k operator symbols, then for d any assignment into the members of U_L, $L_d[\mathcal{P}] = S$ iff $M_d[\mathcal{P}] = S$.

If \mathcal{P} has k operator symbols, then it is of the form $\neg A$, $A \rightarrow B$ or $\exists x A$ for variable x and formulas A and B with $< k$ operator symbols (treating $\forall x \mathcal{P}$ as equivalent to $\neg \exists x \neg \mathcal{P}$). Let d be an assignment into the members of U_L.

(\neg) Suppose \mathcal{P} is $\neg A$. $L_d[\mathcal{P}] = S$ iff $L_d[\neg A] = S$; by $SF(\neg)$ iff $L_d[A] \neq S$; by assumption iff $M_d[A] \neq S$; by $SF(\neg)$ iff $M_d[\neg A] = S$; iff $M_d[\mathcal{P}] = S$.

(\rightarrow) Homework.

(\exists) Suppose \mathcal{P} is $\exists x A$. (i) Suppose $L_d[\mathcal{P}] = S$; then $L_d[\exists x A] = S$; so by $SF(\exists)$, there is some $o \in U_L$ such that $L_{d(\chi o)}[A] = S$; so since $d(\chi o)$ is an assignment into the members of U_L, by assumption, $M_{d(\chi o)}[A] = S$; so by $SF(\exists)$, $M_d[\exists x A] = S$; so $M_d[\mathcal{P}] = S$. (ii) Suppose $M_d[\mathcal{P}] = S$; then $M_d[\exists x A] = S$; so by the assumption to the theorem, there is an $m \in U_L$ such that $M_{d(\chi m)}[A] = S$; since d is an assignment into the members of U_L, $d(\chi m)$ is an assignment into the members of U_L; so by assumption $L_{d(\chi m)}[A] = S$; so by $SF(\exists)$, $L_d[\exists x A] = S$; so $L_d[\mathcal{P}] = S$. So $L_d[\mathcal{P}] = S$ iff $M_d[\mathcal{P}] = S$.

In any case, if \mathcal{P} has k operator symbols, $L_d[\mathcal{P}] = S$ iff $M_d[\mathcal{P}] = S$.

Indct: For any \mathcal{P}, $L_d[\mathcal{P}] = S$ iff $M_d[\mathcal{P}] = S$.

So a submodel is an elementary submodel only so long as existentially quantified formulas are guaranteed by “witnesses” in the universe of the submodel.
With a small change to the definition of an isomorphism, embeddings combine the notions of submodel and isomorphism. In particular, we drop the requirement that the 1:1 function \(\iota \) be from the domain of one model onto the domain of the other.

EM For some language \(\mathcal{L} \) and interpretations \(\mathcal{L} \) and \(\mathcal{M} \), there is an \(\iota \)-embedding from \(\mathcal{L} \) into \(\mathcal{M} \) (\(\mathcal{L} \subseteq \mathcal{M} \)) iff \(\iota \) is a 1:1 function from \(U_L \) to \(U_M \) and,

(s) For any sentence letter \(\delta \), \(L[\delta] = M[\delta] \).

(c) For any constant \(c \), \(L[c] = m \) iff \(M[c] = \iota(m) \).

(r) For any relation symbol \(R^n \), \(\langle m_a \ldots m_b \rangle \in L[R^n] \) iff \(\langle \iota(m_a) \ldots \iota(m_b) \rangle \in M(R^n) \).

(f) For any function symbol \(h^n \), \(\langle \{m_a \ldots m_b \}, o \rangle \in L[h^n] \) iff \(\langle \iota(m_a) \ldots \iota(m_b) \rangle \), \(\iota(o) \rangle \in M[h^n] \).

If there is some \(\iota \) such that \(\mathcal{L} \subseteq \mathcal{M} \), then there is an embedding of \(\mathcal{L} \) into \(\mathcal{M} \) (\(\mathcal{L} \subseteq \mathcal{M} \)). At the extreme, if \(\mathcal{L} \subseteq \mathcal{M} \) then \(\mathcal{L} \subseteq \mathcal{M} \). For a 1:1 function from \(U_L \) onto \(U_M \) remains a 1:1 function from \(U_L \) to \(U_M \) and all the conditions from **EM** are satisfied. But the interesting thing is that for an embedding the function \(\iota \) need not be onto. Again at the extreme, if \(\mathcal{L} \subseteq \mathcal{M} \) then \(\mathcal{L} \subseteq \mathcal{M} \). For the identity function \(\iota(m) = m \) is a 1:1 function from \(U_L \) to \(U_M \) that trivially satisfies the conditions from **EM**. So, for example, on their standard interpretations, a model for the natural numbers is embedded into a model for the integers. The identity function \(\iota(m) = m \) is a 1:1 function from \(\mathcal{N} \) to the set \(\mathbb{Z} \) of all integers such that \(\mathcal{L} \subseteq \mathcal{M} \).

More interestingly, suppose a language has constant \(a \), two-place function symbol \(* \) and relation symbol \(< \). Then where \(\mathcal{L} \) and \(\mathcal{M} \) have universe \(\mathcal{N} \) and,

\[
\begin{align*}
L[a] &= 0 \\
L[<] &= \{ \{m, n\} \mid m, n \in \mathcal{N}, \text{ and } m \text{ is less than } n \} \\
L[*] &= \{ \langle \{m, n\}, o \rangle \mid m, n, o \in \mathcal{N}, \text{ and } m \text{ plus } n \text{ equals } o \}
\end{align*}
\]

(L)

\[
\begin{align*}
M[a] &= 1 \\
M[<] &= \{ \{m, n\} \mid m, n \in \mathcal{N}, \text{ and } m \text{ is less than } n \} \\
M[*] &= \{ \langle \{m, n\}, o \rangle \mid m, n, o \in \mathcal{N}, \text{ and } m \text{ times } n \text{ equals } o \}
\end{align*}
\]

we have \(\mathcal{L} \subseteq \mathcal{M} \). Even though \(\mathcal{L} \) and \(\mathcal{M} \) have the same universe, given their assignments to the constant and function symbols, \(\mathcal{L} \not\subseteq \mathcal{M} \). Nevertheless, \(\iota[m] = 2^m \) is a 1:1

3This ignores a fine point about whether members of \(\mathcal{N} \) are the same objects as ones in \(\mathbb{Z} \). I simply suppose that the natural numbers are among the integers.
function from \(\mathbb{N} \) to \(\mathbb{N} \) that meets the conditions from \(\mathrm{EM} \)—for \(2^n = 1 \); if \(m < n \), then \(2^n < 2^m \); and when \((a, b), n) \in L[*] \), \(a + b = n \) so that \(2^a \times 2^b = 2^{a+b} = 2^n \) and \((2^a, 2^b), 2^m) \in M[*] \). So \(L \subseteq M \).

In these examples, \(L \) maps to a submodel of \(M \). And we may show that this relation holds in general, that \(L \subsetneq M \) when there is a \(K \subsetneq M \) such that \(L \not\cong K \) (something like this may be suggested by the notation). The situation may be pictured as follows.

\[
\begin{array}{c}
L \subsetneq M: \\
(M) \\
\end{array}
\]

\[
\begin{array}{c}
\cong \\
K \subseteq M
\end{array}
\]

*T11.20. \(L \subsetneq M \) if and only if there is a \(K \subsetneq M \) such that \(L \not\cong K \).

For a function \(f \), let \(f^n[s] \) be the range of \(f^n \upharpoonright s \); that is, \(f^n[s] = \{ a \mid (m_1 \ldots m_n, a) \in f^n \upharpoonright s \} \). Then when \(L \subsetneq M \), \(L \) is isomorphic to a \(K \subseteq M \) that restricts the relations and functions of \(M \) to \(\iota[U_L] \).

(i) Suppose \(L \subsetneq M \). We need a \(K \) such that \(K \subseteq M \) and \(L \not\cong K \). Let \(U_K = \iota[U_L] \).

Since \(\iota \) is a function from \(U_L \) to \(U_M \), \(U_K \subseteq U_M \). Suppose \(M[c] = a \); since \(L \subsetneq M \), there is some \(m \in U_L \) such that \(a = \iota(m) \); so \(M[c] \in U_K \), and \(U_K \) is closed on the constants of \(M \). For simplicity, consider a one-place function symbol \(h \) and suppose \((a, b) \in M[h] \upharpoonright U_K \); then \(a \in U_K \) and there is some \(m \in U_L \) such that \(\iota(m) = a \); and since \(L \subsetneq M \), for \((m, n) \in L[h] \), \(\iota(m), \iota(n) \in M[h] \); so \(b = \iota(n) \) and \(b \in U_K \); so \(U_K \) is closed on the functions of \(M \). So where the functions and relations of \(K \) are those of \(M \) restricted to \(U_K \), \(K \subseteq M \).

Since \(L \subsetneq M \), \(\iota \) is a \(1:1 \) function from \(U_L \) to \(U_M \); so it is a \(1:1 \) function from \(U_L \) onto \(\iota[U_L] = U_K \). This is the feature required to convert an embedding into an isomorphism; so \(L \not\cong K \).

(ii) Suppose there is some \(K \subseteq M \) such that \(L \not\cong K \). We need that \(L \subsetneq M \). Since \(L \not\cong K \), \(\iota \) is a \(1:1 \) function from \(U_L \) onto \(U_K \) and since \(K \subseteq M \), \(U_K \subseteq U_M \); so \(\iota \) is a \(1:1 \) function from \(U_L \) to \(U_M \). Now working on the conditions from \(\mathrm{EM} \): (s) Since \(L \not\cong K \), \(L[\delta] = K[\delta] \); since \(K \subseteq M \), \(K[\delta] = M[\delta] \); so \(L[\delta] = M[\delta] \). (c) Since \(L \not\cong K \), \(L[c] = m \) iff \(K[c] = \iota(m) \); and since \(K \subseteq M \), \(K[c] = M[c] \); so \(L[c] = m \) iff \(M[c] = \iota(m) \). (r) For simplicity consider a one-place relation symbol \(R \). Since \(L \not\cong K \), \(m \in L[R] \) iff \(\iota(m) \in K[R] \); since \(K \subseteq M \), iff \(\iota(m) \in M[R] \); but
\(\iota(m) \in U_K, \) so \(\iota(m) \in M[\mathcal{R}] \upharpoonright U_K \) iff \(\iota(m) \in M[\mathcal{R}] \). So \(m \in L[\mathcal{R}] \) iff \(\iota(m) \in M[\mathcal{R}] \).

(f) Reducing to a one-place function symbol \(\hat{h} \), by \(h \) \((m, o) \in L[\hat{h}] \) iff \((\iota(m), \iota(o)) \in M[\hat{h}] \). So \(L \preceq M \). So \(L \preceq M \).

As for submodels themselves, it may be that \(L \subseteq M \) without \(L \equiv M \). So in example (L), \(L[\exists x (x < a)] \neq T \) but \(M[\exists x (x < a)] = T \). But we may restrict the range of embeddings as for the restriction of submodels to elementary submodels.

Homework.

\(T11.22. \) If \(L \preceq M \), then \(L \subseteq M \).

Homework.

\(E11.13. \) (i) For \(N' \) and \(N \) of example (J), explain why \(N' \not\subseteq N \). (ii) Let \(U_L = \mathbb{P} \) and \(U_M = \mathbb{N} \) and the only symbol of the language be \(< \) (with equality); let \(M[<] \) be standard, and \(L[<] \) be its restriction to \(\mathbb{P} \); then explain why \(L \subseteq M \); explain why \(L \not\equiv M \); and show that \(L \neq M \). Hint: consider the formula, \(\forall y (x \neq y \rightarrow x < y) \).

\(E11.14. \) Complete the demonstration of \(T11.19 \) by completing the case for \(\rightarrow \). You should set up the entire induction, but may defer parts to the text as the text defers to homework.
E11.15. Suppose $L \subseteq M$. (i) Let P be any formula without quantifiers; show that if d is an assignment into U_L, then $L_d[P] = S$ iff $M_d[P] = S$. (ii) Let Q be $\forall x_1 \ldots \forall x_n P$ for P without quantifiers; show that if d is an assignment into U_L, then if $M_d[Q] = S$, $L_d[Q] = S$. Hint: these are arguments by induction; you will find T11.18 helpful. From this result submodels have some but not all of what is required of an elementary submodel.

11.4.2 Compactness

We turn now to some applications that build upon our basic concepts. We begin with the compactness theorem. This apparently simple result has many interesting consequences.

The Compactness Theorem

For Σ a set formulas, compactness connects models for Σ and models for its finite subsets. Say a set Σ of formulas is satisfiable iff it has a model. Σ is finitely satisfiable iff every finite subset of it has a model.

T11.23. A set of formulas Σ is satisfiable iff it is finitely satisfiable. Compactness.

(i) Suppose Σ is satisfiable, but not finitely satisfiable. Then there is some M such that $M[\Sigma] = T$; but there is a finite $\Delta \subseteq \Sigma$ such that for any L, $L[\Delta] \neq T$; so $M[\Delta] \neq T$; so there is a formula $P \in \Delta$ such that $M[P] \neq T$; but since $\Delta \subseteq \Sigma$, $P \in \Sigma$; so $M[\Sigma] \neq T$. This is impossible; reject the assumption: if Σ is satisfiable, then it is finitely satisfiable.

(ii) Suppose Σ is finitely satisfiable but not satisfiable. By T10.17, if Σ is consistent, then it has a model M. But since Σ is not satisfiable, it has no model; so it is not consistent; so there is some formula A such that $\Sigma \vdash A$ and $\Sigma \vdash \neg A$. Consider derivations of these results, and the set Δ of premises of these derivations; since derivations are finite, Δ is finite; and since Δ includes all the premises for the derivations, $\Delta \vdash A$ and $\Delta \vdash \neg A$; so by soundness, $\Delta \models A$ and $\Delta \models \neg A$. But since Σ is finitely satisfiable, there must be some model D such that $D[\Delta] = T$; then by QV, $D[A] = T$ and $D[\neg A] = T$. But by T7.5, there is no D and A such that $D[A] = T$ and $D[\neg A] = T$. This is impossible; reject the assumption: if Σ is finitely satisfiable, then it is satisfiable.
On its face, compactness is a semantic result that does not have anything to do with derivation systems and so the derivations to which we appeal at (ii)—and there are alternate demonstrations of compactness that do not appeal to derivations. However, given what we have already done, this demonstration is close at hand, and lets us turn directly to applications.

Infinite domains.

In chapter 5 we learned to say ‘at most’ and ‘at least’ in simple cases. So, for example, $\forall y \forall x_1 \forall x_2 (y = x_1 \lor y = x_2)$ is true iff there are at most two things. And $\exists x_1 \exists x_2 (x_1 \neq x_2)$ is true iff there are at least two things. Let us generalize the method to arbitrary finite numbers. For some formulas $A_1 \ldots A_n$, let $\bigvee_{1 \leq i \leq n} A_i$ be the disjunction of the A_is and $\bigwedge_{1 \leq i \leq n} A_i$ be their conjunction. Then where $A_i = y = x_i$ and for any $n \geq 1$,

$$M_n = \forall y \forall x_1 \ldots \forall x_n \bigvee_{1 \leq i \leq n} y = x_i$$

is true just in case there are at most n things. So, for example,

$$M_4 = \forall y \forall x_1 \forall x_2 \forall x_3 \forall x_4 (y = x_1 \lor y = x_2 \lor y = x_3 \lor y = x_4)$$

is true iff there are at most four things. Generalizing the method a bit, we get ‘at least’. Thus for any $n \geq 1$,

$$L_n = \exists x_1 \ldots \exists x_n \left[x_1 = x_1 \land \bigwedge_{1 \leq i < j \leq n} x_i \neq x_j \right]$$

is true iff there are at least n things. Starting with $i = 1$ include the inequality for each j greater than it up to n. Then do the same for each $i < n$. (The first conjunct in the square bracket merely guarantees that the result is a formula when $n = 1$ and there are no i, j such that $1 \leq i < j \leq n$ so that the extended conjunction includes no formulas.) Thus for example,

$$L_4 = \exists x_1 \exists x_2 \exists x_3 \exists x_4 [x_1 = x_1 \land (x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4 \land x_2 \neq x_3 \land x_2 \neq x_4 \land x_3 \neq x_4)]$$

is true iff there are at least four things. And, of course $M_n \land L_n$ is true iff there are exactly n things. Manipulating these sentences becomes impractical quickly! Nonetheless in a straightforward sense our language has the *capacity* to express these properties.
In this way we can (finitely) axiomatize the class of all models whose universe has at most \(n \) elements, the class of all models whose universe has at least \(n \) elements, and the class of all models whose universe has exactly \(n \) elements. What about the class of all models with an infinite domain? This class may be axiomatized as well. Let \(\Sigma = \{ \mathcal{L}_n \mid n \geq 1 \} \). The members of \(\Sigma \) are \(\mathcal{L}_1, \mathcal{L}_2, \ldots \). All the members of \(\Sigma \) are true on an infinite domain. But on a domain with \(n \) members, \(\mathcal{L}_{n+1} \) is sure to be false. So \(\Sigma \) is true on all and only interpretations with an infinite domain and \(\mathcal{M} \mathcal{b}(\Sigma) = \mathcal{I} \).

In this case, \(\mathcal{I} \) is not finitely axiomatized. Is there a finite axiomatization of the class of models with an infinite domain? There are, of course, finite sets true only on infinite domains. Let the members of \(\mathcal{I} \) be the axioms of Q; then \(\mathcal{I} \) has finitely many members; and any \(D \in \mathcal{M} \mathcal{b}(\Delta) \) has an infinite domain. But the members of \(\mathcal{M} \mathcal{b}(\Delta) \) are not all the models with an infinite domain. So, for example, \(\forall x (x \neq \emptyset) \) is a theorem of Q (from T6.51) and so true on any member of \(\mathcal{M} \mathcal{b}(\Delta) \); but the standard interpretation \(Z \) of all the integers has an infinite domain and \(Z[\forall x (x \neq \emptyset)] \neq T \); so \(Z \in \mathcal{I} \) but \(Z \notin \mathcal{M} \mathcal{b}(\Delta) \). Still, we might wonder if there is some other set of formulas that is a finite axiomatization of \(\mathcal{I} \). We can use the compactness theorem to show that there is not.

T11.24. For \(\mathcal{I} \) the class of all models with an infinite domain and some language \(\mathcal{L} \), there is no finite \(\Gamma \) such that \(\mathcal{M} \mathcal{b}(\Gamma) = \mathcal{I} \).

Suppose otherwise, that \(\mathcal{I} \) is the class of all models with an infinite domain, and for some language \(\mathcal{L} \) and \(\Gamma \) with finitely many members, \(\mathcal{M} \mathcal{b}(\Gamma) = \mathcal{I} \). Let \(\mathcal{A} \) be the conjunction of the members of \(\Gamma \) and consider the axiomatization of \(\mathcal{I} \) from above, \(\Sigma = \{ \mathcal{L}_n \mid n \geq 1 \} \). Then any finite \(\Delta \subseteq \Sigma \cup \{ \sim \mathcal{A} \} \) is satisfiable: \(\Delta \) may have as members finitely many sentences \(\mathcal{L}_a \ldots \mathcal{L}_b \) and \(\sim \mathcal{A} \); where \(n \) is the maximum subscript from \(\mathcal{L}_a \ldots \mathcal{L}_b \), all of \(\mathcal{L}_a \ldots \mathcal{L}_b \) are satisfied on a universe with \(n \) members; but by hypothesis \(\mathcal{A} \) is satisfied on all and only interpretations with an infinite domain; so \(\sim \mathcal{A} \) is satisfied on all and only interpretations with a finite domain; so \(\sim \mathcal{A} \) is satisfied on a universe with \(n \) members; so all the members of \(\Delta \) are satisfied on a universe with \(n \) members; so a finite \(\Delta \subseteq \Sigma \cup \{ \sim \mathcal{A} \} \) is satisfiable; so by compactness \(\Sigma \cup \{ \sim \mathcal{A} \} \) is satisfiable. But this is impossible; \(\Sigma \) is satisfied only on universes with an infinite domain and \(\sim \mathcal{A} \) only on universes with a finite domain; so no interpretation satisfies \(\Sigma \cup \{ \sim \mathcal{A} \} \). Reject the assumption: where \(\mathcal{I} \) is the class of all models with an infinite domain, there is no finite \(\Gamma \) such that \(\mathcal{M} \mathcal{b}(\Gamma) = \mathcal{I} \).

This first application of compactness may be less than earth-shattering. It is interesting, though, just to have seen how compactness applies to establish the universal claim.
about axiomatizations.

Finite domains.

Now let \mathcal{F} be the class of interpretations with a finite domain, and consider the question whether there is some Σ to axiomatize it. We have seen axiomatizations of models with at most n members, and of models with exactly n members. But these are not axiomatizations of the class \mathcal{F} of all interpretations with a finite domain. Notice that a move to set $\Omega = \{ \mathcal{M}_n \mid n \geq 1 \}$ will not do: given \mathcal{M}_1 as an element, this set is satisfied just on interpretations with a single member! A set of sentences is true under conditions something like a big conjunction; thus our set Σ including each \mathcal{L}_n says that the universe has at least 1 one member, and it has at least 2 members, and \ldots. To say that the universe is finite, however, we require something like a big disjunction: the universe has at most one member, or it has at most two members or \ldots. So the set of all the \mathcal{M}_n's is not right, and neither is any one sentence of our language long enough to be the disjunction of them all (but see the box on page 562).

That there is no axiomatization for \mathcal{F} follows as a corollary to the following theorem.

T11.25. For language \mathcal{L}, if Γ has arbitrarily large finite models, then Γ has an infinite model.

Suppose Γ has arbitrarily large finite models and consider again $\Sigma = \{ \mathcal{L}_n \mid n \geq 1 \}$. Let Δ be an arbitrary finite subset of $\Gamma \cup \Sigma$; then Δ may have as members some elements of Γ and finitely finitely many sentences $\mathcal{L}_a \ldots \mathcal{L}_b$; let $n \geq 1$ be the maximum of subscripts from $\mathcal{L}_a \ldots \mathcal{L}_b$; then all of $\mathcal{L}_a \ldots \mathcal{L}_b$ are satisfied on a universe with n members; and since Γ is satisfied on arbitrarily large finite models, Γ and so each member of Γ in Δ is satisfied on a universe with n members as well; so Δ is satisfiable, and by compactness $\Gamma \cup \Sigma$ is satisfiable. But Σ is satisfied only on infinite domains; so $\Gamma \cup \Sigma$ is satisfied only on an infinite domain; and any model that satisfies $\Gamma \cup \Sigma$ satisfies Γ as well; so Γ has an infinite model.

Corollary: The class \mathcal{F} of all finite models is not axiomatizable. Suppose otherwise; that for some Σ, $\mathfrak{M}(\Sigma) = \mathcal{F}$; then Σ is satisfied on arbitrarily large finite models; so by the main result, Σ has an infinite model. So $\mathfrak{M}(\Sigma) \neq \mathcal{F}$. This is impossible; reject the assumption: there is no Σ such that $\mathfrak{M}(\Sigma) = \mathcal{F}$.

By our discussion of infinite and finite domains, we have answered the second and third questions posed in the introduction to section 11.4: there is an axiomatization of the class of all models with an infinite universe, and there is no axiomatization of the class of all models with a finite universe.
Extensions of First-Order Logic

Difficulties about axiomatizing the class of models with a finite domain (and other cases from this section) alter in context of infinitary and second-order logics.

- Infinitary logic permits infinitely long formulas. On this account, where \(\Pi \) is a (possibly infinite) set of formulas, \(\bigwedge \Pi \) and \(\bigvee \Pi \) are formulas, and if \(\Xi \) is a set of variables and \(\mathcal{P} \) a formula, \(\forall \Xi \mathcal{P} \) and \(\exists \Xi \mathcal{P} \) are formulas. Intuitively, \(\bigwedge \Pi \) is satisfied iff each \(\mathcal{P} \in \Pi \) is satisfied, \(\bigvee \Pi \) is satisfied iff some \(\mathcal{P} \in \Pi \) is satisfied, \(\forall \Xi \mathcal{P} \) is satisfied iff \(\mathcal{P} \) is satisfied for every assignment of objects to the variables in \(\Xi \), and \(\exists \Xi \mathcal{P} \) is satisfied so long as \(\mathcal{P} \) is satisfied for some assignment to the variables in \(\Xi \). Then \(\bigvee \{ \mathcal{M}_n \mid n \geq 1 \} \) is satisfied only on interpretations with a finite domain.

- Second-order logic permits quantification not only over individuals of the universe but over relations and functions as well. Then we might take advantage of a feature of infinite sets—that there is a 1:1 map from an infinite set to a proper subset of it. Thus for function variable \(f \), \(\exists f [\forall x \forall y (f x = f y \rightarrow x = y) \land \exists y \forall x (f x \neq y)] \) is true just on infinite domains. The first conjunct requires that \(f \) be 1:1, and the second that \(f \) not be onto. Then the negation of this sentence is true only on finite domains.

Unfortunately, both infinitary and second-order logics are incomplete. So we lose the result that every \(\Sigma \) is complete with respect to \(\mathcal{P} \mathcal{B} \mathcal{S} (\Sigma) \). In this way there is a trade-off between the completeness of our first-order logic, and the expressive power of infinitary and second-order languages.

For second-order logic see Shapiro, *Foundations Without Foundationalism*, and Manzano, *Extensions of First Order Logic*. Discussions of infinitary logic presuppose significant background in set theory, though Nadel, “\(\mathcal{L}_{\omega_1 \omega} \) and Admissible Fragments” is a reasonable survey.

Orderings.

Consider a language \(\mathcal{L} \) with two-place relation symbol \(\cdot \) and model \(\mathcal{M} \) such that the interpretation of \(\cdot \) is a relation \(\cdot \). Then \(\cdot \) is a partial order of (or on) \(U \) just in case \(\cdot \) is transitive and irreflexive: if \(a \cdot b \) and \(b \cdot c \) then \(a \cdot c \), and it is never the case that \(a \cdot a \). In case \(\cdot \) is a partial order, we say \(U \) (and derivatively the model) is partially ordered. Many different relations are partial orders. Thus (a), (b), (c) and (d) each depict partial orders.
In each case, \(a \prec b \) when there is a path “up” the lines from \(a \) to \(b \). In (a) \(\prec \) is the proper subset relation on the subsets of \(\{0, 1, 2\} \). (b) is a portion of a diagram that would extend infinitely vertically and to the right where \(\prec \) is the relation of proper divisibility on the natural numbers—where \(a \prec b \) just in case \(a \neq 1 \) and \(a \neq b \) and \(a \) evenly divides \(b \). (c) applies the usual \(\prec \) relation to \(\{0, 1, 2, 3\} \). Similarly the sets of all natural numbers, all integers, all rational numbers, and all real numbers are partially ordered by their usual \(\prec \) relation. (d) depicts the natural numbers with their usual \(\prec \) relation, and after all of them a copy of the natural numbers again, where every member of the first copy is less than all the members of the second (a relation is a set of pairs on some domain, and nothing prevents objects and pairs so-arranged). The class \(\mathfrak{P} \) of all partial orderings is axiomatized in the natural way by,

\[
O_1 \forall x \forall y \forall z [(x \prec y \land y \prec z) \rightarrow x \prec z]
\]

\[
O_2 \forall x (x \not\prec x)
\]

The interpretations on which \(O_1 \) and \(O_2 \) are true are ones that assign to \(\prec \) some partial order \(\langle \rangle \).

A model is a linear ordering when it is a partial ordering and for all \(a, b \in U \), \(a \prec b \) or \(a = b \) or \(b \prec a \). Examples (c) and (d) above are linear orderings, though (a) and (b) are not. In a linear ordering, the members of U are sorted into a “line.” Standard linear orderings are the sets of all natural numbers, all integers, all rational numbers, and all real numbers with their usual \(\prec \) relation. Linear orderings are axiomatized by adding to \(O_1 \) and \(O_2 \),

\[
O_3 \forall x \forall y [x \prec y \lor x = y \lor y \prec x]
\]

Interpretations that satisfy \(O_1–O_3 \) are ones that assign to \(\prec \) some linear order \(\langle \rangle \).
A model is a well-ordering when it is a linear ordering and every nonempty \(S \subseteq U \) has a least member—an \(a \in S \) such that for every \(b \in S \) if \(b \neq a \) then \(a < b \). Example (c) is of a well-order. The natural numbers with the usual \(<\) relation are a standard example. But example (d) is a well-order too. Though they are linear orders, the sets of all integers, all rational numbers, and all real numbers with their usual \(<\) relation are not well-orders. To see this, it is enough to consider the whole sets, which continue infinitely in the negative direction. But neither are the set of all rationals \(\mathbb{Q} \) nor the set of all reals \(\mathbb{R} \) with their usual relation well-orders. In these cases the collection of all \(a \) such that \(0 < a \leq 1 \), for example, is a subset such that every member has one less than it, and so without a least member.\(^4\)

Notice that the well-ordering of the natural numbers was presupposed in our justification of mathematical induction at the start of chapter 8 (page 390). So it is an important property. But we can use compactness to see that the class \(\mathcal{W} \) of all well-orderings is not axiomatizable.

T11.26. For language \(\mathcal{L} \), the class \(\mathcal{W} \) of all well-orderings is not axiomatizable.

Suppose otherwise, that some \(\Sigma \) is such that \(\mathcal{M}(\Sigma) = \mathcal{W} \); then \(\mathcal{M}[\Sigma] = T \) just in case its assignment to some symbol \(<\) is a well-order. Extend \(\mathcal{L} \) to an \(\mathcal{L}' \) by the addition of infinitely many constants \(c_0, c_1, c_2, \ldots \) and let \(\Sigma' \) be the same as \(\Sigma \) except in the new language \(\mathcal{L}' \). For some \(\mathcal{M} \) and \(\mathcal{M}' \) like \(\mathcal{M} \) except that it makes assignments to the new constants, by T10.15, \(\mathcal{M}[\Sigma] = T \) iff \(\mathcal{M}'[\Sigma'] = T \); in particular, \(\mathcal{M}'[\Sigma'] = T \) iff the assignment to \(<\) is a well-order.

Let \(A_n = c_{n+1} \prec c_n \), and set \(\Gamma' = \{ A_n \mid 0 \leq n \} \); so, listing the members from right to left, \(\Gamma' = \{ \ldots c_3 \prec c_2, c_2 \prec c_1, c_1 \prec c_0 \} \). Consider an arbitrary finite \(\Delta' \subset \Sigma' \cup \Gamma' \). \(\Delta' \) may have as elements some members of \(\Sigma' \) together with finitely many of the sentences \(c_j \prec c_i \). Where \(m \) is the maximum of these subscripts, consider some objects \(c_0 \ldots c_m \) and a model \(D' \) with a universe consisting of those objects and,

\[
D'[c_i] = c_i \text{ for } 0 \leq i \leq m, \text{ and otherwise } D'[c_i] = c_0
\]

\[
D'[<] = \{ (c_b, c_a) \mid c_b, c_a \in U_D \text{ and } b > a \}
\]

\(^4\)In the usual ZFC set theory (Zermelo-Fraenkel set theory with the axiom of choice) it is a theorem, equivalent to the axiom of choice, that any set can be well-ordered. So the sets of all integers, all rationals and all reals have well-orderings—only this ordering is not the usual \(<\) relation. The countability reference exhibits mechanisms sufficient for well-ordering of the integers and of the rationals (challenge: show how). It is less clear how the reals are well-ordered, though the theorem says that such an ordering must exist.
CHAPTER 11. MORE MAIN RESULTS

Then assignment to \vartriangleleft is a well-order; so Σ' and all the elements of Δ' are satisfied on D'; additionally, each $c_j \vartriangleleft c_i \in \Delta'$ is satisfied on D'. So Δ' is satisfied on D'; so Δ' is satisfiable, and by compactness, $\Sigma' \cup \Gamma'$ is satisfiable. But this is impossible: Σ' is satisfied only on well-orderings; but any well-ordering is a linear ordering; and given a linear ordering, the members of Γ' are satisfied only when the interpretation of \vartriangleleft has no least member, and so when the interpretation is not a well-ordering. Reject the assumption: there is no Σ such that $\mathcal{M} \models (\Sigma) = W$.

An interpretation M' of Γ' with the assignment of \vartriangleleft to a linear order need not assign c_i and c_{i+1} to adjacent members of the series. Nonetheless, for any m supposed to be the least member of U_m, take the greatest subscript i such that $m \leq M[c_i]$; then it is not the case that $m \leq M[c_{i+1}]$; so $M[c_{i+1}] \vartriangleleft m$.

This general strategy of introducing new constants is one that we saw in the demonstration of completeness, and one that we shall see again.

Number theory.

Consider again the standard interpretation N for L_{NT} and let N be the class of all models isomorphic to N. Ideally there would be some categorical Σ such that $\mathcal{M} \models (\Sigma) = \mathfrak{N}$. If $\mathcal{M} \models (\Sigma) = \mathfrak{N}$ then by T11.9 Σ is sound with respect to \mathfrak{N}, and since models isomorphic to N make all the same sentences true, Σ is sound on the intended model N. And if Σ is categorical then by the corollary to T11.16, Σ is complete and so proves all the sentences true on N. Unfortunately, we can show that there is no Σ to axiomatize \mathfrak{N}.

T11.27. For \mathfrak{N} the class of models isomorphic to N, there is no Σ such that $\mathcal{M} \models (\Sigma) = \mathfrak{N}$.

Suppose otherwise, that some Σ is such that $\mathcal{M} \models (\Sigma) = \mathfrak{N}$. Extend L to an L' by the addition of a single constant c and let Σ' be the same as Σ except in the new language L'. For $M \in \mathfrak{N}$, let M' be like M except that it makes some assignment to c. Then by T10.15, M satisfies Σ iff M' satisfies Σ'.

Let \bar{n} be as in chapter 8 (page 419) and set $\Gamma' = \{c \neq \bar{n} \mid n \in \mathbb{N}\}$; so $\Gamma' = \{c \neq \emptyset, c \neq S\emptyset, c \neq SS\emptyset, c \neq SSS\emptyset \ldots\}$. Consider an arbitrary finite $\Delta' \subseteq \Sigma' \cup \Gamma'$. Δ' may have as elements some members of Σ' together with finitely many of the sentences $c \neq \bar{n}$; for the greatest m such that $c \neq \bar{m} \in \Delta'$, and the standard interpretation N, let N' be the same as N except that $N'[c] = m+1$. All the members of Σ' in Δ' remain satisfied on N'; additionally, since c is assigned to an object
other than any of 0 . . . m, each \(c \neq \bar{a} \in \Delta' \) is satisfied on \(N' \); so \(\Delta' \) is satisfiable, and by compactness, \(\Sigma' \cup \Gamma' \) is satisfied by some model \(K' \).

Now for \(K \) like \(K' \) except without the assignment to \(c \), both \(K, K' \in \mathcal{M}(\Sigma) \) and \(K \not\cong N \). The first is easy: \(K' \) satisfies \(\Sigma' \); so \(K \) satisfies \(\Sigma \); so \(K \in \mathcal{M}(\Sigma) \).

But \(K \) and \(N \) are not isomorphic: For any \(a \in N, K'[c \neq \bar{a}] = T \); so for arbitrary \(h, K'_{h}[c \neq \bar{a}] = S \); let \(K'_{h}[c] = c \) for some \(c \in U_{K'} \), and for any \(a \in N, K'_{h}[\bar{a}] = \bar{a} \) for \(a \in U_{K'} \); so by \(SF(\sim) \) and \(SF(r) \), \((c, \bar{a}) \not\in K'[=] \); so for any \(a \in N \), and \(\bar{a}, c \neq \bar{a} \) (notice that we cannot simply identify \(a \) and \(\bar{a} \), since we are not given that the natural numbers are in \(U_{K'} \)).

Suppose \(N \cong K \). Then for some \(\iota, N \cong K \); so for \(\iota \) a 1:1 map from \(U_{N} \) onto \(U_{K} \), there is some \(a \in U_{N} \) such that \(\iota(a) = c \). Consider a \(d \) into \(U_{N} \) such that \(d[y] = a \), and an \(h \) into \(U_{K} \) such that \(h(x) = \iota(d[x]) \); then \(h[y] = c \). Since \(N \cong K \), by T11.13 for any \(P, N_{d}[P] = S \) iff \(K_{h}[P] = S \); so \(N_{d}[y = \bar{a}] = S \) iff \(K_{h}[y = \bar{a}] = S \); since \(N_{d}[y] = a \) and \(N_{d}[\bar{a}] = a \), by \(SF(r) \), \(N_{d}[y = \bar{a}] = S \); so \(K_{h}[y = \bar{a}] = S \); so \(K_{h}[y = c] \neq S \); and \(\bar{a} = \bar{a} \). This is impossible; reject the assumption: \(N \not\cong K \). So \(\mathcal{M}(\Sigma) \not\cong \mathcal{N} \); but this contradicts the original assumption; reject that assumption: there is no \(\Sigma \) such that \(\mathcal{M}(\Sigma) = \mathcal{N} \).

Since no \(\Sigma \) axiomatizes \(\mathcal{N} \), even \(|\mathcal{N}| \) does not axiomatize \(\mathcal{N} \); and no formulas are sufficient to “pin down” models up to isomorphism with \(N \). This answers the fourth question posed in the introduction to section 11.4: there is no axiomatization of the class of all models isomorphic to \(N \). So we have answers to all but the last.

A model of \(|\mathcal{N}| \) that is not isomorphic to \(N \) is a nonstandard model of arithmetic. We have shown that there are nonstandard models. It is worth pausing to think about what such models are like. Consider our model \(K \) in the case where \(\Sigma = |\mathcal{N}| \). \(K \) retains in its universe all the same objects as are in \(U_{K} \); so it retains the object \(c \) distinct from any \(\bar{a} \). But \(K \) requires much more than a single \(c \) distinct from each \(\bar{a} \) (for E7.19 we found a nonstandard model of the axioms of \(Q \) by adding just single object to the natural numbers, but, and this was the point, that was not a model for all the members of \(|\mathcal{N}| \)). Let assignments of \(K \) to \(\emptyset, S, +, \times \) and \(c, \bar{a} \) be some object \(\bar{a} \), functions \(s, \otimes \), \(\ominus \) and relation \(\triangleleft \). Then \(\bar{a} \), the assignment to \(\bar{a} \), is \(s \ldots s(\bar{a}) \) with \(a \) repetitions of \(s \). Observe that the following are all true on \(N \).

\[
\begin{align*}
a. & \forall x \forall y \forall z [(x < y \land y < z) \rightarrow x < z]
\end{align*}
\]
CHAPTER 11. MORE MAIN RESULTS

567

b. \(\sim \exists x(x < x) \)

c. \(\forall x \forall y (x < y \lor x = y \lor y < x) \)

d. \(\forall x (x \neq \emptyset \rightarrow \emptyset < x) \)

e. \(\forall x (x \neq \emptyset \rightarrow \exists y S y = x) \)

f. \(\forall x \forall y (x < y \rightarrow S x \leq y) \)

g. \(\forall x \forall y (x < Sy \rightarrow x \leq y) \)

h. \(\forall x [(x + \emptyset) = x] \)

i. \(\forall x \forall y [(x + Sy) = S(x + y)] \)

Since they are true on \(\mathbb{N} \), and \(K \) models all the formulas true on \(\mathbb{N} \), they are true on \(K \) (one way to see that they are true on \(\mathbb{N} \) is to recognize that they are theorems of \(\mathbb{Q} \) or \(\mathbb{PA} \)). From (a), (b), (c), \(\prec \) is a linear order on \(U_K \). From (d), for any \(m \in U_K \) other than \(\emptyset \), \(\emptyset \prec m \).

Let \(m \simeq n \) just in case there is some \(a \) such that \(m \oplus a = n \) or \(n \oplus a = m \). From (h) and (i) \(m \simeq n \) just in case you can get from one to the other by finitely many applications of \(s \). Then \(\simeq \) is an equivalence relation. Let \([m] = \{n \mid m \simeq n\} \). Then \([m] \) is an equivalence class and, as in chapter 10, satisfies self-membership, uniqueness and equality. Since \(c \) is distinct from each \(a \) it is not the case that applying \(s \) to any \(a \) results in \(c \); so there are at least two such classes, \([\emptyset]\) and \([c]\). The first has members \(\emptyset, 1 \ldots \). But every object has a successor; so there are objects \(c_{+1} = s(c) \), \(c_{+2} = s(c_{+1}) \), and so forth; and from (e) objects other than \(\emptyset \) are successors; so there is a \(c_{-1} \) such that \(s(c_{-1}) = c \), a \(c_{-2} \) such that \(s(c_{-2}) = c_{-1} \), and so forth. So \([c]\) includes objects \(\ldots, c_{-2}, c_{-1}, c, c_{+1}, c_{+2} \ldots \). Insofar as \([c]\) “looks” like the natural numbers (discrete members with a beginning and no end) it is an \(N\text{-chain} \), and insofar as \([c]\) looks like the integers (discrete members extending in both directions), it is a \(\mathbb{Z}\text{-chain} \).

And we can see that all the members of one chain are less than all the members of another. Suppose \([a] \neq [b]\) and \(a \prec b \); let \(x \in [a] \) and \(y \in [b] \). Since \(\prec \) is a linear order, \(x \prec a \) or \(x = a \) or \(x \succ a \); if \(x = a \), then \(x \prec b \); if \(x \prec a \), then by transitivity, \(x \prec b \); if \(x = s(a) \), from \(a \prec b \) and (f), \(s(a) \preceq b \); but \(s(a) \in [a] \); so by uniqueness \(s(a) \neq b \); so \(s(a) \prec b \); and the same for other successors of \(a \); so \(x \prec b \). Similarly, \(y \prec b \) or \(y = b \) or \(y \succ b \); if \(y = b \) then from \(x \prec b , x \prec y \); if \(b \prec y \), then with \(x \prec b \) and transitivity \(x \prec y \); and where \(s(y) = b \), we have \(x \prec s(y) \); so with (g), \(x \leq y \); and since \([x] \neq [y] \), \(x \prec y \); and the same for other predecessors of \(b \); so \(x \prec y \). So every
member of \([a]\) is less than all the members of \([b]\). Thus given \([g] \neq [c]\) and \(g \prec c\), the situation is so far as follows.

\[
\begin{align*}
K & \quad \mathbb{N}_c: \quad \ldots c \ldots \\
\mathbb{N}_0 & : \quad 0, 1, 2, \ldots
\end{align*}
\]

The universe has objects in the sequences \(\mathbb{N}_0\) and \(\mathbb{Z}_c\). Each sequence is ordered by \(\prec\). And every member of \(\mathbb{N}_0\) is less than all the members of \(\mathbb{Z}_c\). It remains that \(\prec\) satisfies the conditions for a linear order. But, insofar as \(\mathbb{Z}_c\) has no least member, \(\prec\) is not a well-order on \(\mathbb{U}_K\).

And there is more! Say \([a] \prec [b]\) just in case all the members of \([a]\) are less than all the members of \([b]\). Now, presupposing background as from (a)–(i),

(i) There can be no greatest \(\mathbb{Z}\)-chain. For consider a \(\mathbb{Z}\)-chain \([z]\). Then \(z \notin [g]\); so \(z \neq g\) and \(z \prec z \oplus z\); further, since \(z \notin [g]\), it is not an \(a\) and \(z \oplus z\) is not of the sort \(z \oplus a\); so \(z \neq z \oplus z\), and \([z] \neq [z \oplus z]\). So \([z] \prec [z \oplus z]\).

(ii) Between any two chains there is another. Suppose \([a] \prec [c]\). Then \(a \prec c\); so there is a \(b, a \prec b \prec c\) such that either \(a \oplus c = b \oplus b\) or \(a \oplus c \oplus 1 = b \oplus b\)—intuitively \(b\) averages \(a\) and whichever of \(c\) or \(c \oplus 1\) makes their sum a multiple of \(2\). To take just the first case, suppose \(a \oplus c = b \oplus b\).

Suppose \(b \in [a]\); then there is some \(d\) such that \(b = a \oplus d\) or \(a = b \oplus d\); since \(a \prec b\), not the latter; so \(b = a \oplus d\). So \(a \oplus c = b \oplus b = a \oplus d \oplus a \oplus d\); so \(c = a \oplus d \oplus d\); but \(d \oplus d\) is some \(e\); so \(c \in [a]\); so \([a] = [c]\); this is impossible, and \([b] \neq [a]\).

Suppose \(b \in [c]\); then there is some \(d\) such that \(b = c \oplus d\) or \(c = b \oplus d\); since \(b \prec c\), not the former; so \(c = b \oplus d\). So \(b \oplus b = a \oplus c = a \oplus b \oplus d\); so \(b = a \oplus d\) and \(c = b \oplus d\); so \(c = a \oplus d \oplus d\); but \(d \oplus d\) is some \(e\); so \(c \in [a]\); so \([a] = [c]\); this is impossible, and \([b] \neq [c]\). So \([a] \prec [b] \prec [c]\).

(iii) There is no least \(\mathbb{Z}\)-chain: suppose otherwise, that \([q]\) is the least \(\mathbb{Z}\)-chain; then by (ii) there is a \(\mathbb{Z}\)-chain \([p]\), \([g] \prec [p] \prec [q]\); this is impossible.

Thus sequence of \(\mathbb{Z}\) chains is like the sequence of rational numbers—densely ordered and without endpoints. Not only do nonstandard models of arithmetic fail to be isomorphic to \(\mathbb{N}\), but they include (at least) objects from the infinitely many \(\mathbb{Z}\)-chains.\(^6\)

\(^6\)Interestingly, nonstandard models have mathematical applications. Notably A. Robinson, *Non-Standard Analysis* applies nonstandard models of the real numbers to find the infinitesimals of calculus without use of limits.
Insofar as $< \mathcal{C}$ is not a well-order, you might worry that there is some problem about mathematical induction. There is a problem reasoning by induction in the metalanguage (as in chapter 8). If a domino falls in one chain, there is no reason to think that dominoes fall in the next; similarly we cannot contradict a supposition that some dominoes do not fall by finding a least domino that does not fall, and showing that the assumption must fail. But instances of the induction axiom (PA7) remain true on \mathcal{K}. The simplest way to make this point is to observe that \mathcal{K} is such that instances of the axiom are true. Up to now, we have thought of the standard model as given, and seen how instances of the axiom are true on it. But now we start with $j^\mathbb{N} j$ and show there is a model on which its members are satisfied. Since instances of the induction axiom are members of $|\mathfrak{N}|$, they are true on \mathcal{K}. Let $K[\mathcal{P}(x)] = \{a | K_{\mathcal{K}}[\mathcal{P}(x)] = S\}$; so the members of $K[\mathcal{P}(x)]$ are objects to satisfy $\mathcal{P}(x)$. Even though $U_{\mathcal{K}}$ has nonempty subsets without a least member, it turns out that every nonempty $K[\mathcal{P}(x)]$ does have a least member—and similarly, each nonempty $K[\neg\mathcal{P}(x)]$ has a least member (see the box that follows). But this is sufficient for reasoning by induction: Suppose $D \subseteq U_{\mathcal{K}}$ is such that its complement \overline{D} (all the members of U that are not in D) is either empty or has a least member; then if D has the special property that $\varnothing \in D$, and if $a \in D$, then $s(a) \in D$, it follows that $D = U_{\mathcal{K}}$: suppose $D \neq U_{\mathcal{K}}$, then \overline{D} is nonempty; so it has a least member a; but $\varnothing \in D$; so $\varnothing \notin \overline{D}$; so $\varnothing \neq a$; so a is some $s(m)$; but since $s(m)$ is the least member of \overline{D}, $m \in D$, from which it follows that $s(m) \in D$; so $s(m) \notin \overline{D}$; this is impossible; so $D = U_{\mathcal{K}}$.

From compactness there must exist a nonstandard model. We have described the order relation on one such model. As it turns out, functions for addition and multiplication are complex in a way that resists straightforward description (for discussion see Boolos, Burgess and Jeffrey, *Computability and Logic*, chapter 25). \mathcal{K} is weird! Interestingly, its existence was proved considering just finite satisfiability on perfectly straightforward models of arithmetic. As we shall see in the next section, there are members of $\mathfrak{Mb}(|\mathfrak{N}|)$ weirder still.

Löwenheim-Skolem

Associate the size of a model with the size of its domain. A countable model has a countable domain, an uncountable model an uncountable domain. Given an infinite model for some Σ, the Löwenheim-Skolem theorems tell us that Σ has models of different infinite sizes. This inevitably pushes us toward thinking about the infinite sets at which we said we would merely wave. Now is the time to say ‘hello’. We shall not engage the details. However we should be able to say enough to understand the
Each nonempty $\mathcal{K}[\mathcal{P}(x)]$ has a least member: Suppose otherwise, that $\mathcal{K}[\mathcal{P}(x)]$ is nonempty but has no least element, and consider $\mathcal{Q}(y) = (\forall x \leq y)\sim \mathcal{P}(x)$. (i) Suppose $\mathcal{K}[\mathcal{Q}(\emptyset)] \neq T$; then there is some d such that $\mathcal{K}_d[(\forall x \leq \emptyset)\sim \mathcal{P}(x)] \neq S$, so that $\mathcal{K}_d[(\forall x \leq \emptyset)\sim \mathcal{P}(x)] = S$; but then \emptyset is the least member of $\mathcal{K}[\mathcal{P}(x)]$; this is impossible: $\mathcal{K}[\mathcal{Q}(\emptyset)] = T$. (ii) Suppose $\mathcal{K}[(\forall y)(\mathcal{Q}(y) \rightarrow \mathcal{Q}(S_y))] \neq T$; then there is a d and $m \in U_\kappa$ such that $\mathcal{K}_d(y)[\mathcal{Q}(y)] = S$ and $\mathcal{K}_{d'(y)}[\mathcal{Q}(S_y)] \neq S$; so $\mathcal{K}_{d(y)}[(\forall x \leq y)\sim \mathcal{P}(x)] = S$ and $\mathcal{K}_{d(y)}[(\forall x \leq S_y)\sim \mathcal{P}(x)] \neq S$; with the former, objects $\leq m$ fail to satisfy $\mathcal{P}(x)$; with the latter, there is an $a \subseteq s(m)$ that does; so $a = s(m)$; but then a is the least member of $\mathcal{K}[\mathcal{P}(x)]$; this is impossible: $\mathcal{K}[\mathcal{Q}(y) \rightarrow \mathcal{Q}(S_y))] = T$. Then by the induction axiom, $\mathcal{M}[\forall y \mathcal{Q}(y)] = T$; so $\mathcal{K}[\mathcal{P}(x)]$ is empty. This is impossible; reject the assumption: if $\mathcal{K}[\mathcal{P}(x)]$ is nonempty then it has a least element. Of course, as a justification for the induction axiom, our reasoning is entirely circular; the above reasoning may, however, help clarify or explain how the induction axiom remains true on \mathcal{K}.

Theorems and see something of their consequences. Along with what you have from the countability and more on countability references, we require this much:

Sets r and s are the same size ($r \approx s$) iff there is a 1:1 function from one onto the other. But not all infinite sets are the same size. In particular, the set of all real numbers has more members than the set of all natural numbers. And from Cantor’s theorem, for every set there is one bigger than it (see the box on page 572). The cardinal numbers are certain sets designated to measure the size of others—set s has cardinality α just in case $s \approx \alpha$. If we think of a natural number n as a set with n members, then the finite cardinals are members of \mathcal{N}; the first infinite cardinal \mathcal{N}_0 is the size of the set of natural numbers; then \mathcal{N}_1, and so forth (\mathcal{N} aleph is the first letter of the Hebrew alphabet). 7 The members of any set, and so of an infinite set, may be well-ordered. The ordinal numbers are certain well-ordered sets to measure the “length” of well-ordered sets. Again, the finite ordinals are just the members of \mathcal{N}; ω is the first ordinal greater than all of them, then $\omega + 1$, $\omega + 2 \ldots$; and greater than all of them $\omega \times 2$, $\omega \times 2 + 1 \ldots$; and after continuing this way for finite multiples of ω, ω^ω. And the process continues to incredible lengths! It is usual to identify initial ordinals as ordinals whose cardinality is greater than all

7The proposition that \mathcal{N}_1 is the cardinality of the set \mathbb{R} of all real numbers (the continuum of points in the number line) is the continuum hypothesis (CH). If CH is true, then no cardinal lies between the cardinals of \mathcal{N} and \mathbb{R}. Supposing that ZFC is consistent, P. Cohen (“The Independence of the Continuum Hypothesis”) shows that CH does not follow from its axioms, and Gödel (The Consistency of the Continuum Hypothesis) that neither does not-CH. These are results for an intermediate course in set theory.
the ones before, and then the cardinal numbers with the initial ordinals. Because
the ordinals are well-ordered it is possible to state recursive definitions and apply
mathematical induction to sequences ordered by them. Reasoning is extended
from what we have seen insofar as limit ordinals (for example \(\omega \)) are not the
successor of any other. Given reasoning for limit cases, however, the basic idea
remains the same.

If we accept this much, we shall be in a position to make progress (for details see
most any introduction to set theory as Enderton, Elements of Set Theory).

The Löwenheim-Skolem theorems appear in somewhat different forms. At the
simplest level, they tell us about the size of models. So given an infinite model \(M \)
for some formulas \(\Sigma \), there are models for \(\Sigma \) whose size is different from \(M \). An
immediate consequence is a difficulty about our ability to “pin down” isomorphic
interpretations: given the 1:1 function \(\iota \) from the universe of one onto the universe of
the other, isomorphic models are the same size; so if models are not the same size,
they are not isomorphic. Here is a first result of this type, accessible from what we
have already done (compare E10.30).

If \(\Sigma \) has a model, then it has a countable model. Suppose \(\Sigma \) has a model \(K \). Then by
T10.4, \(\Sigma \) is consistent; so by T10.17, \(\Sigma \) has a model \(M \) whose universe is constructed of
disjoint sets of natural numbers. But \(U_M \) is countable, for we might map the sets in \(U_M \)
to natural numbers by, say, their least elements. Alternatively we might set up a function \(\iota \)
from each set in \(U_M \) to its least element, to establish an isomorphic interpretation \(M' \) whose
universe just is a set of natural numbers; then by T11.15, \(M'[\Sigma] \equiv T \). Either way, \(\Sigma \) has a
countable model.

Thus, for example, if \(\Sigma \) has a model whose universe is the set of all real numbers,
then it also has a model whose universe is a set of natural numbers.

The above result can be generalized by a corresponding generalization of T10.17.
To reach T10.17, starting from an \(\mathcal{L}' \) with constants \(c_n \) matched to natural numbers,
we constructed a maximal consistent scapegoat set, and then the model whose domain
is the set of disjoint sets with natural numbers as members. Suppose we relax the
requirement that a language have just countably many constants. Then for some
uncountable \(\kappa \), the set of constants may have members \(c_\alpha \) matched to ordinal numbers
\(\prec \kappa \). (We assume that languages have countably many symbols as usual except that
they may be specified to include extra constants.) A language with uncountably many
constants is a “theoretical object” to the extent that there are more symbols than
can be represented by finite strings humans speak and write. All the same, we can
reason about features of the theoretical object. In particular, it is possible to obtain a
Cantor’s Theorem:

The result that every set has one with more members than it underlies the discussion of this section. Though the demonstration is somewhat to the side of our main concerns, it is worth seeing how it goes.

As we have seen from the set theory reference, set \(a \) is a subset of set \(b \) iff every member of \(a \) is a member of \(b \). Now, the powerset of \(a \), \(\mathcal{P}(a) \), is the set of all the subsets of \(a \). So the powerset of \(\{a, b, c\} \) is \(\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\} \). Set \(a \) has at least as many members as set \(b \) iff there is a one-to-one map from (some of) the members of \(a \) onto all the members of \(b \).

T11.28. No set \(s \) has as many members as its powerset \(\mathcal{P}(s) \). Cantor’s Theorem.

Suppose for contradiction that set \(s \) has at least as many members as \(\mathcal{P}(s) \); then there is a one-to-one map \(h \) from members of \(s \) onto all the members of \(\mathcal{P}(s) \). Since \(h \) is a function from objects in \(s \) to sets of those objects, we may ask if a given \(x \in s \) is itself a member of \(h(x) \). Thus, with integers, if some function \(f \) has \(f(2) = \{2, 4, 6\} \) and \(f(3) = \{19, 127\} \), then \(2 \) is a member of \(f(2) \) but \(3 \) is not a member of \(f(3) \). Consider \(c = \{x \in s \mid x \notin h(x)\} \), the set of all elements \(x \) in \(s \) such that \(x \) is not a member of \(h(x) \); \(c \) is formed by collecting every member \(x \) in \(s \) which is not a member of the subset to which it is mapped by \(h \). Any member of \(c \) is collected from \(s \); so \(c \) is a subset of \(s \) and thus a member of \(\mathcal{P}(s) \). But \(c \) is designed so that it differs from every \(h(x) \) in membership of \(x \): Consider an arbitrary \(h(x) = a \); if \(x \) is a member of \(a \), then by construction, \(x \) is not included in \(c \), so \(a \neq c \); if \(x \) is not a member of \(a \), then by construction, \(x \) is included in \(c \) and again \(a \neq c \); either way \(h(x) \neq c \). So there is no \(x \) such that \(h(x) = c \), and \(h \) does not map onto all the members of \(\mathcal{P}(s) \). This contradicts the specification of \(h \), itself a consequence of the original assumption about \(s \); reject the assumption: \(s \) does not have at least as many members as \(\mathcal{P}(s) \).

T10.17*, starting from an \(\mathcal{L}' \) with constants \(c_\alpha \) matched to ordinal numbers less than an arbitrary infinite \(\kappa \), constructing a maximal consistent scapegoat set, and then a model whose domain is a set of disjoint sets whose members are ordinal numbers \(< \kappa \). The argument is modified to accommodate uncountable ordinals in the specification of the “big” set, and for the demonstration that the result is a maximal consistent scapegoat set. But the basic idea is the same. Given T10.17*, we can reason very much as before.

T11.29. If the members of \(\Sigma \) are in a language \(\mathcal{L} \) whose constants are matched
to ordinals less than an infinite \(\kappa \) and \(\Sigma \) has a model, then \(\Sigma \) has a model of cardinality \(\leq \kappa \). Downward Löwenheim-Skolem.

Suppose the members of \(\Sigma \) are in an \(\mathcal{L} \) whose constants are matched to ordinals less than an infinite \(\kappa \) and \(\Sigma \) has a model. Then by T10.4, \(\Sigma \) is consistent; so by T10.17*, \(\Sigma \) has a model \(M \) whose universe consists of disjoint sets of ordinal numbers \(\prec \kappa \). But then the cardinality of \(\mathcal{U}_M \) is \(\leq \kappa \), for we might map the sets in \(\mathcal{U}_M \) to ordinals \(\prec \kappa \) by their least elements. Alternatively we might set up a function \(\xi \) from each set in \(\mathcal{U}_M \) to its least element, to establish an isomorphic interpretation \(M' \) whose universe just is a set of ordinals \(\prec \kappa \); then by T11.15, \(M'[\Sigma] = T \). Either way, \(\Sigma \) has a model.

In the case just above, \(\kappa \) was \(\omega \) with the result that \(\Sigma \) in a language with countably many constants has a countable model (a model with cardinality \(\leq \omega \)). Now the result is generalized to arbitrary cardinal \(\kappa \).

Given T10.17* we may obtain a compactness* whose application is to languages that allow arbitrarily large infinite sets of constants. Reasoning is parallel to that for T11.23. And with compactness*, there is an “upward” Löwenheim-Skolem theorem.

T11.30. If \(\Sigma \) has an infinite model, then for any infinite cardinal \(\kappa \), \(\Sigma \) has a model whose cardinality is greater than or equal to \(\kappa \). Upward Löwenheim-Skolem.

Suppose \(\Sigma \) has an infinite model \(M \) and \(\kappa \) is an infinite cardinal. Extend \(\mathcal{L} \) to an \(\mathcal{L}' \) including constants \(c_\alpha \) for \(\alpha \prec \kappa \); and let \(\Gamma' = \Sigma' \cup \{ c_\beta \neq c_\gamma \mid \beta, \gamma \prec \kappa \) and \(\beta \neq \gamma \} \). Consider an arbitrary finite \(\Delta' \subseteq \Gamma' \); \(\Delta' \) may have as members some elements of \(\Sigma' \) and finitely many sentences \(c_\beta \neq c_\gamma \). Extend the infinite model \(M \) for \(\Sigma \) to an \(M' \) that assigns new constants from \(\Delta' \) to distinct members of \(\mathcal{U}_M \) and otherwise assigns \(c_\alpha \) to some constant member of the domain. With T10.15, \(M' \) satisfies \(\Sigma' \) and so all the members of \(\Sigma' \) in \(\Delta' \); and since constants from \(\Delta' \) are assigned to distinct members of \(\mathcal{U}_M \), \(M' \) satisfies sentences \(c_\beta \neq c_\gamma \) from \(\Delta' \) as well; so \(\Delta' \) has a model. And since \(\Delta' \) is arbitrary, by compactness*, \(\Gamma' \) has a model \(K' \); so with T10.15 again, \(K \) is a model for \(\Sigma \). But \(K' \) satisfies \(c_\beta \neq c_\gamma \) for all \(\beta, \gamma \prec \kappa \) such that \(\beta \neq \gamma \); so \(K'[c_\beta] \neq K'[c_\gamma] \); so \(\xi \) such that \(\xi(\alpha) = K'[c_\alpha] \) maps ordinal numbers to distinct members of the universe, and so is a 1:1 function from ordinals \(\prec \kappa \) into \(\mathcal{U}_K \); so \(\kappa \leq \) the cardinality of \(K' \); but \(\mathcal{U}_K = \mathcal{U}_K \); so \(\kappa \leq \) the cardinality of \(K \).

Just as the universe for our nonstandard model of arithmetic includes more nonstandard members than a single element assigned to the extra constant \(c \), so we cannot be sure that \(K \) does not include more members assigned to extra constants. But given
that \(K' \) satisfies the inequalities from \(\Gamma' \) we can be sure that \(K' \) and so \(K \) include at least as many objects as there are extra constants, and so that the cardinality of \(K \) is at least as great as the cardinality of the set of extra constants.

And T11.29 and T11.30 combine so that if \(\Sigma \) has an infinite model and \(\kappa \) is any infinite cardinal, then \(\Sigma \) has a model of cardinality \(\kappa \).

T11.31. If \(\Sigma \) has an infinite model then for any infinite cardinal \(\kappa \), \(\Sigma \) has a model of cardinality \(\kappa \). Full Löwenheim-Skolem.

Suppose \(\Sigma \) has an infinite model and \(\kappa \) is an infinite cardinal. Extend \(\mathcal{L} \) to an \(\mathcal{L}' \) including constants \(e_\alpha \) for \(\alpha < \kappa \); and let \(\Gamma' = \Sigma' \cup \{ e_\beta \neq e_\gamma | \beta, \gamma < \kappa \) and \(\beta \neq \gamma \}. \) Since \(\Sigma \) has an infinite model, the upward Löwenheim-Skolem theorem tells us that \(\Sigma \) has a model \(K \) of cardinality \(\geq \kappa \); so there are at least as many members of \(U_K \) as there are constants \(e_\alpha \); extend \(K \) to a \(K' \) that assigns distinct members of \(U_{K'} \) to the constants \(e_\alpha \); then \(K' \) is a model for \(\Gamma' \). So \(\Gamma' \) has a model; so by the downward Löwenheim-Skolem theorem \(\Gamma' \) has a model \(M' \) whose cardinality is \(\leq \kappa \); but given the inequalities satisfied by \(M' \), an \(\iota \) such that \(\iota(\alpha) = M'[e_\alpha] \) is a 1:1 function from ordinals \(< \kappa \) into \(U_{M'} \); so \(\kappa \) \(\leq \) the cardinality of \(K' \). So \(K' \) has cardinality \(\kappa \); but \(U_K = U_{K'} \); so \(\kappa \) has cardinality \(\kappa \).

From this result, there is no infinite \(\alpha \) such that the class of models with cardinality \(\alpha \) is axiomatizable. Suppose otherwise, that some \(M_\alpha \) is the class of all models with cardinality \(\alpha \), and \(M(\Sigma) = M_\alpha \); then for some \(M \in M_\alpha \), \(M[\Sigma] = T \); so \(\Sigma \) has an infinite model; so by T11.31 for any infinite \(\kappa \neq \alpha \), \(\Sigma \) has a model of cardinality \(\kappa \); so \(M(\Sigma) \neq M_\alpha \). Similarly, if \(M \) is an infinite model and \(M \) is the class of models isomorphic to it, there is no \(\Sigma \) such that \(M(b)(\Sigma) = M \). Suppose otherwise; then \(M[\Sigma] = T \); so so by T11.31 for any infinite \(\kappa \neq \alpha \), \(\Sigma \) has a model of cardinality \(\kappa \) and so a model not isomorphic to \(M \); so \(M(b)(\Sigma) \neq M \).

It is worth observing that, in association with Tarski and Vaught, the Löwenheim-Skolem theorems extend to forms that specify a certain content for the models of different size. In particular, models may be such that one is an elementary submodel of the other.

Suppose \(\Sigma \) has a model \(M \) of infinite cardinality \(\gamma \). Consider \(V \subseteq U_M \) with infinite cardinality \(\alpha \); then for any \(\beta, \alpha \leq \beta \leq \gamma \) there is an \(L \) of cardinality \(\beta \) such that \(V \subseteq U_L \) and \(L \leq M \).

Suppose \(\Sigma \) has model \(M \) of infinite cardinality \(\alpha \). Then for any \(\alpha \geq \beta \), there is a model \(L \) of cardinality \(\alpha \) such that \(M \leq L \).
From these our T11.29 and T11.30 result as corollaries. But demonstrations would unduly stress our meager background from set theory. Since we do not require the additional results, we rest content with what we have.

Skolem’s paradox: At first glance, results from the Löwenheim-Skolem theorems may seem strange: If there are more real numbers than natural numbers, how is it that a theory of real numbers can be true on a universe of the natural numbers? And if there are more real numbers than natural numbers, how is it that a theory of natural numbers can be true on the reals? Similarly, and more dramatically, there is a formula \(\forall x \mathcal{U}(x) \) in the language of ZFC set theory that is true of just uncountable sets; and \(\exists x \mathcal{U}(x) \) is a theorem of ZFC. But if ZFC is consistent then it has a model; and ZFC is expressed in an ordinary countable language; so by the downward Löwenheim-Skolem theorem it has a countable model \(M \); and since \(\exists x \mathcal{U}(x) \) is a theorem of ZFC, it is true on \(M \); so there is some \(m \in \mathcal{U}_M \) such that \(M_{d(x|M)}[\mathcal{U}(x)] = S \)—but, clearly, there are not enough objects in \(\mathcal{U}_M \) for any member of it to have uncountably many elements. Technically, we already understand the response: No \(\Sigma \) is sufficient to pin down the cardinality of an infinite model; so the axioms of ZFC (or any other theory in first-order language) are not sufficient to pin down the cardinality of an infinite universe. On their intended interpretations, quantifiers, with functions and relations assigned to \(\mathcal{C}, \mathcal{D}, \mathcal{E} \) apply as we expect. But, as for the case of number theory, nonstandard interpretations reinterpret the vocabulary so as to model sentences in alternative ways. Thus \(\exists x \mathcal{U}(x) \) may be true on a model, even though the model is without an uncountable universe.

E11.17. In showing that between any two chains there is another (ii) on page 568, there were cases for \(b \otimes b = a \otimes c \) and \(b \otimes b = a \otimes c \otimes d \). Work the second case.

Hint: In the case where \(a \ll b \) and \(b = a \otimes d \), if \(d = a \), then \(b = a \) and \(a \not\ll b \); so there is some \(\bar{e} \) such that \(d = \bar{e} \otimes 1 \).

E11.18. Use compactness to show that if \(\Sigma \models \mathcal{P} \), then for some finite \(\Delta \subseteq \Sigma, \Delta \models \mathcal{P} \). Hint: If \(\Sigma \cup \{ \lnot \mathcal{P} \} \) is unsatisfiable, then by compactness some finite \(\Delta \subseteq \Sigma \cup \{ \lnot \mathcal{P} \} \) is unsatisfiable.

E11.19. Use the compactness theorem to show that if \(\mathcal{K} = \mathcal{M} \vdash \Sigma \) is axiomatized by some finite \(\Phi \) then \(\mathcal{K} \) is axiomatized also by a finite subset of \(\Sigma \). Hint: where \(\mathcal{A} \) is the conjunction of the members of \(\Phi, \Gamma = \Sigma \cup \{ \lnot \mathcal{A} \} \) is not satisfiable, and by compactness must have an unsatisfiable finite subset.
CHAPTER 11. MORE MAIN RESULTS

576

E11.20. Let \(\mathcal{R} \) be any class of models and \(\mathcal{M} \) the class of all models that are not members of \(\mathcal{R} \) (so \(\mathcal{R} \cup \mathcal{M} \) is the class of all models and \(\mathcal{R} \cap \mathcal{M} = \emptyset \)). (a) Show \(\mathcal{R} \) is finitely axiomatizable iff both \(\mathcal{R} \) and \(\mathcal{M} \) are axiomatizable. (b) Use this result with our demonstration that there is an axiomatization of models with an infinite domain and T11.24 to provide another demonstration that the class of all finite models is not axiomatizable. Hint for (a): If \(\mathcal{R} \) and \(\mathcal{M} \) are axiomatizable, there are some \(\Gamma \) and \(\Sigma \) such that \(\mathcal{R} = \mathcal{M} \mathcal{b}(\Gamma) \) and \(\mathcal{M} = \mathcal{M} \mathcal{b}(\Sigma) \); consider an application of compactness to \(\Gamma \cup \Sigma \).

*E11.21. In 1977 Appel and Haken, “Solution of the Four-Color Map Problem” solved a longstanding problem, proving that every planar map can be colored with four colors without adjacent regions having the same color. Such a map is understood to be finite. Supposing their result, use the compactness theorem to show that even an infinite map can be colored with four colors.\(^8\)

Say \(M \) assigns a two-place irreflexive and symmetric relation \(\equiv \) to symbol \(i \) (so \(\forall x (x \not\equiv x) \) and \(\forall x \forall y (x \equiv y \rightarrow y \equiv x) \)); let an extension \(M_0 \) of \(M \) be like \(M \) but with one-place relations \(C_1, C_2, C_3, C_4 \) assigned to symbols \(C_1, C_2, C_3, C_4 \). We think of members of the universe as regions, \(m \equiv n \) when \(m \) is adjacent to (shares a border with) \(n \), and \(m \in C_i \) when \(m \) has color \(C_i \). Let,

\[
\Phi = \begin{cases}
\forall x (C_1x \lor C_2x \lor C_3x \lor C_4x) \\
\forall x [(C_1x \rightarrow \neg(C_2x \lor C_3x \lor C_4x)) \land (C_2x \rightarrow \neg(C_1x \lor C_3x \lor C_4x)) \land (C_3x \rightarrow \neg(C_1x \lor C_2x \lor C_4x)) \land (C_4x \rightarrow \neg(C_1x \lor C_2x \lor C_3x))] \\
\forall y \forall x [x \equiv y \rightarrow ((C_1x \land C_1y) \land (C_2x \land C_2y) \land (C_3x \land C_3y) \land (C_4x \land C_4y))]
\end{cases}
\]

Intuitively: every region has a color; no region has more than one color; and adjacent regions do not have the same color. By the four-color theorem, for any finite \(L \subseteq M \) there is an \(L_0 \) such that \(L_0, [\Phi] = T \). The task is to show that there exists an \(M_0 \) such that \(M_0, [\Phi] = T \), and so that \(M \) is four-colorable.

HINTS: This breaks into two interesting parts: (i) Extend \(\mathcal{L}_0 \) to an \(\mathcal{L}'_0 \) by the addition of a constant \(\overline{a} \) for each \(a \in U_M \); let \(\Sigma' = \Phi \cup \{\overline{m} \neq \overline{n} \mid m, n \in U_M \text{ and } m \equiv n\} \cup \{\overline{m} \neq \overline{n} \mid m, n \in U_M \text{ and } m \not\equiv n\}. \) For finite \(\Delta' \subseteq \Sigma' \), let the members of \(U_C \) be objects to which constants in \(\Delta' \) are assigned and \(C[1] \) be the restriction of \(M[1] \) to \(U_C \); then \(C \subseteq M \) and by the four-color theorem there is a \(C_* \) extending \(C \) such that \(C_*, [\Phi] = T \). From \(C_* \) you will be able to find a \(C'_* \) to satisfy \(\Delta' \)

\(^8\)Interestingly, Appel and Haken employ a computer to verify cases (more cases than can be verified by hand). This inspires debate about the nature of proof.
so a J' to satisfy Σ'. (ii) While J' satisfies Φ, it is not yet the M_\ast we want—but we can manipulate J' to obtain the desired interpretation. Consider J like J' but without assignments to extra constants, and then $K \subseteq J$ restricting the universe of K to $\{J'[\overline{a}] \mid a \in U_M\}$, and finally the $L \cong K$ that maps $J'[\overline{a}]$ to a; you will be able to show that $L[\Phi]$ remains true, and that L is an M_\ast—so that M is four-colorable. You should find E11.15 to be helpful.

E11.22. On a finite universe, it is always possible to extend a partial order \prec to a linear order \preceq—so where the relations are sets of pairs, $\prec \subseteq \preceq$ and \preceq is a linear order: Intuitively, for U with n members, choose an $m \in U$ such that no member of U is less than it (a minimal element of U), and let $a_1 = m$; then choose a minimal $n \in U - \{a_1\}$—from among objects in U but not in $\{a_1\}$—and let $a_2 = n$; then choose a minimal $o \in U - \{a_1, a_2\}$ and let $a_3 = o$; continue in this way until all the members of U are included in $a_1 \ldots a_n$. Then the relation $a_i \preceq a_j$ iff $1 \leq i < j \leq n$ has $a_1 \preceq a_2 \preceq a_3 \ldots \preceq a_n$ and extends \prec to a linear order.

Use this result with compactness* to show that it is possible to do the same on an infinite universe. That is, suppose language \mathcal{L} has just a single two-place relation symbol G and model M for language \mathcal{L} assigns a partial order \prec to the symbol G. Show that M can be extended to an M_\ast that assigns to G a linear order \preceq. Observe that this is not obvious: at least, on an infinite universe there might be no minimal element of a partial order so that intuitive reasoning for the finite sets is inapplicable.

Hints: This works very much like the previous exercise. Let Λ be the set whose members are the axioms O1, O2 and O3 for a linear order. Extend \mathcal{L} to an \mathcal{L}' by the addition of a constant \overline{a} for each $a \in U_M$; let $\Sigma' = \Lambda \cup \{\overline{m} \prec \overline{n} \mid m, n \in U_M$ and $m \prec n\} \cup \{\overline{m} \neq \overline{n} \mid m, n \in U_M$ and $m \neq n\}$. You should be able to find a J' to satisfy Σ', and manipulate this interpretation to a linear order M_\ast extending M. You will find E11.15 useful at a stage where you want to show that a restriction of a partial order is a partial order.

11.4.3 ŹCompleteness

We have seen from the corollary to T11.16 that a categorical Σ is Źcomplete. But from the Löwenheim-Skolem theorems, no Σ with an infinite model is categorical. This may seem a problem to the extent that we desire Źcomplete theories. So far as the Löwenheim-Skolem theorems go, however, “space” for completeness remains. If M is finite, nothing from the Löwenheim-Skolem theorems blocks an axiomatization
of the class of all models isomorphic to it. Further, by T11.15 isomorphism implies elementary equivalence; and from T11.16, a \(\Sigma\) whose models are elementarily equivalent is complete. But elementary equivalence does not imply isomorphism—this is a moral of our discussion of number theory and Löwenheim-Skolem; so models might be elementarily equivalent without being isomorphic—and so \(\Sigma\) complete without being categorical. In this section we see that, in some cases at least, complete theories do occupy this space.

Finite Models

Suppose \(\mathcal{D}\) is a finite model and let \(\mathfrak{D}\) be the class of all models isomorphic to it. Then we may show that there is a \(\Sigma\) such that \(\mathcal{M}d(\Sigma) = \mathfrak{D}\). Given the finite model \(\mathcal{D}\), we construct \(\Sigma\), and show that members of \(\mathcal{M}d(\Sigma)\) are isomorphic. First, then, given \(\mathcal{D}\), we set out to construct \(\Sigma\). We do this by finding a sequence of formulas \(C^0, C^1, \ldots\) that, taken together, are an axiomatization of \(\mathcal{D}\).

First, since \(\mathcal{D}\) is finite, \(U_{\mathcal{D}}\) is some set \(m_1, m_2, \ldots, m_n\). For some enumeration of variables \(x_1, x_2, \ldots\) consider an assignment \(d\) such that \(d[x_1] = m_1, d[x_2] = m_2, \ldots\) and \(d[x_n] = m_n\). Then, drawing upon our discussion of ‘at least’ and ‘at most’, let \(C^0\) be the open formula,

\[
\bigwedge_{1 \leq i < j \leq n} x_i \neq x_j \land \forall v \bigvee_{1 \leq i \leq n} v = x_i
\]

So in the case of a four-member universe \(C^0\) is,

\[
(x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4 \land x_2 \neq x_3 \land x_2 \neq x_4 \land x_3 \neq x_4) \land \forall v (v = x_1 \lor v = x_2 \lor v = x_3 \lor v = x_4)
\]

By analogy with \(\exists x \exists y (x \neq y \land \forall v (v = x \lor v = y))\) for ‘there are exactly two’ the existential closure of this expression, \(\exists x_1 \exists x_2 \ldots \exists x_n C^0\) is true just when there are exactly \(n\) things.

Now consider an enumeration, \(A_1, A_2, \ldots\) of those atomic formulas in \(\mathcal{L}\) whose only variables are \(x_1 \ldots x_n\)—so the members of the enumeration are sentence letters and atomics with variables from among \(x_1 \ldots x_n\). Set \(C_i = C_{i-1} \land A_i\) if \(D_d[A_i] = S\), and otherwise \(C_i = C_{i-1} \land \sim A_i\). It is easy to see that for any \(i\), \(D_d[C_i] = S\). The argument is by induction on \(i\).

Basis: For any \(a\) and \(b\) such that \(1 \leq a < b \leq n\), since \(d\) assigns to \(x_a\) and \(x_b\) distinct members of \(U_{\mathcal{D}}\), \(D_d[\neg \exists x_a \neq x_b] = S\); so by repeated applications of \(SF(\land)\), \(D_d[\bigwedge_{1 \leq i < j \leq n} x_i \neq x_j] = S\). And since each member of \(U_{\mathcal{D}}\) is assigned to some variable in \(x_1 \ldots x_n\), for any \(m \in U_{\mathcal{D}}\), there is some \(a\),
1 ≤ a ≤ n such that D_d[v | m][v = x_a] = S; so by repeated applications of SF(∨), D_d[v | m][\bigvee_{1 \leq i \leq n} v = x_i] = S; and since this is so for every m ∈ U_d, by SF(∧), D_d[x | m][\bigvee_{1 \leq i \leq n} v = x_i] = S. So by SF(∧), D_d[C_0] = S.

Assp: For any i, 0 ≤ i < k, D_d[C_i] = S.

Show: D_d[C_k] = S.

C_k is of the form C_{k-1} ∧ A_k or C_{k-1} ∧ \neg A_k. In the first case, by assumption, D_d[C_{k-1}] = S, and by construction, D_d[A_k] = S; so by SF(∧), D_d[C_{k-1} ∧ A_k] = S; which is to say, D_d[C_k] = S. In the second case, again D_d[C_{k-1}] = S; and by construction, D_d[A_k] ≠ S; so by SF(¬), D_d[¬A_k] = S; so by SF(∧), D_d[C_{k-1} ∧ ¬A_k] = S; which is to say, D_d[C_k] = S.

Indct: For any i, D_d[C_i] = S.

Now for any C_i, let its existential closure C_i^e = \exists x_1 \ldots \exists x_n C_i; and set Σ = \{C_i^e | i ≥ 0\}. It is easy to see that each C_i^e and so Σ is true on D. Suppose otherwise; then D[\exists x_1 \ldots \exists x_n C_i] ≠ T; so by T1, there is some assignment d' such that D_d[\exists x_1 \ldots \exists x_n C_i] ≠ S; so, since there are no no free variables, by T8.5, D_d[\exists x_1 \ldots \exists x_n C_i] ≠ S; then repeatedly removing an x-quantifier by SF(∃) leaves the formula unsatisfied for every assignment to x and so unsatisfied on d itself, so that D_d[C_i] ≠ S; but by the above result, this is impossible; reject the assumption: D[\exists x_1 \ldots \exists x_n C_i] = T. As since this applies to each C_i^e, D[Σ] = T.

Suppose H ∈ \mathcal{H}_d(Σ); we set out to show D \cong H. Since H ∈ \mathcal{H}_d(Σ), H[Σ] = T; so H[C_i^e] = T, that is H[\exists x_1 \ldots \exists x_n C_i] = T; and, as we have already noted, this can be the case iff there are exactly n members of U_H. Now we set out to find an assignment h such that for any i, H_h[C_i] = S, and for the isomorphism, set \iota(d[x]) = h[x].

For some assignment k into U_H, let h range over assignments that differ from k at most in assignments to x_1 \ldots x_n. Set Ω_i = \{h | H_h[C_i] = S\}, and Ω = \bigcap_{i≥0} Ω_i. So there is an Ω_i corresponding to each C_i, and Ω collects assignments that are common to them all.

(i) No Ω_i is empty. Since H[Σ] = T, H[\exists x_1 \ldots \exists x_n C_i] = T; so by T1, that formula is satisfied on any assignment; in particular H_k[\exists x_1 \ldots \exists x_n C_i] = S; so by repeated applications of SF(∃), there is some h such that H_h[C_i] = S. When the quantifiers come off, the result is some assignment that differs at most in assignments to x_1 \ldots x_n and so some assignment h.

(ii) For any i ≤ j, Ω_i ⊇ Ω_j—the assignments are reduced as the formulas increase.

Suppose otherwise; then there is some h such that h ∈ Ω_j but h \not∈ Ω_i; so
There are at most finitely many assignments of the sort $T_{11.32}$. If b is ready for the result at which we have been aiming.

From these results it follows that Ω is non-empty: Suppose otherwise, that no h is a member of each Ω_i; then for any h, there is some Ω_i such that $h \not\in \Omega_i$. For each h consider the least a such that $h \not\in \Omega_a$ and let A be the set of these subscripts; then for any h there is some $a \in A$ such that $h \not\in \Omega_a$. Since by (iii) there are finitely many assignments, A has finitely many members; let b be the maximum of the members in A and consider Ω_b; by (i) there is some $h \in \Omega_b$; but for every $a \in A$, $a \leq b$ so by (ii) $\Omega_a \supseteq \Omega_b$; so $h \in \Omega_a$; so there is no $a \in A$ such that $h \not\in \Omega_a$. This is impossible; reject the assumption: Ω is not empty. So we have what we wanted: since members of Ω must satisfy each \mathcal{C}_i, there exists an assignment h to satisfy every \mathcal{C}_i. And we are ready for the result at which we have been aiming.

T11.32. If D is a finite model and \mathcal{D} is the class of all models isomorphic to it, then there is a categorial Σ such that $\text{Mb}(\Sigma) = \mathcal{D}$.

Suppose D is a finite model and \mathcal{D} is the class of all models isomorphic to it. Let Σ be as above and suppose $H \in \text{Mb}(\Sigma)$. Then, as above, there are assignments d and h such that for each i, $D_d[\mathcal{C}_i] = S$ and $H_h[\mathcal{C}_i] = S$. For $0 \leq i \leq n$, let $\iota(d[x_i]) = h(x_i)$; since $H_h[\mathcal{C}_0] = S$, h assigns each x_i a different member of U_h and each member of U_h is assigned some x_i; so ι is $1:1$ and onto U_h, as it should be. We now set out to show that the other conditions for isomorphism are met.

(s) If δ is a sentence letter, then δ is some A_i. (i) Suppose $D[\delta] = T$; then $D[A_i] = T$; so by $\text{SF}(s)$, $D_d[A_i] = S$; so A_i is a conjunct of \mathcal{C}_i. But $H_h[\mathcal{C}_i] = S$; so by $\text{SF}(\wedge)$, $H_h[A_i] = S$; so by $\text{SF}(s)$, $H[A_i] = T$; so $H[\delta] = T$. (ii) Suppose $D[\delta] \neq T$; then $D[A_i] \neq T$; so by $\text{SF}(s)$, $D_d[A_i] \neq S$; so $\sim A_i$ is a conjunct of \mathcal{C}_i. But $H_h[\mathcal{C}_i] = S$; so by $\text{SF}(\wedge)$, $H_h[\sim A_i] = S$; so by $\text{SF}(\sim)$, $H_h[A_i] \neq S$; so by $\text{SF}(s)$, $H[A_i] \neq T$; so $H[\delta] \neq T$. So $D[\delta] = H[\delta]$.

(c) If c is a constant, we require $D[c] = m_i$ iff $H[c] = \iota(m_i)$. (i) Suppose $D[c] = m_i$. Since $D[x_i] = m_i$, $\iota(m_i) = \iota(d[x_i]) = h[x_i]$. By $\text{TA}(c)$, $D_d[c] = D[c] = m_i$; and by $\text{TA}(v)$, $D_d[x_i] = d[x_i] = m_i$; so $D_d[c] = D_d[x_i]$; so $\langle D_d[c], D_d[x_i] \rangle \in D[=]$;
(ii) Suppose $\textsf{D}[c] \neq m_i$. As before, $\iota(m_i) = h[x_i]$; and $\textsf{D}_a[x_i] = m_i$. But by $\textsf{TA}(c), \textsf{D}_a[c] = D[c]$; so $\textsf{D}_a[c] \neq m_i$; so $\textsf{D}_a[c] \neq \textsf{D}_a[x_i]$; so $\{\textsf{D}_a[c], \textsf{D}_a[x_i]\} \notin D[=]$; so by $\textsf{SF}(r), \textsf{D}_a[c] = x_i \neq S$; so $c \neq x_i$ is a conjunct in some \mathcal{C}_n; but $H_n[\mathcal{C}_n] = S$; so by $\textsf{SF}(\sim)$, and $\textsf{SF}(r), (H_n[c], H_n[x_i]) \notin H[=]$; so $H_n[c] \neq H_n[x_i]$; but by $\textsf{TA}(c), H_n[c] = H[c]$; and by $\textsf{TA}(v), H_n[x_i] = h[x_i]$; so $H[c] \neq h[x_i]$; so $H[c] \neq \iota(m_i)$.

(r) If \mathcal{R}^n is a relation symbol, we require $\langle m_a \ldots m_b \rangle \in D[\mathcal{R}^n]$ iff $\iota(m_a) \ldots \iota(m_b)) \in H[\mathcal{R}^n]$. (i) Suppose $\langle m_a \ldots m_b \rangle \in D[\mathcal{R}^n]$. Since $d[x_a] = m_a$, and ...and $d[x_b] = m_b$ we have, $\iota(m_a) = \iota(d[x_a]) = h[x_a]$, and ...and $\iota(m_b) = \iota(d[x_b]) = h[x_b]$, and also by $\textsf{TA}(v), \textsf{D}_a[x_a] = m_a$, and ...and $\textsf{D}_a[x_b] = m_b$; so $\{\textsf{D}_a[x_a], \ldots, \textsf{D}_a[x_b]\} \in D[\mathcal{R}^n]$; so by $\textsf{SF}(r), \{\textsf{D}_a[\mathcal{R}^n x_a \ldots x_b]\} = S$; so $\mathcal{R}^n x_a \ldots x_b$ is a conjunct of some \mathcal{C}_n; but $H_n[\mathcal{C}_n] = S$; so by $\textsf{SF}(\sim)$, $H_n[\mathcal{R}^n x_a \ldots x_b] = S$; so by $\textsf{SF}(r), \langle H_n[x_a] \ldots H_n[x_b] \rangle \in H[\mathcal{R}^n]$; but by $\textsf{TA}(v), H_n[x_a] = h[x_a] = \iota(m_a)$, and ...and $H_n[x_b] = h[x_b] = \iota(m_b)$; so $\{\iota(m_a), \ldots, \iota(m_b)\} \in H[\mathcal{R}^n]$. (ii) If $\langle m_a \ldots m_b \rangle \not\in D[\mathcal{R}^n]$ then $\{\iota(m_a), \ldots, \iota(m_b)\} \not\in H[\mathcal{R}^n]$ [homework].

(f) If \mathcal{R}^n is a function symbol, we require $\langle (m_a \ldots m_b), m_c \rangle \in D[\mathcal{R}^n]$ iff $\langle \iota(m_a) \ldots \iota(m_b), \iota(m_c) \rangle \in H[\mathcal{R}^n]$. (i) Suppose $\langle (m_a \ldots m_b), m_c \rangle \in D[\mathcal{R}^n]$. Since $d[x_a] = m_a$, and ...and $d[x_b] = m_b$, and $d[x_c] = m_c$, we have $\iota(m_a) = \iota(d[x_a]) = h[x_a]$, and ...and $\iota(m_b) = \iota(d[x_b]) = h[x_b]$, and $\iota(m_c) = \iota(d[x_c]) = h[x_c]$; and also by $\textsf{TA}(v), \textsf{D}_a[x_a] = m_a$, and ...and $\textsf{D}_a[x_b] = m_b$, and $\textsf{D}_a[x_c] = m_c$; so $\{\textsf{D}_a[x_a], \ldots, \textsf{D}_a[x_b], \textsf{D}_a[x_c]\} \in D[\mathcal{R}^n]$; so $D[\mathcal{R}^n][\textsf{D}_a[x_a], \ldots, \textsf{D}_a[x_b], \textsf{D}_a[x_c]] = D[=]$; so by $\textsf{SF}(r), \textsf{D}_a[\mathcal{R}^n x_a \ldots x_b] = d[x_c]$; so $\mathcal{R}^n x_a \ldots x_b = x_c$ is a conjunct of some \mathcal{C}_n; but $H_n[\mathcal{C}_n] = S$; so by $\textsf{SF}(\sim), H_n[\mathcal{R}^n x_a \ldots x_b] = x_c = S$; so by $\textsf{SF}(r), \langle H_n[\mathcal{R}^n x_a \ldots x_b], H_n[x_c] \rangle \in H[=]$; so $H_n[\mathcal{R}^n x_a \ldots x_b] = H_n[x_c]$; by $\textsf{TA}(v), H_n[x_a] = h[x_a] = \iota(m_a)$, and ...and $H_n[x_b] = h[x_b] = \iota(m_b)$, and $H_n[x_c] = h[x_c] = \iota(m_c)$; so $\{\iota(m_a), \ldots, \iota(m_b), \iota(m_c)\} \in H[\mathcal{R}^n]$. (ii) If $\langle (m_a \ldots m_b), m_c \rangle \not\in D[\mathcal{R}^n]$ then $\{\iota(m_a), \ldots, \iota(m_b), \iota(m_c)\} \not\in H[\mathcal{R}^n]$ [homework].
This is an interesting result! Since every $D, H \in \mathbb{M}(\Sigma)$ is such that $D \cong H$, Σ is categorical; so by the corollary to T11.16, Σ is complete. Many structures, including some from abstract algebra, have a finite domain—although most of the structures we shall care about do not. Even so, we have a first case where completeness is possible.

*E11.23. Complete the demonstration of T11.32 including cases for relation and function symbols. You should set up the whole argument, but may refer to the text as the text refers to homework.

E11.24. Consider a language with just relation symbols A^1, B^2 (and $=). Let U_D = \{1, 2\}, D[A] = \{1\} and D[B] = \{(1, 1), (1, 2)\}. (i) By the method of this section, find Σ to axiomatize $|\mathcal{D}|$. (ii) As a sample, show that $\Sigma \vdash \forall x (Ax \rightarrow \exists y Bxy)$.

Hint: Σ should have as members some $\mathcal{C}_0 \ldots \mathcal{C}_{10}$.

Quantifier Elimination

Consider a sentential language with just two sentence letters A and B. Suppose $\Sigma = \{A, \sim B\}$. On a truth table, there is just one row were the members of Σ are both true, and on that row, any P in the language is either T or F, so that one of P or $\sim P$ is T.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$A \sim B$</th>
<th>P</th>
<th>$\sim P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>P</td>
<td>$\sim P$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>P</td>
<td>$\sim P$</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>P</td>
<td>$\sim P$</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>P</td>
<td>$\sim P$</td>
</tr>
</tbody>
</table>

So for any P, either $\Sigma \models P$ or $\Sigma \models \sim P$. But by completeness, if $\Gamma \models P$ then $\Gamma \models \sim P$; so for any P, either $\Sigma \models P$ or $\Sigma \models \sim P$. Alternatively, from $\Sigma \models A$ and $\Sigma \models \sim B$, one might reason by induction on the number of operators in P that $\Sigma \models P$ or $\Sigma \models \sim P$. Either way Σ is complete. Of course, this case is not very interesting. Still, if we could show that things are “like this” for some more interesting Σ, then we could show that Σ is complete. That is the strategy of quantifier elimination: Say Σ admits quantifier elimination just in case for each formula P in its language L, there is some quantifier-free Q with the same free variables as P such that $\Sigma \models P \leftrightarrow Q$. Observe that such a P and Q need not be logically equivalent—for any A and B if $\Sigma \models A$ and $\Sigma \models B$, then $\Sigma \models A \leftrightarrow B$. All the same, suppose Σ admits quantifier elimination and $\Sigma \models A$ or $\Sigma \models \sim A$ for atomic sentences of its language; then by reasoning as above, $\Sigma \models Q$ or $\Sigma \models \sim Q$ for quantifier-free sentences of its language; but from $\Sigma \models P \leftrightarrow Q$ and completeness, $\Sigma \models P \leftrightarrow Q$; so with $\leftrightarrow E$ and NB, $\Sigma \models P$.
or $\Sigma \vdash \sim P$; so Σ is complete. It is not always the case that when Σ is complete, it may be shown to be complete by quantifier elimination (and quantifier elimination is not the only approach). Still, the method applies for some cases that we shall care about. We have seen how a Σ might prove A or $\sim A$ for atomic sentences of its language (think about Q). The trick, then, is to see how (in the world) an interesting Σ including quantified expressions admits quantifier elimination. We make a start with the following theorem.

T11.33. If every $P = \exists x(A_1 \land \ldots \land A_n)$ atomic or negated atomic has a quantifier-free Q with the same free variables such that $\Sigma \vdash P \leftrightarrow Q$, then Σ admits quantifier elimination.

Suppose every $P = \exists x(A_1 \land \ldots \land A_n)$ atomic or negated atomic has a quantifier-free Q with the same free variables such that $\Sigma \vdash P \leftrightarrow Q$. By induction on the number of operator symbols.

Basis: Suppose P has no operator symbols; then P is an atomic; let Q be the same formula. Then Q is quantifier-free has the same free variables as P.

But $\Sigma \vdash P \leftrightarrow P$; so $\Sigma \vdash P \leftrightarrow Q$.

Asssp: For any i, $0 \leq i < k$, if P has i operator symbols, then there is a quantifier-free Q with the same free variables as P such that $\Sigma \vdash P \leftrightarrow Q$.

Show: If P has k operator symbols, then there is a quantifier-free Q with the same free variables as P such that $\Sigma \vdash P \leftrightarrow Q$.

If P has k free variables, then it is of the form $\sim A$, $A \rightarrow B$ or $\exists x A$ for A, B with $< k$ operator symbols (treating $\forall x A$ as equivalent to $\sim \exists x \sim A$).

(\sim) P is $\sim A$. By assumption there is some quantifier-free B with the same free variables as A such that $\Sigma \vdash A \leftrightarrow B$; let Q be $\sim B$. It remains that $\sim B$ is quantifier-free and has the same free variables as $\sim A$. Further, it is easy to see that $\Sigma \vdash \sim A \leftrightarrow \sim B$; so $\Sigma \vdash P \leftrightarrow Q$.

(\rightarrow) P is $A \rightarrow B$. Homework.

(\exists) P is $\exists x A$. By assumption there is some quantifier-free B with the same free variables as A such that $\Sigma \vdash A \leftrightarrow B$; then it is easy to see that $\Sigma \vdash \exists x A \leftrightarrow \exists x B$. Say C is in conjunctive normal form iff it is of the sort,

$$(D_1 \land \ldots \land D_d) \lor (E_1 \land \ldots \land E_e) \lor \ldots \lor (F_1 \land \ldots \land F_f)$$

where each D_i, E_i, ... and F_i is an atomic or negated atomic. Then for any quantifier-free Q, there is a Q' with the same free variables in
conjunctive normal form such that $\vdash Q \leftrightarrow Q'$ (we may see this either by
the mechanism for our proof of T11.1 or as an extension of T8.1). Take,

\[
B' = (D_1 \land \ldots \land D_d) \lor (E_1 \land \ldots \land E_e) \lor \ldots \lor (F_1 \land \ldots \land F_f)
\]

such that $\vdash B \leftrightarrow B'$. Then,

\[
\Sigma \models \exists x \mathcal{A} \iff \exists x[(D_1 \land \ldots \land D_d) \lor (E_1 \land \ldots \land E_e) \lor \ldots \lor (F_1 \land \ldots \land F_f)]
\]

and with T6.32,

\[
\Sigma \models \exists x \mathcal{A} \iff [\exists x(D_1 \land \ldots \land D_d) \lor \exists x(E_1 \land \ldots \land E_e) \lor \ldots \lor \exists x(F_1 \land \ldots \land F_f)]
\]

But by the assumption to the theorem, there is some quantifier-free Q_d with
the same free variables as $\exists x(D_1 \land \ldots \land D_d)$ such that $\Sigma \models \exists x(D_1 \land \ldots \land D_d)
\iff Q_d$ and ... and there is a quantifier-free Q_f with the same free
variables as $\exists x(F_1 \land \ldots \land F_f)$ such that $\Sigma \models \exists x(F_1 \land \ldots \land F_f) \iff Q_f$.
So $Q = Q_d \lor Q_e \lor \ldots \lor Q_f$ is quantifier-free and has the same free
variables as $\exists x \mathcal{A}$; so Q has the same free variables as \mathcal{P}. And $\Sigma \models \exists x \mathcal{A} \iff Q_d \lor Q_e \lor \ldots \lor Q_f$; so $\Sigma \models \mathcal{P} \iff Q$.

If \mathcal{P} has k operator symbols, then there is a quantifier-free Q with the same free variables as \mathcal{P} such that $\Sigma \models \mathcal{P} \iff Q$.

Indet: For every \mathcal{P} there is a quantifier-free Q with the same free variables as \mathcal{P} such that $\Sigma \models \mathcal{P} \iff Q$.

So the project of showing that Σ admits quantifier elimination reduces to the project
of showing that each $\mathcal{P} = \exists x(\mathcal{A}_1 \land \ldots \land \mathcal{A}_n)$ with $\mathcal{A}_1 \ldots \mathcal{A}_n$ atomic or negated
atomic has a quantifier-free Q with the same free variables such that $\Sigma \models \mathcal{P} \iff Q$.

We turn now to showing that some theories in fact admit quantifier elimination.

E11.25. Provide a demonstration of the (\rightarrow) case for T11.33 in which you work
through all the semantic details.

Theory S. Consider a language like \mathcal{L}_{S^1} whose only function symbol is S. Then
terms are of the sort $S^n t$ where S^n indicates n instances of S and t is a variable or 0;
atomic formulas are $S^m \mathfrak{a} = S^n t$ again where \mathfrak{a} and t are the constant 0 or a variable.

Let S be a set whose members are as follows.

(S1) $Sx \neq \emptyset$

(S2) $Sx = Sy \rightarrow x = y$
(S3) $x \neq \emptyset \rightarrow \exists y(x = Sy)$

(S4) $S^nx \neq x$ for any $n \geq 1$

Observe that there are infinitely many axioms corresponding to instances of (S4). From these axioms we have as theorems,

(Sa) If $m = n$ then $S \vdash S^m x = S^nx$.

(Sb) If $m \neq n$ then $S \vdash S^m x \neq S^nx$.

(Sc) $S \vdash S^a S^b x = x \iff S^{a + b} x = S^b x$.

(Sd) $S \vdash \exists x(S^nx = x) \iff (t = t \land t \neq S0 \emptyset \land t \neq S1 \emptyset \land \ldots \land t \neq S^{n-1} \emptyset)$.

For hints see the associated exercise, E11.26. By soundness, these theorems are true on models of S.

To show that S admits quantifier elimination, suppose $M[S] = T$ and consider $\mathcal{P} = \exists x(A_1 \land \ldots \land A_n)$, where $A_1 \ldots A_n$ are $S^m x = S^n t$ or $S^m x \neq S^n t$ and s and t are the constant \emptyset or a variable. To show $S \models \mathcal{P} \iff \mathcal{Q}$ we need $M_d[\mathcal{P}] = S$ iff $M_d[\mathcal{Q}] = S$. As a preliminary, consider $M_d[\exists x(A_1 \land \ldots \land A_i \land \ldots \land A_n)] = S$ with $S \models A_i \iff B$; by soundness $S \models A_i \iff B$; so $M[A_i \iff B] = T$ and $M_d[A_i \iff B] = S$; so from T9.10, $M_d[\exists x(A_1 \land \ldots \land A_i \land \ldots \land A_n)] = S$ iff $M_d[\exists x(A_1 \land \ldots \land B \land \ldots \land A_n)] = S$; for such a case, I typically cite just the original theorem, $S \models A_i \iff B$.

First, suppose x does not appear in some A_i; then,

\begin{align*}
\text{if} \quad & M_d[\exists x(A_1 \land \ldots \land A_i \land \ldots \land A_n)] = S \\
\text{if} \quad & M_d[A_i \land \exists x(A_1 \land \ldots \land A_i \land \ldots \land A_n)] = S
\end{align*}

A_i moves to the front by standard quantifier placement rules. And free variables remain the same. So if we reduce the second conjunct to quantifier-free form, we will have reduced the whole.

Concentrating then on the second conjunct, consider $\exists x(\mathcal{B}_1 \land \ldots \land \mathcal{B}_n)$ where x is a component of each \mathcal{B}_i. Suppose \mathcal{B}_j is of the sort $S^m x = S^n x$. First let $m = n$; then,

\begin{align*}
\text{if} \quad & M_d[\exists x(\mathcal{B}_1 \land \ldots \land S^m x = S^n x \land \ldots \land \mathcal{B}_n)] = S \\
\text{if} \quad & M_d[\exists x(\mathcal{B}_1 \land \ldots \land \emptyset = \emptyset \land \ldots \land \mathcal{B}_n)] = S
\end{align*}

$S^m x = S^n x$ is replaced by $\emptyset = \emptyset$ and that variable-free conjunct moved to the front. For the first move: since $m = n$, by (Sa) $S \vdash S^m x = S^n x$; and again by (Sa), $S \vdash \emptyset = \emptyset$; so $S \models S^m x = S^n x \iff \emptyset = \emptyset$ and the second move is by
quantifier-placement rules. And similarly using (Sb) to replace \(S^m x = S^n x \) with \(\emptyset \neq \emptyset \) when \(m \neq n \). For a negated atomic \(\neg (S^m x = S^n x) \), replace \(S^m x = S^n x \), and move the negation of it outside. Again, free variables remain the same.

Concentrating again on the second conjunct, consider \(\exists x (\mathcal{C}_1 \land \ldots \land \mathcal{C}_n) \) where each \(\mathcal{C}_i \) is \(S^m x = t_i \) or \(S^n x \neq t_i \) and \(x \) does not appear in \(t_i \). Suppose first that each \(\mathcal{C}_i \) is of the sort \(S^m x = t_i \); then,
\[
M_d[\exists x (S^m x \neq t_1 \land \ldots \land S^n x \neq t_n)] = S
\]

(Q)
\[
M_d[t_1 = t_1 \land \ldots \land t_n = t_n] = S
\]

Each \(S^n x \neq t_i \) is replaced by \(t_i = t_i \). Then free variables remain the same. And consider the objects \(m_1 \ldots m_n \) assigned to \(t_1 \ldots t_n \); on an infinite domain there is sure to be an object different from each \(m_i \) and so an object to satisfy the existential quantification: Let \(k \) be the maximum superscript such that for some \(m_i \), \(M_d[S^k \emptyset] = m_i \). Then by (Sb), for each \(j \leq k \), \(S^j \emptyset \neq S^{k+1} \emptyset \); so the object assigned to \(S^{k+1} \emptyset \) is other than any \(m_i \); and since there is such and object, the upper existential quantification is satisfied on \(M_d \); and trivially the lower is satisfied as well; so \(S \) entails the biconditional between the two.

Suppose then that some \(\mathcal{C}_i \) is \(S^m x = t_i \). Then,
\[
M_d[\exists x (S^m x = t_1 \land (S^b x = t_2 \land \ldots \land S^s x = t_i \land S^d x \neq t_{i+1} \land \ldots \land S^t x \neq t_j))] = S
\]

(R)
\[
M_d[\exists x (S^m x = t_1 \land (S^b t_1 = S^d t_2 \land \ldots \land S^s t_i = S^d t_{i+1} \land \ldots \land S^t t_j \neq S^d t_j))] = S
\]
\[
M_d[\exists x (S^m x = t_1 \land (S^b t_1 = S^d t_2 \land \ldots \land S^s t_i = S^d t_{i+1} \land \ldots \land S^t t_j \neq S^d t_j))] = S
\]
\[
M_d[\exists x (S^m x = t_1)] = S
\]

(S)
\[
M_d[t_1 = t_1 \land t_1 \neq S^m \emptyset \land t_1 \neq S^1 \emptyset \land \ldots \land t_1 \neq S^{m-1} \emptyset] = S.
\]

Superscripts on terms not in the first conjunct are increased by the superscript from the first; then \(t_1 \) is substituted for \(S^a x \) in conjuncts other than the first; thus \(x \) appears just in the first term, and the quantifier is restricted just to it. The equivalences are by (Sc); then application of the equality from the first conjunct to the other members; and finally by quantifier placement. Again, free variables remain the same.

Finally, concentrating on the first conjunct,
\[
M_d[\exists x (S^a x = t_1)] = S
\]

the quantification is reduced to quantifier-free form by (Sd). Again, free variables remain the same.

Thus the original \(\mathcal{P} = \exists x (\mathcal{A}_1 \land \ldots \land \mathcal{A}_n) \) is reduced to quantifier-free \(\mathcal{Q} \) with the same free variables such that \(S \models \mathcal{P} \iff \mathcal{Q} \). So by T11.33, \(S \) admits quantifier elimination. And now it is easy to see that \(S \) is complete.
T11.34. S is complete.

Since S admits quantifier elimination, for any \(\mathcal{P} \) there is a quantifier-free \(\mathcal{Q} \) with the same free variables such that \(S \models \mathcal{P} \iff \mathcal{Q} \); so by completeness \(S \vdash \mathcal{P} \iff \mathcal{Q} \). Suppose \(\mathcal{P} \) is a sentence; then \(\mathcal{Q} \) is a sentence. Atomic sentences in the language of S are of the sort \(S^n \varnothing = S^n \varnothing \); so by (Sa) and (Sb), for any atomic sentence \(\mathcal{A} \), \(S \vdash \mathcal{A} \) or \(S \vdash \sim \mathcal{A} \); so by a simple induction on number of operator symbols, for any quantifier-free sentence \(\mathcal{Q} \), \(S \vdash \mathcal{Q} \) or \(S \vdash \sim \mathcal{Q} \); so by \(\iff E \) and NB, \(S \vdash \mathcal{P} \) or \(S \vdash \sim \mathcal{P} \); so S is complete.

For an example, consider the sentence \(\mathcal{P} = \forall y \exists x \sim (Sx = y \rightarrow SSx \neq Sy) \). Begin replacing \(\forall y \mathcal{P} \) with \(\sim \exists y \sim \mathcal{P} \) to obtain \(\sim \exists y \sim \exists x \sim (Sx = y \rightarrow SSx \neq Sy) \). Then given the usual tree as on the left below, construct a parallel tree as on the right replacing each existential quantification by its quantifier-free form.

For the \(x \)-quantifier,
$M_0[∃x(Sx = y → S^2x ≠ Sy)] = S$

iff

$M_0[∃x(Sx = y ∧ S^3x = Sy)] = S$

conjunctive normal form

$M_0[∃x(Sx = y ∧ S^2x = SSy)] = S$

(R)

$M_0[∃x(Sx = y ∧ S^2y = SSy)] = S$

(R)

$M_0[(y = y ∧ y ≠ 0 ∧ SSy = SSy)] = S$

(R)

For the y-quantifier,

$M_0[∃y∼(y = y ∧ y ≠ 0 ∧ SSy = SSy)] = S$

iff

$M_0[∃y(y ≠ y ∨ y = 0 ∨ SSy ≠ SSy)] = S$

conjunctive normal form

$M_0[∃y(y ≠ y) ∨ ∃y(y = 0) ∨ ∃y(SSy ≠ SSy)] = S$

T6.32

$M_0[θ ≠ 0 ∨ 0 ≠ θ ≠ θ] = S$

(P), (S), (P)

You should be able to follow each step. Observe that we might have collapsed the second-to-last step of (T) to $∅ = ∅$ once we identified $∅ = ∅$ as a disjunct, and similarly there may be natural simplifications in other cases.

Thus we have a quantifier-free Q such that $S ⊨ P ↔ Q$, and by completeness $S ⊨ P ↔ Q$. From $S ⊨ 0 = ∅$ it is easy to see that $S ⊨ 0 ≠ ∅ ∨ ∅ = ∅ ∨ ∅ ≠ ∅$ and so by DN that $S ⊨ ∼(0 = ∅ ∨ 0 = ∅ ∨ 0 ≠ ∅)$. So $S ⊨ ∼Q$; so by NB, $S ⊨ ∼P$. Thus our method tells us not only that there is a proof of P or $∼P$ for each P, but constitutes a method to decide which of P or $∼P$ is proved. Of course, in this case, we might have derived $∼P$ in less than ten lines with $S1$ (try it). So our approach is not particularly efficient. Still, it is of considerable interest to have found a general method to decide whether $S ⊨ P$ or $S ⊨ ∼P$.

*E11.26. (i) Demonstrate theorems (Sa)–(Sd). (ii) Supposing that the only conjuncts are $S^ax = t_1 ∧ S^{c+a}x = S^at_1 ∧ S^{e+a}x ≠ S^at_j$, provide a detailed semantic argument for the equivalence in (R) that is justified “application of the equality from the first conjunct to the other members.” You may take it that $M_0[S^aq] = a + M_0[q]$.

Hints: (Sb): without loss of generality, suppose $n > m$; then there is some $d > 0$ such that $n = m + d$; then use (S4). (Sc): Left to right: use $=I$ and $=E$. Right to left: suppose $S ⊨ S^as ≠ t$; by induction on the value of n, $S ⊨ S^n S^as ≠ S^n t$ (with $S2$). (Sd): Left to right: Begin showing that for any n and $m < n$, $S ⊨ S^n j ≠ S^n0; this gives you $S ⊨ S^n j ≠ S^00 ∧ . . . ∧ S^n j ≠ S^{n−1}0$; with this
the derivation is easy. Right to left: By induction on the value of \(n \); put cases for both \(n = 0 \) and \(n = 1 \) in the basis; then assume for \(1 \leq i < k \).

E11.27. Let \(\mathcal{P} = \forall y \exists x (Sx = SSy \land SSx = SSSy) \). (i) Use our method to find a quantifier-free \(\mathcal{Q} \) such that \(S \vdash \mathcal{P} \leftrightarrow \mathcal{Q} \). (ii) Use this result to decide whether \(S \vdash \mathcal{P} \) or \(S \vdash \sim \mathcal{P} \).

Theory L. Consider a language like \(\mathcal{L}_{SN} \) whose only function symbol is \(S \). Then terms are of the sort \(S^n t \) where \(t \) is a variable or \(\emptyset \); and atomic formulas are \(S^m s = S^n t \) or \(S^m s < S^n t \) again where \(s \) and \(t \) are a variable or \(\emptyset \). Let \(L \) be a set whose members are as follows,

(L1) \(x \neq \emptyset \rightarrow \exists y (x = Sy) \) (and so S3)

(L2) \(x < Sy \leftrightarrow (x = y \lor x < y) \)

(L3) \(x \notin \emptyset \)

(L4) \(x < y \lor x = y \lor y < x \)

(L5) \(x < y \rightarrow y \neq x \)

(L6) \(x = y \rightarrow (y < z \rightarrow x < z) \)

So \(L \) has finitely many axioms. From these axioms we have as theorems,

(La) If \(n \geq 1 \) then \(L \vdash x < S^n x \)

(Lb) \(L \vdash x \neq x \)

(Lc) \(L \vdash x \neq y \leftrightarrow (y = x \lor y < x) \)

(Ld) \(L \vdash x \neq y \leftrightarrow (x < y \lor y < x) \)

(Le) \(L \vdash x < y \leftrightarrow Sx < Sy \)

(Lf) If \(m < n \) then \(L \vdash S^m x < S^n x \)

(Lg) \(L \vdash S^a s < t \leftrightarrow S^{d+a} s < S^d t \)

(Lh) \(L \vdash t < S^a s \leftrightarrow S^{d} t < S^{d+a} s \)

(Li) \(L \vdash Sx \neq \emptyset \) (and so S1)

(Lj) \(L \vdash Sx = Sy \rightarrow x = y \) (and so S2)

(Lk) \(L \vdash S^n x \neq x \) for \(n \geq 1 \) (and so S4)
Given that we have each of (S1)–(S4), we retain theorems from S. And with (L4)–(L6) any model of L is a linear order.

Now to show that L admits quantifier elimination, consider $\exists x (A_1 \land \ldots \land A_n)$, where $A_1 \ldots A_n$ are $S^m S = S^n t$, $S^m S \neq S^n t$, $S^m S < S^n t$, or $S^m S \not< S^n t$ and A and t are either the constant \emptyset or a variable.

First we can eliminate negations. Thus where A_i is $S^m S \neq S^n t$,

$$M_0[\exists x (A_1 \land \ldots \land A_{i-1} \land S^m S \neq S^n t \land A_{i+1} \land \ldots \land A_n)] = S$$

if

$$M_0[\exists x ((A_1 \land \ldots \land A_{i-1} \land S^m S < S^n t \land A_{i+1} \land \ldots \land A_n) \lor (A_1 \land \ldots \land A_{i-1} \land S^m S < S^n t \land A_{i+1} \land \ldots \land A_n) \lor (A_1 \land \ldots \land A_{i-1} \land S^m S < S^n t \land A_{i+1} \land \ldots \land A_n)]) = S$$

(U)

The negated equality is replaced by (Ld), then distribution, and the quantifier is pushed in by T6.32. And similarly for a negated inequality, beginning with (Lc) to replace $S^m S \not< S^n t$ by $S^n t = S^m S \lor S^n t < S^m S$. So if we can reduce the disjuncts of the resultant expression to quantifier-free form, we will have reduced the whole.

Consider then $\exists x (\mathcal{B}_1 \land \ldots \land \mathcal{B}_n)$ where each \mathcal{B}_i is of the sort $S^m S = S^n t$ or $S^m S < S^n t$. Suppose x does not appear in some \mathcal{B}_i; then reasoning as before,

$$M_0[\exists x (\mathcal{B}_1 \land \ldots \land \mathcal{B}_i \land \ldots \land \mathcal{B}_n)] = S$$

(V)

by quantifier placement rules.

Concentrating on the second conjunct, consider $\exists x (\mathcal{C}_1 \land \ldots \land \mathcal{C}_n)$ where x is a component of each \mathcal{C}_i; suppose \mathcal{C}_j is of the sort $S^m x = S^n x$ where $m = n$. Then reasoning as before,

$$M_0[\exists x (\mathcal{C}_1 \land \ldots \land S^m x = S^n x \land \ldots \land \mathcal{C}_n)] = S$$

(W)

by (Sa) and then quantifier-placement rules. And similarly by (Sb) replacing $S^m x = S^n x$ with $\emptyset \neq \emptyset$ when $m \neq n$, by (Lf) replacing $S^m x < S^n x$ with $\emptyset = \emptyset$ when $m < n$, and by (Lg) and (Lc) replacing $S^m x \not< S^n x$ with $\emptyset \neq \emptyset$ when $m \neq n$.

Concentrating then on the second conjunct, consider $\exists x (\mathcal{D}_1 \land \ldots \land \mathcal{D}_n)$ where each \mathcal{D}_i is $S^n x = t_i$, $S^n x < t_i$ or $t_i < S^n x$ and x does not appear in t_i. Suppose first that some \mathcal{D}_i is $S^n x = t_i$; then reasoning as before,
Then the quantifier is dropped and each x is restricted just to it. These are by (Sc), (Lg), (Lh); then application of the equality first; then t is substituted for $S^n x$ in conjuncts other than the first; and the quantifier is restricted just to it. These are by (Sc), (Lg), (Lh); then application of the equality from the first conjunct to the other members; and finally by quantifier placement. Then $\exists x (S^n x = t_1)$ reduces to quantifier-free form just as in (S).

So suppose each D_i is $t_i < S^n x$ or $S^n x < t_j$ and consider $\exists x ((t_1 < S^a x \land \ldots \land t_i < S^b x) \land (S^c x < t_j \land \ldots \land S^d x < t_k))$. Intuitively, the left conjunct sets lower bounds for x and the right upper. So for example if t_1 is assigned 5 and $a = 2$ then from $t_1 < S^a x, 3 < x$; similarly if t_j is assigned 5 and $c = 2$, then from $S^c x < t_j, x < 3$ (observe that such a conjunct is unsatisfiable if, say, t_j is assigned 2 and $c = 5$). Suppose that the main right conjunct is empty. Then,

$$M_0[\exists x (t_1 < S^a x \land \ldots \land t_i < S^b x)] = S$$

(Y)

Each conjunct is replaced by the corresponding identity. Consider the objects $m_1 \ldots m_i$ assigned to $t_1 \ldots t_i$. On an unending linear order, there is sure to be an object greater than each of them, and so an object to satisfy the existential quantification.

Now suppose the left main conjunct is empty. Then,

$$M_0[\exists x (S^c x < t_j \land \ldots \land S^d x < t_k)] = S$$

(Z)

The quantifier is dropped and each x replaced by \emptyset. If there is some object under the upper bounds, then 0 is under the upper bounds; and if 0 is under the upper bounds, then some object is under the upper bounds.

So suppose the D_i include both members $t_i < S^n x$ and $S^n x < t_i$ and consider $\exists x ((t_1 < S^a x \land \ldots \land t_i < S^b x) \land (S^c x < t_j \land \ldots \land S^d x < t_k))$. For simplicity take a case with just two atoms of each type. Then,

$$M_0[\exists x ((t_1 < S^a x \land t_2 < S^b x) \land (S^c x < t_3 \land S^d x < t_4))] = S$$

(AA)

if

$$M_0[\exists x ((t_1 < S^a x \land S^c x < t_3) \land (t_2 < S^b x \land S^d x < t_4) \land (t_2 < S^b x \land S^d x < t_4)) = S$$

if

$$M_0[\exists x ((S^c x < S^a x \land S^c x < t_3) \land (S^d x < S^a x \land S^d x < t_4) \land (S^d x < S^b x \land S^d x < t_4))] = S$$

if

$$M_0[(S^c x < S^a x \land S^c x < S^a t_3) \land (S^d x < S^a x \land S^d x < S^a t_4) \land (S^d x < S^b x \land S^d x < S^b t_3) \land (S^d x < S^b x \land S^d x < S^b t_4))] = S$$

if
Atomics from the left conjunct are conjoined with each of the ones from the right; superscripts are adjusted so that “middle” terms with the variable x have the same superscript; then the quantifier is dropped and, for the main left conjunct, middle terms are eliminated and the superscript of the first term increased by one. These are first by Idem with Com and Assoc; then by (Lg) and (Lh); the last stage is the most interesting: The downward direction should be clear enough; if $a < b < c$, then $a + 1 < c$; and compare the second conjunct on the top line to the second conjunct on the bottom. For the other direction, focusing on just the first conjunct, the basic idea is that if $S^{c+1} t_1$ is less than $S^a t_3$ then something is greater than $S^{c} t_1$ and less than $S^a t_3$; further each object over a lower bound is required to be under each of the upper bounds—so for m the greatest of these values, we have m over all the lower bounds and beneath the upper; so there is an object to satisfy the existential quantification. Actually, this is not quite right: it might be that $S^{c+1} t_1 < S^a t_3$ even though there is no x such that $S^{a+c} x < S^a t_3$; but from the second main conjunct, $S^c 0 < t_3$; so $S^{a+c} 0 < S^a t_3$; so there is an x such that $S^{a+c} x < S^a t_3$; and since m is under each of the upper bounds there is an x such that $m \leq S^{a+c} x < S^a t_3$; then the least such x is greater than all the lower bounds (because m is above each of the lower bounds) and beneath the upper (because it remains under the least of the upper bounds); so there is an object to satisfy the existential quantification.

Thus the original $P = \exists x (A_1 \land \ldots \land A_n)$ is reduced to quantifier-free Q with the same free variables such that $L \models P \leftrightarrow Q$. So by T11.33, L admits quantifier elimination. And now it is easy to see that L is complete.

T11.35. L is complete.

Homework.

Note that quantifier elimination is sensitive both to the capacities of the language and to the capacities of derivations. In the cases we have considered for S and L, the language and derivations are matched so as to admit quantifier elimination. By similar methods, it is possible to show that there is a sound and complete theory Pr (Presburger Arithmetic) for the standard interpretation of a language like L_{S0}, but with just S and $+$; and there is a sound and complete theory of real closed fields (RCF) for the standard interpretation of a language with constants 0 and 1, function symbols $+$, $-$, \times, and relation symbols $=$ and $<$ on a universe of the real numbers.\(^9\) Given these theories, one might reasonably hope for a sound and complete theory for the standard

\(^9\)See, for example, chapter 3 of Marker, Model Theory. Compared to what we have done, these are quantifier elimination on steroids.
interpretation of \mathcal{L}_{NT}. Unfortunately, this hope is doomed. As we see in the next part, there is no sound and complete theory for the arithmetic of \mathcal{L}_{NT} including S, $+$ and \times.

*E11.28. (i) Demonstrate theorems (La)–(Lk). (ii) Write out the stages from (AA) but starting from $\exists x((t_1 < S^a x \land t_2 < S^b x) \land (S^c x < t_3 \land S^d x < t_4 \land S^e x < t_5))$. (iii) Complete the demonstration of T11.35.

Hints: La: by induction on the value of n; you will be able to use (L2). Lb: from (L5). Lc: from left to right with (L4); from right to left with (L5) and (Lb). Le: from left to right apply (Lc) with NB and (L2) with NB to reach $y \not< S x$ then you can apply (Lc) and (L2) again; from right-to-left your first subderivation is “reversible.” Lf: suppose $m < n$; then there is some $d \geq 1$ such that $m + d = n$; by induction on the value of m, $L \vdash S^m x < S^{m+d} x$. Lg: By induction on the value of d. Lh: use (L3) and (La). Lj: under the assumption for $\rightarrow I$, you will be able to use (Lb), (Le) and then (L4).

E11.29. Let $\mathcal{P} = \forall x \forall z[(\exists y (S x < y \land y < z) \rightarrow SS x < z]$. (i) Use our method to find a quantifier-free Q such that $L \vdash \mathcal{P} \leftrightarrow Q$. (ii) Use this result to decide whether $S \vdash \mathcal{P}$ or $S \vdash \neg \mathcal{P}$.

E11.30. For each of the following concepts, explain in an essay of about two pages, so that (college freshman) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. Expressive completeness, and how our languages have it.

b. Unique readability, and how our languages have it.

c. Independence and how ADs has it.

d. The relations between relative soundness, soundness and completeness, and between relative completeness, completeness and completeness.
CHAPTER 11. MORE MAIN RESULTS

Final Theorems of Chapter 11

T11.17 If \(L \preceq M \) then \(L \equiv M \).

T11.18 Suppose \(L \subseteq M \) and \(d \) is a variable assignment into \(U_L \). Then for any term \(t \), \(L_d[t] = M_d[t] \).

T11.19 Suppose that \(L \preceq M \) and that for any formula \(P \) and every variable assignment \(d \) such that \(M_d[\exists x P] = S \) there is an \(m \in U_L \) such that \(M_d[x|m][P] = S \). Then \(L \preceq M \).

T11.20 \(L \preceq M \) iff there is a \(K \subseteq M \) such that \(L \preceq K \).

T11.21 \(L \preceq M \) iff there is a \(K \subseteq M \) such that \(L \not\preceq K \).

T11.22 If \(L \preceq M \), then \(L \equiv M \).

T11.23 A set of formulas \(\Sigma \) is satisfiable iff it is finitely satisfiable. *Compactness.*

T11.24 For \(\mathcal{Z} \) the class of all models with an infinite domain and some language \(\mathcal{L} \), there is no finite \(\Gamma \) such that \(\mathcal{M}(\Gamma) = \mathcal{Z} \).

T11.25 For language \(\mathcal{L} \), if \(\Sigma \) has arbitrarily large finite models, then \(\Sigma \) has an infinite model.

Corollary: The class \(\mathcal{M} \) of all finite models is not axiomatizable.

T11.26 The class \(\mathcal{B} \) of all well-orderings is not axiomatizable.

T11.27 For \(\mathcal{M} \) the class of models isomorphic to \(N \), there is no \(\Sigma \) such that \(\mathcal{M}(\Sigma) = \mathcal{M} \).

T11.28 No set \(s \) has as many members as its powerset \(\mathcal{P}(s) \). *Cantor’s Theorem.*

T11.29 If the members of \(\Sigma \) are in a language \(\mathcal{L} \) whose constants are matched to ordinals less than an infinite \(\kappa \) and \(\Sigma \) has a model, then \(\Sigma \) has a model of cardinality \(\leq \kappa \). *Downward Löwenheim-Skolem.*

T11.30 If \(\Sigma \) has an infinite model, then for any infinite cardinal \(\kappa \), \(\Sigma \) has a model whose cardinality is greater than or equal to \(\kappa \). *Upward Löwenheim-Skolem.*

T11.31 If \(\Sigma \) has an infinite model then for any infinite cardinal \(\kappa \), \(\Sigma \) has a model of cardinality \(\kappa \). *Full Löwenheim-Skolem.*

T11.32 If \(D \) is a finite model and \(\mathcal{D} \) is the class of all models isomorphic to it, then there is a categorical \(\Sigma \) such that \(\mathcal{M}(\Sigma) = \mathcal{D} \).

T11.33 If every \(\mathcal{P} = \exists x \left(A_1 \land \ldots \land A_n \right) \) with \(A_1 \ldots A_n \) atomic or negated atomic has a quantifier-free \(\mathcal{Q} \) with the same free variables such that \(\Sigma \models \mathcal{P} \iff \mathcal{Q} \), then \(\Sigma \) admits quantifier elimination.

T11.34 \(S \) is \(\check{\text{complete}} \).

T11.35 \(L \) is \(\check{\text{complete}} \).
Part IV

Logic and Arithmetic:
Incompleteness and Computability
Introductory

In part III we showed that our semantical and syntactical logical notions are related as we want them to be: exactly the same arguments are semantically valid as are provable. So,

(A) \[\Gamma \vdash \mathcal{P} \iff \Gamma \models \mathcal{P} \]

Thus our derivation system is both sound and complete, as it should be. And in chapter 11 we identified some cases where theories are (negation) complete. In this part, however, we encounter a series of limiting results—with particular application to arithmetic and computing.

First, it is natural to think mathematics is characterized by proofs and derivations. Thus one might anticipate that there would be some system of premises such that for any \(\mathcal{P} \) in \(\mathcal{L}_{\text{nt}} \) we would have,

(B) \[\Delta \vdash \mathcal{P} \iff N[\mathcal{P}] = T \]

where \(N \) is the standard interpretation of number theory. Note the difference between our claims. In (A) derivations are matched to entailments; in (B) derivations (and so entailments) are matched to truths on an interpretation. Perhaps inspired by suspicions about the existence or nature of numbers, one might expect that derivations would even entirely replace the notion of mathematical truth. And Q or PA may already seem to be deductive systems as in (B). But we shall see that there can be no such deductive system. From Gödel’s first incompleteness theorem, under certain constraints, no consistent deductive system has as consequences either \(\mathcal{P} \) or \(\sim \mathcal{P} \) for every \(\mathcal{P} \) of \(\mathcal{L}_{\text{nt}} \); any such theory is (negation) incomplete. But then, subject to those constraints, any consistent deductive system must omit some truths of arithmetic from among its consequences.\(^{10}\)

Suppose there is no one-to-one map between truths of arithmetic and consequences of our theories. Rather, we propose a theory \(R(\text{eal}) \) whose consequences are unprob-

\(^{10}\)Gödel’s groundbreaking paper is “On the Formally Undecidable Propositions of Principia Mathematica and Related Systems.”
lematically true, and another theory I (deal) whose consequences outrun those of R and whose literal truth is therefore somehow suspect. Perhaps R is sufficient only for something like basic arithmetic, whereas I seems to quantify over all members of a far-flung infinite domain. Even though not itself a vehicle for truth, theory I may be useful under certain circumstances. Suppose,

(a) For any \mathcal{P} in the scope of R, if \mathcal{P} is not true, then $R \vdash \neg \mathcal{P}$

(b) I extends R: If $R \vdash \mathcal{P}$ then $I \vdash \mathcal{P}$

(c) I is consistent: There is no \mathcal{P} such that $I \vdash \mathcal{P}$ and $I \vdash \neg \mathcal{P}$

Then theory I may be treated as a tool for achieving results in the scope of R: Suppose \mathcal{P} is a result in the scope of R, and $I \vdash \mathcal{P}$; then by consistency, $I \not\vdash \neg \mathcal{P}$; and because I extends R, $R \not\vdash \neg \mathcal{P}$; so by (a), \mathcal{P} is true. This is (a sketch of) the famous ‘Hilbert program’ for mathematics, which aims to make sense of infinitary mathematics based not on the truth but rather the consistency of theory I (this project is developed in a number of places including Hilbert, “On the Infinite”).

Suppose the language of R permits generalizations as $\forall x \forall y (x \times y = y \times x)$. Just as Q proves particular results sufficient to establish the negation of false generalizations so, even though it leaves certain results unproved, there may be a theory R to satisfy (a). And just as PA extends Q, there are extensions of R as in (b). And because consistency is a syntactical result about proof systems, not itself about far-flung mathematical structures, one might have hoped for proofs of consistency from real, rather than ideal, theories—and so for proof of (c). So there is an intuitive plausibility to Hilbert’s proposal. But Gödel’s second incompleteness theorem tells us that derivation systems extending PA cannot prove even their own consistency. So a weaker “real” theory will not be able to prove the consistency of PA and its extensions. This seems to remove a demonstration of (c) and so to doom the Hilbert strategy.\footnote{We are familiar with the Pythagorean Theorem according to which the hypotenuse and sides of a right triangle are such that $a^2 = b^2 + c^2$. In the 1600s Fermat famously proposed that there are no integers a, b, c such that $a^n = b^n + c^n$ for $n > 2$; so, for example, there are no a, b, c such that $a^3 = b^3 + c^3$. In 1995 Andrew Wiles proved that this is so. But Wiles’s proof requires some fantastically abstract (and difficult) mathematics. Even if Wiles’s abstract theory (I) is not true Hilbert could still accept the demonstration of Fermat’s (real) theorem so long as I is shown to be consistent. Gödel’s result seems to doom this strategy. Of course, one might simply accept Wiles’s proof on the ground that his advanced mathematics is true so that its consequences are true as well. But this is a topic in philosophy of mathematics, not logic. See, for example, Shapiro, Thinking About Mathematics for an introduction to options in the philosophy of mathematics including Hilbert’s program. Our limiting results may very well stimulate interest in that field!}
Even though no one derivation system has as consequences every mathematical truth, derivations remain useful, and mathematicians continue to do proofs! Given that we care about them, there is a question about the automation of proofs. Say a property or relation is *effectively decidable* iff there is an algorithm or program that for any given case, decides in a finite number of steps whether the property or relation applies. Abstracting from the limitations of particular computing devices, we shall identify a class of relations which are decidable. A corollary of Gödel’s first theorem is that validity in systems like ND and AD is not among the decidable relations. Thus there are interesting limits on the decidable relations.

Chapter 12 lays down background required for chapters that follow. It begins with a discussion of *recursive functions*, and concludes with a few essential results, including a demonstration of the incompleteness of arithmetic. Chapters 13 and 14 deepen and extend those results in different ways. Chapter 13 includes Gödel’s own argument for incompleteness from the construction of a sentence such that neither it nor its negation is provable, along with demonstration of the second incompleteness theorem. Chapter 14 again shows that there must exist a sentence such that neither it nor its negation is provable, but this time in association with an account of computability. Chapter 12 is required for either chapter 13 or chapter 14; but those chapters may be taken in either order.
Chapter 12

Recursive Functions and Q

A formal theory consists of a language, with some axioms and proof system. Q and PA are example theories. A theory is sound with respect to a class of models iff its theorems are true on every member of the class, and sound iff it is sound with respect to a class of intended models—this is the case so long as its axioms are true on the intended models and its proof system is sound (T11.9). A theory T is (negation) complete iff for any sentence \mathcal{P} in its language \mathcal{L}, either $T \vdash \mathcal{P}$ or $T \vdash \neg \mathcal{P}$. But the completeness of a proof system does not imply negation completeness: Theory T is complete with respect to a class \mathcal{M} of models just in case the consequences of its axioms include every sentence true on all the members of \mathcal{M}; and a theory whose proof system is complete is complete with respect to the class of models on which its axioms are true. Then a theory is negation complete when it is complete with respect to some class of models whose members are elementarily equivalent (T11.11, 11.16). So the completeness of a proof system yields negation completeness only when models on which axioms are true are elementarily equivalent.

Let us pause to consider why completeness matters: From E8.27, as soon as a language \mathcal{L} has an interpretation I, for any sentence \mathcal{P} in \mathcal{L}, either $I[\mathcal{P}] = T$ or $I[\neg \mathcal{P}] = T$. So if we set out to characterize by means of a theory all the sentences that are true on some interpretation (and so on equivalent interpretations), the theory must have among its consequences \mathcal{P} or $\neg \mathcal{P}$ for every \mathcal{P}. Put the other way around, if a theory is not such that for any \mathcal{P}, either $T \vdash \mathcal{P}$ or $T \vdash \neg \mathcal{P}$ (if it is incomplete), then it is sure to omit some sentences true on the interpretation. To the extent that we desire a characterization of all true sentences on an interpretation, for arithmetic or whatever, a complete theory is a desirable theory.1

1We thus restrict ourselves to consideration of sentences as theorems—or, equivalently treat open formulas as equivalent to their universal closures (see page 498).
In section 11.4.3 we saw that there are complete theories whose theorems are all the sentences true on a finite model. Similarly there is a sound and complete theory \(S \) for the standard interpretation of a language like \(\mathcal{L}_{NT} \) but with just \(S \), and a sound and complete theory \(L \) for the standard interpretation of a language like \(\mathcal{L}_{NT} \) but with just \(S \) (and \(<\)). By similar methods, it is possible to show that there is a sound and complete theory \(\Pr \) (Presburger Arithmetic) for the standard interpretation of a language like \(\mathcal{L}_{NT} \) but with just \(S \) and \(+\); and there is a sound and complete theory of real closed fields (RCF) for the standard interpretation of a language with constants \(0 \) and \(1 \), function symbols \(+, -, \times \), and relation symbols \(= \) and \(<\) on a universe of the real numbers. From the existence of these complete theories, one might reasonably hope for a complete theory for the standard interpretation of \(\mathcal{L}_{NT} \). But this hope is not to be realized. There is no sound and complete theory for the arithmetic of \(\mathcal{L}_{NT} \) which includes \(S \), \(+\) and \(\times \). It turns out that theories are something like superheroes: In the ordinary case, a complete, and so a “happy” life is at least within reach. However, as theories acquire certain powers, they take on a “fatal flaw” just because of their powers—where this flaw makes completeness unattainable. On its face, theory \(Q \) does not appear particularly heroic. We have seen already from T10.5 and E7.19 that \(Q \not\vdash \forall x \forall y (x \times y = y \times x) \) and \(Q \not\vdash \sim \forall x \forall y (x \times y = y \times x) \). So \(Q \) is negation incomplete. PA which does prove \(x \times y = y \times x \) along with other standard results in arithmetic might seem a more likely candidate for heroism. But \(Q \) already includes features sufficient to generate the fatal flaw—and a theory, like PA, which includes all the powers of \(Q \) must have the flaw as well. Our task in this chapter and the beginning of the next is to identify that flaw.\(^2\)

It turns out that a system with the powers of \(Q \) including \(S \), \(+\) and \(\times \) can express and capture all the recursive functions, where this power is essential to having the fatal flaw. Thus in this chapter we focus on the recursive functions (and recursive relations built upon them), associate them with powers of our formal systems, and show how these powers result in the flaw. We begin in 12.1 saying what recursive functions are; then in 12.2 and 12.3 we show that \(\mathcal{L}_{NT} \) expresses and \(Q \) captures the recursive functions; 12.4 assigns numbers to formulas and sequences of formulas and extends the range of recursive functions and relations to include a relation that identifies proofs. Finally, from these results, section 12.5 concludes with some applications, including the incompleteness of arithmetic.

\(^2\)Interestingly, RCF does not extend \(Q \); this is because no formula in the language of RCF is true just of the natural numbers—and it is therefore not possible in this language to make general claims according to which all natural numbers have this property or that.
12.1 Recursive Functions

In chapters 3 and 6 for Q and PA we had axioms of the sort,

\begin{align*}
\text{a. } & x + 0 = x \\
\text{b. } & x + S y = S(x + y)
\end{align*}

and

\begin{align*}
\text{c. } & x \times 0 = 0 \\
\text{d. } & x \times S y = (x \times y) + x
\end{align*}

These enable us to derive \(x + y \) and \(x \times y \) for arbitrary values of \(x \) and \(y \). Thus, by (a) \(2 + 0 = 2 \); so by (b) \(2 + 1 = 3 \); and by (b) again, \(2 + 2 = 4 \); and so forth. From the values at any one stage, we are in a position to calculate values at the next. And similarly for multiplication. From problems in E6.40 all this should be familiar.

While axioms thus supply effective means for calculating the values of these functions, the functions themselves might be similarly identified or specified. So, given a successor function \(\text{suc}(x) \), we may identify the functions \(\text{plus}(x, y) \):

\begin{align*}
\text{a. } & \text{plus}(x, 0) = x \\
\text{b. } & \text{plus}(x, \text{suc}(y)) = \text{suc}(\text{plus}(x, y))
\end{align*}

and \(\text{times}(x, y) \):

\begin{align*}
\text{c. } & \text{times}(x, 0) = 0 \\
\text{d. } & \text{times}(x, \text{suc}(y)) = \text{plus}(\text{times}(x, y), x)
\end{align*}

For ease of reading, let us typically revert to the more ordinary notation \(S, + \) and \(\times \) for these functions, though we stick with the sans serif font (emphasized for \(+ \) and \(\times \)). We have been thinking of functions as certain complex sets. Thus the \(\text{plus} \) function is a set with elements \(\{ \ldots \{(2, 0), 2\}, \{(2, 1), 3\}, \{(2, 2), 4\} \ldots \} \). Our specification picks out this set. From (a), \(\text{plus}(x, y) \) has \(\{(2, 0), 2\} \) as a member; given this, from (b), \(\{(2, 1), 3\} \) is a member; and so forth. So the two clauses work together to specify the \(\text{plus} \) function. And similarly for \(\text{times} \).

But these are not the only sets which may be specified this way. Thus the standard factorial \(\text{fact}(x) \):

\begin{align*}
\text{e. } & \text{fact}(0) = 1 \\
\text{f. } & \text{fact}(\text{suc}(y)) = \text{fact}(y) \times \text{suc}(y)
\end{align*}

Again, we will often revert to the more typical \(x! \) notation. Zero factorial is one. And the factorial of \(\text{suc}(y) \) multiplies \(1 \times 2 \times \ldots \times y \) by \(\text{suc}(y) \). Similarly \(\text{power}(x, y) \):

\begin{align*}
\text{g. } & \text{power}(x, 0) = 1 \\
\text{h. } & \text{power}(x, \text{suc}(y)) = \text{power}(x, y) \times x
\end{align*}
Any number to the power of zero is one \((x^0 = 1)\). And then \(x^y\) multiplies \(x\) \(y\) times by another \(x\). Again, we revert to the more standard notation.

We shall be interested in a class of functions, the recursive functions, which may be specified (in part) by this strategy. To make progress, we turn to a general account in five stages.

12.1.1 Initial Functions

Our examples have simply taken \(\text{suc}(x)\) as given. Similarly, we shall require a stock of initial functions. Recursive functions operate on and take values in the natural numbers. Thus we continue to allow variables and constants as \(x\) and \(0\), whose values are natural numbers. Then there are initial functions of three different types.

1. **zero()** is the very simple function which “operates” on nothing to return the value \(0\). It may be strange to think of a function without inputs, however it will streamline things to come if we do. A one-place function has members of the sort \((x, y)\) and so is really a kind of restricted two-place relation; and, generally, we can see an \(n\)-place function as a restricted \(n+1\)-place relation. Then a 0-place function is a 1-place relation, whose restriction requires that it have a single member—in this case, \(\langle 0 \rangle\). And it is hard to imagine a simpler function—\(\text{zero}()\) is the constant zero-place function that always returns the number \(0\).\(^3\)

2. For any \(j \geq k \geq 1\), we require a collection of identity functions \(\text{idnt}^j_k(x_1 \ldots x_j)\). Again, the identity functions are very simple. Each \(\text{idnt}^j_k\) has \(j\) places and returns the value from the \(k\)th place; that is, where \(x_k\) is among \(x_1 \ldots x_j\), \(\text{idnt}^j_k = \{\langle x_1 \ldots x_j, x_k \rangle | x_1 \ldots x_j \in \mathbb{N}\}\). So \(\text{idnt}^3_2 = \{\langle \langle 1, 2, 3 \rangle, 2 \rangle \ldots \langle \langle 4, 5, 6 \rangle, 5 \rangle \ldots\}\) and \(\text{idnt}^2_2(4, 5, 6) = 5\). In the simplest case, \(\text{idnt}^1_1(x) = x\).

3. Finally, we shall continue to include \(\text{suc}(x)\) among the initial functions. \(\text{suc}(x)\) returns the number following \(x\) on the usual ordering of the natural numbers; that is, \(\text{suc}(x) = \{x, x+1\} | x \in \mathbb{N}\}\). So \(\text{suc}(x) = \{0, 1\}, \{1, 2\}, \{2, 3\} \ldots\) and \(\text{suc}(1) = 2\).

These are very simple building blocks. However we shall be able to use them to produce functions of amazing complexity!

\(^3\)This generalizes the usual account on which a function is a set of pairs (as from the set theory reference). For a zero-place function the restriction \(\forall m_1 \ldots \forall m_n.4a.Ab[(\langle m_1 \ldots m_n, a \rangle \in f \land (m_1 \ldots m_n, b) \in f) \Rightarrow a = b]\) reduces to \(4a.Ab[(\langle a \rangle \in f \land (b \in f) \Rightarrow a = b]\).
12.1.2 Composition

In our examples, we have let one function be composed from others—as when we consider times(x, suc(y)) or the like. Say \(\bar{x}, \bar{y}, \) and \(\bar{z} \) represent possibly empty sequences of variables \(x_1 \ldots x_a, y_1 \ldots y_b \) and \(z_1 \ldots z_c \) (by an expression familiar from geometry, we sometimes refer to such a sequence as a vector).

CM Let \(g(\bar{y}) \) and \(h(\bar{x}, \bar{w}, \bar{z}) \) be any functions. Then \(f(\bar{x}, \bar{y}, \bar{z}) \) is defined by composition from \(g(\bar{y}) \) and \(h(\bar{x}, \bar{w}, \bar{z}) \) iff \(f(\bar{x}, \bar{y}, \bar{z}) = h(\bar{x}, g(\bar{y}), \bar{z}) \).

So \(h(\bar{x}, \bar{w}, \bar{z}) \) gets its value in the \(w \)-place from \(g(\bar{y}) \). Here is a simple example: \(f(y, z) = \text{times}(\text{suc}(y), z) \) results by composition from substitution of \(\text{suc}(y) \) into \(\text{times}(w, z) \); so \(\text{times}(w, z) \) gets its value in the \(w \)-place from \(\text{suc}(y) \). The result is the set with members, \(\ldots \langle 2, 0 \rangle, \langle 2, 1 \rangle, 3, \langle 2, 2 \rangle, 6 \ldots \). Given, say, input \(\langle 2, 2 \rangle, \text{suc}(y) \) takes the input 2 and supplies a three to the first place of the \(\text{times}(x, y) \) function; then from \(\text{times}(x, y) \) the result is the product of 3 and 2 which is 6. And similarly in other cases. In contrast, \(\text{suc}(x \times y) \) has members \(\ldots \langle 2, 0 \rangle, 1, \langle 2, 1 \rangle, 3, \langle 2, 2 \rangle, 5 \ldots \). You should see how this works.

Here are a couple of cases we shall have occasion to use just below. First, for any \(n \geq 0 \) and (possibly empty) \(\bar{x} = x_1 \ldots x_n \),

\[
\text{zero}^n(x_1 \ldots x_n) = \text{id}n^{n+1}_n(x_1 \ldots x_n, \text{zero})
\]

So \(\text{zero}^n(x_1 \ldots x_n) \), has free variables \(x_1 \ldots x_n \) but always returns 0. Observe that \(\text{zero}^0() = \text{id}^1_1(\text{zero}) = \text{zero}() = 0 \). In the ordinary case, we drop the superscript \(n \) and take the number of places from context. Second,

\[
\hat{n} = \text{suc}((\ldots \text{suc}(\text{zero}) \ldots))
\]

\(\hat{n} \) is a zero-place function that returns the number \(n \). So we have \(\hat{1} = \text{suc}(\text{zero}) = 1 \) and \(\hat{0} = \text{zero}() = 0 \).

12.1.3 Recursion

For each of our examples, \(\text{plus}(x, y), \text{times}(x, y), \text{fact}(y), \) and \(\text{power}(x, y) \), the value of the function is set for \(y = 0 \) and then for \(\text{suc}(y) \) given its value for \(y \). These illustrate the method of recursion. Put generally, where \(\bar{x} \) is a possibly empty sequence \(x_1 \ldots x_n \),
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

RC Given some functions \(g(\bar{x}) \) and \(h(\bar{x}, y, u) \), \(f(\bar{x}, y) \) is defined by recursion when,

\[
\begin{align*}
f(\bar{x}, 0) &= g(\bar{x}) \\
f(\bar{x}, \text{S}y) &= h(\bar{x}, y, f(\bar{x}, y))
\end{align*}
\]

So there are functions \(g(\bar{x}) \) and \(h(\bar{x}, y, u) \). Then \(f(\bar{x}, 0) \) gets its value from \(g(\bar{x}) \); and \(f(\bar{x}, \text{S}y) \) gets its value from \(h \) with the value of \(f(\bar{x}, y) \) substituted for \(u \). Thus as in the examples above, we fix the value of \(f(\bar{x}, 0) \) and then set the value at any other stage by \(h \) applied to the stage before. We adopt the general scheme so that we can operate on recursive functions in a consistent way. However the general scheme includes flexibility that is not always required. So, for example, in the cases of plus, times and power, \(\bar{x} \) reduces to a simple variable \(x \), and for fact it disappears entirely. And, as we shall see, the function \(h(\bar{x}, y, u) \) need not depend on each of its variables \(x, y \) and \(u \).

However, by clever use of our initial functions, it is possible to see each of our sample functions on this pattern. Thus for \(\text{plus}(x, y) \), set \(g\text{plus}(x) = \text{idnt}_1^3(x) \) and \(h\text{plus}(x, y, u) = \text{suc}(\text{idnt}_2^3(x, y, u)) \). Then \(\text{plus}(x, 0) \) is set to \(g\text{plus}(x) \) and \(\text{plus}(x, \text{S}y) \) to \(h\text{plus}(x, y, \text{plus}(x, y)) \).

\[
\begin{align*}
a' &= \text{plus}(x, 0) = \text{idnt}_1^3(x) \\
b' &= \text{plus}(x, \text{S}y) = \text{suc}(\text{idnt}_2^3(x, y, \text{plus}(x, y)))
\end{align*}
\]

And these work as they should: \(\text{idnt}_1^3(x) = x \) and \(\text{suc}(\text{idnt}_2^3(x, y, \text{plus}(x, y))) \) is equivalent to \(\text{suc}(\text{plus}(x, y)) \). So we recover the conditions (a) and (b) from above.

Similarly, for \(\text{times}(x, y) \) we can let \(g\text{times}(x) = \text{zero}(x) \) and \(h\text{times}(x, y, u) = \text{plus}(\text{idnt}_2^3(x, y, u), x) \). Then,

\[
\begin{align*}
c' &= \text{times}(x, 0) = \text{zero}(x) \\
d' &= \text{times}(x, \text{S}y) = \text{plus}(\text{idnt}_2^3(x, y, \text{times}(x, y)), x)
\end{align*}
\]

So \(\text{times}(x, 0) = 0 \) and \(\text{times}(x, \text{S}y) = \text{plus}(\text{times}(x, y), x) \), and all is well. Observe that we would obtain the same result with \(h\text{times}(x, y, u) = \text{plus}(u, \text{idnt}_1^3(x, y, u)) \) or perhaps, \(\text{plus}(\text{idnt}_2^3(x, y, u), \text{idnt}_1^3(x, y, u)) \).

By the identity functions we standardize the specification of recursive \(f(\bar{x}, y) \) so that \(g \) is always a function of \(\bar{x} \), and \(h \) always a function of \(\bar{x}, y \) and \(u \). This will matter when it comes to reasoning generally about recursive functions. However, as for multiplication, there may be different ways to produce a function with the desired characteristics. We might standardize specifications by requiring that variables appear immediately only in the identity functions. However, this would be needlessly tedious. So we won’t worry about differences so long as specifications are in the standard form.
Recall that \bar{x} is a possibly empty sequence of variables. For plus and times it has just a single member. In the case of $\text{fact}(y)$, there are no places to the \bar{x} vector. Then gfact is reduced to a zero-place function, and hfact to a function of y and u. For $\text{fact}(y)$, set $\text{gfact}() = 1$ and $\text{hfact}(y, u) = \text{times}(u, \text{suc}(y))$. This time identity functions do not appear at all. In this case, all the variables of $\text{gfact}()$ and $\text{hfact}(y, u)$ appear in a natural way, so identity functions are not required. It is left as an exercise to show that gfact and hfact identify the same function as constraints (e), (f), and then to find $\text{gpower}(x)$ and $\text{hpower}(x, y, u)$.

12.1.4 Regular Minimization

So far, the method of our examples is easily matched to the capacities of computing devices. To find the value of a recursive function, begin by the finding value for $y = 0$, and then calculate other values, from one stage to the next. But this is just what computing devices do well. So, for example, in the syntax of the Ruby language, \footnote{Ruby is convenient insofar as it is interpreted and so easy to run, and available at no cost on multiple platforms (see \url{http://www.ruby-lang.org/en/downloads/}). We depend only on very basic features familiar from most any exposure to computing.} given some functions $g(x)$ and $h(x, y, u)$,

(A) \begin{verbatim}
1. def recfunc(a,b)
2. f = g(a)
3. for y in 0..b-1
4. f = h(a,y,f)
5. end
6. return f
7. end
\end{verbatim}

Here f tracks the value of the function for different values of y. First, the program uses $g(a)$ to set the value of f for input $(a, 0)$. Then it sets $y = 0$ and uses h with the current values of y and f to find f for $y = 1$. The program then increments y and repeatedly uses h with the current values of y and f to find f for Sy. This continues until it uses h with $y = b - 1$ and f to find the value of the function for $y = b$. Though we are not in ND, this strategy of moving from one value to the next is like that for addition and multiplication in chapter 6 (page 327). Observe that the calculation of $\text{recfunc}(a, b)$ requires exactly b iterations before it completes.

But there is a different repetitive mechanism available for computing devices—where this mechanism does not begin with a fixed number of iterations. Suppose we have some function $g(a, b)$ with values $g(a, 0), g(a, 1), g(a, 2)$... where for each a there are at least some values of b such that $g(a, b) = 0$. For any value of a, suppose we want the least b such that $g(a, b) = 0$. Then we might reason as follows.
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

The Recursion Theorem

One may wonder whether our specification \(f(x, y) \) by recursion from \(g(\bar{x}) \) and \(h(\bar{x}, y, u) \) results in a unique function. However it is possible to show that it does.

RT Suppose \(g(\bar{x}) \) and \(h(\bar{x}, y, u) \) are total functions on \(\mathbb{N} \); then there exists a unique function \(f(\bar{x}, y) \) such that,

(r) For any \(\bar{x} \) and \(y \in \mathbb{N} \),

\[
\begin{align*}
a. & \quad f(\bar{x}, 0) = g(\bar{x}) \\
b. & \quad f(\bar{x}, \text{suc}(y)) = h(\bar{x}, y, f(\bar{x}, y))
\end{align*}
\]

We identify this function as a union of functions which may be constructed by means of \(g \) and \(h \). The domain of a total function from \(\mathbb{N}^n \) to \(\mathbb{N}^n \) is always \(\mathbb{N}^n \); for a partial function, the domain of the function is that subset of \(\mathbb{N}^n \) whose members are matched by the function to members of \(\mathbb{N} \) (for background see the set theory reference). Say a (maybe partial) function \(s(\bar{x}, y) \) is acceptable iff,

i. If \(\langle \bar{x}, 0 \rangle \in \text{dom}(s) \), then \(s(\bar{x}, 0) = g(\bar{x}) \)

ii. If \(\langle \bar{x}, \text{suc}(n) \rangle \in \text{dom}(s) \), then \(\langle \bar{x}, n \rangle \in \text{dom}(s) \) and \(s(\bar{x}, \text{suc}(n)) = h(\bar{x}, n, s(\bar{x}, n)) \)

A function with members \(\{ \langle \bar{x}, 0 \rangle, g(\bar{x}), \langle \bar{x}, 1 \rangle, h(\bar{x}, 0, g(\bar{x})) \} \) would satisfy (i) and (ii). A function which satisfies (r) is acceptable, though not every function which is acceptable satisfies (r); we show that exactly one acceptable function satisfies (r). Let \(\mathcal{F} \) be the collection of all acceptable functions, and \(f \) be \(\bigcup \mathcal{F} \). Thus \(\langle \bar{x}, n \rangle, a \in f \iff \langle \bar{x}, n \rangle, a \rangle \) is a member of some acceptable \(s \); iff \(s(\bar{x}, n) = a \) for some acceptable \(s \). We sketch reasoning to show that \(f \) has the right features.

I. For any acceptable \(s \) and \(s' \), if \(\langle \bar{x}, n \rangle, a \rangle \in s \) and \(\langle \bar{x}, n \rangle, b \rangle \in s' \), then \(a = b \). By induction on \(n \): Suppose \(\langle \bar{x}, 0 \rangle, a \rangle \in s \) and \(\langle \bar{x}, 0 \rangle, b \rangle \in s' \); then by (i), \(a = b = g(\bar{x}) \). Assume that if \(\langle \bar{x}, k \rangle, a \rangle \in s \) and \(\langle \bar{x}, k \rangle, b \rangle \in s' \) then \(a = b \). Show that if \(\langle \bar{x}, \text{suc}(k) \rangle, c \rangle \in s \) and \(\langle \bar{x}, \text{suc}(k) \rangle, d \rangle \in s' \) then \(c = d \). Suppose \(\langle \bar{x}, \text{suc}(k) \rangle, c \rangle \in s \) and \(\langle \bar{x}, \text{suc}(k) \rangle, d \rangle \in s' \). Then by (ii) \(c = h(\bar{x}, k, s(\bar{x}, k)) \) and \(d = h(\bar{x}, k, s'(\bar{x}, k)) \). But by assumption \(s(\bar{x}, k) = s'(\bar{x}, k) \); so \(c = d \).

II. \(\text{dom}(f) \) includes every \(\langle \bar{x}, n \rangle \). By induction on \(n \): For any \(\bar{x} \), \(\{ \langle \bar{x}, 0 \rangle, g(\bar{x}) \} \) is itself an acceptable function. Assume that for any \(\bar{x} \), \(\langle \bar{x}, k \rangle \in \text{dom}(f) \). Show that for any \(\bar{x} \), \(\langle \bar{x}, \text{suc}(k) \rangle \in \text{dom}(f) \). Suppose otherwise, and consider a function, \(s = f \cup \{ \langle \bar{x}, \text{suc}(k) \rangle, h(\bar{x}, k, f(\bar{x}, k)) \} \). But we may show that \(s \) so defined is an acceptable function; and since \(s \) is acceptable, it is a subset of \(f \); so \(\langle \bar{x}, \text{suc}(k) \rangle \in \text{dom}(f) \). Reject the assumption.

III. Now by (I), if \(\langle \bar{x}, n \rangle, a \rangle \in f \) and \(\langle \bar{x}, n \rangle, b \rangle \in f \), then \(a = b \); so \(f \) is a function; and by (II) the domain of \(f \) includes every \(\langle \bar{x}, n \rangle \); by construction it is easy to see that \(f \) is itself acceptable. From these, \(f \) satisfies (r). Suppose some \(f' \) also satisfies (r); then \(f' \) is acceptable; so by construction, \(f' \) is a subset of \(f \); but since \(f' \) satisfies (r), it’s domain includes every \(\langle \bar{x}, n \rangle \); so \(f = f' \). So (r) is uniquely satisfied.

We employ weak induction from the induction schemes reference on page 396. Enderton, Elements of Set Theory, and Drake and Singh, Intermediate Set Theory, include nice discussions of this result.
def minfunc(a):
 y = 0
 until g(a, y) == 0
 y = y + 1
 end
 return y
end

This program begins with $y = 0$ and tests to see if $g(a, y) = 0$. If it is not, it increments the value of y and tries again. Once it finds a y such that $g(a, y) = 0$, minfunc(a) is set equal to that y. Supposing that for any a there are some values of b such that $g(a, b) = 0$, then, this program returns a value of y for any input value a.

But, as before, we might reason similarly to specify functions so calculated. For this, recall from the set theory reference that a function is total iff it is defined on all members of its domain. Say a function $g(x, y)$ is regular iff it is total and for all values of x there is at least one y such that $g(x, y) = 0$. Then, $\mu y[g(x, y) = 0]$ which for each x takes as its value the least y such that $g(x, y) = 0$ is defined by regular minimization from $g(x, y)$.

For a simple example, consider a function which takes nonempty subsets of \mathbb{N} for x and members of \mathbb{N} for y; suppose $g(x, y) = 0$ if $y \in x$ and otherwise $g(x, y) = 1$. So, for example,

$\begin{array}{cccccc}
g([2, 4, 6], 0) & g([2, 4, 6], 1) & g([2, 4, 6], 2) & g([2, 4, 6], 3) & g([2, 4, 6], 4) \\
1 & 1 & 0 & 1 & 0 \\
\end{array}$

This function is regular so long as sets in the x-place are nonempty; if x is empty then $g(x, y)$ returns 1 for each value of y and the function is not regular. Supposing, then, that the sets are nonempty $\mu y[g(x, y) = 0]$ is always the least element of x. Notice that a loop which checks whether numbers up to a fixed n are in the set will not do—for the least element could always be larger than that. But, so long as the sets have members, our open-ended search is sure to return a result. In our simple case, $\mu y[g([2, 4, 6], y) = 0] = 2$.

12.1.5 Final Definition

Finally, our sample functions are cumulative. Thus $\text{plus}(x, y)$ depends on $\text{suc}(x)$; $\text{times}(x, y)$, on $\text{plus}(x, y)$, and so forth. We are thus led to our final account.
A function f_k is \textit{recursive} iff there is a series of functions f_0, f_1, \ldots, f_k such that for any $i \leq k$,

(i) f_i is an initial function $\text{zero}()$, $\text{idnt}^k_i(x_1 \ldots x_i)$, or $\text{suc}(x)$.

(c) There are $a, b < i$ such that $f_i(\bar{x}, \bar{y}, \bar{z})$ results by composition from $f_a(\bar{y})$ and $f_b(\bar{x}, \bar{w}, \bar{z})$.

(r) There are $a, b < i$ such that $f_i(\bar{x}, y)$ results by recursion from $f_a(\bar{x})$ and $f_b(\bar{x}, y, u)$.

(m) There is some $a < i$ such that $f_i(\bar{x})$ results by regular minimization from $f_a(\bar{x})$.

If there is a series of functions f_0, f_1, \ldots, f_k such that for any $i \leq k$, just (i), (c) or (r), then (PR) f_k is \textit{primitive recursive}.

So any recursive function results from a series of functions each of which satisfies one of these conditions. And such a series demonstrates that its members are recursive. For a simple example, plus is primitive recursive.

1. $\text{idnt}^1_1(x)$ initial function
2. $\text{idnt}^3_2(x, y, u)$ initial function
3. $\text{suc}(w)$ initial function
4. $\text{suc}(\text{idnt}^3_2(x, y, u))$ 2,3 composition
5. $\text{plus}(x, y)$ 1,4 recursion

From this list by itself, one might reasonably wonder whether $\text{plus}(x, y)$, so defined, is the addition function we know and love. What follows, given primitive recursive functions $\text{idnt}^1_1(x)$ and $\text{suc}(\text{idnt}^3_2(x, y, u))$ is that a primitive recursive function results by recursion from them. It turns out that this is the addition function. It is left as an exercise to exhibit $\text{power}(x, y)$ as primitive recursive as well.

*E12.1. (i) Show that the proposed gfact and $\text{hfact}(y, u)$ result in conditions (e) and (f).

Then (ii) produce a definition for $\text{power}(x, y)$ by finding functions $\text{gpower}(x)$, and $\text{hpower}(x, y, u)$ and then show that they have the same result as conditions (g) and (h).

E12.2. Generate a sequence of functions sufficient to show that $\text{power}(x, y)$ is primitive recursive.
E12.3. Install some convenient version of Ruby on your computing platform (see http://www.ruby-lang.org/en/downloads/) and open recursive1.rb from the text website (https://tonyroyphilosophy.net/symbolic-logic/). Extend the sequence of functions to include fact(x) and power(x,y). Calculate some values of these functions and print the results, along with your program (do not worry if these latter functions run slowly for even moderate values of x and y). This assignment does not require any particular computing expertise—especially, there should be no appeal to functions except from earlier in the chain. This exercise suggests a point, to be developed in chapter 14, that recursive functions are computable.

12.2 Expressing Recursive Functions

Having identified the recursive functions, we turn now to the first of two powers to be associated with theory incompleteness. In this case, it is an expressive power. Recall that a theory is sound iff it is sound with respect to a class of intended models; let us consider theories whose single intended model is N. In section 12.5.2 (and again in 13.1.2 and 14.2.3) we show that if such a theory is sound and its interpreted language expresses all the recursive functions, it must be negation incomplete. In this section then, as a basis for that argument, we show that L_{er}, on its standard interpretation, expresses the recursive functions.

12.2.1 Definition and First Results

For a language \mathcal{L} and interpretation I, suppose that for each $m \in U$, there is a variable-free term \overline{m} such that $I(\overline{m}) = m$—so for any variable assignment d, $l_{d}[\overline{m}] = m$ (see definition A1). The simplest way for this to happen is if for each $m \in U$ there is a unique constant to which m is assigned; then for any m, \overline{m} is just the constant to which m is assigned. But the standard interpretation for number theory N also has the special feature that each member of U is assigned to a variable-free term. On this interpretation the same object may be assigned to different variable-free terms (as $S\overline{0}$ and $S\overline{0} + S\overline{0}$ are each assigned 2). Given this, as in section 8.4, we simply choose to let \overline{n} be $S \ldots S\overline{0}$ with n repetitions of the successor operator. So $\overline{0}$ abbreviates the term $\overline{0}$, T the term $S\overline{0}$, etc.

With such variable-free terms, we shall say that a formula $\mathcal{R}(x)$ expresses a relation $r(x)$ on interpretation I, just in case if $m \in r$ then $I[\mathcal{R}(\overline{m})] = T$ and if $m \not\in r$ then $I[\sim \mathcal{R}(\overline{m})] = T$. So the formula is true when the individual is a member of the relation and false when it is not. To express a relation on an interpretation, a formula
must “say” which individuals fall under the relation. Expressing a relation is closely related to translation. A formula $R(x)$ expresses a relation $r(x)$ when every sentence $R(m)$ is a good translation of the sentence $m \in r$ on the single intended interpretation I (compare section 5.1). Thus, generalizing,

EXr For any language L, interpretation I, and objects $m_1 \ldots m_n \in U$, relation $r(x_1 \ldots x_n)$ is expressed by formula $R(x_1 \ldots x_n)$ iff,

(i) If $\langle m_1 \ldots m_n \rangle \in r$ then $[R(m_1 \ldots m_n)] = T$

(ii) If $\langle m_1 \ldots m_n \rangle \notin r$ then $[\sim R(m_1 \ldots m_n)] = T$

Similarly, a one-place function $f(x)$ is a kind of two-place relation. Thus to express a function $f(x)$, we require a formula $F(x, v)$ where if $\langle m, a \rangle \in f$, then $[F(m, a)] = T$. It would be natural to go on to require that if $\langle m, a \rangle \notin f$ then $[\sim F(m, a)] = T$. However this is not necessary once we build in another feature of functions—that they have a *unique* output for each input value. Thus we shall require,

EXf For any language L, interpretation I, and objects $m_1 \ldots m_n, a \in U$, function $f(x_1 \ldots x_n)$ is expressed by formula $F(x_1 \ldots x_n, v)$ iff,

if $\langle (m_1 \ldots m_n), a \rangle \in f$ then

(i) $[F(m_1 \ldots m_n, a)] = T$

(ii) $[\forall z (F(m_1 \ldots m_n, z) \rightarrow a = z)] = T$

When $\langle (m_1 \ldots m_n), a \rangle \in f$, from (i) F is true for a; and from (ii) any z for which it is true is identical to a.

Let us illustrate these definitions with some first applications. First, on any interpretation with the required variable-free terms, the formula $x = y$ expresses the equality relation $=_{E}(x, y)$. For if $\langle m, n \rangle \in =_{E}$ then $[m] = [n]$ so that $[m = n] = T$; and if $\langle m, n \rangle \notin =_{E}$ then $[m] \neq [n]$ so that $[m \neq n] = T$. This works because $[=]$ just is the equality relation $=_{E}$. Turning to some functions, on the standard interpretation N for number theory, $\text{zero}()$ is expressed by the formula $\bar{0} = v$. For if $\langle a \rangle \in \text{zero}()$ then a is just 0 so that $[\bar{0} = \bar{a}] = T$ and $[\forall z (\bar{0} = z \rightarrow \bar{a} = z)] = T$: so both EXf(i) and EXf(ii) are satisfied. Similarly, on the standard interpretation N for number theory, $\text{suc}(x)$ is expressed by $Sx = v$, plus(x, y) by $x + y = v$, and times(x, y) by $x \times y = v$.

5There is a uniformity problem about ‘expression’ and, in the next section, ‘capture’. Different texts offer somewhat different definitions and employ somewhat different vocabulary. The best advice is to pay close attention to details in any particular work.
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

Taking just the addition case, suppose \(\langle m, n \rangle, a \) \(\in \) plus; then \(N[\overline{m} + \overline{n} = \overline{a}] = T \). And because addition is a function, \(N[\forall z ((\overline{m} + \overline{n} = z) \rightarrow \overline{a} = z)] = T \). Again, this works because \(N[+] \) just is the plus function. And similarly in the other cases. Put more generally,

T12.1. For an interpretation on which members of the universe are assigned to the required variable-free terms: (a) If \(n \) is a relation, and \(I[\mathcal{R}] = n(x_1 \ldots x_n) \), then \(n(x_1 \ldots x_n) \) is expressed by \(\mathcal{R} x_1 \ldots x_n \). And (b) if \(h \) is a function and \(I[h] = h(x_1 \ldots x_n) \) then \(h(x_1 \ldots x_n) \) is expressed by \(hx_1 \ldots x_n = v \).

It is possible to argue semantically for these claims. However, as for translation, we take the project of demonstrating expression to be one of providing or supplying relevant formulas. So, having supplied formulas to express the basic functions and relations, we are done.

Notice that the case for zero() generalizes to other 0-place functions, so that \(\hat{n} \) is expressed by \(\overline{n} = v \). For if \(\langle a \rangle \in \hat{n} \), then a just is \(n \) and we have both \(N[\overline{n} = \overline{a}] = T \) and \(N[\forall z (\overline{z} = z \rightarrow \overline{a} = z)] = T \).

Also, as we have suggested, EXf(ii) yields a condition like EXr(ii). Recall from the set theory reference (page 119) that a function is total and expressed by \(\text{T}_10.2 \).

For simplicity, consider just a one-place function \(f(x) \). Suppose \(f(x) \) is expressed by \(\mathcal{F}(x, y) \) and \(\langle m, a \rangle \notin f \). Then since \(f \) is total, there is some \(b \neq a \) such that \(\langle m, b \rangle \in f \). Suppose \(I[\neg \mathcal{F}(\overline{m}, \overline{b})] \neq T \); then by T1, for some \(d \), \(I_d[\neg \mathcal{F}(\overline{m}, \overline{a})] \neq S \); let \(h \) be a particular assignment of this sort; so \(h_{\langle \neg \mathcal{F}(\overline{m}, \overline{a}) \rangle} \neq S \); so by SF(\(\neg \)), \(I_h[\mathcal{F}(\overline{m}, \overline{a})] = S \).

But since \(\langle m, b \rangle \in f \) by EXf(ii), \(I[\forall z (\mathcal{F}(\overline{m}, z) \rightarrow \overline{b} = \overline{z})] = T \); so by T1, for any \(d \), \(I_d[\forall z (\mathcal{F}(\overline{m}, z) \rightarrow \overline{b} = \overline{z})] = S \); so since \(h_{\langle \forall z (\mathcal{F}(\overline{m}, z) \rightarrow \overline{b} = \overline{z}) \rangle} = S \); so by SF(\(\forall \)), \(I_h[\mathcal{F}(\overline{m}, \overline{a})] \neq S \) or \(h_{\langle \overline{b} = \overline{a} \rangle} = S \); so \(h_{\langle \overline{b} = \overline{a} \rangle} = S \); but \(h_{\langle \overline{b} = \overline{a} \rangle} = a \) and \(h_{\langle \overline{b} \rangle} = b \); so by SF(r), \(\langle b, a \rangle \in I[=] \); so \(b = a \).

This is impossible; reject the assumption: If \(f(x) \) is expressed by \(\mathcal{F}(x, y) \) and \(\langle m, a \rangle \notin f \), then \(I[\neg \mathcal{F}(\overline{m}, \overline{a})] = T \).

So we get the same kind of constraint for functions as for relations. Note the use of T10.2 which, given \(h_{\langle \overline{a} \rangle} = a \), lets us make the (obvious) transition between \(h_{\langle \overline{z} \rangle}[\overline{P}] \) and \(h_{\langle \overline{P} \rangle}[\overline{z}] \). We shall have occasion to appeal to this theorem more than once.
E12.4. Provide semantic arguments to prove both parts of T12.1. So, for the first part assume that \(I \in \mathbb{R} \). Then show (i) if \(\langle m_1 \ldots m_n \rangle \in I \) then \(I(\langle m_1 \ldots m_n \rangle) = \mathbb{R} \). Then show (i) if \(\langle m_1 \ldots m_n \rangle \notin I \) then \(I(\langle m_1 \ldots m_n \rangle) = \mathbb{T} \). And similarly for the second part based on EXf, where you may treat \(\langle m_1 \ldots m_n \rangle, a \) as the same object as \(\langle m_1 \ldots m_n, a \rangle \).

12.2.2 Core Result

So far, on interpretation \(N \), we have been able to express the relation eq, and the functions, zero(), suc, plus, and times. But our aim is to show that, on the standard interpretation \(N \) of \(\mathcal{L}_{\alpha} \), every recursive function \(f(x) \) is expressed by some formula \(F(x, v) \).

However it is not obvious that this can be done. At least some functions must remain inexpressible in any language that has a countable vocabulary, and so in \(\mathcal{L}_{\alpha} \).

We shall see a concrete example later in the chapter. For now, consider a straightforward diagonal argument. By reasoning as from T12.7 there is an enumeration of all the formulas in a countable language. Isolate just formulas \(P_0, P_1, P_2, \ldots \) that express functions of one variable, and consider the functions \(f_0(x), f_1(x), f_2(x) \ldots \) so expressed. These are all the expressible functions of one variable. Consider a grid with the functions listed down the left-hand column, and their values for each natural number from left to right.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_0(x))</td>
<td>(f_0(0))</td>
<td>(f_0(1))</td>
<td>(f_0(2))</td>
<td></td>
</tr>
<tr>
<td>(f_1(x))</td>
<td>(f_1(0))</td>
<td>(f_1(1))</td>
<td>(f_1(2))</td>
<td></td>
</tr>
<tr>
<td>(f_2(x))</td>
<td>(f_2(0))</td>
<td>(f_2(1))</td>
<td>(f_2(2))</td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td></td>
</tr>
</tbody>
</table>

Moving along the diagonal, consider a function \(f_d(x) \) such that for any \(n \), \(f_d(n) = f_n(n) + 1 \). So \(f_d(x) \) is \(\{0, f_0(0) + 1\}, \{1, f_1(1) + 1\}, \{2, f_2(2) + 1\}, \ldots \} \). So for any natural number \(n \), this function finds the value of \(f_n \) along the diagonal, and adds one.

But \(f_d(x) \) cannot be any of the expressible functions. It differs from \(f_0(x) \) insofar as \(f_d(0) \neq f_0(0) \); it differs from \(f_1(x) \) insofar as \(f_d(1) \neq f_1(1) \); and so forth. So \(f_d(x) \) is an inexpressible function. Though it has a unique output for every input value, there is no finite formula sufficient to express it.

We have already seen that the recursive plus\((x, y) \) and times\((x, y) \) are expressible in \(\mathcal{L}_{\alpha} \). But there is no obvious mechanism in \(\mathcal{L}_{\alpha} \) to express, say, fact\((x) \). Given that not all functions are expressible, it is a significant matter, then, to see that all the
recursive functions are expressible with interpretation \(\mathcal{L}_{NT} \). It is to this task that we now turn.

We begin with some preliminary theorems to set up the main result. These are not hard, but need to be wrapped up before we can attack the main problem. For interpretation \(\mathcal{N} \), they work like derived clauses to \(\text{SF} \) for inequalities and bounded quantifiers.

T12.3. On the standard interpretation \(\mathcal{N} \) for \(\mathcal{L}_{NT} \), (i) \(N_{d}[s \leq t] = S \) iff \(N_{d}[s] \leq N_{d}[t] \), and (ii) \(N_{d}[s < t] = S \) iff \(N_{d}[s] < N_{d}[t] \).

(i) By abv \(N_{d}[s \leq t] = S \) iff \(N_{d}[\exists v(v + s = t)] = S \), where \(v \) does not appear in \(s \) or \(t \); by \(\text{SF}(\exists) \), iff there is some \(m \in U \) such that \(N_{d(v|m)}[v + s = t] = S \). But \(d(v|m)[v] = m \); so by \(\text{TA}(v) \), \(N_{d(v|m)}[v] = m \); let \(N_{d(v|m)}[s] = a \) and \(N_{d(v|m)}[t] = b \); then by \(\text{TA}(t) \), \(N_{d(v|m)}[v + s] = N[+](m, a) = m + a \). So by \(\text{SF}(r) \), \(N_{d(v|m)}[v + s = t] = S \) iff \((m+a, b) \in N[=] \); iff \(m + a = b \). But since \(v \) is not in \(s \) or \(t \), \(d \) and \(d(v|m) \) make the same assignments to variables in \(s \) and \(t \); so by T8.4, \(N_{d}[s] = N_{d(v|m)}[s] \) and \(N_{d}[t] = N_{d(v|m)}[t] \); so \(m + a = b \) iff \(m + N_{d}[s] = N_{d}[t] \); and there exists such an \(m \) just in case \(N_{d}[s] \leq N_{d}[t] \). So \(N_{d}[s \leq t] = S \) iff \(N_{d}[s] \leq N_{d}[t] \).

(ii) is homework.

As an immediate corollary, \(N_{d}[s \leq t] \neq S \) just in case \(N_{d}[s] > N_{d}[t] \); and \(N_{d}[s < t] \neq S \) just in case \(N_{d}[s] \geq N_{d}[t] \). Observe that, as distinguished by context and (slight) typographical difference, ‘\(\leq \)’ is a symbol of the object language, where ‘\(\leq \)’ is used to convey the relation—and similarly in other cases.

T12.4. On the standard interpretation \(\mathcal{N} \) for \(\mathcal{L}_{NT} \),

(a) \(N_{d}[(\forall x \leq t)\mathcal{P}] = S \) iff for every \(o \leq N_{d}[t] \), \(N_{d(x|o)}[\mathcal{P}] = S \). And \(N_{d}[(\forall x < t)\mathcal{P}] = S \) iff for every \(o < N_{d}[t] \), \(N_{d(x|o)}[\mathcal{P}] = S \).

(b) \(N_{d}[(\exists x \leq t)\mathcal{P}] = S \) iff for some \(o \leq N_{d}[t] \), \(N_{d(x|o)}[\mathcal{P}] = S \). And \(N_{d}[(\exists x < t)\mathcal{P}] = S \) iff for some \(o < N_{d}[t] \), \(N_{d(x|o)}[\mathcal{P}] = S \).

These are straightforward with T7.7 and T12.3. The case for \((\forall x \leq t)\mathcal{P} \) is worked as an example.

(i) Suppose \(N_{d}[(\forall x \leq t)\mathcal{P}] = S \) but for some \(m \leq N_{d}[t] \), \(N_{d(x|m)}[\mathcal{P}] \neq S \). From the former, by T7.7a, for all \(o \in U \), \(N_{d(x|o)}[x \leq t] \neq S \) or \(N_{d(x|o)}[\mathcal{P}] = S \); so \(N_{d(x|m)}[x \leq t] \neq S \) or \(N_{d(x|m)}[\mathcal{P}] = S \); so with T12.3 \(N_{d(x|m)}[x] \neq N_{d(x|m)}[t] \) or \(N_{d(x|m)}[\mathcal{P}] = S \); but \(N_{d(x|m)}[x] = m \); and since \(x \) does not appear in \(t \), \(d \) and
\[d(x|m) \text{ agree on assignments to variables in } t, \text{ so by T8.4 } N_{d(x|m)}[t] = N_d[t]; \]

so \(m \not\equiv N_d[t] \) or \(N_{d(x|m)}[P] = S \). But \(m \leq N_d[t] \); so \(N_{d(x|m)}[P] = S \). This is impossible; reject the assumption, if \(N_d((\forall x \leq t)P) = S \) then for all \(m \leq N_d[t] \), \(N_{d(x|m)}[P] = S \).

(ii) Suppose that for every \(o \leq N_d[t] \), \(N_{d(x|o)}[P] = S \) but \(N_d((\forall x \leq t)P) \neq S \). From the latter, by T7.7a, for some \(m \in U \), \(N_{d(x|m)}[x \leq t] = S \) but \(N_{d(x|m)}[P] \neq S \); so with T12.3 \(N_{d(x|m)}[x] \equiv N_{d(x|m)}[t] \) and \(N_{d(x|m)}[P] \neq S \); but \(N_{d(x|m)}[x] = m \); and since \(x \) does not appear in \(t \), \(d \) and \(d(x|m) \) agree on assignments to variables in \(t \), so by T8.4 \(N_{d(x|m)}[t] = N_d[t] \); so \(m \leq N_d[t] \) and \(N_{d(x|m)}[P] \neq S \). But since every \(o \leq N_d[t] \) is such that \(N_{d(x|o)}[P] = S \) and \(m \leq N_d[t] \), \(N_{d(x|m)}[P] = S \). This is impossible; reject the assumption: if for every \(o \leq N_d[t] \), \(N_{d(x|o)}[P] = S \) then \(N_d((\forall x \leq t)P) = S \).

Now we are ready for the main result. From definition RF recursive functions arise in a sequence. This puts us in a position to reason about the sequence by mathematical induction. Thus our main argument is an induction on the sequence of recursive functions. For one key case, we defer discussion into the next section.

T12.5. On the standard interpretation \(N \) of \(\mathcal{L}_{\alpha,T} \), each recursive function \(f(\bar{x}) \) is expressed by some formula \(F(\bar{x}, v) \).

For any recursive function \(f \) there is a sequence of functions \(f_0, f_1, \ldots, f_n \) such that each member is an initial function or arises from previous members by composition, recursion or regular minimization. By induction on functions in this sequence:

Basis: \(f_0 \) is a initial function \(\text{zero()} \), \(\text{suc}(x) \), or \(\text{idn}_k(x_1 \ldots x_j) \).

(z) \(f_0 \) is \(\text{zero()} \). Then by T12.1, \(f_0 \) is expressed by \(F(v) = \bar{0} = v \).

(s) \(f_0 \) is \(\text{suc}(x) \). Then by T12.1, \(f_0 \) is expressed by \(F(x, v) = Sx = v \).

(i) \(f_0 \) is \(\text{idn}_k(x_1 \ldots x_j) \). Then \(f_0 \) is expressed by \(F(x_1 \ldots x_j, v) = (x_1 \land \ldots \land x_j = x_j) \land x_j = v \). Suppose \((m_1 \ldots m_j), a \in \text{idn}_k \). Then since \(a = m_k \), \(N[(\overline{m}_1 = \overline{m}_1 \land \ldots \land \overline{m}_j = \overline{m}_j) \land \overline{m}_k = a] = T \). And any \(z = m_k \) is equal to \(a \)—so that \(N[\forall z ((\overline{m}_1 = \overline{m}_1 \land \ldots \land \overline{m}_j = \overline{m}_j \land \overline{m}_k = z) \rightarrow \overline{a} = z)] = T \). \footnote{Perhaps it will have occurred to the reader that \(\text{idn}_k^2(x, y, z) \), say, is expressed by the somewhat cleaner \(x = x \land z = z \land y = v \). This illustrates the point that different formulas may express the same function. In this case, we prefer an “efficiency” of notation and demonstration.}

Assp: For any \(i, 0 \leq i < k \), \(f_i(\bar{x}) \) is expressed by some \(F(\bar{x}, v) \).
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

Show: \(f_k(x) \) is expressed by some \(F(x, v) \).

\(f_k \) is either an initial function or arises from previous members by composition, recursion or regular minimization. If it is an initial function then as in the basis. So suppose \(f_k \) arises from previous members.

(c) \(f_k(\bar{x}, \bar{y}, \bar{z}) \) arises by composition from \(g(\bar{y}) \) and \(h(\bar{x}, w, \bar{z}) \). By assumption \(g(\bar{y}) \) is expressed by some \(\mathcal{E}(\bar{y}, w) \) and \(h(\bar{x}, w, \bar{z}) \) by \(\mathcal{H}(\bar{x}, w, \bar{z}, v) \). Given this, the composition \(f(\bar{x}, \bar{y}, \bar{z}) \) is expressed by \(F(\bar{x}, \bar{y}, \bar{z}, v) = \exists w[\mathcal{E}(\bar{y}, w) \land \mathcal{H}(\bar{x}, w, \bar{z}, v)] \).

For simplicity, consider a case where \(\bar{x} \) and \(\bar{z} \) drop out and \(\bar{y} \) is a single variable; so \(F(y, v) = \exists w[\mathcal{E}(y, w) \land \mathcal{H}(w, v)] \). Suppose \(\langle m, a \rangle \in f_k \); then by composition there is some \(b \) such that \(\langle m, b \rangle \in g \) and \(\langle a, b \rangle \in h \).

Because \(\mathcal{E} \) and \(\mathcal{H} \) express \(g \) and \(h \), \(N[\mathcal{E} (\bar{m}, \bar{b})] = T \) and \(N[\mathcal{H} (\bar{b}, \bar{a})] = T \); so \(N[\mathcal{E} (\bar{m}, \bar{b}) \land \mathcal{H} (\bar{b}, \bar{a})] = T \), and \(N[\exists w (\mathcal{E} \land \mathcal{H} (w, \bar{a}))] = T \). Further, by expression, \(N[\forall z (\mathcal{E}(\bar{m}, z) \to \bar{b} = z)] = T \) and \(N[\forall z (\mathcal{H}(\bar{b}, z) \to \bar{a} = z)] = T \); so that for a given \(m \), there is just one \(w = b \) and one \(z = a \) to satisfy \(\mathcal{E}(\bar{m}, w) \land \mathcal{H}(w, z) \) and \(\exists w (\mathcal{E}(\bar{m}, w) \land \mathcal{H}(w, z)) \).

(r) \(f_k(\bar{x}, y) \) arises by recursion from \(g(\bar{x}) \) and \(h(\bar{x}, y, u) \). By assumption \(g(\bar{x}) \) is expressed by some \(\mathcal{E}(\bar{x}, v) \) and \(h(\bar{x}, y, u) \) is expressed by \(\mathcal{H}(\bar{x}, y, u, v) \).

And the expression of \(f_k(\bar{x}, y) \) in terms of \(\mathcal{E} \) and \(\mathcal{H} \) utilizes Gödel’s \(\beta \)-function, as developed in the next section.

(m) \(f_k(\bar{x}) \) arises by regular minimization from \(g(\bar{x}) \). By assumption, \(g(\bar{x}) \) is expressed by some \(\mathcal{E}(\bar{x}, y, z) \). Then \(f_k(\bar{x}) \) is expressed by \(F(\bar{x}, v) = \mathcal{E}(\bar{x}, v, \bar{0}) \land (\forall y < v)\exists z (\mathcal{E}(\bar{x}, y, z) \land \bar{b} \neq z) \).

Suppose \(\bar{x} \) reduces to a single variable and \(\langle m, a \rangle \in f \); then \(\langle m, a \rangle, 0 \rangle \in g \) and for any \(n < a \), \(\langle m, n \rangle, 0 \rangle \notin g \).

(a) Since \(\langle m, a \rangle, 0 \rangle \in g \), \(N[\mathcal{E} (\bar{m}, \bar{a}, \bar{b})] = T \). And since for \(n < a \), \(\langle m, n \rangle, 0 \rangle \) is not in (total function) \(g \), for \(n < a \), there is some \(b \neq \bar{b} \) such that \(\langle m, n \rangle, b \rangle \in g \); so for \(n < a \), there is a \(b \) such that \(N[\mathcal{E} (\bar{m}, \bar{a}, \bar{b})] = T \) and \(N[\bar{d} \neq \bar{b}] = T \); so \(N[\mathcal{E} (\bar{m}, \bar{a}, \bar{b}) \land \bar{d} \neq \bar{b}] = T \); so with \(T10.2 \), \(N[\mathcal{E}(\bar{m}, \bar{a}, \bar{b}) \land \bar{d} \neq \bar{b}] = T \); so \(N[\exists z (\mathcal{E}(\bar{m}, \bar{a}, \bar{b}) \land \bar{d} \neq \bar{b})] = S \); so with \(T10.2 \) again, \(N[\exists z (\mathcal{E}(\bar{m}, \bar{a}, \bar{b}) \land \bar{d} \neq \bar{b})] = T \); and since this is so for any \(n < a \), with \(T12.4 \), \(N[\forall y < \bar{a}] \exists z (\mathcal{E}(\bar{m}, \bar{a}, \bar{b}) \land \bar{d} \neq \bar{b}) \] = \(S \), and

7 We might appeal to the (somewhat cleaner) \(\mathcal{E}(\bar{x}, v, \bar{0}) \land (\forall y < v)\mathcal{E}(\bar{x}, y, \bar{d}) \). However, our formulation smooths results down the line—especially, \(f_k(\bar{x}) \) is expressed by a \(\Sigma_1 \) formula (as discussed below page 625).
since there are no free variables, \(N[(\forall y < \bar{a})\exists z (G(\bar{m}, y, z) \land \bar{d} \neq z)] = T\). So \(N[F(\bar{m}, \bar{a})] = T\).

(b) We begin showing that for any \(n\), \(N[F(\bar{m}, \bar{n}) \rightarrow \bar{a} = \bar{n}] = T\). For any \(n\), \(n < a\) or \(a = n\) or \(n > a\). (i) Suppose \(a = n\); then \(N[\bar{a} = \bar{n}] = T\); so \(N[F(\bar{m}, \bar{n}) \rightarrow \bar{a} = \bar{n}] = T\). (ii) Suppose \(n < a\); then \(\langle \langle m, n \rangle, 0 \rangle \notin g\); so \(N[F(\bar{m}, \bar{n}, \bar{0})] \neq T\); so \(N[F(\bar{m}, \bar{n})] \neq T\); so \(N[F(\bar{m}, \bar{n}) \rightarrow \bar{a} = \bar{n}] = T\). (iii) Suppose \(n > a\). First, for any \(b\), \(N[G(\bar{m}, \bar{a}, \bar{b}) \land \bar{d} \neq \bar{b}] \neq T\). For any \(b\), \(0 = b\) or \(0 \neq b\). Say \(0 = b\); then \(N[\bar{d} = \bar{b}] \neq T\); so \(N[G(\bar{m}, \bar{a}, \bar{b}) \land \bar{d} \neq \bar{b}] \neq T\). Say \(0 \neq b\); then since \(\langle \langle m, a \rangle, 0 \rangle\) is in (function) \(g\), \(\langle \langle m, a \rangle, b \rangle \notin g\); so \(N[G(\bar{m}, \bar{a}, \bar{b})] \neq T\); so \(N[G(\bar{m}, \bar{a}, \bar{b}) \land \bar{d} \neq \bar{b}] \neq T\). So for any \(b\), \(N[G(\bar{m}, \bar{a}, \bar{b}) \land \bar{d} \neq \bar{b}] \neq T\); so with T10.2, \(N_{d(\bar{m})}[G(\bar{m}, \bar{a}, \bar{b}) \land \bar{d} \neq \bar{z}] = S\); and since this is so for any \(b\), \(N_{d(\bar{m})}[[\exists z (G(\bar{m}, \bar{a}, \bar{z}) \land \bar{d} \neq \bar{z})] \neq S\); with T10.2, \(N_{d(\bar{m})}[G(\bar{m}, \bar{a}, \bar{b}) \land \bar{d} \neq \bar{z}] = S\); and since \(a < n\), with T12.4, \(N_{d}[\langle \forall y < n \rangle \exists z (G(\bar{m}, y, z) \land \bar{d} \neq z)] = S\); so \(N[F(\bar{m}, \bar{n})] \neq T\); so \(N[F(\bar{m}, \bar{n}) \rightarrow \bar{a} = \bar{n}] = T\). So for any \(n\), \(N[F(\bar{m}, \bar{n}) \rightarrow \bar{a} = \bar{n}] = T\); so with T10.2, \(N_{d(\bar{u})}[F(\bar{m}, \bar{u}) \rightarrow \bar{a} = \bar{u}] = S\); so \(N_{d}[\forall u (F(\bar{m}, u) \rightarrow \bar{a} = \bar{u})] = S\); and since this \(d\) is arbitrary, \(N[\forall u (F(\bar{m}, u) \rightarrow \bar{a} = \bar{u})] = T\).

Indec: Any recursive \(f(\bar{x})\) is expressed by some \(F(\bar{x}, v)\)

Some of the reasoning is merely sketched, however the general idea should be clear. Note that we have dropped the (obvious) sub-conclusion for the “show” step of the induction—that merely repeats the initial “show” line. There might be formulas other than the stated \(F(\bar{x}, v)\) to express a recursive \(f(\bar{x})\): we have seen examples already in notes; and similarly, if \(F(\bar{x}, v)\) expresses \(f(\bar{x})\), then so does \(F(\bar{x}, v) \land A\) for any tautology \(A\). We shall see an important alternative to \(F(\bar{x}, v)\) in the following. Let us say that the \(F(\bar{x}, v)\) here-described is the *original* formula by which \(f(\bar{x})\) is expressed. Of course, it remains to fill out the case for the recursion clause. This is the task of the next section.

E12.5. Show (ii) of T12.3 and the case for \((\exists x \leq t)\mathcal{P}\) of T12.4. These should be straightforward, given parts worked in the text.

E12.6. From T12.5 there is some formula to express any recursive function: the argument by induction works by showing how to *construct* a formula for each recursive function. Following the method of our induction, write down formulas to express the following recursive functions.

a. zero(x)
h. suc(zero(x))

Hint: As setup for the compositions, give each function a different output variable, where the output to one is the input to the next.

*E12.7. Fill out semantic reasoning to demonstrate that proposed (original) formulas satisfy the conditions for expression for the (i) and (c) clauses to T12.5 (the latter in the case where \(\vec{x} \) and \(\vec{z} \) drop out and \(\vec{y} \) is a single variable \(y \)). Hints: For (c) you will apply semantic definitions to show that \(\text{N} [\exists w (\vec{f} (w, \vec{a}) \land H (w, \vec{a}))] = T \) and that \(\text{N} [\forall z (\exists w (\vec{f} (w, \vec{a}) \land H (w, z)) \rightarrow \vec{a} = z)] = T \). In places you may find that T10.2 will smooth the result.

12.2.3 The \(\beta \)-Function

Suppose a function \(f(m, n) \) is defined by recursion and \(f(m, n) = a \). Then for the given value of \(m \), there is a sequence \(k_0, k_1 \ldots k_n \) with \(k_n = a \), such that \(k_0 \) takes some initial value, and each of the other members is specially related to the one before. Thus, in the simple case of \(\times (m, n) \), if \(m = 2 \) then \(k_0 = 0 \), and each \(k_i \) adds two to the one before. So corresponding to \(2 \times 5 = 10 \) is the sequence,

\[
0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10
\]

whose first member is set by \(\text{gtimes}(2) \), where subsequent members result from the one before by \(\text{times}(2, \text{Sy}) = h(\text{times}(2, y), \text{times}(2, y)) \), whose last member is 10. And, generalizing, we shall be in a position to express functions defined by recursion if we can express the existence of sequences of integers so defined. We shall be able to say \(f(m, n) = a \) if we can say “there is a sequence whose first member is \(g(m) \), with members related one to another by \(f(m, \text{Sy}) = h(m, y, f(m, y)) \), whose \(n \)th member is \(a \).” This is a mouthful. And \(\mathcal{L}_{\text{NT}} \) is not obviously equipped to do it. In particular, \(\mathcal{L}_{\text{NT}} \) has straightforward mechanisms for asserting the existence of natural numbers—but on its face, it is not clear how to assert the existence of the arbitrary sequences which result from the recursion clause.

But Gödel shows a way out. We have already seen an instance of the general strategy we shall require in our discussion of Gödel numbering from chapter 10. In that case, we took a sequence of integers (keyed to vocabulary), \(g_0, g_1 \ldots g_n \) and collected them into a single Gödel number \(G = 2^{g_0} \times 3^{g_1} \times \ldots \times \pi_n^{g_n} \) where 2, 3, \ldots \(\pi_n \) are the first \(n \) primes. By the fundamental theorem of arithmetic, any number has a unique prime factorization, so the original sequence is recovered from \(G \) by factoring to find the power of 2, the power of 3 and so forth. So the single integer \(G \) represents
the original sequence. And \mathcal{L}_{NT} has no problem expressing the existence of a single integer! Unfortunately, however, this particular way out is unavailable to us insofar as it involves exponentiation, and the resources of \mathcal{L}_{NT} so-far include only S, $+$ and \times.\footnote{Some treatments begin with a language including exponentiation precisely in order to smooth the exposition at this stage. But our results are all the more interesting insofar as even the relatively weak \mathcal{L}_{NT} retains powers sufficient for the fatal flaw.}

All the same, within the resources of \mathcal{L}_{NT}, with the Chinese remainder theorem (appearing first in a third-century treatise, *Sun Zi Suanjing*), there must be

pairs of integers sufficient to represent any finite sequence. Consider the remainder function $\text{rem}(x, y)$ which returns the remainder after x is divided by y. The remainder of x divided by y equals z just in case $z < y$ and for some w, $x = (y \times w) + z$. Then let,

$$\beta(p, q, i) = \text{rem}(p, S(q \times S(i)))$$

So for some fixed values of p and q the β function yields different remainders for different values of i. With the Chinese remainder theorem, for any sequence k_0, $k_1 \ldots k_n$ there are some p and q such that for $i \leq n$, $\beta(p, q, i) = k_i$. So p and q together code the sequence, and the β-function returns each member k_i as a function of p, q and i. Intuitively, when we divide p by $S(q \times S(i))$ for $i \leq n$, the result is a series of $n + 1$ remainders. The theorem tells us that any series $k_0, k_1 \ldots k_n$ may be so represented (see the beta function reference).

Here is a simple example. Suppose k_0, k_1 and k_2 are 5, 2, 3. We require p and q such that $\beta(p, q, 0) = 5$, $\beta(p, q, 1) = 2$ and $\beta(p, q, 2) = 3$. The last subscript n in our series k_0, k_1, k_2 equals 2. As developed in the beta function reference, the proof of the remainder theorem asks us first to find $s = \max(n, 5, 2, 3) = 5$, and then to set $q = s! = 120$. So $\beta(p, q, i) = \text{rem}(p, S(120 \times S(i)))$. So as i ranges between 0 and $n = 2$, we are looking at,

$$\text{rem}(p, 121) \quad \text{rem}(p, 241) \quad \text{rem}(p, 361)$$

But 121, 241 and 361 so constructed must have no common factor other than 1; and under this condition as p varies between 0 and $121 \times 241 \times 361 - 1 = 10527120$ the remainders must take on every possible sequence of remainder values. But the remainders will be values up to 120, 240 and 360, which is to say, $q = s$! is large enough that our simple sequence must therefore appear among the sequences of remainders. In this case, $p = 261728$ gives $\text{rem}(p, 121) = 5$, $\text{rem}(p, 241) = 2$ and $\text{rem}(p, 361) = 3$. There may be easier ways to generate this sequence. But there is
Arithmetic for the Beta Function

Say \(\text{rem}(c, d) \) is the remainder of \(c/d \). For a sequence, \(d_0, d_1 \ldots d_n \), let \(|D| \) be the product \(d_0 \times d_1 \times \ldots \times d_n \). We say \(d_0, d_1 \ldots d_n \) are relatively prime if no two members have a common factor other than 1. Then,

I. For any relatively prime sequence \(d_0, d_1 \ldots d_n \), the sequences of remainders \(\{\text{rem}(c, d_0), \text{rem}(c, d_1) \ldots \text{rem}(c, d_n)\} \) as \(c \) runs from 0 to \(|D| - 1 \) are all different from each other.

Suppose otherwise. Then there are \(c_1 \) and \(c_2, 0 \leq c_1 < c_2 < |D| \) such that \(\text{rem}(c_1, d_0), \text{rem}(c_1, d_1) \ldots \text{rem}(c_1, d_n) \) is the same as \(\text{rem}(c_2, d_0), \text{rem}(c_2, d_1) \ldots \text{rem}(c_2, d_n) \). So for each \(d_i \), \(\text{rem}(c_1, d_i) = \text{rem}(c_2, d_i) \); say \(c_1 = ad_i + r \) and \(c_2 = bd_i + r \); then since the remainders are equal, \(c_2 - c_1 = bd_i - ad_i \); so each \(d_i \) divides \(c_2 - c_1 \) evenly. So each \(d_i \) collects a distinct set of prime factors of \(c_2 - c_1 \); and since \(c_2 - c_1 \) is divided by any product of its primes, \(c_2 - c_1 \) is divided by \(|D| \). So \(|D| \equiv c_2 - c_1 \). But \(0 \leq c_1 < c_2 < |D| \) so \(c_2 - c_1 < |D| \). Reject the assumption: The sequences of remainders as \(c \) runs from 0 to \(|D| - 1 \) are distinct.

II. The sequences of remainders \(\text{rem}(c, d_0), \text{rem}(c, d_1) \ldots \text{rem}(c, d_n) \) as \(c \) runs from 0 to \(|D| - 1 \) are all the possible sequences of remainders.

There are \(d_i \) possible remainders a number might have when divided by \(d_i \), \((0, 1, \ldots , d_i - 1) \). But if \(\text{rem}(c, d_0) \) takes \(d_0 \) possible values, \(\text{rem}(c, d_1) \) may take its \(d_1 \) values for each value of \(\text{rem}(c, d_0) \); etc. So the there are \(|D| \) possible sequences of remainders. But as \(c \) runs from 0 to \(|D| - 1 \), by (I), there are \(|D| \) different sequences. So there are all the possible sequences.

III. Let \(s \) be the maximum of \(n, k_0, k_1 \ldots k_n \). Then for \(0 \leq i < n \), the numbers \(d_i = s!(i + 1) + 1 \) are each greater than any \(k_i \) and are relatively prime.

Since \(s \) is the maximum of \(n, k_0, k_1 \ldots k_n \), the first is obvious. To see that the \(d_i \) are relatively prime, suppose otherwise. Then for some \(j, k, 1 \leq j < k \leq n + 1, s!j + 1 \) and \(s!k + 1 \) have a common factor \(p \). But any number up to \(s \) leaves remainder \(1 \) when dividing \(s!j + 1 \); so \(p > s \). And since \(p \) divides \(s!j + 1 \) and \(s!k + 1 \) it divides their difference, \(s!(k - j) \); but if \(p \) divides \(s! \), then it does not evenly divide \(s! + 1 \); so \(p \) does not divide \(s! \); so \(p \) divides \(k - j \). But \(1 \leq j < k \leq n + 1 \); so \(k - j \leq n \); so \(p \leq n \); so \(p \leq s \). Reject the assumption: the \(d_i \) are relatively prime.

IV. For any \(k_0, k_1 \ldots k_n \), we can find a pair of numbers \(p, q \) such that for \(0 \leq i \leq n \), \(\beta(p, q, i) = k_i \).

With \(s \) as above, set \(q = s! \), and let \(\beta(p, q, i) = \text{rem}(p, q(i + 1) + 1) \). By (III), for \(0 \leq i \leq n \) the numbers \(q_i = q(i + 1) + 1 \) are relatively prime. So by (II), there are all the possible sequences of remainders as \(p \) ranges from 0 to \(|D| - 1 \). And since by (III) each of the \(q_i \) is greater than any \(k_i \), the sequence \(k_0, k_1 \ldots k_n \) is among the possible sequences of remainders. So there is some \(p \) such that the \(k_i \) are \(\text{rem}(p, q(i + 1) + 1) \).
no shortage of integers (!) so there are no worries about using large ones, and by this method Gödel gives a perfectly general way to represent the arbitrary finite sequence.

And we can express the β-function with the resources of \mathcal{L}_{nt}. Thus, for $\beta(p, q, i)$,

$$\beta(p, q, i, v) = (\exists w \leq p)[p = (S(q \times Si) \times w) + v \land v < S(q \times Si)]$$

So v is the remainder after p is divided by $S(q \times Si)$. And for appropriate choice of p and q, the variable v takes on the values k_0 through k_n as i runs through the values \emptyset to n.

Now return to our claim that when a function defined by recursion $f(x, y) = a$ there is a sequence $k_0, k_1 \ldots k_n$ with $k_n = a$ such that k_0 takes some initial value, and each of the other members is related to the one before according to some other recursive function. More officially, $f(\bar{x}, y) = z$ just in case there is a sequence $k_0, k_1 \ldots k_y$ with,

(i) $k_0 = g(\bar{x})$

(ii) if $i < y$, then $k_{Si} = h(\bar{x}, i, k_i)$

(iii) $k_y = z$

Put in terms of the β-function, this requires $f(\bar{x}, y) = z$ just in case there are some p, q such that,

(i) $\beta(p, q, 0) = g(\bar{x})$

(ii) if $i < y$, then $\beta(p, q, Si) = h(\bar{x}, i, \beta(p, q, i))$

(iii) $\beta(p, q, y) = z$

By assumption, $g(\bar{x})$ is expressed by some $G(\bar{x}, v)$ and $h(\bar{x}, y, u)$ by some $H(\bar{x}, y, u, v)$. So we can express the combination of these conditions as follows. $f(\bar{x}, y)$ is expressed by $F(\bar{x}, y, z) =$

$$\exists p \exists q \exists v [\beta(p, q, 0, v) \land G(\bar{x}, v)] \land$$

$$(\forall i < y) \exists u \exists v [\beta(p, q, i, u) \land \beta(p, q, S Si, v) \land H(\bar{x}, i, u, v)] \land$$

$$\beta(p, q, y, z)$$

So G is satisfied by the first member; then for any $i < y$, H is satisfied by the i^{th} member and its successor; and the y^{th} member of the series is z.

In the case of factorial, $gfact() = 1$ is expressed by $G(v) = (\bar{1} = v)$ and $hfact(y, u) = \text{times}(u, \text{suc}(y))$ by $H(y, u, v) = (u \times Sy = v)$. Given this, the factorial function is expressed by $F(y, z) =$
CHAPTER 12. RECURSIVE FUNCTIONS AND Q 621

\[\exists p \exists q \{ \exists v [\mathcal{B}(p, q, 0, v) \land \overline{T} = v] \land (\forall i < y) \exists u \exists v [\mathcal{B}(p, q, i, u) \land \mathcal{B}(p, q, Si, v) \land u \times Si = v] \land \mathcal{B}(p, q, y, z) \} \]

This expression is long—particularly if expanded to unabbreviate the \(\beta \)-function. But the result is what we want: if \(\langle n, a \rangle \in \text{fac} \), then \(N[\mathcal{F} (\overline{n}, \overline{a})] = T \) and \(N[\forall w (\mathcal{F} (\overline{n}, w) \rightarrow \overline{a} = w)] = T \).

So far, our discussion explains how the recursion clause is satisfied by means of the \(\beta \)-function. Perhaps this is sufficient. Even so, we can demonstrate more explicitly that if \(\langle m, n, a \rangle \in f \), then (i) \(N[\mathcal{F} (\overline{m}, \overline{n}, \overline{a})] = T \), and (ii) \(N[\forall w (\mathcal{F} (\overline{m}, \overline{n}, w) \rightarrow \overline{a} = w)] = T \). To manage long formulas let,

\[\mathcal{P}(p, q, x) = \exists v [\mathcal{B}(p, q, 0, v) \land \mathcal{F}(x, v)] \]
\[\mathcal{Q}(p, q, x, y) = (\forall i < y) \exists u \exists v [\mathcal{B}(p, q, i, u) \land \mathcal{B}(p, q, Si, v) \land \mathcal{H}(x, i, u, v)] \]

Then \(\mathcal{F}(x, y, z) = \exists p \exists q [\mathcal{P}(p, q, x) \land \mathcal{Q}(p, q, x, y) \land \mathcal{B}(p, q, y, z)] \). Here is an outline of reasoning for (i).

Suppose \(\overline{x} \) reduces to a single variable and \(\langle m, n, a \rangle \in f \). Then there are \(k_0 \ldots k_n \) such that \(k_0 = g(m) \); there are \(p, q \) such that for \(0 \leq i < n \), \(\beta(p, q, i) = k_i \), \(\beta(p, q, Si) = k_Si \) and \(h(m, i, k_i) = k_Si \); and \(k_n = a \). Consider an arbitrary variable assignment \(d \). With expression for \(\mathcal{F} \) and \(\mathcal{B} \), \(N_d[\mathcal{F}(\overline{m}, \overline{k_0})] = S \) and \(N_d[\mathcal{B}(\overline{p}, \overline{q}, \overline{d}, \overline{k_0})] = S \); so \(N_d[\mathcal{P}(\overline{p}, \overline{q}, \overline{m})] = S \). Suppose \(i < n \); then with expression for \(\mathcal{B} \) and \(\mathcal{H} \), \(N_d[\mathcal{B}(\overline{p}, \overline{q}, \overline{1}, \overline{k_i})] = S \), and \(N_d[\mathcal{B}(\overline{p}, \overline{q}, \overline{k_Si}, \overline{k_S})] = S \) and \(N_d[\mathcal{H}(\overline{m}, \overline{1}, \overline{k_i}, \overline{k_Si})] = S \); so \(N_d[\mathcal{P}(\overline{p}, \overline{q}, \overline{m}) \land \mathcal{B}(\overline{p}, \overline{q}, \overline{k_Si}, \overline{k_S}) \land \mathcal{H}(\overline{m}, \overline{1}, \overline{k_i}, \overline{k_S})] = S \); and since this is so for all \(i < n \), with T12.4, \(N_d[\mathcal{Q}(\overline{p}, \overline{q}, \overline{m}) \land \mathcal{B}(\overline{p}, \overline{q}, \overline{m}, \overline{k_n})] = S \); and since \(d \) is arbitrary, \(N[\mathcal{F}(\overline{m}, \overline{n}, \overline{k_n})] = T \).

We reason directly from truth at the level of the parts, to truth for the whole. To see (ii) that \(N[\forall w (\mathcal{F}(\overline{m}, \overline{n}, w) \rightarrow \overline{k_n} = w)] = T \), we shall be able to show that uniqueness at the level of the parts yields uniqueness for the whole. In this case, the result “propagates” from one stage to the next, and we reason by induction on the value of \(n \). For an outline of the argument, see the box on page 622. Thus with \(\mathcal{L}_{n_1} \) we satisfy the recursion clause for T12.5. So demonstration of the theorem is complete, and \(\mathcal{L}_{n_1} \) has the resources to express any recursive function.

\(^9\) Even more, although this \(\mathcal{F} \) and \(\mathcal{H} \) do express \(\text{gfact} \) and \(\text{hfact} \), they are not the same as the more complex formulas that would result from composition and such by the method of T12.5.
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

T12.5 (r)

Suppose \(\bar{x} \) reduces to a single variable and \(\langle m, n, a \rangle \in f \). Then there are \(k_0 \ldots k_n \) such that \(k_0 = g(m) \); there are \(p, q, s \) such that for \(0 \leq i < n \), \(\beta(p, q, i) = k_i \), \(\beta(p, q, Si) = k_{Si} \) and \(h(m, i, k_i) = k_Si \); and \(k_n = a \).

For this argument, it will be convenient to lapse into induction scheme III from the induction schemes reference on page 396—making the assumption for a single member of the series \(n \), and then showing that it holds for the next.

Basis: Suppose \(N[\forall w(\mathcal{F}(\bar{m}, \emptyset, w) \rightarrow \bar{k}_0 = w)] \neq T \); then there is some particular assignment \(h \) and particular object \(b \) such that \(N_h[\mathcal{F}(\bar{m}, \emptyset, \bar{b})] = \bar{b} \) \(\neq S \); so \(N_h[\mathcal{F}(\bar{m}, 0, \bar{b})] = S \) and \(N_h[\bar{k}_0 = \bar{b}] \neq S \). With the latter, \(k_0 \neq \bar{b} \). With the former there are particular objects \(p \) and \(q \) such that \(N_h[\mathcal{P}(\bar{p}, \bar{q}, \bar{m}) \land \mathcal{Q}(\bar{p}, \bar{q}, \bar{m}, \bar{v}) \land \mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{b})] = S \); so \(N_h[\mathcal{P}(\bar{p}, \bar{q}, \bar{m})] = S \) and \(N_h[\mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{b})] = S \). From the first of these, there is some particular object \(v \) such that \(N_h[\mathcal{B}(\bar{p}, \bar{q}, \bar{0}, \bar{v}) \land \mathcal{G}(\bar{m}, \bar{v})] = S \); so \(N_h[\mathcal{B}(\bar{p}, \bar{q}, \bar{0}, \bar{v})] = S \) and \(N_h[\mathcal{G}(\bar{m}, \bar{v})] = S \). By uniqueness, \(N[\forall z(\mathcal{G}(\bar{m}, z) \rightarrow k_0 = z)] = T \); so with \(N_h[\mathcal{B}(\bar{p}, \bar{q}, \bar{0}, \bar{v})] = S \), \(k_0 = v \). But since \(N_h[\mathcal{B}(\bar{p}, \bar{q}, \bar{0}, \bar{v})] = S \) and \(\mathcal{B} \) expresses the \(\beta \)-function, \((p, q, 0, v) \in \beta \); so by uniqueness, \(N[\forall z(\mathcal{G}(\bar{m}, z) \rightarrow v = z)] = T \); and since \(N_h[\mathcal{B}(\bar{p}, \bar{q}, \bar{0}, \bar{b})] = S \), \(v = b \); so \(k_0 = b \). This is impossible, reject the assumption, \(N[\forall w(\mathcal{F}(\bar{m}, \emptyset, w) \rightarrow \bar{k}_0 = w)] = T \).

Assp: \(N[\forall w(\mathcal{F}(\bar{m}, \bar{n}, w) \rightarrow \bar{k}_n = w)] = T \). Suppose otherwise; then by reasoning parallel to the basis case, there is a particular assignment \(h \) and objects \(b, p, q \) such that \(k_n \neq b \) and \(N_h[\mathcal{P}(\bar{p}, \bar{q}, \bar{m}) \land \mathcal{Q}(\bar{p}, \bar{q}, \bar{m}, \bar{S}) \land \mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{b})] = S \); so (a) \(N_h[\mathcal{P}(\bar{p}, \bar{q}, \bar{m})] = S \) and (b) \(N_h[\mathcal{Q}(\bar{p}, \bar{q}, \bar{m}, \bar{S})] = S \) and (c) \(N_h[\mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{b})] = S \). From (b), \(N_h[(\forall i < \bar{S}n)\exists u \exists v(\mathcal{G}(\bar{p}, \bar{q}, \bar{i}, u) \land \mathcal{B}(\bar{p}, \bar{q}, \bar{i}, v) \land \mathcal{H}(\bar{m}, \bar{i}, u, v))] = S \); so with T12.4, (d) for all \(i \leq n \), \(N_h[\exists u \exists v(\mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{u}) \land \mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{v}) \land \mathcal{H}(\bar{m}, \bar{n}, \bar{u}, \bar{v}))] = S \); so for some particular \(u \) and \(v \), \(N_h[\mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{u}) \land \mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{v}) \land \mathcal{H}(\bar{m}, \bar{n}, \bar{u}, \bar{v})] = S \); so (e) \(N_h[\mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{v})] = S \) and (f) \(N_h[\mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{u})] = S \) and (g) \(N_h[\mathcal{H}(\bar{m}, \bar{n}, \bar{u}, \bar{v})] = S \); since any \(i < n \) is less than \(\bar{S}n \), by (d), for all \(i < n \), \(N_h[\exists u \exists v(\mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{u}) \land \mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{v}) \land \mathcal{H}(\bar{m}, \bar{i}, u, v))] = S \), so with T12.4 (h) \(N_h[\mathcal{Q}(\bar{p}, \bar{q}, \bar{m}, \bar{n})] = S \); so with (a, h, e) \(N_h[\mathcal{P}(\bar{p}, \bar{q}, \bar{m}) \land \mathcal{Q}(\bar{p}, \bar{q}, \bar{m}, \bar{n}) \land \mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{u})] = S \); so with the assumption, \(k_n = u \); so with (g) \(N_h[\mathcal{H}(\bar{m}, \bar{n}, \bar{k}_n, \bar{v})] = S \); but by uniqueness for \(\mathcal{H} \), \(N_h[\forall z(\mathcal{H}(\bar{m}, \bar{n}, \bar{k}_n, z) \rightarrow \bar{k}_n = z)] = S \); so \(k_n = v \); so with (f), \(N_h[\mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{k}_n)] = S \); so by expression \(\langle p, q, S, k_n \rangle \in \beta \); and since from (e) \(N_h[\mathcal{B}(\bar{p}, \bar{q}, \bar{S}, \bar{v})] = S \), by uniqueness for \(\mathcal{B} \), \(k_n = b \). This is impossible.

Indet: For any \(n \), \(N[\forall w(\mathcal{F}(\bar{m}, \bar{n}, w) \rightarrow \bar{k}_n = w)] = T \).
E12.8. Suppose \(k_0, k_1, k_2 \) and \(k_3 \) are 3, 4, 0, 2. By the method of the text, find values of \(p \) and \(q \) so that \(\beta(i) = k_i \). Use your values of \(p \) and \(q \) to calculate \(\beta(p, q, 0) \), \(\beta(p, q, 1) \), \(\beta(p, q, 2) \) and \(\beta(p, q, 3) \). You will need some programmable device to search for the value of \(p \). In Ruby, a routine along the following lines, with numerical values for \(a, b, c \) and \(d \) should suffice.

```ruby
1. def loop
2.   p = 0
3.   until p \% a == 3 and p \% b == 4 and p \% c == 0 and p \% d == 2
4.     p = p+1
5.   end
6.   puts "p = #{p}"
7. end
8. return p
9. end
```
In Ruby \(x \% y \) returns the remainder of \(x \) divided by \(y \). So, for this routine, you insert the denominators and then search (by brute force) for the value of \(p \) that returns the right remainders. Be prepared for it to take a while!

E12.9. Produce a formula to show that \(\mathcal{L}_{nt} \) expresses the plus function by the initial functions with the beta function. You need not reduce the beta form to its primitive expression!

E12.10. Say a function \(f_k \) is simple iff there is a series of functions \(f_0, f_1 \ldots f_k \) such that for any \(i \leq k \),

(b) \(f_0(x, y) \) is plus\((x, y)\)

(r) There are \(a, b < i \) such that \(f_i(x, y) \) is plus\((f_a(x, y), f_b(x, y))\)

Show that on the standard interpretation \(N \) of \(\mathcal{L}_{nt} \) each simple \(f(\bar{x}) \) is expressed by some formula \(\mathcal{F}(x, y) \). You may appeal to T10.2 as appropriate—and your reasoning may have the “quick” character of T12.5. Hint: (r) works by a sort of “double” composition.

12.3 Capturing Recursive Functions

The second of the powers to be associated with theory incompleteness has to do with the theory’s proof system. In section 12.5.2 (and again in 13.1.2 and 14.2.3) we show that if a theory is consistent and captures recursive functions, then it is negation
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

624

incomplete. In this section, as a basis for that argument, we show that Q, and so any
theory that includes Q, captures the recursive functions. Thus we shall have separate
paths to incompleteness: one through expression and soundness, and another through
capture and consistency.

12.3.1 Definition and First Results

Where expression requires that if objects stand in a given relation, then a corresponding
formula be true, capture requires that when objects stand in a relation, a corresponding
formula be provable in the theory.

CP For any language \(\mathcal{L} \), interpretation \(I \), objects \(m_1 \ldots m_n, a \in U \) and theory \(T \),

(r) Relation \(R(x_1 \ldots x_n) \) is captured by formula \(R(x_1 \ldots x_n) \) in \(T \) just in case,

(i) If \(\langle m_1 \ldots m_n \rangle \in R \) then \(T \models R(m_1 \ldots m_n) \)

(ii) If \(\langle m_1 \ldots m_n \rangle \not\in R \) then \(T \models \sim R(m_1 \ldots m_n) \)

(f) Function \(f(x_1 \ldots x_n) \) is captured by formula \(F(x_1 \ldots x_n, y) \) in \(T \) just in case,

if \(\langle \langle m_1 \ldots m_n \rangle, a \rangle \in f \) then

(i) \(T \models F(m_1 \ldots m_n, \overline{a}) \)

(ii) \(T \models \forall z (F(m_1 \ldots m_n, z) \rightarrow \overline{a} = z) \)

Again, let us illustrate with some applications. First, in any \(T \) at least as strong as Q, \(x = y \) captures \(\varepsilon \circ \varepsilon(x, y) \). For if \(\langle m, n \rangle \in \varepsilon \circ \varepsilon \), then \(N[\overline{m} = \overline{n}] = T \) and by T8.16, \(T \models \overline{m} = \overline{n} \); and if \(\langle m, n \rangle \not\in \varepsilon \circ \varepsilon \) then \(N[\overline{m} = \overline{n}] \neq T \) and by T8.16, \(T \models \overline{m} \neq \overline{n} \).

Turning to a simple function, \(\hat{h} \) is captured by \(\overline{h} = v \) — for if \(\langle a \rangle \in \hat{h} \), then \(n = a \) and we have both \(T \models \overline{n} = \overline{a} \) and \(T \models \forall z (\overline{n} = z \rightarrow \overline{a} = z) \). Similarly, in a theory at least as strong as Q, \(\mathsf{plus}(x, y) \) is captured by \(x + y = v \), for if \(m + n = a \), then \(N[\overline{m} + \overline{n} = \overline{a}] = T \) and by T8.16, \(T \models \overline{m} + \overline{n} = \overline{a} \); and given \(T \models \overline{m} + \overline{n} = \overline{a} \), it is easy to see that \(T \models \forall z (\overline{m} + \overline{n} = z \rightarrow \overline{a} = z) \).

In addition, we can show that for a theory at least as strong as Q, condition (f.ii)
yields a result like (r.ii).

T12.6. If \(T \) includes Q and total function \(f(x_1 \ldots x_n) \) is captured by formula \(F(x_1 \ldots x_n, y) \), then if \(\langle \langle m_1 \ldots m_n \rangle, a \rangle \not\in f, T \models \sim F(m_1 \ldots m_n, \overline{a}) \).

Suppose \(f(x_1 \ldots x_n) \) is captured by \(F(x_1 \ldots x_n, y) \) and \(\langle \langle m_1 \ldots m_n \rangle, a \rangle \not\in f \). Then since \(f \) is total, there is some \(b \neq a \) such that \(\langle \langle m_1 \ldots m_n \rangle, b \rangle \in f \); so by (f.ii),
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

\[T \vdash \forall z (F(m_1 \ldots m_n, z) \rightarrow \bar{b} = z) \]; so instantiating to \(\bar{a} \), \(T \vdash F(m_1 \ldots m_n, \bar{a}) \rightarrow \bar{b} = \bar{a} \). But since \(\bar{b} \neq \bar{a} \) and \(T \) includes \(Q \), by T8.16, \(T \vdash \bar{b} \neq \bar{a} \); so by MT, \(T \vdash \sim F(m_1 \ldots m_n, \bar{a}) \).

Our aim is to show that recursive functions are captured in \(Q \). In chapter 8, we showed that \(Q \) correctly decides atomic sentences of \(L_{NT} \)—and that result played a role in examples just above. As a preliminary to showing that \(Q \) captures all the recursive functions, in this section we extend the result from chapter 8 to show that \(Q \) correctly decides a broadened range of sentences, the \(\Delta_0 \) sentences.

To set up this result, we need to identify some important subclasses of formulas in \(L_{NT} \): the \(\Delta_0 \), \(\Sigma_1 \) and \(\Pi_1 \) formulas.

\[\Delta_0 \]

(b) If \(P \) is of the form \(s = t, s < t \) or \(s \leq t \) for terms \(s \) and \(t \), then \(P \) is a \(\Delta_0 \) formula.

(s) If \(P \) and \(Q \) are \(\Delta_0 \) formulas, then so are \(\sim P \), and \((P \rightarrow Q) \).

(q) If \(P \) is a \(\Delta_0 \) formula, then so are \((\forall x \leq t)P \) and \((\forall x < t)P \).

(c) Nothing else is a \(\Delta_0 \) formula.

Recall that, for the bounded quantifiers, variable \(x \) does not appear in the bound \(t \). We allow the usual abbreviations and so \(\land, \lor, \leftrightarrow \) and bounded existentials. For a \(\Delta_0 \) formula, all is as usual, except quantifiers are bounded. Because of the restriction to bounded quantifiers, a \(\Delta_0 \) sentence is true or false by some (potentially complex) fact about a finite collection of numbers. After that, \(\Sigma_1 \) and \(\Pi_1 \) formulas take \(\Delta_0 \) formulas as basic elements.

\[\Sigma_1 \]

(a) If \(P \) is a \(\Delta_0 \) formula, then \(P \) is a \(\Sigma_1 \) formula.

(b) If \(P \) is a \(\Sigma_1 \) formula, so is \(\exists x P \).

(c) If \(P \) and \(Q \) are \(\Sigma_1 \) formulas, then so are \((P \land Q) \) and \((P \lor Q) \).

(d) If \(P \) is a \(\Sigma_1 \) formula, then so are \((\exists x \leq t)P \) and \((\exists x < t)P \).

(e) If \(P \) is a \(\Sigma_1 \) formula, then so are \((\forall x \leq t)P \) and \((\forall x < t)P \).

(f) Nothing else is a \(\Sigma_1 \) formula.

Given the \(\Delta_0 \) formulas, operators are \(\land, \lor \), bounded quantifiers, and the unbounded existential. From the sigma-1 and pi-1 reference, \(\Sigma_1 \) formulas have simplified equivalents of the sort \(\exists v P \), where \(P \) is \(\Delta_0 \) and \(\exists v \) is a block of zero or more unbounded existential quantifiers. This helps to exhibit what \(\Sigma_1 \) sentences say. A \(\Sigma_1 \) sentence is true when some assignment \(d \) satisfies the \(\Delta_0 \) condition.
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

626

T12.7. For any \(\Delta_0 \) sentence \(P \), if \(N[P] = T \), then \(Q \vdash \neg P \), and if \(N[P] \neq T \), then \(Q \vdash \neg P \).

By induction on the number of operators in \(P \).

Basis: If \(P \) is an atomic \(\Delta_0 \) sentence it is \(t = s \), \(t \leq s \) or \(t < s \). So by T8.16, if \(N[P] = T \), \(Q \vdash P \), and if \(N[P] \neq T \), \(Q \vdash \neg P \).

Assp: For any \(i \), \(0 \leq i < k \), if a \(\Delta_0 \) setntence \(P \) has \(i \) operator symbols, then if \(N[P] = T \), \(Q \vdash P \) and if \(N[P] \neq T \), \(Q \vdash \neg P \).

Show: If a \(\Delta_0 \) sentence \(P \) has \(k \) operator symbols, then if \(N[P] = T \), \(Q \vdash P \) and if \(N[P] \neq T \), \(Q \vdash \neg P \).
Sigma-1 and Pi-1 Formulas

The Δ_0, Σ_1 and Π_1 formulas are the first stages of a more general measure of complexity for formulas of \mathcal{L}_2 (the arithmetical hierarchy). Given Δ_0 formulas, *strict* versions of Σ_1 and Π_1 formulas are typically (and transparently) introduced as follows:

Σ_1 A formula \mathcal{P} is *strictly* Σ_1 iff there are zero or more existential quantifiers such that $\mathcal{P} = \exists x_1 \exists x_2 \ldots \exists x_n \mathcal{P}$ for $\Delta_0 \mathcal{P}$.

Π_1 A formula \mathcal{P} is *strictly* Π_1 iff there are zero or more universal quantifiers such that $\mathcal{P} = \forall x_1 \forall x_2 \ldots \forall x_n \mathcal{P}$ for $\Delta_0 \mathcal{P}$.

From (a) and (b) of the original definitions, each strictly Σ_1 formula is Σ_1, and each strictly Π_1 formula is Π_1. But further, where \mathcal{P} and \mathcal{Q} are equivalent just in case on any α, $\text{N}_{\mathcal{Q}}[\mathcal{P}] = \text{N}_{\mathcal{P}}[\mathcal{Q}]$, each Σ_1 formula is equivalent to a strictly Σ_1 formula, and each Π_1 formula to a strictly Π_1 formula.

To show that each Σ_1 formula \mathcal{P} is equivalent to a strictly Σ_1 formula, reasoning is by induction on the number of operators in \mathcal{P}. With standard quantifier placement rules, reasoning is straightforward except for the case when \mathcal{P} is $(\forall x \leq t)A$. Then by assumption A is equivalent to some $\exists \bar{a}A'$ for Δ_0 formula A'; and so \mathcal{P} to $(\forall x \leq t)\exists \bar{a}A'$. This time, standard quantifier placement rules do not suffice.

For a simplified case, consider $(\forall x \leq y)\exists vA'(x, v)$; this requires that for each $x \leq y$ there is at least one v that makes $A'(x, v)$ true; for each $x \leq y$ consider the least such v, and let a be the greatest member of this collection. Then $(\forall x \leq y)(\exists v \leq a)A'(x, v)$ is equivalent to the original expression— for given an $x \leq y$, if there is a v to satisfy A', then there is a $v \leq a$ to satisfy A', and if there is a $v \leq a$ to satisfy A', then there is some v to satisfy A'. If the original expression is true, there is some such a, and if not true there is no such a. And therefore, no matter what y may be, $\exists j(\forall x \leq y)\exists v \leq jA'(x, v)$ is true iff the original expression is true. So the existential quantifier comes past the bounded universal, leaving behind a bounded existential “shadow.”

In general, it is not proper to drag an existential quantifier out past a universal quantifier; however, it is legitimate to drag an existential past a *bounded* universal, with a bounded existential quantifier left behind as “shadow.” Observe that, corresponding to this semantic equivalence, $\text{PA} \vdash (\forall x < n)\exists y \mathcal{F}xy \leftrightarrow \exists z(\forall x < n)(\exists y \leq z)\mathcal{F}xy$; for this see T13.11af with E12.12 and E13.12.

Reasoning is similar to show that each Π_1 formula is equivalent to a strictly Π_1 formula. For the case with $(\exists x \leq y)\forall vA'(x, v)$, begin with $\text{N}[(\forall x \leq y)\exists v \sim A'(x, v)] = \text{N}[\exists j(\forall x \leq y)(\exists v \leq j) \sim A'(x, v)]$ from above. Then consider the negation of both sides. By considerations parallel to QN and then DN, $\text{N}[(\exists x \leq y)\forall v \sim A'(x, v)] = \text{N}[\forall j(\exists x \leq y)(\forall v \leq j) \sim A'(x, v)]$. So the universal comes past the bounded existential leaving behind a bounded universal shadow.
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

If a Δ_0 sentence \mathcal{P} has k operator symbols, then it is of the form $\neg \mathcal{A}$, $\mathcal{A} \rightarrow \mathcal{B}$, $(\forall x \leq t) \mathcal{A}$ or $(\forall x < t) \mathcal{A}$ where \mathcal{A}, \mathcal{B} have $< k$ operator symbols and x does not appear in t.

$(\sim) \mathcal{P}$ is $\sim \mathcal{A}$. Since \mathcal{P} is a Δ_0 sentence, \mathcal{A} is a Δ_0 sentence. (i) Suppose $N[\mathcal{P}] = T$; then $N[\neg \mathcal{A}] = T$; so by T8.8, $N[\mathcal{A}] \neq T$; so by assumption, $Q \vdash \neg \mathcal{A}$; so $Q \vdash \mathcal{P}$. (ii) Suppose $N[\mathcal{P}] \neq T$; then $N[\neg \mathcal{A}] \neq T$; so by T8.8, $N[\mathcal{A}] = T$; so by assumption $Q \vdash \mathcal{A}$; so by DN, $Q \vdash \neg \mathcal{A}$; so $Q \vdash \sim \mathcal{P}$.

$(\rightarrow) \mathcal{P}$ is $\mathcal{A} \rightarrow \mathcal{B}$. Since \mathcal{P} is a Δ_0 sentence, \mathcal{A} and \mathcal{B} are Δ_0 sentences. (i) Suppose $N[\mathcal{A} \rightarrow \mathcal{B}] = T$; then by T8.8, $N[\mathcal{A}] \neq T$ or $N[\mathcal{B}] = T$. So by assumption, $Q \vdash \neg \mathcal{A}$ or $Q \vdash \mathcal{B}$. In either case, by \lor-I, $Q \vdash \neg \mathcal{A} \lor \mathcal{B}$; so by Impl, $Q \vdash \mathcal{A} \rightarrow \mathcal{B}$. Part (ii) is homework.

$(\forall \leq) \mathcal{P}$ is $(\forall x \leq t) \mathcal{A}(x)$. Since \mathcal{P} is a Δ_0 sentence, \mathcal{A} is a Δ_0 formula whose only free variable is x. In addition, since x does not appear in t, t must be variable-free; so $N_0[t] = N[t]$ and where $N[t] = n$, by T8.15, $Q \vdash t = n$; so by $=E$, $Q \vdash \mathcal{P}$ just in case $Q \vdash (\forall x \leq n) \mathcal{A}(x)$.

(i) Suppose $N[\mathcal{P}] = T$; then $N[(\forall x \leq t) \mathcal{A}(x)] = T$; so by TI, for any d, $N_0[(\forall x \leq t) \mathcal{A}(x)] = S$; so by T12.4, for any $m \leq N_0[t]$, $N_{d(x|m)}[\mathcal{A}(x)] = S$; so where $N_d[t] = N[t] = n$, for any $m \leq n$, $N_{d(x|m)}[\mathcal{A}(x)] = S$; but $N_d[n] = m$, so with T10.2, for any $m \leq n$, $N_d[\mathcal{A}(n)] = S$; since x is the only variable free in \mathcal{A}, $\mathcal{A}(n)$ is a sentence; so with T8.7, for any $m \leq n$, $N[\mathcal{A}(n)] = T$; so $N[\mathcal{A}(0)] = T$ and $N[\mathcal{A}(1)] = T$ and ... and $N[\mathcal{A}(n)] = T$; so by assumption, $Q \vdash \mathcal{A}(0)$ and $Q \vdash \mathcal{A}(1)$ and ... and $Q \vdash \mathcal{A}(n)$; so by T8.23, $Q \vdash (\forall x \leq n) \mathcal{A}(x)$; so with our preliminary result, $Q \vdash \mathcal{P}$.

(ii) Suppose $N[\mathcal{P}] \neq T$; then $N[(\forall x \leq t) \mathcal{A}(x)] \neq T$; so by TI, for some d, $N_0[(\forall x \leq t) \mathcal{A}(x)] \neq S$; so by T12.4, for some $m \leq N_0[t]$, $N_{d(x|m)}[\mathcal{A}(x)] \neq S$; so where $N_d[t] = N[t] = n$, for some $m \leq n$, $N_{d(x|m)}[\mathcal{A}(x)] \neq S$; but $N_d[n] = m$, so with T10.2, for some $m \leq n$, $N_d[\mathcal{A}(n)] \neq S$; so by TI, for some $m \leq n$, $N[\mathcal{A}(n)] \neq T$; so by assumption for some $m \leq n$, $Q \vdash \neg \mathcal{A}(n)$; so by T8.22, $Q \vdash (\exists x \leq n) \neg \mathcal{A}(x)$; so by RQN, $Q \vdash (\forall x \leq n) \neg \mathcal{A}(x)$; so with our preliminary result, $Q \vdash \sim \mathcal{P}$.

$(\forall <)$ homework.

Indet: So for any Δ_0 sentence \mathcal{P}, if $N[\mathcal{P}] = T$, then $Q \vdash \mathcal{P}$, and if $N[\mathcal{P}] \neq T$, then $Q \vdash \sim \mathcal{P}$.

T12.8. For any Σ_1 sentence \mathcal{P} if $N[\mathcal{P}] = T$, then $Q \vdash \mathcal{P}$.
Suppose \mathcal{P} is a Σ_1 sentence. Treating Δ_0 formulas as atomic, the argument is by induction on the number of operator symbols in \mathcal{P}.

Basis: If \mathcal{P} has no operator symbols, then it is Δ_0. Suppose $N[\mathcal{P}] = T$; then by T12.7, $Q \vdash \mathcal{P}$.

Assp: For any i, $0 \leq i < k$, if \mathcal{P} has i operator symbols and $N[\mathcal{P}] = T$, then $Q \vdash \mathcal{P}$.

Show: If \mathcal{P} has k operator symbols and $N[\mathcal{P}] = T$, then $Q \vdash \mathcal{P}$. If \mathcal{P} is Σ_1 then it arises by definition $\Sigma_1(b)$, (c), (d) or (e) for Σ_1 formulas A and B with $< k$ operator symbols.

(b) \mathcal{P} is $\exists x A(x)$. Suppose $N[\mathcal{P}] = T$; then $N[\exists x A(x)] = T$; so for any d, $N_d[\exists x A(x)] = S$; so there is some m such that $N_{d(x)[m]}[A(x)] = S$; so with T10.2, $N_d[A(m)] = S$; since \mathcal{P} is a sentence, $A(m)$ is a sentence; so with T8.7, $N[A(m)] = T$, and by assumption $Q \vdash A(m)$; so by $\exists !, Q \vdash \exists x A(x)$, which is to say $Q \vdash \mathcal{P}$.

(c) \mathcal{P} is $(A \land B)$. Suppose $N[\mathcal{P}] = T$; then $N[A \land B] = T$; since \mathcal{P} is a sentence, A and B are sentences, so with T8.8, $N[A] = T$ and $N[B] = T$, and by assumption, $Q \vdash A$ and $Q \vdash B$; so with $\land !, Q \vdash A \land B$, which is to say $Q \vdash \mathcal{P}$. And similarly for $(A \lor B)$.

(d) \mathcal{P} is $(\exists x \leq t)A(x)$. Suppose $N[\mathcal{P}] = T$; then $N[(\exists x \leq t)A(x)] = T$; so for any d, $N_d[(\exists x \leq t)A(x)] = S$; so with T12.4, for some $m \leq N_d[t] = n$, $N_{d(x)[m]}[A(x)] = S$; and with T10.2, $N_d[A(m)] = S$; since \mathcal{P} is a sentence, $A(m)$ is a sentence, and with T8.7, $N[A(m)] = T$; so by assumption, $Q \vdash A(m)$; so by T8.22, $Q \vdash (\exists x \leq n)A(x)$; but $N[n] = t = T$, and since \mathcal{P} is a sentence t is variable-free, so with T8.16, $Q \vdash n = t$; so by $=$E, $Q \vdash (\exists x \leq t)A(x)$, which is to say $Q \vdash \mathcal{P}$. And similarly for $(\exists x > t)A(x)$.

(e) \mathcal{P} is $(\forall x \leq t)A(x)$. Suppose $N[\mathcal{P}] = T$; then $N[(\forall x \leq t)A(x)] = T$; so for any d, $N_d[(\forall x \leq t)A(x)] = S$; so by T12.4, for any $m \leq N_d[t] = n$, $N_{d(x)[m]}[A(x)] = S$; and with T10.2, $N_d[A(m)] = S$; since \mathcal{P} is a sentence, $A(m)$ is a sentence, and with T8.7, $N[A(m)] = T$; so by assumption, $Q \vdash A(m)$; so $Q \vdash A(\bar{d})$ and ... and $Q \vdash A(\bar{m})$; so by T8.23, $Q \vdash (\forall x \leq n)A(x)$; but $N[n] = t = T$, and since \mathcal{P} is a sentence t is variable-free, so with T8.16, $Q \vdash n = t$; so by $=E$, $Q \vdash (\forall x \leq t)A(x)$, which is to say $Q \vdash \mathcal{P}$. And similarly for $(\forall x < t)A(x)$.

Indct: For any Σ_1 sentence \mathcal{P} if $N[\mathcal{P}] = T$, then $Q \vdash \mathcal{P}$.

This completes what we set out to show in this subsection. These results should seem intuitive: Q proves results about particular numbers, $1 + 1 = 2$ and the like. But Δ_0 sentences assert (potentially complex) particular facts about numbers—and we show that Q proves any Δ_0 sentence. Similarly, any Σ_1 sentence is true because of some particular fact about numbers; since Q proves that particular fact, it is sufficient to prove the Σ_1 sentence.

*E12.11. Provide an argument to demonstrate (i) that each Σ_1 formula is equivalent to a strictly Σ_1 formula, and (ii) that each Π_1 formula to a strictly Π_1 formula. You may appeal to reasoning from the sigma-1 and pi-1 reference as appropriate.

E12.12. Show $PA \vdash (\forall x < n)\exists y F x y \leftrightarrow \exists z (\forall x < n)(\exists y \leq z) F x y$ from right to left (the other direction waits for T13.11af and E13.12).

*E12.13. (i) Complete the demonstration of T12.7 by finishing the remaining cases. You should set up the entire argument, but may appeal to the text for parts already completed, as the text appeals to homework. (ii) Show directly the case for $(\exists \leq)$.

E12.14. Provide an argument to fill in cases marked “and similarly” for T12.8. You should set up the entire argument, but may refer to the text for parts worked there.

12.3.2 Basic Result

We now set out to show that Q captures all the recursive functions. We shall get our result in two forms. First a straightforward basic version. This version gets a result slightly weaker than we would like. However it is easily strengthened to the final form.

First the basic version. Here is the sense in which our result is weaker than we might like: Rather than Q, let us suppose we are in a system Q_s, strengthened Q, which has as a(n axiom or) theorem uniqueness of remainder as follows,

$$\forall y ((\exists w \leq m) [m = Sn \times w + \exists \land \exists < Sn] \land (\exists w \leq m) [m = Sn \times w + y \land y < Sn]) \rightarrow \exists = y$$
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

631

If \bar{a} is the remainder of m/Sn and y is the remainder of m/Sn then $\bar{a} = y$. As we shall see, PA is a system of this sort (see Def[rm] in chapter 13).\(^\text{10}\) If the free variables m and n from uniqueness of remainder are instantiated to p and $q \times Si$ respectively, there immediately follows a parallel uniqueness result for the β-function.

$$Q, \vdash \forall y[(\mathcal{B}(p, q, i, \bar{a}) \land \mathcal{B}(p, q, i, y)) \rightarrow \bar{a} = y]$$

Further, if $\langle \langle p, q, i, a \rangle \rangle \in \beta$ then since \mathcal{B} expresses the β-function, $N[\mathcal{B}(\bar{p}, \bar{q}, \bar{T}, \bar{a})] = T$; and since \mathcal{B} is Δ_0, by T12.7, $Q, \vdash \mathcal{B}(\bar{p}, \bar{q}, \bar{T}, \bar{a})$. From this, with uniqueness, it is immediate that $Q, \vdash \forall y[\mathcal{B}(\bar{p}, \bar{q}, \bar{T}, y) \rightarrow \bar{a} = y]$. So \mathcal{B} captures β in Q_δ.

Recall that the T12.5 formulas to express recursive functions are the original formulas by which the functions are expressed (page 616). Simple inspection reveals that each of these formulas is Σ_1: Formulas to express the initial functions and β-function are Δ_0 and so Σ_1; after that, if \mathcal{F} and \mathcal{G} are Σ_1 then original formulas built from them are Σ_1. Given this, since Q proves true Σ_1 formulas, Q proves any true original formula. With this, we are positioned to offer a perfectly straightforward argument for capture of the recursive functions in Q_δ. Again our main argument is an induction on the sequence of recursive functions. We show that Q_δ captures the initial functions, and then that it captures functions from composition, recursion and regular minimization.

T12.9. On the standard interpretation N for \mathcal{L}_{er}, any recursive function is captured in Q_δ by the original formula by which it is expressed.

By induction on the sequence of recursive functions.

Basis: f_0 is an initial function $\text{suc}(x)$, $\text{zero}()$, or $\text{idnt}^i_k(x_1 \ldots x_j)$.

(s) The original formula $\mathcal{F}(x, v)$ by which $\text{suc}(x)$ is expressed is $Sx = v$.

Suppose $\langle m, a \rangle \in \text{suc}.$

(i) Since $Sx = v$ expresses $\text{suc}(x)$, $N[S\bar{m} = \bar{a}] = T$; so, since it is Δ_0, by T12.7, $Q, \vdash S\bar{m} = \bar{a}$; so $Q_\delta, \vdash \mathcal{F}(\bar{m}, \bar{a})$.

(ii) Reason as follows,

\(^\text{10}\)But Q is not. As we have seen, Q is good at proving particular results as $\bar{T} \times \bar{2} = \bar{2} \times \bar{T}$; and we can show of Q that for any m and n, $Q, \vdash m \times \bar{n} = \bar{n} \times m$ (with the induction and so the quantification in the metalanguage). In contrast, $\text{PA}, \vdash \forall m \forall n(m \times n = n \times m)$—with its induction axiom and so the quantification in the theory. Given its free m and n, uniqueness of remainder is a result of this latter sort not provable in Q.
1. \(S\overline{m} = \overline{0} \)
 from (i)
2. \(S\overline{m} = j \)
 \(A\ (g, \rightarrow I) \)
3. \(\overline{a} = j \)
 \(2, 1 \Rightarrow E \)
4. \(S\overline{m} = j \rightarrow \overline{a} = j \)
 \(2 \rightarrow 3 \Rightarrow I \)
5. \(\forall z(S\overline{m} = z \rightarrow \overline{a} = z) \)
 \(4 \forall I \)

So \(Q_s \vdash \forall z[F(\overline{m}, z) \rightarrow \overline{a} = z] \).

(oth) It is left as homework to show that \(\text{zero}() \) is captured by \(\overline{0} = v \) and \(\text{idnt}_k(x_1 \ldots x_i) \) by \((x_1 = x_1 \ldots \land x_j = x_j) \land x_k = v \).

Assp: For any \(i, 0 \leq i < k, f_i(\overline{x}) \) is captured in \(Q_s \) by the original formula by which it is expressed.

Show: \(f_k(\overline{x}) \) is captured in \(Q_s \) by the original formula by which it is expressed.

\(f_k \) is either an initial function or arises from previous members by composition, recursion or regular minimization. If it is an initial function, then as in the basis. So suppose \(f_k \) arises from previous members.

(c) \(f_k(\overline{x}, \overline{y}, \overline{z}) \) arises by composition from \(g(\overline{y}) \) and \(h(\overline{x}, \overline{w}, \overline{z}) \). By assumption \(g(\overline{y}) \) is captured by some \(\overline{g}(\overline{y}, \overline{w}) \) and \(h(\overline{x}, \overline{w}, \overline{z}) \) by \(\overline{h}(\overline{x}, \overline{w}, \overline{z}, \overline{v}) \); the original formula \(F(\overline{x}, \overline{y}, \overline{z}, \overline{v}) \) by which the composition \(f(\overline{x}, \overline{y}, \overline{z}) \) is expressed is \(\exists w[\overline{g}(\overline{y}, \overline{w}) \land \overline{h}(\overline{x}, \overline{w}, \overline{z}, \overline{v})] \). For simplicity, consider a case where \(\overline{x} \) and \(\overline{z} \) drop out and \(\overline{y} \) is a single variable \(y \). Suppose \((m, a) \in f_k \); then by composition there is some \(b \) such that \((m, b) \in g \) and \((b, a) \in h \).

(i) Since \((m, a) \in f_k \) and \(F(\overline{y}, \overline{v}) \) expresses \(f, N[F(\overline{m}, \overline{a})] = T \); so, since \(F(\overline{y}, \overline{v}) \) is \(\Sigma_1 \), by T12.8, \(Q_s \vdash F(\overline{m}, \overline{a}) \).

(ii) Since \(F(\overline{y}, \overline{w}) \) captures \(g(\overline{y}) \) and \(\overline{h}(\overline{w}, \overline{v}) \) captures \(h(\overline{w}, \overline{v}) \), by assumption \(Q_s \vdash \forall z(\overline{g}(\overline{m}, z) \rightarrow \overline{0} = z) \) and \(Q_s \vdash \forall z(\overline{h}(\overline{w}, z) \rightarrow \overline{a} = z) \). It is then a simple derivation for you to show that \(Q_s \vdash \forall z(\exists w[\overline{g}(\overline{m}, w) \land \overline{h}(\overline{w}, z)] \rightarrow \overline{a} = z) \).

(r) \(f_k(\overline{x}, \overline{y}) \) arises by recursion from \(g(\overline{x}) \) and \(h(\overline{x}, \overline{y}, \overline{u}) \). By assumption \(g(\overline{x}) \) is captured by some \(\overline{g}(\overline{x}, \overline{v}) \) and \(h(\overline{x}, \overline{y}, \overline{u}) \) by \(\overline{h}(\overline{x}, \overline{y}, \overline{u}, \overline{v}) \); the original formula \(F(\overline{x}, \overline{y}, \overline{z}) \) by which \(f_k(\overline{x}, \overline{y}) \) is expressed is,

\[\exists p \exists q[\exists v[B(p, q, 0, v) \land \overline{g}(\overline{x}, v) \land (\forall i < y) \exists u \exists v[B(p, q, i, u) \land B(p, q, Si, v) \land \overline{h}(\overline{x}, i, u, v)] \land B(p, q, y, v)] \]

Suppose \(\overline{x} \) reduces to a single variable and \(((m, n), a) \in f_k \). (i) Then since \(F(\overline{x}, \overline{y}, \overline{z}) \) expresses \(f, N[F(\overline{m}, \overline{n}, \overline{a})] = T \); so, since \(F(\overline{x}, \overline{y}, \overline{z}) \) is \(\Sigma_1 \), by T12.8, \(Q_s \vdash F(\overline{m}, \overline{n}, \overline{a}) \). And (ii) by T12.10 just below, \(Q_s \vdash \forall w[F(\overline{m}, \overline{n}, w) \rightarrow \overline{a} = w] \).
(m) $f_k(\bar{x})$ arises by regular minimization from $g(\bar{x}, y)$. By assumption, $g(\bar{x}, y)$ is captured by some $\mathcal{E}(\bar{x}, y, z)$; the original formula $\mathcal{F}(\bar{x}, v)$ by which $f_k(\bar{x})$ is expressed is $\mathcal{E}(\bar{x}, v, \bar{0}) \land (\forall y < v)\exists z(\mathcal{E}(\bar{x}, y, z) \land \bar{0} \neq z)$. Suppose \bar{x} reduces to a single variable and $\langle m, a \rangle \in f_k$.

(i) Since $\langle m, a \rangle \in f_k$ and $\mathcal{F}(x, v)$ expresses f, $\mathcal{N}[\mathcal{F}(\bar{m}, \bar{a})] = T$; so since $\mathcal{F}(x, v)$ is Σ_1, by T12.8, $Q_3 \vdash \mathcal{F}(\bar{m}, \bar{a})$.

(ii) Since $\langle m, a \rangle \in f_k$, we have $\langle \langle m, a \rangle, 0 \rangle \in g$, and for $n < a$, $\langle \langle m, n \rangle, 0 \rangle \notin g$. With the first of these, $Q_3 \vdash \forall z[\mathcal{E}(\bar{m}, \bar{a}, z) \rightarrow \bar{0} = z]$. From the second with T12.6, for $n < a$, $Q_3 \vdash \sim \mathcal{E}(\bar{m}, \bar{a}, 0)$; so by T8.23, $Q_3 \vdash (\forall z < \bar{a}) \sim \mathcal{E}(\bar{m}, z, \bar{0})$. Reason as follows,

1. $\forall z[\mathcal{E}(\bar{m}, \bar{a}, z) \rightarrow \bar{0} = z]$ cap
2. $(\forall z < \bar{a}) \sim \mathcal{E}(\bar{m}, z, \bar{0})$ cap
3. $\mathcal{E}(\bar{m}, j, \bar{0}) \land (\forall y < j)\exists z(\mathcal{E}(\bar{m}, y, z) \land \bar{0} \neq z)$ A ($g, \rightarrow I$)
4. $\mathcal{E}(\bar{m}, j, \bar{0})$ 3 $\land E$
5. $(\forall y < j)\exists z(\mathcal{E}(\bar{m}, y, z) \land \bar{0} \neq z)$ 3 $\land E$
6. $j < \bar{a} \lor \bar{a} = j \lor \bar{a} < j$ T8.21
7. $j < \bar{a}$ A ($c, \sim I$)
8. $\sim \mathcal{E}(\bar{m}, j, \bar{0})$ 2.7 ($\forall E$)
9. \bot 4.8 $\bot I$
10. $j \neq \bar{a}$ 7-9 $\sim I$
11. $\bar{a} < j$ A ($c, \sim I$)
12. $\exists z(\mathcal{E}(\bar{m}, \bar{a}, z) \land \bar{0} \neq z)$ 5,11 ($\forall E$)
13. $\mathcal{E}(\bar{m}, \bar{a}, k) \land \bar{0} \neq k$ A ($c, 12 \exists E$)
14. $\mathcal{E}(\bar{m}, \bar{a}, k)$ 13 $\land E$
15. $\mathcal{E}(\bar{m}, \bar{a}, k) \rightarrow \bar{0} = k$ 1 $\forall E$
16. $\bar{0} = k$ 15,14 $\rightarrow E$
17. $\bar{0} \neq k$ 13 $\land E$
18. \bot 16,17 $\bot I$
19. \bot 12,13-18 $\exists E$
20. $\bar{a} \neq j$ 11-19 $\sim I$
21. $\bar{a} = j$ 6,10,20 DS
22. $(\mathcal{E}(\bar{m}, j, \bar{0}) \land (\forall y < j)\exists z(\mathcal{E}(\bar{m}, y, z) \land \bar{0} \neq z)) \rightarrow \bar{a} = j$ 3-21 $\rightarrow I$
23. $\forall u[(\mathcal{E}(\bar{m}, u, \bar{0}) \land (\forall y < u)\exists z(\mathcal{E}(\bar{m}, y, z) \land \bar{0} \neq z)) \rightarrow \bar{a} = u]$ 22 $\forall I$
24. $\forall u[\mathcal{F}(\bar{m}, u) \rightarrow \bar{a} = u]$ 23 abv

Indct: Any recursive $f(\bar{x})$ is captured in Q_3 by the original formula that expresses it.

For T12.9, each part (i) simply relies on the ability of Q to prove particular truths, and
so the Σ_1 sentences that express recursive functions. The uniqueness clauses are not Σ_1, so we have to show them directly. The case for recursion remains outstanding, and is addressed in the theorem immediately following.
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

T12.10. Suppose $f(x, y)$ results by recursion from functions $g(x)$ and $h(x, y, u)$ where $g(x)$ is captured by some $\mathcal{G}(x, v)$ and $h(x, y, u)$ by $\mathcal{H}(x, y, u, v)$. Then for the original expression $\mathcal{F}(x, y, z)$, if $\langle\{m_1 \ldots m_b, n\}, a\rangle \in f$, $Q_s \vdash \forall w[\mathcal{F}(\overline{m_1} \ldots \overline{m_b}, \overline{n}, w) \rightarrow \overline{a} = w]$.

Suppose \overline{x} reduces to a single variable and $\langle m, n, a\rangle \in f$. Then there are $k_0 \ldots k_n$ such that $k_0 = g(m)$; there are p, q such that for $0 \leq i < n$, $\beta(p, q, i) = k_i$, $\beta(p, q, S_i) = k_{Si}$, and $h(m, i, k_i) = k_{Si}$; and $k_n = a$. The argument is by induction on the value of n. Again, to manage long formulas, let

\[
P(p, q, x) = \exists v[\mathcal{B}(p, q, x, v) \land \mathcal{G}(x, v)]
\]
\[
Q(p, q, x, y) = (\forall i < y)\exists u[\mathcal{B}(p, q, i, u) \land \mathcal{B}(p, q, Si, v) \land \mathcal{H}(x, i, u, v)]
\]

Then $\mathcal{F}(x, y, z) = \exists p \exists q[\mathcal{P}(p, q, x) \land \mathcal{Q}(p, q, x, y) \land \mathcal{B}(p, q, y, z)]$. It will be convenient to lapse into induction scheme III from the induction schemes reference on page 396—making the assumption for a single member of the series n, and then showing that it holds for the next.

Basis: Suppose $n = 0$. From capture, $Q_s \vdash \forall z[\mathcal{G}(\overline{m}, z) \rightarrow \overline{k_0} = z]$. By uniqueness of remainder (and generalizing on p and q), $Q_s \vdash \forall p \forall q \forall y[(\mathcal{B}(p, q, \emptyset, \overline{k_0}) \land \mathcal{B}(p, q, \emptyset, y)) \rightarrow \overline{k_0} = y]$. Then it is easy to show $Q_s \vdash \forall w[\mathcal{F}(\overline{m}, \emptyset, w) \rightarrow \overline{k_0} = w]$.

Assp: $Q_s \vdash \forall w[\mathcal{F}(\overline{m}, \overline{n}, w) \rightarrow \overline{k_n} = w]$

Show: $Q_s \vdash \forall w[\mathcal{F}(\overline{m}, S\overline{n}, w) \rightarrow \overline{k_n} = w]$

From capture, $Q_s \vdash \forall w[\mathcal{H}(\overline{m}, \overline{n}, \overline{k_n}, w) \rightarrow \overline{k_n} = w]$. By uniqueness of remainder, $Q_s \vdash \forall p \forall q \forall y[(\mathcal{B}(p, q, S\overline{n}, \overline{k_n}) \land \mathcal{B}(p, q, S\overline{n}, y)) \rightarrow \overline{k_n} = y]$. See the derivation on page 636.

Indct: For any n, $Q_s \vdash \forall w[\mathcal{F}(\overline{m}, \overline{n}, w) \rightarrow \overline{k_n} = w]$.

Both the basis and show clauses require generalized uniqueness for \mathcal{B}: this is because uniqueness is being applied inside assumptions for $\exists E$, where p and q are arbitrary variables, rather than numerals \overline{p} and \overline{q}—as would appear in a uniqueness condition for capture as $\forall y(\mathcal{B}(\overline{p}, \overline{q}, S\overline{n}, y) \rightarrow \overline{k_n} = y)$. So $Q_s \vdash \forall w[\mathcal{F}(\overline{m}, \overline{n}, w) \rightarrow \overline{a} = w]$. So we satisfy the recursive clause for T12.9. So the theorem is proved. And we have shown that Q_s has the resources to capture any recursive function.

This theorem has a number of attractive features: We show that recursive functions are captured directly by the original formulas by which they are expressed. A byproduct is that recursive functions are captured by Σ_1 formulas. The argument is a
Once we show \(\mathcal{F}(\overline{m}, \overline{n}, u) \) at (22), the inductive assumption lets us “pin” \(u \) onto \(\overline{k}_n \). Then uniqueness conditions for \(\mathcal{H} \) and \(\mathcal{B} \) allow us to move to unique outputs for \(\mathcal{H} \) and \(\mathcal{B} \) and so for \(\mathcal{F} \).
straightforward induction on the sequence of recursive functions, of a type we have seen before. But we do not show that recursive functions are captured in \(Q \). It is that to which we now turn.

*E12.15. Complete the demonstration of T12.9 by completing the remaining cases, including the basis and part (ii) of the case for composition.

*E12.16. Produce a derivation to show the basis of T12.10.

E12.17. Return to the simple functions from E12.10. Show that on the standard interpretation \(N \) of \(\mathcal{L}_{NT} \) each simple function \(f \) is captured in \(Q \) by the formula used to express it. Restrict appeal to external theorems just to your result from E12.10 and T8.16 as appropriate.

12.3.3 The Result Strengthened

T12.9 shows that the recursive functions are captured in \(Q \) by their original expressers. As we have suggested, this argument is easily strengthened to show that the recursive functions are captured in \(\Sigma_1 \). To do so, we give up capture by the original expressers, though we retain the result that the recursive functions are captured by \(\Sigma_1 \) formulas.

In the previous section, we appealed to uniqueness of remainder for the \(\beta \)-function. In \(Q \), the original formula \(B \) captures the \(\beta \)-function, and gives a strengthened uniqueness result important for T12.10. But we can simulate this effect by some easy theorems. Recall that the \(\beta \)-function is originally expressed by a \(\varphi_0 \) formula \(B \).

T12.11. If a total function \(f(\overline{x}) \) is expressed by a \(\varphi_0 \) formula \(F(\overline{x}, v) \), then \(F'(\overline{x}, v) = F(\overline{x}, v) \land (\forall z \leq v)[F(\overline{x}, z) \rightarrow v = z] \) is \(\varphi_0 \) and captures \(f \) in \(Q \).

Suppose a total \(f(\overline{x}) \) is expressed by a \(\varphi_0 \) formula \(F(\overline{x}, v) \). Since \(F(\overline{x}, v) \) is \(\varphi_0 \), \(F'(\overline{x}, v) \) is \(\varphi_0 \). Suppose \(\overline{x} \) reduces to a single variable and \(\langle m, a \rangle \in f \). (a) By expression \(N[F(\overline{m}, \overline{a})] = T \); and since \(F \) is \(\varphi_0 \), by T12.7, \(Q \vdash F(\overline{m}, \overline{a}) \). (b) Consider \(n \neq a \); then \(\langle m, n \rangle \notin f \); so with T12.2, \(N[\neg F(\overline{m}, \overline{n})] = T \) and \(N[F(\overline{m}, \overline{n})] \neq T \); so by T12.7, \(Q \vdash \neg F(\overline{m}, \overline{n}) \).

(i) From (a), \(Q \vdash F(\overline{m}, \overline{a}) \). Suppose \(p \leq a \); then \(p = a \) or \(p < a \); in the first case, \(\vdash \overline{a} = \overline{p} \); so \(\vdash F(\overline{m}, \overline{a}) \rightarrow \overline{a} = \overline{p} \); and from (b), for \(p < a \), \(Q \vdash \neg F(\overline{m}, \overline{p}) \); so trivially, \(Q \vdash F(\overline{m}, \overline{p}) \rightarrow \overline{a} = \overline{p} \); so for any \(p \leq a \), \(Q \vdash F(\overline{m}, \overline{p}) \rightarrow \overline{a} = \overline{p} \); so by
T8.23, Q ⊨ (∀z ≤ a)(F(m, z) → a = z). So with ∧I, Q ⊨ F(m, a) ∧ (∀z ≤ a)(F(m, z) → a = z); which is to say, Q ⊨ F′(m, a).

(ii) Hint: You need to show Q ⊨ ∀w([F(m, w) ∧ (∀z ≤ w)(F(m, z) → w = z)] → a = w). Take as premises F(m, a) ∧ (∀z ≤ a)(F(m, z) → a = z) from (i), along with j ≤ a ∨ a ≤ j from T8.21.

So F′ captures f. F′ is not the same as the original F to express the function. Still, since the B0 formula expresses the β-function, B′ captures β in Q.

Intuitively, the second conjunct of F′ requires that F′ is satisfied by the least v that satisfies F, and so that at most one v satisfies F′. Thus it is not surprising that formulas of the sort F′ yield a uniqueness result.

T12.12. For F′(x, v) = F(x, v) ∧ (∀z ≤ v)(F(x, z) → v = z) as above, for any n, Q ⊨ ∀x∀y[(F′(x, n) ∧ F′(x, y)) → n = y].

Supposing x reduces to a single variable reason as follows,

1. ∀x(x ≤ n ∨ n ≤ x) T8.21
2. | F′(j, n) ∧ F′(j, k) A (g, →I)
3. F(j, n) ∧ (∀z ≤ n)(F(j, z) → n = z) 2 ∧E (unabv)
4. F(j, k) ∧ (∀z ≤ k)(F(j, z) → k = z) 2 ∧E (unabv)
5. k ≤ n ∨ n ≤ k 1 VE
6. k ≤ n A (g, 5VE)
7. (∀z ≤ n)(F(j, z) → n = z) 3 ∧E
8. F(j, k) → n = k 7,6 (VE)
9. F(j, k) 4 VE
10. n = k 8,9 →E
11. n ≤ k A (g, 5VE)
12. | n = k similarly
13. | n = k 5,6-10,11-12 →E
14. (F′(j, n) ∧ F′(j, k)) → n = k 2-13 →I
15. ∀y[(F′(j, n) ∧ F′(j, y)) → n = y] 14 ∀I
16. ∀x∀y[(F′(x, n) ∧ F′(x, y)) → n = y] 15 ∀I

So where the B0 formula B captures the β-function, for the corresponding B′, Q ⊨ ∀y[(B′(p, q, i, n) ∧ B′(p, q, i, y)) → n = y]. This is what we had before except applied to B′ rather than B.
Observe also that insofar as \(F_0 \) is built on an \(F \) that expresses \(f \), \(F_0 \) continues to express \(f \). Perhaps this is obvious given what \(F \) says. However, we can argue for the result directly.

T12.13. If \(F(x, v) \) expresses a total \(f(x) \), then \(F_0(x, v) = F(x, v) \land (\forall z \leq v)[F(x, z) \rightarrow v = z] \) expresses \(f(x) \).

Suppose \(F(m, a) \in f \). (a) By expression, \(N[F(m, \overline{a})] = T \). (b) Suppose \(n \neq a \); then \(\langle m, n \rangle \notin f \); so with T12.2, \(N[\sim F(m, \overline{n})] = T \).

(i) Suppose \(N[F'(m, \overline{a})] \neq T \). This is impossible. You will need applications of T12.4 and T10.2; observe that for \(n \leq a \) either \(n = a \) or \(n < a \) (so that \(n \neq a \)).

(ii) Suppose \(N[\forall w(F'(m, w) \rightarrow \overline{a} = w)] \neq T \)—that is that \(N[\forall w(\sim F(m, w) \land (\forall z \leq w)(F(m, z) \rightarrow w = z) \rightarrow \overline{a} = w)] \neq T \). This is impossible.

And now we are in a position to recover the main result, except that the recursive functions are captured in \(Q \) rather than \(Q_1 \).

T12.14. Any recursive function is captured by a \(\Sigma_1 \) formula in \(Q \).

The \(\beta \)-function is total and expressed by a \(\Delta_0 \) formula \(B(p, q, i, v) \); so by T12.13 and T12.11 there is a \(\Delta_0 \) formula \(B'(p, q, i, v) \) that expresses and captures it in \(Q \). For any \(f(x) \) originally expressed by \(F(x, v) \), let \(F' \) be like \(F \) except that instances of \(B \) are replaced by \(B' \). Since \(B' \) is \(\Delta_0 \), \(F' \) remains \(\Sigma_1 \).

The argument is now a matter of showing that demonstrations of T12.5, T12.9 and T12.10 go through with application to these formulas and in \(Q \). But the argument is nearly trivial: everything is the same as before with formulas of the sort \(F' \) replacing \(F \) and T12.12 for uniqueness of remainder.

Be clear that expressions of the sort \(F' \) might appear all along in the show part of T12.5, T12.9 and T12.10. Expressions from the basis do not involve \(B' \). It is included by recursion; after that, composition and regular minimization might be applied to expressions of any sort, and so to ones which involve \(B' \) as well.

As for the case of expression, formulas other than \(F'(x, v) \) might capture the recursive functions—for example, if \(F'(x, v) \) captures \(f(x) \), then so does \(F'(x, v) \land A \) for any theorem \(A \). Let us say that \(F'(x, v) \) is the canonical formula that captures \(f(x) \) in \(Q \). Of course, the canonical formula which captures \(f(x) \) need not be the same as the corresponding original formula—for the \(\beta \)-function is not captured by its original formula (and so any formula which includes a \(\beta \)-function fails to be original). Because
the β-function is captured by a Δ_0 formula we do, however, retain the result that every recursive function is captured in Q by some Σ_1 formula. For the rest of this chapter, unless otherwise noted, when we assert the existence of a formula to express or capture some recursive function, we shall have in mind the canonical formula.

E12.18. Provide an argument to demonstrate (ii) of T12.11.

E12.19. Finish the derivation for T12.12 by completing the second subderivation.

*E12.21. Work carefully through the demonstration of T12.14 by setting up revised arguments T12.5, T12.9 and T12.10. As feasible, you may simply explain how parts differ from the originals.

12.4 More Recursive Functions

Now that we have seen what the recursive functions are, and the powers of our logical systems to express and capture recursive functions, we turn to extending their range. In fact, in this section, we shall generate a series of functions that are primitive recursive. In addition to the initial functions, so far, we have seen that plus, times, fact and power are primitive recursive. As we increase the range of (primitive) recursive functions, it immediately follows that our logical systems have the power to express and capture all the same functions. And, again, these powers are at the base of our demonstrations of incompleteness to come.

12.4.1 Preliminary Functions

We begin with some simple primitive recursive functions that will serve as a foundation for things to follow.

Predecessor with cutoff. Set the predecessor of zero to zero itself, and for any other value to the one before. Since $\text{pred}(y)$ is a one-place function, $g_{\text{pred}}()$ is a 0-place function, in this case, $g_{\text{pred}}() = 0$. And $h_{\text{pred}}(y, u) = \text{idnt}_y^u(y, u)$. So, as we expect for $\text{pred}(y)$,

$$\text{pred}(0) = 0$$
$$\text{pred}(\text{suc}(y)) = y$$

So predecessor is a primitive recursive function.
Subtraction with cutoff. When \(y \geq x \), \(\text{subc}(x, y) = 0 \). Otherwise \(\text{subc}(x, y) = x - y \).
For \(\text{subc}(x, y) \), set \(\text{gsubc}(x) = \text{idnt}^1_1(x) \). And \(\text{hsubc}(x, y, u) = \text{pred}(\text{idnt}^3_3(x, y, u)) \).
So,
\[
\begin{align*}
\text{subc}(x, 0) &= x \\
\text{subc}(x, \text{suc}(y)) &= \text{pred}(\text{subc}(x, y))
\end{align*}
\]
So as \(y \) increases by one, the difference decreases by one. Informally, indicate \(\text{subc}(x, y) = (x \downarrow y) \).

Absolute value. \(\text{absval}(x - y) = (x \downarrow y) + (y \downarrow x) \). We find the absolute value of the difference between \(x \) and \(y \) by doing the subtraction with cutoff both ways. One direction yields zero. The other yields the value we want. So the sum comes out to the absolute value. This is a function with two arguments (only separated by ‘-’ rather than comma to remind us of the nature of the function). This function results entirely by composition, without a recursion clause. Informally, we indicate absolute value in the usual way, \(\text{absval}(x - y) = |x - y| \).

Sign. The function \(\text{sg}(y) \) is zero when \(y \) is zero and otherwise one. For \(\text{sg}(y) \), set \(\text{gsg}() = 0 \). And \(\text{hsg}(y, u) = \text{suc}(\text{zero}(y, u)) \). So,
\[
\begin{align*}
\text{sg}(0) &= 0 \\
\text{sg}(\text{suc}(y)) &= \text{suc}(0) = 1
\end{align*}
\]
So the sign of any successor is just the successor of zero, which is one.

Converse sign. The function \(\text{csg}(y) \) is one when \(y \) is zero and otherwise zero. So it inverts \(\text{sg} \). For \(\text{csg}(y) \), set \(\text{gcsg}() = 1 \). And \(\text{hcsg}(y, u) = \text{zero}(y, u) \). So,
\[
\begin{align*}
\text{csg}(0) &= 1 \\
\text{csg}(\text{suc}(y)) &= 0
\end{align*}
\]
So the converse sign of any successor is just zero. Informally, we indicate the converse sign with a bar, \(\overline{\text{sg}}(y) \).

E12.22. Consider again your file \texttt{recursive1.rb} from E12.3. Extend your sequence of functions to include \(\text{pred}(x) \), \(\text{subc}(x, y) \), \(\text{absval}(x - y) \), \(\text{sg}(x) \), and \(\text{csg}(x) \). Calculate some values of these functions and print the results, along with your program. Again, there should be no appeal to functions except from earlier in the chain.
12.4.2 Characteristic Functions

We shall be able to extend our results for the expression and capture of recursive functions to the expression and capture of (recursive) relations by the notion of a characteristic function. The characteristic function $\text{ch}_R(\bar{x})$ of a relation R takes the value 0 when $\bar{x} \in R$ and 1 when $\bar{x} \notin R$.

(Cf) For any function $p(\bar{x})$, $\text{sg}(p(\bar{x}))$ is the characteristic function of that relation R such that $\text{sg}(p(\bar{x})) = 0$ iff $\bar{x} \in R$.

So a characteristic function for relation R takes the value 0 if $R.\bar{x}$ is true, and 1 if $R.\bar{x}$ is not true.\(^{11}\) A (primitive) recursive property or relation is one that has a (primitive) recursive characteristic function. If the outputs of the function p are already just 0 and 1 so that $\text{sg}(p(\bar{x})) = p(\bar{x})$, we generally omit sg from our specifications.

These definitions immediately result in corollaries to T12.5 and T12.14.

T12.5 (corollary). On the standard interpretation \mathcal{N} of \mathcal{L}_{NT}, each recursive relation $\bar{r}(\bar{x})$ is expressed by some formula $\mathcal{R}(\bar{x})$.

Suppose $\bar{r}(\bar{x})$ is a recursive relation; then it has a recursive and so total characteristic function $\text{ch}_n(\bar{x})$; so by T12.5 there is some formula $\mathcal{R}(\bar{x}, y)$ that expresses $\text{ch}_n(\bar{x})$. So in the case where \bar{x} reduces to a single variable, if $m \in \bar{r}$, then $\langle m, 0 \rangle \in \text{ch}_n$; and by expression, $I[\mathcal{R}(\bar{m}, \bar{0})] = T$; and if $m \notin \bar{r}$, then $\langle m, 0 \rangle \notin \text{ch}_n$; and since the function is total, by T12.2, $I[\neg \mathcal{R}(\bar{m}, \bar{0})] = T$. So, generally, $\mathcal{R}(\bar{x}, \bar{0})$ expresses $\bar{r}(\bar{x})$.

T12.14 (corollary). Any recursive relation is captured by a Σ_1 formula in Q.

Suppose $\bar{r}(\bar{x})$ is a recursive relation; then it has a recursive and so total characteristic function $\text{ch}_n(\bar{x})$; so by T12.14 there is some Σ_1 formula $\mathcal{R}(\bar{x}, y)$ that captures $\text{ch}_n(\bar{x})$ in Q. So in the case where \bar{x} reduces to a single variable, if $m \in \bar{r}$, then $\langle m, 0 \rangle \in \text{ch}_n$; and by capture $Q \vdash \mathcal{R}(\bar{m}, \bar{0})$; and if $m \notin \bar{r}$, then $\langle m, 0 \rangle \notin \text{ch}_n$; and since the function is total, by capture with T12.6, $Q \vdash \neg \mathcal{R}(\bar{m}, \bar{0})$. So, generally $\mathcal{R}(\bar{x}, \bar{0})$ captures $\bar{r}(\bar{x})$ in Q.

So our results for the expression and capture of recursive functions extend directly to the expression and capture of recursive relations: a recursive relation has a recursive characteristic function; as such, the function is expressed and captured; so, as we have just seen, the corresponding relation is expressed and captured.

\(^{11}\)It is perhaps more common to reverse the values of zero and one for the characteristic function. However, the choice is arbitrary, and this choice is technically convenient.
Equality. \(\text{EQ}(x, y) \), typically rendered \(x = y \), is a recursive relation with characteristic function \(\text{ch}_\text{EQ}(x, y) = \text{sg}[x - y] \). When \(x \) is equal to \(y \), the absolute value of the difference is zero so the value of \(\text{sg} \) is zero. But when \(x \) is other than \(y \), the absolute value of the difference is other than zero, so value of \(\text{sg} \) is one. And, generally, if functions \(s(x) \) and \(t(y) \) are recursive, by composition \(\text{sg} | (s(x) - t(y)) \) is a recursive function and so \(s(x) = t(y) \) a recursive relation.

A couple of observations: First, be clear that \(\text{EQ} \) is the standard relation we all know and love. The trick is to show that it is recursive. We are not given that \(\text{EQ} \) is a recursive relation—so we demonstrate that it is, by showing that it has a recursive characteristic function. Second, one might think that we could express \(f(x) = g(y) \) by some relatively simple expression that would compose expressions for the functions with equality as, \(\exists x \forall y [F(x, y) \land G(y, v) \land u = v] \). This would be fine. However we have offered a general account which, as is often the case for these things, need not be the most efficient. Where \(\text{sg} | [f(x) - g(y)] \) is expressed and captured by some \(\delta(x, y) \) our approach, which works by modification of the characteristic function, generates the relatively complex, \(\text{EQ}(x, y) = \delta(x, y, 0) \).

Inequality. The relation \(\text{LEQ}(x, y) \) has characteristic function \(\text{sg}(x \preceq y) \). When \(x \preceq y, x \preceq y = 0; \) so \(\text{sg} = 0; \) Otherwise the value is 1. The relation \(\text{LESS}(x, y) \) has characteristic function \(\text{sg} \text{Suc}(x) \preceq y \). When \(x < y, \text{Suc}(x) \preceq y = 0; \) so \(\text{sg} = 0. \) Otherwise the value is 1. These are typically represented \(x \preceq y \) and \(x < y \).

With equality and inequality, we have atomic recursive relations. And we set out to exhibit ones that are more complex in the usual way.

Truth functions. Suppose \(\text{P}(x) \) and \(\text{Q}(y) \) are recursive relations. Then \(\text{NEG}(\text{P}(x)) \) and \(\text{DSJ}(\text{P}(x), \text{Q}(y)) \) are recursive relations. Suppose \(\text{ch}_p(x) \) and \(\text{ch}_q(y) \) are the characteristic functions of \(\text{P}(x) \) and \(\text{Q}(y) \).

\(\text{NEG}(\text{P}(x)) \) (typically \(\sim \text{P}(x) \)) has characteristic function \(\text{sg}(\text{ch}_p(x)) \). When \(\text{P}(x) \) does not obtain, the characteristic function of \(\text{P}(x) \) takes value one, so the converse sign goes to zero. And when \(\text{P}(x) \) does obtain, its characteristic function is zero, so the converse sign is one—which is as it should be.

\(\text{DSJ}(\text{P}(x), \text{Q}(y)) \) (typically \(\text{P}(x) \lor \text{Q}(y) \)) has characteristic function \(\text{ch}_p(x) \times \text{ch}_q(y) \). When one of \(\text{P}(x) \) or \(\text{Q}(y) \) is true, the disjunction is true; but in this case, at least one characteristic function, and so the product of functions, equals zero. If neither \(\text{P}(x) \) nor \(\text{Q}(y) \) is true, the disjunction is not true; in this case, both characteristic functions, and so the product of functions, take the value one.
Other truth functions are definable in terms of negation and disjunction. So, for example, $\text{IMP}(\bar{P}(\bar{x}), \bar{Q}(\bar{y}))$ that is, $P(\bar{x}) \rightarrow Q(\bar{y})$ is $\sim P(\bar{x}) \lor Q(\bar{y})$; and $\text{CNJ}(\bar{P}(\bar{x}), \bar{Q}(\bar{y}))$, that is $P(\bar{x}) \land Q(\bar{y})$ is $\sim (\sim P(\bar{x}) \lor \sim Q(\bar{y}))$.

Bounded quantifiers. Consider a relation $s(\bar{x}, z) = (\exists y \leq z)P(\bar{x}, y)$ which obtains when there is a y less than or equal to z such that $P(\bar{x}, y)$. As usual, y is distinct from the bound z. Let v be a variable not in \bar{x} and not y (and so other than z if z is in \bar{x}). Consider a relation $R(\bar{x}, v)$ corresponding to $(\exists y \leq v)P(\bar{x}, y)$. So R lets the bound vary independently of the variables in P, and will let us reason by induction as the bound ranges from 0 to z. If we can find $\text{ch}_R(\bar{x}, v)$ then $\text{ch}_R(\bar{x}, z)$ obtains when the bound reaches z—as $\text{ch}_R(\bar{x}, z)$. For this $\text{ch}_R(\bar{x}, v)$ set,

\[
\begin{align*}
g_{\text{ch}_R}(\bar{x}) &= \text{ch}_R(\bar{x}, 0) \\
\text{h}_{\text{ch}_R}(\bar{x}, v, u) &= u \times \text{ch}_R(\bar{x}, Sv)
\end{align*}
\]

In the simple case where \bar{x} drops out, $\text{ch}_R(0) = \text{ch}_R(\hat{0})$. And $\text{ch}_R(Sv) = \text{ch}_R(v) \times \text{ch}_R(Sv)$. In the case where v is a successor, the result is,

\[\text{ch}_R(v) = \text{ch}_R(0) \times \text{ch}_R(1) \times \ldots \times \text{ch}_R(v)\]

Think of these as grouped to the left. So the result has $\text{ch}_R(n) = 1$ unless and until one of the members is zero, and then stays zero. So the function for $R(n)$ goes to zero just in case $P(v)$ is true for some value between 0 and n. So set $\text{ch}_R(\bar{x}, z) = \text{ch}_R(\bar{x}, z)$—so the characteristic function for the bounded quantifier runs the R function up to the bound z.

For $(\exists y < z)P(\bar{x}, y)$, it simplest to take $(\exists y \leq z)(y \neq z \land P(\bar{x}, y))$. Similarly for $(\forall y \leq z)P(\bar{x}, y)$ takes $(\exists y \leq z)\sim P(\bar{x}, y)$; for $(\forall y < z)P(\bar{x}, y)$, take $(\exists y < z)\sim P(\bar{x}, y)$. And we are done by previous results.

Least element. As we have seen, $f(\bar{x}) = \mu y[g(\bar{x}, y) = \hat{0}]$ defined by regular minimization returns the least y such that $g(\bar{x}, y) = 0$. Observe that the minimization operation is applied to a recursive relation in the square brackets—and that finding the least y such that $g(\bar{x}, y) = 0$ is finding the least y such that the relation obtains. But for an arbitrary recursive $P(\bar{x}, y)$, $P(\bar{x}, y)$ iff $\text{ch}_{\mu y[\bar{x}, y]} = \hat{0}$. So we often encounter $f(\bar{x}) = \mu y[\text{ch}_{\mu y[\bar{x}, y]} = \hat{0}]$ in the equivalent form, $f(\bar{x}) = \mu y[P(\bar{x}, y)]$. Of course, for regular minimization, it remains that $\text{ch}_{\mu y[\bar{x}, y]}$ has to be regular—so that for any \bar{x}, there is some y for which $P(\bar{x}, y)$ obtains.

But we can bypass the regularity requirement by a primitive recursive bounded minimization. For this, let $m(\bar{x}, z) = (\mu y \leq z)P(\bar{x}, y)$ be the least $y \leq z$ such that $P(\bar{x}, y)$ if one exists, and otherwise z. If $P(\bar{x}, y)$ is a recursive relation, $(\mu y \leq z)P(\bar{x}, y)$
is a recursive function. Again, let v be a variable not in \bar{x} and not y. First take $\pi(\bar{x}, v)$ for $(\exists y \leq v)\rho(\bar{x}, y)$ and $\mathit{ch}_\pi(\bar{x}, v)$ as described above. So $\mathit{ch}_\pi(\bar{x}, v)$ goes to 0 when ρ is true for some $j \leq v$. Then, second, introduce a function $q(\bar{x}, v)$ whose output is the value of $(\mu y \leq v)\rho(\bar{x}, y)$. Given this, very much as before, $m(\bar{x}, z)$ obtains when the bound reaches z—as $q(\bar{x}, z)$. For $q(\bar{x}, v)$ set,

$$
\begin{align*}
q(\bar{x}) &= \text{zero}(\bar{x}) \\
\mathit{hq}(\bar{x}, v, u) &= u + \mathit{ch}_\pi(\bar{x}, v)
\end{align*}
$$

So in the simple case where \bar{x} drops out g becomes a zero-place function and, $q(0) = \text{zero}() = 0$—for the least $y \leq 0$ that satisfies any $\rho(y)$ can only be 0. And then $q(\mathit{Sn}) = q(v) + \mathit{ch}_\pi(v)$. The result is,

$$q(\mathit{Sn}) = 0 + \mathit{ch}_\pi(0) + \ldots + \mathit{ch}_\pi(n)$$

where ch_π is 1 until it hits a member that is ρ and then goes to 0 and stays there. Set the first member to the side. Then since this series starts with $v = 0$ and ends with $v = n$ it has Sn members. So if all the values are 1 it evaluates to Sn. If there is some first a such that $\mathit{ch}_\pi(a)$ is zero, then all the members prior to it are 1 and the sum is a. So set $m(\bar{x}, z) = q(\bar{x}, z)$, so that we take the sum up to the limit z. Observe that $(\mu y \leq z)\rho(\bar{x}, y) = z$ does not require that $\rho(\bar{x}, z)$—only that no $a < z$ is such that $\rho(\bar{x}, a)$.

Selection by cases. Selection by cases introduces a function which responds to different classes of objects in different ways. So, for some reason, we might require a function which squares even numbers and cubes odd so that, say, $f(2) = 4$ and $f(3) = 27$. For this, suppose $f_0(\bar{x}) \ldots f_k(\bar{x})$ are recursive functions and $c_0(\bar{x}) \ldots c_k(\bar{x})$ are mutually exclusive recursive relations. Then $f(\bar{x})$ defined as follows is recursive.

$$f(\bar{x}) = \begin{cases}
 f_0(\bar{x}) & \text{if } c_0(\bar{x}) \\
 f_1(\bar{x}) & \text{if } c_1(\bar{x}) \\
 \vdots \\
 f_k(\bar{x}) & \text{if } c_k(\bar{x}) \\
 \text{and otherwise } a
\end{cases}$$

Observe that, $f(\bar{x}) =

$$
[\mathit{sg}(\mathit{ch}_{c_k}(\bar{x})) \times f_0(\bar{x}) + \mathit{sg}(\mathit{ch}_{c_1}(\bar{x})) \times f_1(\bar{x}) + \ldots + \mathit{sg}(\mathit{ch}_{c_k}(\bar{x})) \times f_k(\bar{x})] + \\
[\mathit{ch}_{c_0}(\bar{x}) \times \mathit{ch}_{c_1}(\bar{x}) \times \ldots \times \mathit{ch}_{c_k}(\bar{x}) \times a]
$$

works as we want. Each of the first terms in this sum is 0 unless the c_i is met in which case $\mathit{sg}(\mathit{ch}_{c_i}(\bar{x}))$ is 1 and the term goes to $f_i(\bar{x})$. The final term is 0 unless no condition
We turn now to some applications that will be particularly useful for things to come. In many ways, the project is like a cool translation exercise—pitched at the level of functions.

Factor. Let \(\text{FACT}(m, n) \) be the relation that obtains between \(m \) and \(n \) when \(m + 1 \) evenly divides \(n \) (typically, \(m \mid n \)). Division is by \(m + 1 \) to avoid worries about division by zero.\(^{12}\) Then \(m \mid n \) is recursive. This relation is defined as follows.

\[
(\exists y \leq n)(Sm \times y = n)
\]

Observe that this makes (the predecessor of) both \(1 \) and \(n \) factors of \(n \), and any number a factor of zero. Since each part is recursive, the whole is recursive. The argument is from the parts to the whole: \(Sm \times y = n \) has a recursive characteristic function; so the bounded quantification has a recursive characteristic function; so the factor relation is recursive.

Prime number. Say \(\text{PRIME}(n) \) is true just when \(n \) is a prime number. This property is defined as follows.

\[
\hat{1} < n \land (\forall j < n)[j \mid n \to (Sj = \hat{1} \lor Sj = n)]
\]

So \(n \) is greater than \(1 \) and the successor of any number that divides it is either \(1 \) or \(n \) itself.

Prime sequence. Say the primes are \(\pi_0, \pi_1, \ldots \). Let the value of the function \(\pi(n) \) (usually \(\pi(n) \)) be \(\pi_n \). Then \(\pi(n) \) is defined by recursion as follows.

\[
gpi = \hat{2} \\
hpi(y, u) = \text{idn}_2[y, (\mu z \leq S(u!))(u < z \land \text{PRIME}(z))]
\]

So the first prime, \(\pi(0) = 2 \). And \(\pi(Sn) = (\mu z \leq S(\pi(n)!))(\pi(n) < z \land \text{PRIME}(z)) \). So at any stage, the next prime is the least prime which is greater than \(\pi(n) \). This depends on the point that the next prime after \(\pi_n \) is less than or equal to \(\pi(n)! + 1 \). Let \(\rho(n) = \pi_0 \times \pi_1 \times \ldots \times \pi_n \). By a standard argument (see G2 in the arithmetic for Gödel 703n10).

\(^{12}\) In fact, this is a (minor) complication at this stage, but it will be helpful down the road. See page 703n10.
numbering reference), \(p(n) + 1 \) is not divisible by any of the primes up to \(\pi_n \); so either \(p(n) + 1 \) is itself prime, or there is some prime greater than \(\pi_n \) but less than \(p(n) + 1 \). But since \(\pi(n)! \) is a product including all the primes up to \(\pi_n \), \(p(n) \leq \pi(n)! \); so either \(\pi(n)! + 1 \) is prime or there is a prime greater than \(\pi_n \) but less than \(\pi(n)! + 1 \)—and the next prime is sure to appear in the specified range.

Prime exponent. Let \(\exp(n, i) \) be the (possibly 0) exponent of \(\pi_i \) in the unique prime factorization of \(n \). Then \(\exp(n, i) \) is recursive. This function may be defined as follows.

\[
\{ (\mu x \leq n) [\text{pred}(\pi_i^x) | n \land \text{pred}(\pi_i^{Sx}) | \neg n] \}
\]

And, of course, \(\pi_i \) is just \(\pi(i) \). Observe that no exponent in the prime factorization of \(n \) is greater than \(n \) itself—for any \(x \geq 2 \), \(x^0 \geq n \)—so the bound is safe. This function returns the first \(x \) such that \(\pi_i^x \) divides \(n \) but \(\pi_i^{Sx} \) does not.

Prime length. Say a prime \(\pi_a \) is **included** in the factorization of \(n \) just in case there is some \(b \geq a \) and \(e > 0 \) such that (the predecessor of) \(\pi_b^e \) is a factor of \(n \). So we think of a prime factorization as,

\[
\pi_{e_0} \times \pi_{e_1} \times \ldots \times \pi_{e_b}
\]

where \(e_b > 0 \), but exponents for prior members of the series may be zero or not. Then \(\text{len}(n) \) is the number of primes included in the prime factorization of \(n \); so \(\text{len}(0) = \text{len}(1) = 0 \) and otherwise, since the series of primes begins with zero, \(\text{len}(n) = b + 1 \). For this set,

\[
\text{len}(n) = (\mu y \leq n)(\forall z : y \leq z \leq n)\exp(n, z) = 0
\]

Officially: \((\mu y \leq n)(\forall z \leq n)[y \leq z \to \exp(n, z) = 0] \). So we find the least \(y \) such that none of the primes between \(\pi_y \) and \(\pi_n \) are part of the factorization of \(n \); but then all of the primes prior to it are members of the factorization so that \(y \) numbers the length of the factorization. This depends on its being the case that \(n < \pi_n \) so that primes greater than or equal \(\pi_n \) are never included in the factorization of \(n \).

E12.23. Returning to your file `recursive1.rb` from E12.3 and E12.22, extend the sequence of functions to include the characteristic function for \(\text{FCTR}(m, n) \). You
will need to begin with \(\text{cheq}(a, b) \) for the characteristic function of \(a = b \) and then the characteristic function of \(Sm \times y = n \). Then you will require a function like \(\text{ch}_n(m, n, v) \) corresponding to \((\exists y \leq v)(Sm \times y = n)\). Calculate some values of these functions and print the results, along with your program.

E12.24. Continue in your file \texttt{recursive1.rb} to build the characteristic function for \texttt{PRIME(n)}. You will have to build gradually to this result. You will need \(\text{chless}(a, b) \) and then \(\text{chneg}(a) \), \(\text{chdsj}(a, b) \), \(\text{chimp}(a, b) \), and \(\text{chand}(a, b) \) for the relevant truth functions. With these in hand, you can build a function \(\text{chpm}(n, j) \) corresponding to \(j \leq n \cdot n \cdot y = n / y \). Then you will be able to find the function like \(\text{q}(m, n, v) \) corresponding to \((\exists y \leq v)(\exists y < y \cdot m \cdot y \cdot n \cdot y) \) and finally the \texttt{lcm}.

E12.25. Continue in your file \texttt{recursive1.rb} to generate \texttt{lcm(m, n)} the least common multiple of \(Sm \) and \(Sn \)—that is, \((\mu y \leq Sm \times Sn)(\exists y < y \cdot m \cdot y \cdot n \cdot y)\). For this you will need the characteristic function of \(\exists y < y \cdot m \cdot y \cdot n \cdot y \); and then one like \(\text{ch}_n(m, n, v) \) corresponding to \((\exists y \leq v)(\exists y < y \cdot m \cdot y \cdot n \cdot y)\). Then you will be able to find the function like \(\text{q}(m, n, v) \) corresponding to \((\mu y \leq v)(\exists y < y \cdot m \cdot y \cdot n \cdot y) \) and finally the \texttt{lcm}.

*E12.26. Provide definitions for the recursive functions \texttt{rm(m, n)} and \texttt{qt(m, n)} for the remainder and quotient of \(m/n + 1 \). Notice that this \texttt{rm} is a total function and so distinct from \texttt{rem} described above. Hint: you can use \texttt{rm} in your account of \texttt{qt}.

*E12.27. Functions \(f_1(\bar{x}, y) \) and \(f_2(\bar{x}, y) \) are defined by simultaneous (mutual) recursion just in case,

(a) \(f_1(\bar{x}, 0) = g_1(\bar{x}) \)

(b) \(f_2(\bar{x}, 0) = g_2(\bar{x}) \)

(c) \(f_1(\bar{x}, Sy) = h_1(\bar{x}, y, f_1(\bar{x}, y), f_2(\bar{x}, y)) \)

(d) \(f_2(\bar{x}, Sy) = h_2(\bar{x}, y, f_1(\bar{x}, y), f_2(\bar{x}, y)) \)
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

649

Show that \(f_1 \) and \(f_2 \) so defined are recursive. Hint: Let \(F(\bar{x}, y) = \pi_0^{f_1(\bar{x}, y)} \times \pi_1^{f_2(\bar{x}, y)} \); then find \(G(\bar{x}) \) in terms of \(g_1 \) and \(g_2 \), and \(H(\bar{x}, y, u) \) in terms of \(h_1 \) and \(h_2 \) so that \(F(\bar{x}, 0) = G(\bar{x}) \) and \(F(\bar{x}, Sy) = H(\bar{x}, y, F(\bar{x}, y)) \). So \(F(\bar{x}, y) \) is recursive. Then \(f_1(\bar{x}, y) = \exp(F(\bar{x}, y), \hat{0}) \) and \(f_2(\bar{x}, y) = \exp(F(\bar{x}, y), \hat{1}) \); so \(f_1 \) and \(f_2 \) are recursive. You will need to show that this specification satisfies conditions (a)–(d).

12.4.3 Arithmetization

Our aim in this section and the next is to assign numbers to expressions and sequences of expressions in \(\mathcal{L}_{NT} \) and build a (primitive) recursive relation \(\pi_{\in \mathcal{O}(m, n)} \) which is true just in case \(m \) numbers a sequence of expressions that is a proof in Robinson Arithmetic of the expression numbered by \(n \). This requires a number of steps. In this part, we develop at least the notion of a sentential proof which should be sufficient for the general idea. The next section continues with details for quantifiers and theory \(\mathcal{Q} \).

\textbf{Gödel numbers.} We begin with a strategy familiar from 10.2.2 and 10.3.2 (to which you may find it helpful to refer), now adapted to \(\mathcal{L}_{NT} \). The idea is to assign numbers to symbols and expressions of \(\mathcal{L}_{NT} \). Then we shall be able to operate on the associated numbers by means of ordinary numerical functions. Insofar as the variable symbols in any quantificational language are countable, they are capable of being sorted into series, \(x_0, x_1, \ldots \) Supposing that this is done, begin by assigning to each symbol \(s \) in \(\mathcal{L}_{NT} \) an integer \(g[s] \) called its Gödel number.

\begin{align*}
\text{a.} & \quad g[\text{[}] = 3 & \quad \text{f.} & \quad g[\forall] = 13 \\
\text{b.} & \quad g[\text{]} = 5 & \quad \text{g.} & \quad g[\emptyset] = 15 \\
\text{c.} & \quad g[\text{~}] = 7 & \quad \text{h.} & \quad g[S] = 17 \\
\text{d.} & \quad g[\rightarrow] = 9 & \quad \text{i.} & \quad g[+] = 19 \\
\text{e.} & \quad g[=] = 11 & \quad \text{j.} & \quad g[\times] = 21 \\
\text{k.} & \quad g[x_i] = 23 + 2i
\end{align*}

So, for example, \(g[x_5] = 23 + 2 \times 5 = 33 \). Clearly each symbol gets a unique Gödel number, and Gödel numbers for individual symbols are odd positive integers.\(^{13}\)

Now we are in a position to assign a Gödel number to each formula as follows: Where \(s_0, s_1, \ldots, s_n \) are the symbols, in order from left to right, in some expression \(Q \),

\[
g[Q] = \pi_s^{g[s_0]} \times \pi_s^{g[s_1]} \times \pi_s^{g[s_2]} \times \ldots \times \pi_s^{g[s_n]}
\]

\(^{13}\)There are many ways to do this, we pick just one.
where $2, 3, 5 \ldots \pi_n$ are the first n prime numbers. So, for example, $g[x_0 \times x_5] = 2^{23} \times 3^{21} \times 5^{33}$. This is a big integer. But it is an integer, and different expressions get different Gödel numbers. Given a Gödel number, we can find the corresponding expression by finding its prime factorization; then if there are twenty-three 2s in the factorization, the first symbol is x_0; if there are twenty-one 3s, the second symbol is x; and so forth. Notice that numbers for individual symbols are odd, where numbers for expressions are even.

Now consider a sequence of expressions, $Q_0, Q_1 \ldots Q_n$ (as in an axiomatic derivation). These expressions have Gödel numbers $g_0, g_1 \ldots g_n$. Then,

$$\pi_0^{g_0} \times \pi_1^{g_1} \times \pi_2^{g_2} \times \ldots \times \pi_n^{g_n}$$

is the super Gödel number for the sequence $Q_0, Q_1 \ldots Q_n$. Again, given a super Gödel number, we can find the corresponding expressions by finding its prime factorization; then, if there are g_0 2s, we can proceed to the prime factorization of g_0 to discover the symbols of the first expression; and so forth. Observe that super Gödel numbers are even, but are distinct from Gödel numbers for expressions, insofar as the exponent of 2 in the factorization of any expression is odd (the first element of any expression is a symbol and so has an odd number); and the exponent of 2 in the factorization of any super Gödel number is even (the first element of a sequence is an expression and so has an even number).

Recall that $\exp(n, i)$ returns the exponent of π_i in the prime factorization of n. So for a Gödel number n, $\exp(n, i)$ returns the code of s_i; and for a super Gödel number n, $\exp(n, i)$ returns the code of Q_i.

Where P is any expression, let γP be its Gödel number, γP^n the standard numeral for its Gödel number, and γP^0 the corresponding zero-place recursive function. Indicate individual symbol codes with angle quotes ($'$) around the symbol; then for symbol s, (s) is the corresponding numeral and (s) the zero-place recursive function. For a simple example, $(\cdot) = 3; (\cdot) is the \mathcal{L}_{NT} term SSS0 whose standard interpretation is 3, and $(\cdot) is the recursive function $\text{suc}($\text{suc}($\text{suc}($\text{zero}($)))$)) that returns the value 3. $\gamma (\cdot) = 2^{(\cdot)} = 2^3 = 8; \gamma (\cdot) is the \mathcal{L}_{NT} term SSSSSSSSS0 whose standard interpretation is 8; and $\gamma (\cdot) is the recursive function $\text{suc}($\text{suc}($\text{suc}($\text{suc}($\text{suc}($\text{zero}($))))))))$ that returns the value 8. For a (slightly) more complex case, $\gamma x_0 \times x_5 = 2^{23} \times 3^{21} \times 5^{33}$ the big integer mentioned above.

Concatenation. Suppose m and n number expressions or sequences of expressions. Then the function $\text{cnct}(m, n)$—ordinarily indicated $m \star n$, returns the Gödel number
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

of the expression or sequence with Gödel number m followed by the expression or sequence with Gödel number n. So $\Gamma \times y \Gamma \cdot \Gamma = y \Gamma = \Gamma \times y = z \Gamma$, for some numbered variables x, y and z. This function is (primitive) recursive. Recall that $\text{len}(n)$ is recursive and returns the number of distinct prime factors of n. Set $m \cdot n$ to,

$$ (\mu x \leq B_{m,n})[\Gamma \leq x \land (\forall i < \text{len}(m))\{\text{exp}(x, i) = \text{exp}(m, i)\} \land (\forall i < \text{len}(n))\{\text{exp}(x, i + \text{len}(m)) = \text{exp}(n, i)\}] $$

We search for the least number x (greater than or equal to one) such that exponents of initial primes in its factorization match the exponents of primes in m and exponents of primes later match exponents of primes in n. The bounded quantifiers take $i < \text{len}(m)$ and $i < \text{len}(n)$ insofar as len returns the number of primes, but $\text{exp}(x, i)$ starts the list of primes at 0; so if $\text{len}(m) = 3$, its primes are π_0, π_1 and π_2. So the first $\text{len}(m)$ exponents of x are the same as the exponents in m, and the next $\text{len}(n)$ exponents of x are the same as the exponents in n.

To ensure that the function is recursive, we use the bounded least element quantifier as main operator, where $B_{m,n}$ is the bound under which we search for x. In this case it is sufficient to set

$$ B_{m,n} = \left(\pi_{\text{len}(m) + \text{len}(n)}\right)^{\text{len}(m) + \text{len}(n)} $$

The idea is that all the primes in x will be $\leq \pi_{\text{len}(m) + \text{len}(n)}$. And any exponent in the factorization of m must be $\leq m$ and any exponent for n must be $\leq n$; so that $m + n$ is greater than any exponent in the factorization of x. So B results from multiplying a prime larger than any prime in x to a power greater than that of any exponent in x together as many times as there are primes in x; so x must be smaller than B.

Observe that \cdot associates as for addition and multiplication and $(m \cdot n) \cdot o = m \cdot (n \cdot o)$; given this we often drop parentheses for the concatenation operation. Also the requirement that $1 \leq m \cdot n$ does not usually matter since we will be interested in cases with $m, n > 1$; it does, however have the advantage that $m \cdot n$ is always equivalent to a product of primes—where this will smooth results down the road (if all the exponents are zero the product is 1).

Terms and atomics. $\text{TERM}(n)$ is true iff n is the Gödel number of a term. Think of the trees on which we show that an expression is a term. Put formally, for any term t_n, there is a term sequence $t_0, t_1 \ldots t_n$ such that each expression is either,

a. \emptyset

b. a variable
c. St_j where t_j occurs earlier in the sequence

d. $+t_i t_j$ where t_i and t_j occur earlier in the sequence

e. $\times t_i t_j$ where t_i and t_j occur earlier in the sequence

where we represent terms in unabbreviated form. A term is the last element of such a sequence. Let us try to say this.

First, \(\text{VAR}(n) \) is true just in case \(n \) is the Gödel number of a variable—conceived as an expression, rather than a symbol. Then \(\text{VAR} \) is (primitive) recursive. Set,

\[
\text{VAR}(n) = (\exists x \leq n)(n = \overline{2^x+2^x})
\]

If there is such an \(x \), then \(n \) must be the Gödel number of a variable. And it is clear that this \(x \) is less than \(n \) itself. So the result is recursive.

Now \(\text{TERMSEQ}(m, n) \) is true when \(m \) is the super Gödel number of a sequence of terms whose last member has Gödel number \(n \). We use the exponents in the factorization of \(m \) to number expressions in the sequence whose final member is the resulting term. Recall that \(\text{len}(m) \) returns the total number of primes in the factorization of \(m \), and \(\text{exp}(m, n) \) the exponent of prime \(n \) in the factorization. For

\[
\text{TERMSEQ}(m, n) = (\exists x \leq x_n(\text{TERMSEQ}(x, n))
\]

If some \(x \) numbers a term sequence for \(n \), then \(n \) is a term. In this case, Gödel numbers of all prior members in a standard sequence ending in \(n \) are less than \(n \). Further, the number of members in the sequence is the same as the number of
variables and constants together with the number of function symbols in the term (one member for each variable and constant, and another corresponding to each function symbol); so the number of members in the sequence is the same as \(\text{len}(n) \); so all the primes in the sequence are \(\leq \pi_{\text{len}(n)} \). So multiply \(\pi_{\text{len}(n)}^n \) together \(\text{len}(n) \) times and set \(B_n = \left(\pi_{\text{len}(n)}^n \right)^{\text{len}(n)} \). We take a prime \(\pi_{\text{len}(n)} \) greater than all the primes in the sequence, to a power \(n \) greater than or equal to all the powers in the sequence, and multiply it together as many times as there are members of the sequence. The result must be greater than \(x \), the number of the term sequence.\(^{14}\)

Finally \(\text{ATOMIC}(n) \) is true iff \(n \) is the number of an atomic formula. The only atomic formulas of \(\mathcal{L}_{nt} \) are of the form \(\mathcal{D}^t_1 \mathcal{D}^t_2 \). So it is sufficient to set,

\[
\text{ATOMIC}(n) = (\exists x \leq n)(\exists y \leq n)[\text{TERM}(x) \land \text{TERM}(y) \land n = \overline{\rightarrow} \star x \star y]
\]

Clearly the numbers of \(t_1 \) and \(t_2 \) are \(\leq n \) itself.

Formulas. Begin with some simple definitions. \(\text{cnd}(n, o) = m \) when \(n = \overline{\rightarrow} \mathcal{P} \), \(o = \overline{\rightarrow} \mathcal{Q} \) and \(m = \overline{\rightarrow} (\mathcal{P} \rightarrow \mathcal{Q}) \)—and similarly for \(\text{neg}(n) \) and \(\text{unv}(v, n) \).

\[
\text{cnd}(n, o) = \overline{\rightarrow} (\star n \star \overline{\rightarrow} \star o \star \overline{\rightarrow})
\]

\[
\text{neg}(n) = \overline{\rightarrow} \star n
\]

\[
\text{unv}(v, n) = \overline{\rightarrow} \star v \star \star n
\]

\(\text{wff}(n) \) is to be true iff \(n \) is the number of a (well-formed) formula. Again, think of the tree by which a formula is formed. There is a sequence of which each member is,

a. an atomic

b. \(\sim \mathcal{P} \) for some previous member of the sequence \(\mathcal{P} \)

c. \((\mathcal{P} \rightarrow \mathcal{Q}) \) for previous members of the sequence \(\mathcal{P} \) and \(\mathcal{Q} \)

d. \(\forall x \mathcal{P} \) for some previous member of the sequence \(\mathcal{P} \) and variable \(x \)

So, on the model of what has gone before, we let \(\text{FORMSEQ}(m, n) \) be true when \(m \) is the super Gödel number of a sequence of formulas whose last member has Gödel

\(^{14}\)There may be many term sequences for a given term numbered \(n \)—members of a sequence might appear in different orders, and a sequence might include extraneous members not required for the final result. Reasoning above shows there is a (standard) sequence under the bound, not that all sequences for that term are under the bound.
number \(n \). We use the exponents in the factorization of \(m \) to number expressions in
the sequence whose final member is the resulting formula. For \(\text{FORMSEQ}(m, n) \) set,
\[
\begin{align*}
\exp(m, \text{len}(m) + 1) &= n \land \exists \mathbf{k} < \text{len}(m) \forall k < \text{len}(m) \\
\text{ATOMIC}(\exp(m, k)) \\
(\exists j < k)[\exp(m, k) = \text{neg}(\exp(m, j))] \\
(\exists i < k)[\exists j < k][\exp(m, k) = \text{cnd}(\exp(m, i), \exp(m, j))] \\
(\exists i < k)[\exists j < n][\text{VAR}(j) \land \exp(m, k) = \text{unv}(j, \exp(m, i))]
\end{align*}
\]
So a formula is the last member of a sequence each member of which is an atomic, or
formed from previous members in the usual way. Clearly the number of a variable in
an expression with number \(n \) is itself \(\leq n \). Then,
\[
\text{WFF}(n) = (\exists x \leq B_n)\text{FORMSEQ}(x, n)
\]
An expression is a formula iff there is a formula sequence of which it is the last
member. Again, Gödel numbers of prior formulas in a standard sequence are \(\leq n \).
And there are as many members of the sequence as there are atomics and operator
symbols in the formula numbered \(n \).\(^{15}\) So all the primes are \(< \pi_{\text{len}(n)} \); so multiply
\(\pi_{\text{len}(n)}^n \) together \(\text{len}(n) \) times and set \(B_n = (\pi_{\text{len}(n)}^n)^{\text{len}(n)} \).

Sentential proof. \(\text{PRFADS}(m, n) \) is to be true iff \(m \) is the super Gödel number of a
sequence of formulas that is a sentential proof of the theorem with Gödel number \(n \).
We revert to the relatively simple axiomatic system of Chapter 3. So the only rule is
MP and, for example, A1 is of the sort \((\mathcal{P} \rightarrow (\mathcal{Q} \rightarrow \mathcal{P}))\). For the sentential case, we
need \(\text{AXIOMADS}(n) \) true when \(n \) is the number of an axiom. For this,
\[
\text{AXIOMAD1}(n) = (\exists p \leq n)(\exists q \leq n)[\text{WFF}(p) \land \text{WFF}(q) \land n = \text{cnd}(p, \text{cnd}(q, p))]
\]
\(\text{AXIOMAD2}(n) = \text{Homework.} \)
\(\text{AXIOMAD3}(n) = \text{Homework.} \)
Then,
\[
\text{AXIOMADS}(n) = \text{AXIOMAD1}(n) \lor \text{AXIOMAD2}(n) \lor \text{AXIOMAD3}(n)
\]
In the next section, we will add all the logical axioms plus the axioms for \(\mathcal{Q} \). But
these are all the axioms required for proofs of theorems of sentential logic. The rule is
\(^{15}\)In fact, the sequence adds just a single member corresponding to an atomic or an operator \(\forall x \)
where the formula has members corresponding to all their individual symbols.
straightforward too. $MP(m, n, o)$ when m numbers a conditional whose antecedent is numbered n and consequent is numbered o.

$$MP(m, n, o) = cnd(n, o) = m$$

Finally $PRFADS(m, n)$ when m is the super Gödel number of a sequence that is a proof whose last member has Gödel number n. An ADs derivation is a sequence of formulas where each member is an axiom or follows from previous members by MP. This time we use the exponents in the factorization of m to number expressions in the proof—in the sequence of formulas whose final member is the one proved. This works like $TERMSEQ$ and $FORMSEQ$. For $PRFADS$ set,

$$\begin{align*}
exp(m, len(m) \downarrow \hat{1}) &= n \land \hat{1} < m \land (\forall k < len(m))
\end{align*}$$

$$\begin{align*}
\text{AXIOMADS}(\exp(m, k)) \lor \\
(\exists i < k)(\exists j < k)MP(\exp(m, i), \exp(m, j), \exp(m, k))
\end{align*}$$

So every formula is either an axiom or follows from previous members by MP.

It is a significant matter to have found this recursive relation! Again, in the next section, we will extend this notion to include other logical axioms, axioms of Q and the rule Gen. Still, our construction for $PRFADS$ exhibits the essential steps required for the parallel relation $PRFQ(m, n)$ true when m is the super Gödel number of a sequence that is a proof from the axioms of Q whose last member has Gödel number n. That discussion adds considerable detail. It is not clear that the detail is required for understanding results to follow—though of course, to the extent that those results rely on the recursive $PRFQ$ relation, the detail underlies proof of the results!

E12.28. Find Gödel numbers for each of the following. Treat the first as an expression, rather than as simple symbol; the last is a sequence of expressions. For the latter two, you need not do the calculation!

(a) x_2
(b) $x_0 = x_1$
(c) $x_0 = x_1, \emptyset = x_0, \emptyset = x_1$

E12.29. Complete the cases for $AXIOMADS(n)$ and $AXIOMADS(n)$.

E12.30. In chapter 8 we define the notion of a normal sentential form (page 401). Using the fact that \land and \lor abbreviate expressions in \sim and \rightarrow, generate functions cnj and dsj. Then using $ATOMIC$ from above, define a recursive relation $NORM(n)$ for \mathcal{L}_{NT}. Hint: You will need a formula sequence to do this.
12.4.4 Completing the Construction

In this section we complete the construction of \(\text{PRFQ}(m, n) \). In addition to A1–A3 and MP from \(ADs \), Q includes the other logical axioms, axioms of Q, and the rule Gen. For the logical axioms, there are conditions as for (A4), \((\forall \alpha \beta \gamma \rightarrow \beta) \gamma \) where term \(s \) is free for variable \(v \) in \(\beta \). This is easy enough to apply in practice. But it takes some work to represent. We tackle the problem piece by piece.

Substitution in terms. Say \(t = \gamma t \gamma \), \(v = \gamma v \gamma \), and \(s = \gamma s \gamma \) for some terms \(s, t \), and variable \(v \). Then \(\text{TERMSUB}(t, v, s, u) \) is true when \(u \) is the Gödel number of \(t_s^v \). For this, we begin with a term sequence (with super Gödel number \(v \), and variable \(v \), and consider a parallel sequence, not necessarily a term sequence (with super Gödel number \(n \), that includes modified versions of the terms in the sequence numbered \(m \). For \(\text{TSUBSEQ}(m, n, t, v, s, u) \) set,

\[
\begin{align*}
\text{TERMSSEQ}(m, t) \land \text{len}(m) &= \text{len}(n) \land \text{exp}(n, \text{len}(n) \sim t) = u \land (\forall k < \text{len}(m)) \{ \\
&[\text{exp}(m, k) = \gamma \gamma \gamma \gamma k \land \text{exp}(n, k) = \gamma \gamma \gamma \gamma k] \lor \\
&[\text{var}(\text{exp}(m, k)) \land \text{exp}(m, k) \neq v \land \text{exp}(n, k) = \text{exp}(m, k)] \lor \\
&[\text{var}(\text{exp}(m, k)) \land \text{exp}(m, k) = v \land \text{exp}(n, k) = s] \lor \\
&(\exists i < k)[\text{exp}(m, k) = \gamma \gamma \gamma \gamma i \cdot \text{exp}(m, i) \land \text{exp}(n, k) = \gamma \gamma \gamma \gamma i \cdot \text{exp}(n, i)] \lor \\
&(\exists i < k)(\exists j < k)[\text{exp}(m, k) = \gamma \gamma \gamma \gamma i \cdot \text{exp}(m, i) \cdot \text{exp}(m, j) \land \text{exp}(n, k) = \gamma \gamma \gamma \gamma i \cdot \text{exp}(n, i) \cdot \text{exp}(n, j)] \lor \\
&(\exists i < k)(\exists j < k)[\text{exp}(m, k) = \gamma \gamma \gamma \gamma i \cdot \text{exp}(m, i) \cdot \text{exp}(m, j) \cdot \text{exp}(n, k) = \gamma \gamma \gamma \gamma i \cdot \text{exp}(n, i) \cdot \text{exp}(n, j)] \}
\end{align*}
\]

So the sequence for \(t_s^v \) (numbered by \(n \)) is like one of our “unabbreviating trees” from chapter 2. In any place where the sequence for \(t \) (numbered by \(m \)) numbers \(0 \), the sequence for \(t_s^v \) numbers \(0 \). Where the sequence for \(t \) numbers a variable other than \(v \), the sequence for \(t_s^v \) numbers the same variable. But where the sequence for \(t \) numbers variable \(v \), the sequence for \(t_s^v \) numbers \(s \). Then later parts are built out of prior in parallel. The second sequence may not itself be a term sequence, insofar as it need not include all the antecedents to \(s \) (just as an unabbreviating tree would not include all the parts of a resultant term or formula).

Now set \(\text{TERMSUB}(t, v, s, u) \) as follows,

\[
\text{TERMSUB}(t, v, s, u) = (\exists x \leq X)(\exists y \leq Y)\text{TSUBSEQ}(x, y, t, v, s, u)
\]

In this case, reasoning as for \(\text{WFF} \), the Gödel numbers in a standard sequence with number \(m \) are less than \(t \) and numbers in the sequence with number \(n \) less than \(u \). And primes in the sequence range up to \(\pi_{\text{len}(t)} \). So it is sufficient to set \(X = \left(\pi_{\text{len}(t)}^1 \right)^{\text{len}(t)} \) and \(Y = \left(\pi_{\text{len}(t)}^u \right)^{\text{len}(t)} \).
Substitution in atomics. Say \(p = \Gamma P, v = \Gamma v, \) and \(s = \Gamma s \) for some atomic formula \(P \), variable \(v \) and term \(s \). Then \(\text{ATOMSUB}(p, v, s, q) \) is true when \(q \) is the Gödel number of \(P^v_s \). The condition is straightforward given \(\text{TERMSUB} \). For
\[
(\exists a \leq p)(\exists b \leq p)(\exists a' \leq q)(\exists b' \leq q)[\text{TERM}(a) \land \text{TERM}(b) \land p = \Gamma = a \ast b \land \\
\text{TERMSUB}(a, v, s, a') \land \text{TERMSUB}(b, v, s, b') \land q = \Gamma = a' \ast b']
\]
\(P^v_s \) simply substitutes into the terms on either side of the equal sign.

Substitution into formulas. Where \(p = \Gamma P, v = \Gamma v, \) and \(s = \Gamma s \) for an arbitrary formula \(P \), variable \(v \) and term \(s \), \(\text{FORMSUB}(p, v, s, q) \) is true when \(q \) is the Gödel number of \(P^v_s \). In the general case, \(P^v_s \) is complicated insofar as \(s \) replaces only free instances of \(v \). Again, we build a parallel sequence with number \(n \). No replacements are carried forward in subformulas beginning with a quantifier binding instances of variable \(v \). For \(\text{FSUBSEQ}(m, n, p, v, s, q) \) set,
\[
\text{FORMSEQ}(m, p) \land \text{len}(m) = \text{len}(n) \land \text{exp}(n, \text{len}(n) - 1) = q \land (\forall k < \text{len}(m)) [\\
\text{ATOMIC}(\text{exp}(m, k)) \land \text{ATOMSUB}(\text{exp}(m, k), v, s, \text{exp}(n, k))] \lor \\
(\exists i < k)[\text{exp}(m, k) = \neg(\text{exp}(m, i)) \land \text{exp}(n, k) = \neg(\text{exp}(n, i))] \lor \\
(\exists i < k)(\exists j < k)[\text{exp}(m, k) = \text{cnd}(\text{exp}(m, i), \text{exp}(m, j)) \land \text{exp}(n, k) = \text{cnd}(\text{exp}(n, i), \text{exp}(n, j))] \lor \\
(\exists i < k)(\exists j < k)[\text{exp}(m, k) = \text{var}(j) \land j \neq v \land \text{exp}(m, k) = \text{var}(j, \text{exp}(m, i)) \land \text{exp}(n, k) = \text{var}(j, \text{exp}(n, i))] \lor \\
(\exists i < k)(\exists j < k)[\text{exp}(m, k) = \text{var}(j) \land j = v \land \text{exp}(m, k) = \text{var}(j, \text{exp}(m, i)) \land \text{exp}(n, k) = \text{exp}(m, k)]
\]
So substitutions are made in atomics, and carried forward in the parallel sequence—so long as no quantifier binds variable \(v \), at which stage the sequence reverts to the form without substitution.

And \(\text{FORMSUB}(p, v, s, q) \) is,
\[
\text{FORMSUB}(p, v, s, q) = (\exists x \leq X)(\exists y \leq Y)\text{FSUBSEQ}(x, y, p, v, s, q)
\]
Again, set \(X = \left(\pi_p^p\right)^{\text{len}(p)} \) and \(Y = \left(\pi_q^q\right)^{\text{len}(p)} \).

Where \(\text{FORMSUB}(p, v, s, q) \) is a relation which applies to the number \(q \) given \(p, v \) and \(s \), we may use the relation to define a function \(\text{FORMSUB}(p, v, s) \) which \textit{returns} \(q \) given \(p, v \) and \(s \). Set \(\text{formsub}(p, v, s) = (\mu q \leq Z)\text{FORMSUB}(p, v, s, q) \). Since there is just one \(q \) for which \(\text{FORMSUB}(p, v, s, q) \) is true, there is just the one value to be returned by the minimization function. So \(\text{formsub}(p, v, s) \) is the number \(q \) of \(P^v_s \). In this case, the number of symbols in \(P^v_s \) is sure to be no greater than the number of symbols in \(P \) times the number of symbols in \(s \) (as though every symbol in \(P \) were replaced by \(s \)). And any symbol is \(s \) or an element of \(P \); so the Gödel number
of each symbol is no greater than the maximum of \(p \) and \(s \) and thus \(p + s \). So it is sufficient to set \(Z = \left(\prod_{\text{len}(p) \times \text{len}(s)}^{p+s} \right) \). Again, we take a prime at least great as that of any symbol, to a power greater than that of any exponent, and multiply it as many times as there are symbols.

Free and bound variables. \(\text{FREE}(t, v) \) and \(\text{FREE}(p, v) \) are true when \(v \) is the Gödel number of a variable that is free in a term or formula that has Gödel number \(t \) or \(p \). The idea is that substitution applies just to free variables. So if there is some change in an expression upon substitution of a variable different from \(v \), \(v \) must have been free in the original expression. For a given variable \(x_i \) initially assigned number \(23 + 2i \), \(\Gamma x_i = 2^{23 + 2i} \) so that \(2^{23 + 2i} \) is the number of the next variable. In particular then, for \(v \) the number of a variable, \(v \times 2^2 \) (that is \(v \times 4 \)) numbers a different variable. We use this to identify variables free in expressions numbered \(t \) and \(p \). For terms and formulas respectively,

\[
\text{FREE}(t, v) = \neg\text{TERMSUB}(t, v, v \times 4, t)
\]

\[
\text{FREE}(p, v) = \neg\text{FORMSUB}(p, v, v \times 4, p)
\]

So \(v \) is free if the result upon substitution is other than the original expression. Observe that in chapter 2 free and bound variables were introduced in relation to formulas. Now the notion is extended, in the obvious way, to terms—since terms lack quantifiers, a variable is free in a term iff it is present in the term.

Given \(\text{FREE}(p, v) \), it is a simple matter to specify \(\text{SENT}(n) \) true when \(n \) numbers a sentence.

\[
\text{SENT}(n) = \text{WFF}(n) \land (\forall x \leq n)[\text{VAR}(x) \rightarrow \neg \text{FREE}(n, x)]
\]

So \(n \) numbers a sentence if it numbers a formula and nothing is a number of a variable free in the formula numbered by \(n \).

Finally, suppose \(s = \Gamma x \) and \(v = \Gamma y \); then \(\text{FREEFOR}(s, v, u) \) is true iff \(s \) is free for \(v \) in the formula numbered by \(u \). For this, we set up a sequence of formulas (not an ordinary formula sequence) that identifies just “admissible” subformulas—such that \(s \) is free for \(v \) in each member. For \(\text{FFSEQ}(m, s, v, u) \) set,

\[
\exp(m, \text{len}(m) - 1) = u \wedge \exists k < m \wedge (\forall k < \text{len}(m))\{
\text{ATOMIC}(\exp(m, k)) \wedge
(\exists j < k)[\exp(m, k) = \neg(\exp(m, j))] \wedge
(\exists i < k)[\exists j < k][\exp(m, k) = \text{cnd}(\exp(m, i), \exp(m, j))] \wedge
(\exists p < u)[\text{WFF}(p) \wedge \exp(m, k) = \text{unv}(v, p)]
\}\]
(\exists l < k)(\exists u)(\exists j)(\forall v)(\forall m)(\exists s)\left[\text{VAR}(j) \land j \neq v \land (\sim\text{FREE}(s, j) \lor \sim\text{FREE}(\exp(m, i), v)) \land \exp(m, k) = \text{unv}(j, \exp(m, i))\right]

For the last two clauses: First, if the main operator of a subformula \(Q\) binds variable \(v\), then no variables in \(s\) are bound upon substitution, for there are no free instances of \(v\) and no substitutions; observe that this \(Q\) need not appear earlier in the sequence, as any formula with the \(v\)-quantifier satisfies the condition. Alternatively, if the main operator binds a different variable, we require either that the variable is not free in \(s\) (so that no instances are bound upon substitution) or that \(v\) is not free in the subformula (so that there are no substitutions). Given this,

\[
\text{FREEFOR}(s, v, u) = (\exists x \leq B_u)\text{FFSEQ}(x, s, v, u)
\]

In this case, every member of the sequence for \(\text{FFSEQ}\) is a member of the \(\text{FORMSEQ}\) for \(u\) so \(B_u\) may be set as before.

Proof in Q. After all this work, we are finally ready for the other axioms and rule of \(AD\) and the axioms of \(Q\). \(\text{AXIOMAD4}(n)\) obtains when \(n\) is the Gödel number of an instance of \(A4\). Intuitively, \(\text{AXIOMAD4}(n)\) just in case there is an \(s\) such that,

\[
(\exists p \leq n)(\exists v \leq n)[\text{WFF}(p) \land \text{VAR}(v) \land \text{TERM}(s) \land \text{FREEFOR}(s, v, p) \land n = \text{cnd}(\text{unv}(v, p), \text{formsub}(p, v, s))]
\]

So there is a formula \(P\), variable \(v\) and term \(s\) where \(s\) is free for \(v\) in \(P\); and the axiom is of the form, \((\forall v \in P \rightarrow P^v_S)\). Unfortunately, our statement is inadequate insofar as \(s\) is left free. We cannot simply supply a prefix \(\exists s\) as the result would not be recursively specified. It is tempting to add a bounded \((\exists s \leq n)\) with the idea that the number of \(s\) must be smaller than the number of \(P^v_S\). This almost works. The difficulty is the (rarely encountered) situation where the quantified variable \(v\) is not free in \(P\) (as when a quantifier is added to some \(P\) that is already a sentence); in this case, \(P^v_S\) is just \(P\), and there is nothing to say that \(s\) is less than \(n\). Here is a way to do the job. Set \(\text{AXIOMAD4}(n)\) as,

\[
(\exists p \leq n)(\exists v \leq n)[\text{WFF}(p) \land \text{VAR}(v) \land [\left(\sim\text{FREE}(p, v) \land n = \text{cnd}(\text{unv}(v, p), p)\right) \lor \left(\text{FREE}(p, v) \land (\exists s \leq n)(\text{TERM}(s) \land \text{FREEFOR}(s, v, p) \land n = \text{cnd}(\text{unv}(v, p), \text{formsub}(p, v, s))))]]
\]

When \(\sim\text{FREE}(p, v)\), \(\text{formsub}(p, v, s) = p\), so that \(\text{cnd}(\text{unv}(v, p), p)\) is the same as \(\text{cnd}(\text{unv}(v, p), \text{formsub}(p, v, s))\); and when \(\text{FREE}(p, v)\), then \(s\) is smaller than the resultant formula. Either way, \(n\) is set to \(\text{cnd}(\text{unv}(v, p), \text{formsub}(p, v, s))\). The result, then, is primitive recursive and equivalent to our original intuitive specification.
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

Now, mostly from homework, GEN and the other axioms follow in short order. AXIOMAD6(n) and GEN(m, n) are straightforward and left as exercises. Axiom six is of the sort \(v = v \).

\[
\text{AXIOMAD6(n)} = (\exists v \leq n) [\text{VAR}(v) \land n = \langle = \cdot \rangle \ast v \ast v]
\]

Axiom seven is of the sort, \((x_i = y) \rightarrow (h^n \cdot x_1 \ldots x_i \ldots x_n = h^n \cdot x_1 \ldots y \ldots x_n)\) for function symbol \(h \) and variables \(x_1 \ldots x_n \) and \(y \). Because just a single replacement is made, we do not want to use \(\text{TERMSUB} \). However, we are in a position simply to list all the combinations in which one variable is replaced. In \(\mathcal{L}_{\text{nt}} \) the function symbol is \(S, + \) or \(\times \). So for some variable \(z \) the axiom is one of \(x = y \rightarrow S \cdot x = S \cdot y \) or \(x = y \rightarrow x \cdot z = y \cdot z \) or \(x = y \rightarrow x + z = y + z \) or \(x = y \rightarrow x \cdot x = y \cdot y \) or \(x = y \rightarrow x \cdot x = x \cdot y \). So for AXIOMAD7(n),

\[
(\exists s \leq n) (\exists t \leq n) (\exists x \leq n) (\exists y \leq n) [\text{VAR}(x) \land \text{VAR}(y) \land n = \text{cnd}(\langle = \cdot \rangle \ast x \ast y, \langle = \cdot \rangle \ast s \ast t) \land \\
(\langle s = \langle = \cdot \rangle \ast x \ast t = \langle = \cdot \rangle \ast y \ast \rangle) \lor \\
(\exists z \leq n) [\text{VAR}(z) \land ((\langle s = \langle = \cdot \rangle \ast x \ast z \ast t = \langle = \cdot \rangle \ast y \ast z \ast \rangle) \lor (\langle s = \langle = \cdot \rangle \ast z \ast x \ast t = \langle = \cdot \rangle \ast y \ast z \ast \rangle)] \lor \\
(\exists z \leq n) [\text{VAR}(z) \land ((\langle s = \langle = \cdot \rangle \ast x \ast z \ast t = \langle = \cdot \rangle \ast x \ast y \ast z \ast \rangle) \lor (\langle s = \langle = \cdot \rangle \ast z \ast x \ast t = \langle = \cdot \rangle \ast z \ast y \ast \rangle)]]\]
\]

So there is a term \(s \) and a term \(t \) which replaces one instance of \(x \) in \(s \) with \(y \). Then the axiom is of the sort \(= x y' = s t \). Axiom eight is similar. It is stated in terms of atomics of the sort \(R^n x_1 \ldots x_n \) for relation symbol \(R \) and variables \(x_1 \ldots x_n \). In \(\mathcal{L}_{\text{nt}} \) the relation symbol is the equals sign, so these atomics are of the form, \(x = y \). Again, because just a single replacement is made, we do not want to use \(\text{FORMSUB} \). However, we may proceed by analogy with AXIOMAD7. This is left as an exercise. Thus we have a complete AXIOMAD.

For \(\text{PRFAD} \) it is convenient to introduce a relation ICON(m, n, o) true when the formula with Gödel number \(o \) is an immediate consequence of ones numbered \(m \) and \(n \)

\[
\text{ICON}(m, n, o) = \text{MP}(m, n, o) \lor (m = n \land \text{GEN}(n, o))
\]

Then \(\text{PRFAD}(m, n) \) is straightforward on the model of \(\text{PRFADS} \).

The axioms of \(Q \) are particular formulas. So, for example, axiom Q2 is of the sort, \((S \cdot x = S \cdot y) \rightarrow (x = y) \). Let \(x \) and \(y \) be \(x_0 \) and \(x_1 \) respectively. Then,

\[
\text{AXIOMQ2(n)} = n = \langle S \cdot x = S \cdot y \rangle \rightarrow (x = y)^\dagger
\]

For “ease of reading” I do not reduce to unabbreviated form. Other axioms of \(Q \) may be treated in the same way. And now it is straightforward to produce AXIOMQ(n) that
adds Q1–Q7 to the axioms of AD. Then $\text{PRFQ}(m, n)$,

$$\exp(m, \text{len}(m) + 1) = n \land \hat{t} < m \land (\forall k < \text{len}(m))\{$$

AXIOMQ($\exp(m, k)) \lor

$$\exists i < k)(\exists j < k) \text{ICON}(\exp(m, i), \exp(m, j), \exp(m, k))\}$$

works on the model of PRFADS from before. It has been our primary end in this section to find $\text{PRFQ}(m, n)$. And we have it. However, it is worth noting that with AXIOMPA7(n),

$$\exists p \leq n)(\exists v \leq n)(\forall \text{WFF}(p) \land \text{VAR}(v) \land n = \text{cnd}[\text{cnj}(\text{forms}(p, v, S^1 \bullet v))], \text{unv}(v, cnd(p, \text{forms}(p, v))])$$

we have also AXIOMPA(n) and PRFPA(m, n) for PA (cnj appears in E12.30). It is a significant matter to have found these recursive relations! Now we put them to work.

*E12.31. (i) Complete the construction with recursive relations for AXIOMADS(n), GEN(m, n), AXIOMAD8(n), and so AXIOMAD(n) and PRFAD(m, n). (ii) Complete the remaining axioms for Robinson arithmetic, and then AXIOMQ(n). (iii) Construct also AXIOMPA(n) and PRFPA(m, n).

E12.32. Supposing now that our numbering system is modified to include $\forall \land \forall$ and $\exists \land \exists$, and with the obvious modification of FORMSEQ to accommodate the new operators, and supposing functions dsj(m, n), cnj(m, n) and exs(v, n) for disjunctions, conjunctions and existential quantifications respectively, construct UNABBSEQ(m, n, p, q) such that m numbers a formula sequence for p (which may contain abbreviations) and n numbers a sequence whose last member is the unabbreviated version of p. Then construct UNABB(p, q) where q is the number of the unabbreviation of p. Hint you may want to think again about “unabbreviating trees” from chapter 2 along with FSUBSEQ as a model.

12.5 Essential Results

In this section, we develop some first fruits of our labor. We shall need some initial theorems, important in their own right. With these theorems in hand, our results follow in short order. The results are developed and extended in later chapters. But it is worth putting them on the table at the start. (And some results at this stage provide a fitting cap to our labors.) We have expended a great deal of energy showing that, under appropriate conditions, recursive functions can be expressed and captured, and then that there exist certain recursive functions and relations including PRFQ. Now we put these results to work.
First Results of Chapter 12

T12.1 For an interpretation with the required variable-free terms: (a) If \(\mathcal{R} \) is a relation symbol and \(\mathcal{R} \) is a relation, and \(\mathcal{I}[\mathcal{R}] = \mathcal{R}(x_1 \ldots x_n) \), then \(\mathcal{R}(x_1 \ldots x_n) \) is expressed by \(\mathcal{R}x_1 \ldots x_n \). And (b) if \(h \) is a function symbol and \(h \) is a function and \(\mathcal{I}[h] = h(x_1 \ldots x_n) \) then \(h(x_1 \ldots x_n) \) is expressed by \(h \cdot x_1 \ldots x_n = v \).

T12.2 If total function \(f(x_1 \ldots x_n) \) is expressed by formula \(F(x_1 \ldots x_n, y) \); then if \(\langle \langle m_1 \ldots m_n \rangle, a \rangle \not\in f \), \(\mathcal{I}[\sim F(m_1 \ldots m_n, \bar{a})] = T \).

T12.3 On the standard interpretation \(\mathcal{N} \) for \(\mathcal{L}_{NT} \), (i) \(\mathcal{N}_d[s \leq t] = S \) iff \(\mathcal{N}_d[s] \leq \mathcal{N}_d[t] \), and (ii) \(\mathcal{N}_d[s < t] = S \) iff \(\mathcal{N}_d[s] < \mathcal{N}_d[t] \).

T12.4 On the standard interpretation \(\mathcal{N} \) for \(\mathcal{L}_{NT} \), (a) \(\mathcal{N}_d[(\forall x \leq t)P] = S \) iff for every \(\mathcal{O} \leq \mathcal{N}_d[t] \), \(\mathcal{N}_d[(\forall x \leq t)P] = S \) iff for every \(\mathcal{O} < \mathcal{N}_d[t] \), \(\mathcal{N}_d[(\forall x < t)P] = S \), (c) \(\mathcal{N}_d[(\exists x \leq t)P] = S \) iff for some \(\mathcal{O} \leq \mathcal{N}_d[t] \), \(\mathcal{N}_d[(\exists x \leq t)P] = S \) iff for some \(\mathcal{O} < \mathcal{N}_d[t] \), \(\mathcal{N}_d[(\exists x < t)P] = S \).

T12.5 On the standard interpretation \(\mathcal{N} \) of \(\mathcal{L}_{NT} \), each recursive function \(f(\bar{x}) \) is expressed by some formula \(F(\bar{x}, v) \). Corollary: On the standard interpretation \(\mathcal{N} \) of \(\mathcal{L}_{NT} \), each recursive relation \(r(\bar{x}) \) is expressed by some formula \(R(\bar{x}) \).

T12.6 If \(T \) includes \(Q \) and total function \(f(x_1 \ldots x_n) \) is captured by formula \(F(x_1 \ldots x_n, y) \), then if \(\mathcal{I}[\langle \langle m_1 \ldots m_n \rangle, a \rangle \not\in f] \), \(\mathcal{I}[\sim F(m_1 \ldots m_n, \bar{a})] = T \).

T12.7 For any \(\Delta_0 \) sentence \(P \), if \(\mathcal{N}[P] = T \), then \(Q \vdash \neg P \), and if \(\mathcal{N}[P] \neq T \), then \(Q \vdash \neg \neg P \).

T12.8 For any \(\Sigma_1 \) sentence \(P \) if \(\mathcal{N}[P] = T \), then \(Q \vdash \neg \neg P \).

T12.9 On the standard interpretation \(\mathcal{N} \) for \(\mathcal{L}_{NT} \), any recursive formula is captured by the original formula by which it is expressed in \(Q \).

T12.10 Suppose \(f(\bar{x}, y) \) results by recursion from functions \(g(\bar{x}) \) and \(h(\bar{x}, y, u) \) where \(g(\bar{x}) \) is captured by some \(\mathcal{G}(\bar{x}, z) \) and \(h(\bar{x}, y, u) \) by \(\mathcal{H}(\bar{x}, y, u, z) \). Then for the original expression \(F(\bar{x}, y, z) \) of \(f(\bar{x}, y) \), if \(\mathcal{I}[\langle \langle m_1 \ldots m_n \rangle, a \rangle \not\in f] \), \(Q \vdash \forall u[F(m_1 \ldots m_\bar{n}, \bar{u}) \rightarrow \bar{u} = u] \).

T12.11 If a total function \(f(x_1 \ldots x_n) \) is expressed by a \(\Delta_0 \) formula \(F(x_1 \ldots x_n, y) \), then there is a \(\Delta_0 \) formula \(\tilde{F} \) that captures \(f \) in \(Q \).

T12.12 For \(\tilde{F}'(\bar{x}, y) = F(\bar{x}, y) \land (\forall z \leq y)[F(\bar{x}, z) \rightarrow z = y] \), and for any \(n, Q \vdash \forall \bar{x} \forall y[\tilde{F}'(\bar{x}, \bar{y}) \rightarrow \bar{y} = y] \).

T12.13 If \(F(\bar{x}, y) \) expresses a total \(f(\bar{x}) \), then \(\tilde{F}'(\bar{x}, y) = F(\bar{x}, y) \land (\forall z < y)[F(\bar{x}, z) \rightarrow y = z] \) expresses \(f(\bar{x}) \).

T12.14 Any recursive function is captured by a \(\Sigma_1 \) formula in \(Q \). Corollary: Any recursive relation is captured by a \(\Sigma_1 \) formula in \(Q \).
12.5.1 Diagonalization

Consider a formula $P(x)$ with free variable x. The diagonalization of P is the formula $\exists x (P(x) \equiv \neg \forall \overline{\overline{x}} \land P(x))$. So the diagonalization of P is true just when P applies to its own Gödel number. To understand this nomenclature, consider a grid with formulas indexed by their Gödel numbers down the left and the integer Gödel numbers across the top.

\[
\begin{array}{cccc}
 & a & b & c & \ldots \\
\mathcal{P}_a(x) & \mathcal{P}_a(\overline{a}) & \mathcal{P}_a(\overline{b}) & \mathcal{P}_a(\overline{c}) \\
\mathcal{P}_b(x) & \mathcal{P}_b(\overline{a}) & \mathcal{P}_b(\overline{b}) & \mathcal{P}_b(\overline{c}) \\
\mathcal{P}_c(x) & \mathcal{P}_c(\overline{a}) & \mathcal{P}_c(\overline{b}) & \mathcal{P}_c(\overline{c}) \\
\vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

So, going down the main diagonal, formulas are of the sort $\mathcal{P}_n(\overline{n})$ where the formula numbered n is applied to its Gödel number n. Similarly, the diagonalization of P is true when P applies to $\overline{\mathcal{P}}$.

It is easy to see that there is a recursive function $\text{diag}(n)$ which takes the number of P and returns the number of its diagonalization. For this, let $\text{num}(n)$ be the Gödel number of the standard numeral for n. So,

\[
\text{num}(0) = \overline{\overline{0}} \\
\text{num}(Sy) = \overline{\overline{S}} \cdot \text{num}(y)
\]

So num is (primitive) recursive. Now $\text{diag}(n)$ is the Gödel number of the diagonalization of the formula with Gödel number n.

\[
\text{diag}(n) = \overline{\overline{\exists x (x \equiv \neg \forall \overline{\overline{x}} \land \text{num}(n) \land \neg \forall \overline{\overline{x}} \land n \land \neg \overline{\overline{x}})}
\]

It should be clear enough how to unabbreviate $\overline{\overline{\exists}}$ and $\overline{\overline{\land}}$. Since $\text{diag}(n)$ is recursive, it is expressed and captured by some $\text{Diag}(x, y)$. Now we are ready for a pair of results which assert that for any formula $\mathcal{F}(y)$ there is an \mathcal{H} such that there is an equivalence between \mathcal{H} and $\mathcal{F}(\overline{\overline{\mathcal{H}}})$. The results come in semantical and syntactical versions.

First the semantical version. For the standard interpretation \mathcal{N} of number theory consider a language including \mathcal{L}_{str}. Since $\text{diag}(n)$ is recursive, there is a formula $\text{Diag}(x, y)$ that expresses diag. Let $\mathcal{A}(x) = \exists y [\text{Diag}(x, y) \land \mathcal{F}(y)]$ and $a = \overline{\overline{\mathcal{A}}}$, the Gödel number of \mathcal{A}. Intuitively, \mathcal{A} says \mathcal{F} applies to the diagonalization of x. Then set $\mathcal{H} = \exists x (x = \overline{a} \land \exists y [\text{Diag}(x, y) \land \mathcal{F}(y)])$ and $h = \overline{\overline{\mathcal{H}}}$, the Gödel number of \mathcal{H}.

\(\mathcal{H}\) is the diagonalization of \(A\); so \(\text{diag}(a) = h\). Intuitively, \(\mathcal{H}\) says that \(\mathcal{F}\) applies to the diagonalization of \(A\), which is just to say that according to \(\mathcal{H}\), \(\mathcal{F}(\overline{\mathcal{H}})\).

T12.15. For any language including \(L_{\text{ex}}\) and formula \(\mathcal{F}(y)\) containing just the variable \(y\) free, there is a sentence \(\mathcal{H}\) such that \(N[\mathcal{H}] = N[\mathcal{F}(\overline{\mathcal{H}})]\). Carnap’s Equivalence.\(^{16}\)

For \(\mathcal{L}\) including \(L_{\text{ex}}\) and any formula \(\mathcal{F}(y)\), let \(\mathcal{H}\) be constructed as above.

(i) Suppose \(N[\mathcal{H}] = T\); then for any \(d\), \(N_d[\mathcal{H}] = S\); so for some \(m\), \(N_d(x|m)[x = \overline{a} \land \exists y (\text{Diag}(x, y) \land \mathcal{F}(y))] = S\); from the first conjunct, this happens for \(d(x|a)\); so with T10.2, \(N_d[\exists y (\text{Diag}(\overline{a}, y) \land \mathcal{F}(y))] = S\); so with \(\mathcal{S}\)'(3) and T10.2 again, there is some \(m\) such that \(N[\text{Diag}(\overline{a}, \overline{m})] = S\) and \(N[\mathcal{F}(\overline{m})] = S\); and since they have no free variables, with T8.7, \(N[\text{Diag}(\overline{a}, \overline{m})] = T\) and \(N[\mathcal{F}(\overline{m})] = T\); so by expression \(\{a, m\} \in \text{diag}\); but \(\text{diag}(a) = h\); so \(m = h\); so \(N[\mathcal{F}(\overline{h})] = T\); which is to say \(N[\mathcal{F}(\overline{\mathcal{H}})] = T\).

(ii) Suppose \(N[\mathcal{H}] \neq T\); then for any \(d\), \(N_d[\mathcal{H}] \neq S\); so for any \(m\) and in particular \(m = a\), \(N_d(x|m)[x = \overline{a} \land \exists y (\text{Diag}(x, y) \land \mathcal{F}(y))] \neq S\); so with T10.2, \(N_d[\exists y (\text{Diag}(\overline{a}, y) \land \mathcal{F}(y))] \neq S\); so for any \(m\) and in particular \(m = h\), \(N_d[\text{Diag}(\overline{a}, y) \land \mathcal{F}(y)] \neq S\); so with T10.2, \(N_d[\text{Diag}(\overline{a}, \overline{h})] \neq S\) or \(N_d[\mathcal{F}(\overline{h})] \neq S\); so \(N[\text{Diag}(\overline{a}, \overline{h})] \neq T\) or \(N[\mathcal{F}(\overline{h})] \neq T\); but \(\text{diag}(a) = h\); so by expression, \(N[\text{Diag}(\overline{a}, \overline{h})] = T\); so \(N[\mathcal{F}(\overline{h})] \neq T\); which is to say \(N[\mathcal{F}(\overline{\mathcal{H}})] \neq T\).

The reasoning skips some steps, however it is not a difficult exercise to fill in the details. Intuitively, this result should seem right, since \(\mathcal{H}\) says that \(\mathcal{F}(\overline{\mathcal{H}})\), \(\mathcal{H}\) is true just in case \(\mathcal{F}(\overline{\mathcal{H}})\) is true.

Now the syntactical version. Suppose \(T\) extends \(Q\); since \(\text{diag}(n)\) is recursive, there is a formula \(\text{Diag}(x, y)\) that captures \(\text{diag}\). Let \(A(x) = \exists y[\text{Diag}(x, y) \land \mathcal{F}(y)]\) and \(a = \overline{\Gamma A}\), the Gödel number of \(A\). Then set \(\mathcal{H} = \exists x(x = \overline{a} \land \exists y[\text{Diag}(x, y) \land \mathcal{F}(y)])\) and \(h = \overline{\Gamma H}\), the Gödel number of \(\mathcal{H}\). \(\mathcal{H}\) is the diagonalization of \(A\); so \(\text{diag}(a) = h\). All this is the same as before, except that \(\text{Diag}\) captures rather than expresses \(\text{diag}\). Intuitively, then, \(\mathcal{H}\) says that \(\mathcal{F}\) applies to the diagonalization of \(A\), which is just to say that according to \(\mathcal{H}\), \(\mathcal{F}(\overline{\mathcal{H}})\). This time we want to derive it.

T12.16. Let \(T\) be any theory that extends \(Q\). Then for any formula \(\mathcal{F}(y)\) containing just the variable \(y\) free, there is a sentence \(\mathcal{H}\) such that \(T \models \mathcal{H} \iff \mathcal{F}(\overline{\mathcal{H}})\). Diagonal Lemma.

\(^{16}\)This nomenclature is from Smith (An Introduction to Gödel’s Theorems, page 180), who traces the theorem’s first appearance to Carnap (while in unfamiliar notation, compare Carnap, Logical Syntax of Language §35).
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

665

Suppose T extends Q; since $\text{diag}(n)$ is recursive, there is a formula $\text{Diag}(x, y)$ that captures diag; but $\text{diag}(a) = h$; so $T \models \text{Diag}(\bar{a}, \bar{h})$ and $T \models \forall z (\text{Diag}(\bar{a}, z) \rightarrow \bar{h} = z)$.

1. $\text{Diag}(\bar{a}, \bar{h})$
 from capture

2. $\forall z (\text{Diag}(\bar{a}, z) \rightarrow \bar{h} = z)$
 from capture

3. $\exists x (x = \bar{a} \land \exists y [\text{Diag}(x, y) \land \mathcal{F}(y)])$
 3 abv

4. $j = \bar{a} \land \exists y [\text{Diag}(j, y) \land \mathcal{F}(y)]$
 A (g, 4E)

5. $j = \bar{a}$
 5 \land E

6. $\exists y [\text{Diag}(j, y) \land \mathcal{F}(y)]$
 5 \land E

7. $\exists y [\text{Diag}(j, k) \land \mathcal{F}(k)]$
 A (g, 7E)

8. $\mathcal{F}(k)$
 8 \land E

9. $\text{Diag}(j, k)$
 8 \land E

10. $\text{Diag}(\bar{a}, k)$
 10,6 =E

11. $\mathcal{F}(\bar{a}, k)$
 2 \lor E

12. $\bar{h} = k$
 12,11 \to E

13. $\bar{a} = \bar{a}$
 $= I$

14. $\mathcal{F}(\bar{h})$
 9,13 =E

15. $\mathcal{F}(\bar{a})$
 4,5-15 \exists E

16. $\mathcal{F}(\bar{h})$
 A g \leftrightarrow I

17. $\mathcal{F}(\bar{a})$
 1,17 \land I

18. $\exists x (x = \bar{a} \land \exists y [\text{Diag}(x, y) \land \mathcal{F}(y)])$
 18 \exists I

19. $\exists y [\text{Diag}(\bar{a}, y) \land \mathcal{F}(y)]$
 20,19 \land I

20. $\bar{a} = \bar{a}$
 $= I$

21. $\exists y [\text{Diag}(\bar{a}, y) \land \mathcal{F}(y)]$
 21 \exists I

22. \mathcal{F}
 22 abv

23. \mathcal{F}
 3-16,17-23 \leftrightarrow I

24. $\mathcal{H} \leftrightarrow \mathcal{F}(\bar{a})$
 24 abv

25. $\mathcal{H} \leftrightarrow \mathcal{F}(\bar{a})$
 24 abv

If n is such that $f(n) = n$, then n is said to be a fixed point for f. And by a (possibly strained) analogy, for these theorems \mathcal{H} is said to be a “fixed point” for $\mathcal{F}(y)$.

*E12.33. Let T be any theory that extends Q. For any formulas $\mathcal{F}_1(y)$ and $\mathcal{F}_2(y)$, generalize the diagonal lemma to find sentences \mathcal{H}_1 and \mathcal{H}_2 such that,

\[
T \models \mathcal{H}_1 \leftrightarrow \mathcal{F}_1(\overline{\mathcal{H}_2})
\]

\[
T \models \mathcal{H}_2 \leftrightarrow \mathcal{F}_2(\overline{\mathcal{H}_1})
\]
Demonstrate your result. Hint: You will want to generalize the notion of diagonalization so that the \textit{alternation} of formulas $\mathcal{F}_1(z), \mathcal{F}_2(z)$ with a formula \mathcal{P} is $\exists w \exists x \exists y (w \equiv \mathcal{P} \land x = \mathcal{F}_1(z) \land y = \mathcal{F}_2(z) \land \exists z (\mathcal{F}_1(z) \land \mathcal{P}))$. Then you can find a recursive function $\text{alt}(p, f_1, f_2)$ whose output is the number of the alternation of formulas numbered p, f_1 and f_2, where this function is captured by some formula $Alt(w, x, y, z)$ that itself has Gödel number a. Then $\text{alt}(\bar{a}, \bar{T}_1, \bar{T}_2)$ and $\text{alt}(\bar{a}, \bar{T}_2, \bar{T}_1)$ number the formulas you need for \mathcal{H}_1 and \mathcal{H}_2.

12.5.2 The Incompleteness of Arithmetic

Now we are ready for the result at which we have been aiming this whole chapter, the incompleteness of arithmetic. Corresponding to Carnap’s equivalence and then the diagonal lemma, the result comes in two forms. Say T is a \textit{recursively axiomatized} formal theory if there is a recursive relation $\text{Prft}(m, n)$ which holds of any m and n just in case m is the super Gödel number of a proof in T of the formula with Gödel number n. We have seen that Q is recursively axiomatized; but so is PA and any reasonable theory whose axioms and rules are recursively described.

Semantic Version

Corresponding to Carnap’s equivalence, the semantic version of our argument depends on expression and then the soundness of theory T.

T12.17. If T is a recursively axiomatized sound theory whose language includes \mathcal{L}_{NT}, then T is negation incomplete.

Consider a recursively axiomatized sound theory T whose language includes \mathcal{L}_{NT}. Since T is recursively axiomatized there is a recursive $\text{Prft}(x, y)$ to express it. Then, where $\mathcal{F}(y)$ is $\sim \exists x \text{Prft}(x, y)$, by Carnap’s equivalence, there is some \mathcal{H} such that $N[\mathcal{H}] = N[\sim \exists x \text{Prft}(x, \mathcal{H}^3)]$.

(i) Suppose $T \vdash \mathcal{H}$; then since T is sound, $N[\mathcal{H}] = T$; so by the equivalence, $N[\sim \exists x \text{Prft}(x, \mathcal{H}^3)] = T$; so for any d, $N[d][\sim \exists x \text{Prft}(x, \mathcal{H}^3)] = S$; so $N[d][\exists x \text{Prft}(x, \mathcal{H}^3)] \neq S$, and there is no m such that $N[d(x|m)][\text{Prft}(x, \mathcal{H}^3)] = S$; so with T10.2, $N[d][\text{Prft}(\bar{m}, \mathcal{H}^3)] \neq S$ and $N[\text{Prft}(\bar{m}, \mathcal{H}^3)] \neq T$; so by expression, $\langle m, h \rangle \notin \text{Prft}$ and since this is so for every m, $T \not\vdash \mathcal{H}$. Reject the assumption, $T \not\vdash \mathcal{H}$.

(ii) Suppose $T \vdash \sim \mathcal{H}$; then since T is sound, $N[\sim \mathcal{H}] = T$; so $N[\mathcal{H}] \neq T$; so by Carnap’s equivalence, $N[\sim \exists x \text{Prft}(x, \mathcal{H}^3)] \neq T$; so for some d, $N[d][\sim \exists x \text{Prft}(x, \mathcal{H}^3)] \neq S$; so $N[d][\exists x \text{Prft}(x, \mathcal{H}^3)] = S$; so for some m, $N[d(x|m)][\text{Prft}(x, \mathcal{H}^3)] = S$; so for some m, $N[d(x|m)][\text{Prft}(x, \mathcal{H}^3)] = S$.
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

S; and with T10.2, \(N_\varphi[\text{Prft}(\overline{m}, \overline{\text{H}^\varphi})] = S \); and since it has no free variables \(N_\varphi[\text{Prft}(\overline{m}, \overline{\text{H}^\varphi})] = T \); so by expression, \(\langle m, h \rangle \in \text{PRFT} \); so \(T \vdash \text{H} \); and since \(T \) is sound, \(N[\text{H}] = T \). This is impossible; reject the assumption, \(T \not\vdash \sim \text{H} \).

So if \(T \) is a recursively axiomatized sound theory whose language includes \(\mathcal{L}_{nt} \), then there is a sentence \(\text{H} \) such that neither it nor its negation is provable.

Syntactical Version

Corresponding to the diagonal lemma, the syntactical version of our argument depends on capture and then the consistency of theory \(T \). This time we get the result in two versions. The first, simpler version is somewhat weaker than we would like—but important nonetheless. For this, we need a new concept: Say a theory \(T \) is \(\omega \)-incomplete iff for some \(P(x) \), \(T \) can prove \(P(\overline{m}) \) for each \(\overline{m} \) in \(\mathcal{L}_{nt} \) but \(T \) cannot go on to prove \(\forall x \cdot P(x) \). Equivalently, \(T \) is \(\omega \)-incomplete iff \(T \) can prove \(\sim P(\overline{m}) \) for each \(\overline{m} \) in \(\mathcal{L}_{nt} \) but \(T \not\vdash \exists x \cdot P(x) \). And we might generalize to more than one place. Then we have seen that \(Q \) is \(\omega \)-incomplete: we can prove say, every sentence \(\overline{m} \times \overline{n} = \overline{m} \times \overline{n} \), but cannot go on to prove the corresponding universal generalization \(\forall x \forall y (x \times y = y \times x) \). Say \(T \) is \(\omega \)-inconsistent iff for some \(P(x) \), \(T \) proves \(P(\overline{m}) \) for every \(\overline{m} \) in \(\mathcal{L}_{nt} \) but also proves \(\sim \forall x \cdot P(x) \). Equivalently, \(T \) is \(\omega \)-inconsistent iff \(T \vdash \sim P(\overline{m}) \) for each \(\overline{m} \) in \(\mathcal{L}_{nt} \) and \(T \not\vdash \exists x \cdot P(x) \). On the standard interpretation \(N \) for \(\mathcal{L}_{nt} \), \(\omega \)-incompleteness is a theoretical weakness—there are some things true but not provable. But \(\omega \)-inconsistency is a theoretical disaster: It is not possible for the theorems of an \(\omega \)-inconsistent theory to be true on \(N \). \(\omega \)-inconsistency is not itself inconsistency—for we do not have any sentence such that \(T \vdash P \) and \(T \vdash \sim P \). But we do have sentences that cannot all be true on \(N \).17 Observe that inconsistent theories are automatically \(\omega \)-inconsistent—for from contradiction all consequences follow (including each \(P(\overline{m}) \) and also \(\sim \forall x \cdot P(x) \)); transposing, \(\omega \)-consistent theories are consistent. Now we show,

T12.18. If \(T \) is a recursively axiomatized theory extending \(Q \), then there is a sentence \(\text{H} \) such that (i) if \(T \) is consistent, \(T \not\vdash \text{H} \) and (ii) if \(T \) is \(\omega \)-consistent, \(T \not\vdash \sim \text{H} \).

Consider a recursively axiomatized theory \(T \) extending \(Q \). Since \(T \) is recursively axiomatized there is a recursive \(\text{PRFT}(x, y) \) and so \(\text{Prft}(x, y) \) to capture it. Then, where \(F(y) = \exists x \cdot \text{Prft}(x, y) \), by the diagonal lemma, there is some \(\text{H} \) such that \(T \vdash \text{H} \leftrightarrow \sim \exists x \cdot \text{Prft}(x, \overline{\text{H}^\varphi}) \).

17From T10.17 any consistent theory has a model. So a theory that is consistent but not \(\omega \)-consistent has a model. But the universe of a model for a theory that is consistent but not \(\omega \)-consistent must include some member to which no \(\overline{m} \) from \(\mathcal{L}_{nt} \) is assigned.
(i) Suppose T is consistent and $T \vdash \mathcal{H}$. Then since T is recursively axiomatized, for some m, $\text{PRFT}(m, \overline{h})$; and since T extends Q, by capture, $T \vdash \text{Prft}(\overline{m}, \overline{h})$; so by $(\exists!)$, $T \vdash \exists x \text{Prft}(x, \overline{\mathcal{H}})$; by DN and NB with the diagonal lemma $T \vdash \sim \mathcal{H}$; and since T is consistent, $T \not\vdash \mathcal{H}$. Reject the assumption: $T \not\vdash \mathcal{H}$.

(ii) Suppose T is ω-consistent and $T \vdash \sim \mathcal{H}$. Then by the diagonal lemma and NB, $T \vdash \exists x \text{Prft}(x, \overline{\mathcal{H}})$). Since T is ω-consistent, it is consistent; so $T \not\vdash \mathcal{H}$; so since T is recursively axiomatized, for all m, $(m, h) \not\in \text{PRFT}$; and since T extends Q, by capture, $T \vdash \sim \text{Prft}(\overline{m}, \overline{h})$; so since T is ω-consistent, $T \not\vdash \exists x \text{Prft}(x, \overline{h})$; which is to say $T \not\vdash \exists x \text{Prft}(x, \overline{\mathcal{H}})$. This is impossible: $T \not\vdash \sim \mathcal{H}$.

Since we believe that standard theories including Q and PA are consistent and ω-consistent, this is sufficient for their negation incompleteness. Still, it is possible to strengthen this result by dropping the special assumption of ω-consistency.

Enhanced Syntactical Version

Again we depend upon the diagonal lemma. Without the special assumption of ω-consistency we show that no consistent, recursively axiomatizable theory extending Q is negation complete. For this, we develop a few independently interesting preliminary theorems. Say that if f is a function from (an initial segment of) \mathbb{N} onto some set—so the objects in the set are f_0, f_1, . . . then f enumerates the members of the set. A set is recursively enumerable if there is a recursive function that enumerates it.

T12.19. If T is a recursively axiomatized formal theory then the set of theorems of T is recursively enumerable.

Consider pairs (p, t) where p numbers a proof of the theorem numbered t, each such pair itself associated with a number, $2^p \times 3^t$. Then there is a recursive function from the natural numbers to these codes as follows.

\[
\text{code}(0) = \mu z (\exists p < z)(\exists t < z)(z = 2^p \times 3^t \land \text{PRFT}(p, t)) \\
\text{code}(Sn) = \mu z (\exists p < z)(\exists t < z)(\text{code}(n) < z \land z = 2^p \times 3^t \land \text{PRFT}(p, t))
\]

So 0 is associated with the least integer that codes a proof of a theorem, 1 with the next, and so forth. Then,

\[
\text{ethrm}(n) = \exp(\text{code}(n), \hat{1})
\]

returns the Gödel number of theorem n in this ordering: $\text{code}(n)$ returns the code matched to n, and \exp the number of the coded theorem.
A given theorem might appear more than once in this enumeration, corresponding to codes with different proofs of it, but this is no problem, as we require only that each theorem appears in some position(s) of the list (and if it were important to eliminate duplicates, we might have added a conjunct \((∀x < z)(\text{exp}(x, 1) \neq \text{exp}(z, 1))\) to the condition for \(\text{code}(\text{Sn})\)). Observe that we have, for the first time, made use of regular minimization—so that this function is recursive but not primitive recursive. Supposing that \(T\) has an infinite number of theorems, there is always some \(z\) at which the characteristic function upon which the minimization operates returns zero—so that the function is well-defined. So the theorems of a recursively axiomatized formal theory \(T\) are recursively enumerable.

Suppose we add that \(T\) is consistent and negation \(\sim\) complete. Then the relation \(\text{prvt}(p)\) true just for numbers of formulas provable in \(T\)—for theorems of \(T\), is recursive. Intuitively, we can enumerate the theorems; then if \(T\) is consistent and negation \(\sim\) complete, for any sentence \(\mathcal{P}\), exactly one of \(\mathcal{P}\) or \(\sim\mathcal{P}\)—and if the one we find is \(\mathcal{P}\), then \(\mathcal{P}\) is a theorem. In particular, we find \(\mathcal{P}\) or \(\sim\mathcal{P}\) at the position, \(\mu n[\text{ethrmt}(n) = \sim\mathcal{P} \lor \text{ethrmt}(n) = \sim\sim\mathcal{P}]\). Recall that if \(p\) is the number of a formula \(\mathcal{P}\), \(\text{neg}(p)\) is the number of \(\sim\mathcal{P}\). Then,

\[\text{T12.20. For any recursively axiomatized, consistent, negation \(\sim\) complete formal theory } T \text{ the relation \(\text{prvt}(p)\) true just in case } p \text{ numbers a theorem of } T \text{ is recursive. Set,}\]

\[\text{pos}(p) = \mu n(\sim\text{sent}(p) \land n = 0) \lor (\text{sent}(p) \land (\text{ethrmt}(n) = p \lor \text{ethrmt}(n) = \text{neg}(p))))\]

\[\text{prvt}(p) = \text{ethrmt}(\text{pos}(p)) = p\]

First, \(\text{pos}(p)\) takes one of three values: if \(p\) does not number a sentence it is just 0; if \(p\) appears in the enumeration of theorems it is the position of \(p\); and if \(\text{neg}(p)\) appears in the enumeration of theorems, it is the position of \(\text{neg}(p)\). Then \(\text{prvt}(p)\) is true just in case \(\text{pos}\) takes the second option—just in case \(p\) numbers a sentence and the number of the sentence at \(\text{pos}(p)\) is \(p\) rather than \(\text{neg}(p)\). Observe that \(\text{pos}(p)\) returns 0 both when \(p\) does not number a sentence, and when \(p\) is the number of the first theorem in the enumeration. But when \(\text{pos}(p) = 0\), \(\text{ethrmt}(\text{pos}(p))\) always numbers the first theorem of the enumeration—so that if \(p\) is not the number of a sentence \(\text{prvt}(p)\) is false, and when \(p\) is the number of the first theorem it is true (as it should be). Again, we appeal to regular minimization. In this case, the function to which the minimization operator applies is regular just because \(T\) is negation \(\sim\) complete. So long as \(p\) numbers a sentence, the characteristic function for the second square brackets
is sure to go to zero for one disjunct or the other, and when \(p \) does not number a sentence, the function for the first square brackets goes to zero. So \(\text{pos}(p) \) and thus \(\text{PRVT}(p) \) are recursively defined.

As we have just seen, for a recursively axiomatized, consistent, negation complete theory \(\text{PRVT}(p) \) is recursive. Also, for any recursively axiomatized theory extending \(Q \) there is a recursive \(\text{PRFT}(x, y) \). But the existence of a recursive \(\text{PRFT} \) for some theory does not by itself imply that \(\text{PRVT} \) for that theory is recursive—in particular, prefixing \(\text{PRFT}(x, y) \) with an existential quantifier does not result in a recursive relation insofar as unbounded quantifications are not recursive. In fact, for a consistent theory \(T \) extending \(Q \), \(\text{PRVT} \) is not recursive. This results as a corollary to the following theorem.

T12.21. For any consistent theory \(T \) extending \(Q \) the relation \(\text{PRVT}(n) \), true when \(n \) numbers a theorem of \(T \), is not captured by any formula \(\text{Prvt}(y) \).

Consider a consistent theory \(T \) extending \(Q \); and suppose the relation \(\text{PRVT}(n) \), true just in case \(n \) numbers a theorem of \(T \), is captured by some \(\text{Prvt}(y) \). Then there is a formula \(\sim \text{Prvt}(y) \); and again since \(T \) extends \(Q \), by the diagonal lemma T12.16, there is a formula \(\mathcal{H} \) with Gödel number \(\Gamma \mathcal{H} = h \) such that,

\[
T \vdash \mathcal{H} \iff \sim \text{Prvt}(\Gamma \mathcal{H})
\]

Suppose \(T \vdash \mathcal{H} \); then \(h \in \text{PRVT} \); so by capture, \(T \vdash \text{Prvt}(\Gamma \mathcal{H}) \); so by NB, \(T \vdash \sim \mathcal{H} \); and since \(T \) is consistent \(T \nvdash \mathcal{H} \); this is impossible, reject the assumption: \(T \nvdash \mathcal{H} \). But then \(\mathcal{H} \) is not a theorem of \(T \) so that \(h \notin \text{PRVT} \); so by capture, \(T \vdash \sim \text{Prvt}(\Gamma \mathcal{H}) \); so by \(\leftrightarrow \text{E} \), \(T \vdash \mathcal{H} \). This is impossible; reject the original assumption: \(\text{PRVT} \) is not captured by any \(\text{Prvt} \).

Corollary: For any consistent theory \(T \) extending \(Q \) the relation \(\text{PRVT}(n) \), true just in case \(n \) is a Gödel number of a theorem of \(T \), is not recursive. Suppose otherwise, that \(\text{PRVT}(n) \) is recursive; then with T12.14 there is some formula \(\text{Prvt}(y) \) that captures \(\text{PRVT}(n) \); but by the main result, this is impossible.

From T12.20 for any recursively axiomatized, consistent, negation complete formal theory the relation \(\text{PRVT}(n) \) is recursive. But by the corollary to T12.21 for any consistent theory extending \(Q \) the relation \(\text{PRVT}(n) \) is not recursive. This already suggests the incompleteness result.

T12.22. No consistent, recursively axiomatizable theory extending \(Q \) is negation complete.
CHAPTER 12. RECURSIVE FUNCTIONS AND Q

Consider a theory \(T \) that is a consistent, recursively axiomatizable extension of \(Q \). Then since \(T \) is consistent and extends \(Q \), by the corollary to T12.21, the relation \(\text{PRVT}(n) \), true iff \(n \) is the Gödel number of a theorem, is not recursive. Suppose \(T \) is negation complete; then since \(T \) is also consistent and recursively axiomatized, by T12.20, \(\text{PRVT}(n) \) is recursive. This is impossible, reject the assumption: \(T \) is not negation complete.

And this time we have the syntactical incompleteness result without the special assumption of \(\omega \)-consistency.

From our theorems, it immediately follows that \(Q \) and \(PA \) are not negation complete. But similarly for any sound recursively axiomatized theory whose language includes \(\mathcal{L}_{\text{nt}} \), and for any consistent recursively axiomatized theory that extends \(Q \). We already knew that there were sentences \(\mathcal{P} \) such that \(Q \not\vdash \mathcal{P} \) and \(Q \not\vdash \neg \mathcal{P} \). But we did not already have this result for \(PA \); and we certainly did not have the result generally for recursively axiomatizable theories extending \(Q \). There are other ways to obtain this result. We explore some in chapters that follow. However, these first arguments are sufficient to establish the point.

E12.34. Let \(T \) be any consistent theory extending \(Q \) and suppose \(\text{SBTHRMT}(n) \) is a recursive relation such that if \(\text{SBTHRMT}(n) \) then \(n \) numbers a theorem of \(T \). So \(\text{SBTHRMT}(n) \) applies to numbers for a subset of the theorems of \(T \). Use the diagonal lemma to show that there is a sentence \(\mathcal{H} \) such that \(T \vdash \mathcal{H} \) but \(\mathcal{H} \not\in \text{SBTHRMT} \). So a recursive relation which applies only to theorems cannot apply to all the theorems.

E12.35. Use the version of the diagonal lemma from E12.33 to provide an alternate demonstration of T12.18. Hint: You will be able to set up sentences such that the first says the second is not provable, while the second says the first is provable.

E12.36. Use the version of the diagonal lemma from E12.33 to provide an alternate demonstration of T12.21.

E12.37. Consider a recursively axiomatized sound theory whose language includes \(\mathcal{L}_{\text{nt}} \). Show that, using Carnap’s Equivalence, reasoning parallel to that of T12.21 fails to show that \(\text{PRVT}(n) \) is not expressed by some \(\text{Prvt}(y) \)—all you get is some \(\mathcal{H} \) such that \(T \not\vdash \mathcal{H} \) and \(N[\mathcal{H}] = T \). (Indeed, for a recursively axiomatized theory, \(\text{PRVT}(n) \) is expressed by \(\exists x \text{Prft}(x, y) \).)
12.5.3 The Decision Problem

It is a short step from the result that if \(Q \) is consistent, then no recursive relation identifies the theorems of \(Q \), to the result that if \(Q \) is consistent, then no recursive relation identifies the theorems of predicate logic.

T12.23. For a language including \(\mathcal{L}_{ct} \), if \(Q \) is consistent then the relation \(\text{PRVPL}(n) \) true iff \(n \) numbers a theorem of predicate logic is not recursive.

Suppose otherwise, that \(Q \) is consistent and for a language including \(\mathcal{L}_{ct} \) some recursive relation \(\text{PRVPL}(n) \) is true iff \(n \) numbers a theorem of predicate logic. The axioms Q1–Q7 of \(Q \) are equivalent to their universal closures; with the axioms in this form, let \(Q \) be the conjunction of Q1–Q7; since Q1–Q7 in this form are particular sentences, \(Q \) is a particular sentence. Then \(Q \vdash \mathcal{P} \) iff \(Q \vdash \mathcal{P} \); by DT iff \(Q \vdash Q \rightarrow \mathcal{P} \). Let \(q = \neg Q \); then since \(\text{PRVPL} \) is recursive,

\[
\text{PRVQ}(n) = \text{PRVPL}(\text{cnd}(q, n))
\]

defines a recursive relation true iff \(n \) numbers a theorem of \(Q \). But, given the consistency of \(Q \), by the corollary to T12.21, \(\text{PRVQ}(n) \) is not recursive. Reject the assumption, if \(Q \) is consistent, then the relation \(\text{PRVPL}(n) \) true iff \(n \) numbers a theorem of predicate logic is not recursive.

And, of course, given that \(Q \) is consistent, it follows that no recursive relation numbers the theorems of predicate logic. With T12.21 no recursive relation numbers the theorems of \(Q \). Now we see that this result extends to the theorems of predicate logic. At this stage, these results may seem to be a sort of curiosity about what recursive functions do. They gain significance when, as we have already hinted can be done, we identify the recursive functions with the computable functions in chapter 14.\(^{18}\)

12.5.4 Tarski’s Theorem

Say \(\text{LTRUE}(n) \) is true iff \(n \) numbers a sentence of language \(\mathcal{L} \) true on the standard interpretation \(\mathcal{N} \). We do not assume that \(\text{LTRUE}(n) \) is recursive—only that, by definition, it applies to numbers of true sentences.

\(^{18}\)This result which applies to theorems in a language including \(\mathcal{L}_{ct} \) shows that no recursive relation identifies all the theorems of predicate logic. However in particular contexts theorems may be decidable. So for example from section 11.4 we have seen that theorems of \(S \) and \(L \) are decidable; also theorems of monadic predicate logic which includes only one-place relation symbols are decidable. See also page 812n4.
T12.24. If language \mathcal{L} includes \mathcal{L}_{NT}, then no formula Ltrue of \mathcal{L} expresses Ltrue. Suppose otherwise, that some $\text{Ltrue}(x)$ expresses $\text{Ltrue}(n)$ in \mathcal{L}. Then for any \mathcal{P} in \mathcal{L},

(A) $N[\text{Ltrue}(\overline{\mathcal{P}^n})] = T$ iff $\overline{\mathcal{P}^n} \in \text{Ltrue}$ iff $N[\mathcal{P}] = T$

And by Carnap’s equivalence there is a sentence \mathcal{F} (a false or liar sentence) in \mathcal{L} such that,

(B) $N[\mathcal{F}] = T$ iff $N[\sim \text{Ltrue}(\overline{\mathcal{F}^n})] = T$ iff $N[\text{Ltrue}(\overline{\mathcal{F}^n})] \neq T$

But then by (A), $N[\text{Ltrue}(\overline{\mathcal{F}^n})] = T$ iff $N[\mathcal{F}] = T$; by (B) iff $N[\text{Ltrue}(\overline{\mathcal{F}^n})] \neq T$. This is impossible; reject the original assumption: no formula $\text{Ltrue}(x)$ in \mathcal{L} expresses Ltrue. And since every recursive relation is expressed in \mathcal{L}_{NT}, neither is Ltrue recursive. This theorem explains our standard jump to the metalanguage when we give conditions like ST and SF. Nothing prevents stating truth conditions. Trouble results when a theory purports to give conditions for all the sentences in its own language—if Ltrue is a formula of \mathcal{L}, Carnap’s equivalence applies to it, and trouble ensues.

Observe that capture implies expression: So long as we use the same formulas for capture and expression, it is perhaps obvious that capture in a sound theory implies expression. Further, from T14.10 (to which you may find it interesting to refer) if a total function can be captured by a consistent recursively axiomatized theory then it is recursive; so by T12.5 it is expressed on the standard interpretation N for \mathcal{L}_{NT}. Thus, for some representative examples, the situation is as follows.

<table>
<thead>
<tr>
<th>relation</th>
<th>recursive</th>
<th>captured</th>
<th>expressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{PRFQ}(m, n)$</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$\text{PRVF}(n)$</td>
<td>X</td>
<td>X</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$\text{LTRUE}(n)$</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Recursive relations and functions are both captured and expressed. Captured relations and functions are recursive and expressed. But expression does not imply capture. So, $\exists x \text{Prf}q(x, n)$ expresses $\text{PRVF}(n)$; but by T12.21 there is no $\text{Prf}q$ by which PRVF is captured. And now we have seen a relation $\text{LTRUE}(n)$ not even expressed in \mathcal{L}_{NT}. But then we already knew from page 612 that some functions (and so relations) cannot be expressed in \mathcal{L}_{NT}. $\text{LTRUE}(n)$ is a specific, significant, example.

This is a decent start into the results of part IV of the text. In the following, we turn to deepening and extending them in different directions.
E12.38. For a language \mathcal{L} that includes \mathcal{L}_{ct}, suppose $\mathcal{SBTrue}(n)$ is a recursive relation such that if $\mathcal{SBTrue}(n)$ then n numbers a sentence true on \mathbb{N}. So $\mathcal{SBTrue}(n)$ applies to numbers for a subset of the truths on \mathbb{N}. Use Carnap’s equivalence to show that there is a sentence \mathcal{H} such that $\mathbb{N}[\mathcal{H}] = T$ but $\mathcal{T} \mathcal{H} \subseteq \mathcal{SBTrue}$. So a recursive function which applies only to truths cannot apply to all the truths.

E12.39. Say T is a theory of truth for its language \mathcal{L} just in case there is a formula $Ltrue(x)$ such that $T \vdash \mathcal{P} \leftrightarrow Ltrue(\overline{\mathcal{P}})$ for every \mathcal{P}. Use the diagonal lemma to show that no recursively axiomatized consistent theory extending \mathcal{Q} is a theory of truth for its own language \mathcal{L}.

E12.40. For each of the following concepts, explain in an essay of about two pages, so that (college freshman) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. The recursive functions and the role of the beta function in their expression and capture.

b. The essential elements from this chapter contributing to the proof of the incompleteness of arithmetic.

c. The essential elements from this chapter contributing to the proof of that no recursive relation identifies the theorems of predicate logic.

d. The essential elements from this chapter contributing to the proof of Tarski’s theorem.
Final Results of Chapter 12

T12.15 For any language including \mathcal{L}_{seq} and formula $\mathcal{F}(y)$ containing just the variable y free, there is a sentence \mathcal{H} such that $\mathbb{N}[\mathcal{H}] = \mathbb{N}[\mathcal{F}(\mathcal{H}^n)]$. Carnap’s Equivalence.

T12.16 Let T be any theory that extends Q. Then for any formula $\mathcal{F}(y)$ containing just the variable y free, there is a sentence \mathcal{H} such that $T \vdash \mathcal{H} \iff \mathcal{F}(\mathcal{H}^n)$. Diagonal Lemma.

T12.17 If T is a recursively axiomatized sound theory whose language includes \mathcal{L}_{seq}, then T is negation complete.

T12.18 If T is a recursively axiomatized theory extending Q, then there is a sentence \mathcal{H} such that (i) if T is consistent, $T \not\vdash \mathcal{H}$ and (ii) if T is ω-consistent, $T \not\vdash \sim \mathcal{H}$.

T12.19 If T is a recursively axiomatized formal theory then the set of theorems of T is recursively enumerable.

T12.20 For any recursively axiomatized, consistent, negation complete formal theory T the relation $\text{PRVT}(p)$ true just in case p numbers a theorem of T is recursive.

T12.21 For any consistent theory T extending Q the relation $\text{PRVT}(n)$, true when n numbers a theorem of T, is not captured by any formula $Prvt(y)$.

Corollary: For any consistent theory T extending Q the relation $\text{PRVT}(n)$, true just in case n is a Gödel number of a theorem of T, is not recursive.

T12.22 No consistent, recursively axiomatizable theory extending Q is negation complete.

T12.23 If Q is consistent, then the relation $\text{PRVPL}(n)$ true iff n numbers a theorem of predicate logic is not recursive.

T12.24 If language \mathcal{L} includes \mathcal{L}_{seq}, then no formula $L\text{true}$ of \mathcal{L} expresses $L\text{true}$. Tarski’s Theorem.
Chapter 13

Gödel’s Theorems

We have seen a demonstration of the incompleteness of arithmetic. In this chapter, we take another run at that result, this time by Gödel’s original strategy of producing particular sentences that are true iff not provable. This enables us to extend and deepen the incompleteness result, and puts us in a position to take up Gödel’s second incompleteness theorem, according to which theories (of a certain sort) are not sufficient for demonstrations of consistency. We begin with a section (13.1) devoted to Gödel’s first theorem. After that, sections 13.2–13.6 take up the second theorem.

13.1 Gödel’s First Theorem

The arguments for incompleteness from chapter 12 depended upon Carnap’s equivalence and the diagonal lemma. These are existential results: Under certain conditions, for a formula F, there is an H such that H is equivalent to $F(\overline{H})$. Correspondingly, our demonstrations of incompleteness were demonstrations that there is a formula such that neither it nor its negation is provable. But we do not thereby exhibit any particular formula such that neither it nor its negation is provable. Still, our reasoning for the existential results was constructive. This suggests the possibility of finding a particular sentence G such that $T \not \vdash G$ and $T \not \vdash \neg G$. This is what we do. Again, the arguments come in semantical and syntactical versions and depend upon diagonal results.

13.1.1 Diagonalization

Recall that the diagonalization of P is the formula $\exists x (x = \overline{P}^x \land P(x))$. From section 12.5.1, there is a recursive function diag(n) that returns the number of the
diagonalization of the formula with number \(n \). We begin with semantical and syntactical results parallel to Carnap’s equivalence and the diagonal lemma. Our reasoning is very much like that from section 12.5.1—to which you may find it helpful to refer.

First the semantic version. Consider some recursively axiomatized theory \(T \) whose language includes \(\mathcal{L}_{NT} \). Since \(\text{Prft}(m, n) \) and \(\text{diag}(n) \) are recursive, they are expressed by canonical formulas \(\text{Prft}(x, y) \) and \(\text{Diag}(x, y) \). Let \(A(z) = \exists y (\text{Diag}(z, y) \land \neg \exists x \text{Prft}(x, y)) \), and \(a = \neg A \). So \(A \) says nothing numbers a proof of the diagonalization of a formula with number \(z \). Then,

\[
\mathcal{G} = \exists z (z = a \land \exists y (\text{Diag}(z, y) \land \exists x \text{Prft}(x, y)))
\]

So \(\mathcal{G} \) is the diagonalization of \(A \), and intuitively \(\mathcal{G} \) “says” that nothing numbers a proof of it. Let \(g = \neg \mathcal{G} \). Observe that \(\mathcal{G} \) is defined relative to \(\text{Prft} \) for \(T \); so each \(T \) yields its own Gödel sentence (if it were not ugly, we might sensibly introduce subscripts \(\mathcal{G}_T \)). Now as before,

T13.1. For any recursively axiomatized theory \(T \) whose language includes \(\mathcal{L}_{NT} \),

\[
N[\mathcal{G}] = N[\neg \exists x \text{Prft}(x, \overline{\mathcal{G}})].\text{ Carnap’s result for } \mathcal{G}.
\]

Consider a recursively axiomatized theory \(T \) whose language includes \(\mathcal{L}_{NT} \) and the formula \(\mathcal{G} \) as described above. Then by reasoning as from T12.15, \(N[\mathcal{G}] = N[\neg \exists x \text{Prft}(x, \overline{\mathcal{G}})].\text{ Homework.} \)

And now the syntactical theorem. Since \(\text{Prft}(m, n) \) and \(\text{diag}(n) \) are recursive, in theories extending \(Q \) they are captured by canonical formulas \(\text{Prft}(x, y) \) and \(\text{Diag}(x, y) \). As above, let \(A(z) = \exists y (\text{Diag}(z, y) \land \neg \exists x \text{Prft}(x, y)) \), and \(a = \neg A \). So \(A \) says nothing numbers a proof of the diagonalization of a formula with number \(z \). Then, \(\mathcal{G} = \exists z (z = a \land \exists y (\text{Diag}(z, y) \land \exists x \text{Prft}(x, y))) \). So \(\mathcal{G} \) is the diagonalization of \(A \); let \(g \) be the Gödel number of \(\mathcal{G} \).

T13.2. Let \(T \) be any recursively axiomatized theory extending \(Q \); then \(T \vdash \mathcal{G} \leftrightarrow \neg \exists x \text{Prft}(x, \overline{\mathcal{G}}) \). \text{Diagonal result for } \mathcal{G}.

Since \(T \) is recursively axiomatized, there is a recursive \(\text{Prft} \) and since \(T \) extends \(Q \) there are \(\text{Prft} \) and \(\text{Diag} \) that capture \(\text{Prft} \) and \(\text{diag} \). From capture \(T \vdash \text{Diag}(\overline{\mathcal{G}}, \overline{g}) \), and \(T \vdash \forall z (\text{Diag}(\overline{\mathcal{G}}, z) \rightarrow \overline{g} = z) \). It follows that \(T \vdash \mathcal{G} \leftrightarrow \neg \exists x \text{Prft}(x, \overline{g}) \); which is to say, \(T \vdash \mathcal{G} \leftrightarrow \neg \exists x \text{Prft}(x, \overline{\mathcal{G}}) \). \text{Homework.}

So we have results parallel to Carnap’s equivalence and the diagonal lemma—only this time applied to sentence \(\mathcal{G} \).
E13.1. Let $\text{Odd}(y) = \exists w (y = 2w + 1)$. Find a sentence that is true iff its own number is odd. Motivate the stages of your construction as for the construction of \mathcal{G}.

E13.2. Provide reasoning for T13.1 which does not skip any steps.

*E13.3. Complete the demonstration of T13.2 by providing a derivation to show $T \vdash \mathcal{G} \iff \exists x \text{Prf}(x, \neg \mathcal{G} \upharpoonright x)$.

13.1.2 The Incompleteness of Arithmetic

Again we have a semantic result which requires expression and soundness, and a syntactical one which requires capture and consistency—where this latter result comes in two forms.

Simple Versions

Given the theorems from above, we begin with reasoning entirely parallel to that for T12.17 and T12.18.

T13.3. If T is a recursively axiomatized sound theory whose language includes \mathcal{L}_{Nat}, then T is negation incomplete.

Suppose T is a recursively axiomatized sound theory whose language includes \mathcal{L}_{Nat}. Reasoning as for T12.17, $T \not\vdash \mathcal{G}$ and $T \not\vdash \neg \mathcal{G}$. Homework.

T13.4. If T is a recursively axiomatized theory extending \mathcal{Q}, then if T is consistent $T \not\vdash \mathcal{G}$, and if T is ω-consistent, $T \not\vdash \mathcal{G}$.

Suppose T is a recursively axiomatized theory extending \mathcal{Q}. Reasoning as for T12.18 if T is consistent, $T \not\vdash \mathcal{G}$, and if T is ω-consistent, $T \not\vdash \neg \mathcal{G}$. Homework.

So we have the results from before only applied to the particular sentence \mathcal{G}. Further, it is a short step from T13.1 according to which $N[\mathcal{G}] = T$ iff $N[\neg \exists x \text{Prf}(x, \neg \mathcal{G} \upharpoonright x)] = T$ to the result that \mathcal{G} is true iff $T \not\vdash \mathcal{G}$. Since $T \not\vdash \mathcal{G}$, we have that \mathcal{G} is both unprovable and true.

T13.4 is roughly the form in which Gödel proved the incompleteness of arithmetic in 1931: If T is a consistent, recursively axiomatized theory extending \mathcal{Q}, then $T \not\vdash \mathcal{G}$; and if T is an ω-consistent, recursively axiomatized theory extending \mathcal{Q}, then $T \not\vdash \neg \mathcal{G}$. Since we believe that standard theories including \mathcal{Q} and \mathcal{PA} are consistent and ω-consistent, this sufficient for the incompleteness of arithmetic.
Rosser’s Sentence

But again it is possible to drop the special assumption of \(\omega \)-consistency. This time we proceed by means of a sentence somewhat different from \(G \).\(^1\) Recall that \(\text{neg}(n) \) is the Gödel number of the negation of the sentence with number \(n \). So \(\text{Prft}(m, \text{neg}(n)) \) obtains when \(m \) numbers a proof of the negation of the sentence numbered \(n \). Since it is recursive, it is captured by some \(\overline{Prft}(x, y) \). Set,

\[
RPrft(x, y) = Prft(x, y) \land (\forall w \leq x) \neg \overline{Prft}(w, y)
\]

So \(RPrft(x, y) \) just in case \(x \) numbers a proof of the sentence numbered \(y \) and no number less than or equal to \(x \) is a proof of the negation of that sentence. Now, working as before, set \(A'(z) = \exists y (\text{Diag}(z, y) \land \exists x RPrft(x, y)) \), and \(a = \overline{A'(z)} \). So \(A' \) says nothing numbers an \(R \)-proof of the diagonalization of a formula with number \(z \). Then,

\[
R = \exists z (z = a \land \exists y (\text{Diag}(z, y) \land \exists x RPrft(x, y)))
\]

So \(R \) is the diagonalization of \(A' \); let \(r \) be the Gödel number of \(R \). And \(R \) has the key syntactic property just like \(G \). Again, reasoning as for the diagonal lemma,

T13.5. Let \(T \) be any recursively axiomatized theory extending \(Q \); then \(T \vdash R \leftrightarrow \neg \exists x RPrft(x, \overline{R}) \). Diagonal result for \(R \).

You can show this just as for T13.2.

And now we can show that a consistent, recursively axiomatized theory extending \(Q \) proves neither \(R \) nor \(\neg R \). Reasoning is somewhat more involved, but still straightforward.

T13.6. If \(T \) is a consistent, recursively axiomatized theory extending \(Q \), then \(T \not\vdash R \) and \(T \not\vdash \neg R \).

Suppose \(T \) is a consistent recursively axiomatized theory extending \(Q \).

(i) Suppose \(T \vdash R \). Then by T13.5, \(T \vdash \neg \exists x RPrft(x, \overline{R}) \). Since \(T \) is recursively axiomatized, for some \(m, \text{Prft}(m, r) \); and since \(T \) extends \(Q \), by capture, \(T \vdash \text{Prft}(m, r) \). But by consistency, \(T \not\vdash \neg R \); so for all \(n \), and in particular all \(n \leq m \), \((n, r) \not\in \text{Prft} \); so by capture, \(T \vdash \neg \overline{Prft}(m, r) \); so by T8.23, \(T \vdash (\forall w \leq m) \neg \overline{Prft}(w, r) \); so \(T \vdash \overline{Prft}(m, r) \land (\forall w \leq m) \neg \overline{Prft}(w, r) \); so \(T \vdash RPrft(m, r) \);

\(^1\)Barkley Rosser, “Extensions of Some Theorems of Gödel and Church.”
so \(T \vdash \exists x \Prft(x, \bar{r}) \); and since \(T \) is consistent, \(T \not\vdash \neg \exists x \Prft(x, \bar{r}) \), which is to say, \(T \not\vdash \neg \exists x \Prft(x, \bar{r}) \). This is impossible; reject the assumption: \(T \not\vdash \mathcal{R} \).

(ii) Suppose \(T \vdash \neg \mathcal{R} \). Then since \(T \) is recursively axiomatized, for some \(m, \langle m, \bar{r} \rangle \in \Prft \); and since \(T \) extends \(Q \), by capture, \(T \vdash \Prft(m, \bar{r}) \). By consistency, \(T \not\vdash \mathcal{R} \); so for any \(n \), and in particular, any \(n \leq m, \langle n, \bar{r} \rangle \notin \Prft \); so by capture, \(T \vdash \neg \Prft(n, \bar{r}) \); and by T8.23, \(T \vdash (\forall w \leq \bar{m}) \neg \Prft(w, \bar{r}) \). Now reason as follows.

1. \(\neg \mathcal{R} \) from \(T \)
2. \(\Prft(m, \bar{r}) \) capture
3. \((\forall w \leq \bar{m}) \neg \Prft(w, \bar{r}) \) capture and T8.23
4. \(\mathcal{R} \leftrightarrow \exists x \Prft(x, \bar{r}) \) T13.5
5. \(\exists x \Prft(x, \bar{r}) \) 1.4 NB
6. \(\exists x[\Prft(x, \bar{r}) \land (\forall w \leq x) \neg \Prft(w, \bar{r})] \) 5 abv
7. \([\Prft(j, \bar{r}) \land (\forall w \leq j) \neg \Prft(w, \bar{r})] \) A (g, 6\(\exists \)E)
8. \(j \leq \bar{m} \lor \bar{m} \leq j \) T8.21
9. \(j \leq \bar{m} \) A (g, 8\(\lor \)E)
10. \(\Prft(j, \bar{r}) \) 7 \(\land \)E
11. \(\neg \Prft(j, \bar{r}) \) 3.9 (\(\forall \)E)
12. \(\bot \) 10.11 \(\bot \)I
13. \(\bar{m} \leq j \) A (g, 8\(\lor \)E)
14. \((\forall w \leq j) \neg \Prft(w, \bar{r}) \) 7 \(\land \)E
15. \(\neg \Prft(\bar{m}, \bar{r}) \) 14.13 (\(\forall \)E)
16. \(\bot \) 2.15 \(\bot \)I
17. \(\bot \) 8.9-12,13-16 \(\lor \)E
18. \(\bot \) 6.7-17 \(\exists \)E

So \(T \vdash \bot \); so \(T \vdash Z \land \neg Z \), and \(T \) is inconsistent. Reject the assumption, \(T \not\vdash \neg \mathcal{R} \).

In T13.4, with \(S \), we had no way to convert \(\exists x \Prft(x, \bar{g}) \) to a contradiction with \(\neg \Prft(\bar{0}, \bar{g}), \neg \Prft(\bar{1}, \bar{g}) \ldots \) without the appeal to \(\omega \)-consistency. We can, however, move from \(\neg \Prft(\bar{0}, \bar{r}), \neg \Prft(\bar{1}, \bar{r}) \ldots \neg \Prft(\bar{m}, \bar{r}) \) to a bounded quantification \((\forall w \leq \bar{m}) \neg \Prft(w, \bar{r}) \) or equivalently \((\exists w \leq \bar{m}) \neg \Prft(w, \bar{r}) \). Then the special nature of \(\mathcal{R} \) aids the argument: Suppose \(j \leq \bar{m} \); from \(RPrft(j, \bar{r}) \) it follows that \(\Prft(j, \bar{r}) \), and we contradict the bounded quantification in the usual way. Suppose \(\bar{m} \leq j \); from \(RPrft(j, \bar{r}) \) it follows that nothing less than \(j \) (including \(\bar{m} \)) numbers a proof of \(\neg \mathcal{g}(\bar{r}) \); but from the assumption that \(T \vdash \neg \mathcal{R} \) we have \(\Prft(\bar{m}, \bar{r}) \) and we contradict again. So \(T \not\vdash \mathcal{R} \) and \(T \not\vdash \neg \mathcal{R} \).
Let us close this section with some reflections on what we have shown: First, from the semantic argument a sound recursively axiomatized theory whose language includes L_{NT} is incomplete; from the syntactic argument a consistent recursively axiomatized theory extending Q is incomplete. Both apply to recursively axiomatized theories. The arguments work because a theory whose language includes L_{NT} expresses the recursive functions; and a theory extending Q captures the recursive functions. So the semantic result requires soundness and expression, and the syntactic requires consistency with capture. For soundness and consistency we have,

$$Q \text{ sound } \implies Q \text{ } \omega\text{-consistent } \implies Q \text{ is consistent}$$

So our results are progressively stronger as the assumptions have become correspondingly weaker. But for expression and capture,

$$\text{capture } \implies \text{expression}$$

So the requirement is increased as we move from expression to capture. These relations serve to locate the theories to which Gödel’s theorem applies: If a recursively axiomatized theory is sound and expresses the (primitive) recursive functions then it is incomplete, and if a recursively axiomatized theory is consistent and captures the recursive functions then it is incomplete. But when these conditions are not met then Gödel’s theorem does not demonstrate incompleteness.\(^2\)

Second, we have not shown that there are truths of L_{NT} not provable in any recursively axiomatizable consistent theory extending Q. Rather, what we have shown is that for any recursively axiomatizable consistent theory extending Q, there are some truths of L_{NT} not provable in that theory. For a given recursively axiomatizable theory, there will be a given relation $Prft(m, n)$ and $Prft(x, y)$ depending on the particular axioms of that theory—and so unique sentences G and R constructed as above. In particular, given that a theory cannot prove, say, R, we might simply add R to its axioms; then of course there is a derivation of R from the axioms of the revised theory! But then the new theory T' will generate a new relation $Prft'(m, n)$ and a new $Prft'(x, y)$ and so a new unprovable sentence R'. So any theory extending Q is negation incomplete.

But it is worth a word about what are theories extending Q. Any such theory should build in equivalents of the L_{NT} vocabulary $\emptyset, S, +,$ and \times—and should have

\(^2\)The historical order of Q and PA is the reverse of the order in which we have encountered them. PA emerged in the late 1800s, and Q only in 1950 (after the 1931 publication of Gödel’s result). Q was never supposed to be complete; rather it was an explicit weakening of PA, intended as a “minimal” system capable of capturing the recursive functions and so supporting Gödel’s theorem. Thus, again, we isolate the force of the incompleteness theorem: the syntactical result applies to recursively axiomatized consistent theories extending Q, but not to ones weaker than Q.
a predicate \(Nat(x) \) to identify a class of objects to count as the numbers. Then if the theory makes the axioms of Q true on these objects, it is incomplete. Straightforward extensions of Q are ones like PA which simply add to its axioms. But ordinary ZF set theory also falls into this category—for it is possible to define a class of sets, say, \(\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \ldots \) where any \(n \) is the set of all the numbers prior to it—along with operations on sets which obey the axioms of Q.\(^3\) It follows that ZF is negation incomplete. In contrast, the domain for the theory of real closed fields (RCF) includes all the entities required to do arithmetic; however the language of this theory does not have a predicate \(Nat(x) \) to pick out the natural numbers, and RCF cannot recapitulate the theory of natural numbers on any subclass of its domain; so our incompleteness theorem does not get a grip, and in fact this theory is complete (compare page 592). Observe, though, that it is a weakness in this theory of real numbers, its inability to specify a certain class that makes room for its completeness.

E13.4. Provide the reasoning to show T13.3 and T13.4.

E13.5. Demonstrate T13.5.

13.2 Gödel’s Second Theorem: Overview

We turn now to Gödel’s second incompleteness theorem on the unprovability of consistency. The discussion is divided into five main sections. First, in this section, Gödel’s second theorem is proved subject to three derivability conditions. Then we turn to the derivability conditions themselves. The first is easy. But the second and third require extended discussion. There is some background (section 13.3). Then discussion of the second condition (section 13.4), and the third condition (section 13.5). This completes the proof. We conclude with some reflections and consequences from our results (section 13.6). Textbooks ordinarily end their discussion of the second theorem with the demonstration from the derivability conditions, offering just some general perspective on how the conditions are to be obtained.\(^4\) However, even if you

\(^3\)For discussion, see any introduction to set theory, for example, Enderton, *Elements of Set Theory*, chapter 4. See also page 689.

\(^4\)So, for example, Boolos, Burgess and Jeffrey omit demonstrations with a remark that, “the proofs of the [second and third derivability conditions] are omitted from virtually all books on the level of this one, not because they involve any terribly difficult new ideas, but because the innumerable routine verifications they—and especially the last—require would take up too much time and patience” (*Computability and Logic*, 234). Smith devotes about three pages (*An Introduction to Gödel’s Theorems*, 258–60). The required verifications are not innumerable, but their number is large (sections 13.3–13.5 include some 60 numbered theorems with nearly 400 separately identified results)!
CHAPTER 13. GÖDEL’S THEOREMS

decide to bypass the details, this general perspective will be enhanced if you have some object at which to “wave” as you pass them by.

For this discussion we switch to theories including PA. The result is that PA and its extensions cannot prove their own consistency. The reason for this switch will become vivid in demonstration of the derivability conditions. Coinciding with the move to PA we revert to considering original rather than canonical formulas to capture recursive functions: this avoids some complication, and since PA has all the resources of Q, all our incompleteness results are preserved.5

Main argument. We have seen that for recursively axiomatized theories there is a recursive relation \(\text{Prft}(m, n) \). Since it is recursive, in theories extending Q, this relation is captured by a corresponding \(\text{Prft}(x, y) \). Let,

\[
\text{Prvt}(y) = \exists x \text{Prft}(x, y)
\]

So \(\text{Prvt}(y) \) just when something numbers a proof of the formula numbered \(y \)—when the formula numbered by \(y \) is provable. Insofar as the quantifier is unbounded, there is no suggestion that there is a corresponding recursive relation—in fact, we have seen from T12.21 that no recursive relation is true just of numbers for the theorems of Q.

Let,

\[
\text{Cont} = \sim \text{Prvt}(0 = S0)
\]

So \(\text{Cont} \) is true just in case there is no proof of \(0 = 1 \). There are different ways to express consistency, but for theories extending Q this does as well as any other. Let \(T \) extend Q. Suppose \(T \) is inconsistent; then it proves anything; so \(T \vDash 0 = 1 \). Suppose \(T \vdash 0 = 1 \); since \(T \) extends Q, \(T \vdash 0 \neq 1 \); so \(T \) proves a contradiction and is inconsistent. So \(T \) is inconsistent iff \(T \vdash 0 = 1 \); and, transposing, \(T \) is consistent iff \(T \not\vdash 0 = 1 \) (for further discussion see section 13.6.1). Notice that consistency sentences vary with the provability predicate—so instances of \(\text{Cont} \) are \(\text{Conq} \) for Q and \(\text{Conpa} \) for PA.

The second theorem is this simple result: Under certain conditions, if \(T \) is consistent, then \(T \not\vdash \text{Cont} \). If it is consistent, then \(T \) cannot prove its own consistency. Suppose the first theorem applies to \(T \), and suppose we could show,

5But the argument goes through for certain theories weaker than PA. Of relevance to Hilbert, it goes through for primitive recursive arithmetic (PRA)—whose theorems are like those of a system which adds to the axioms of Q the induction schema restricted to only \(\Pi_1 \) formulas. Though he is not entirely clear, arguably, PRA is Hilbert’s real theory \(R \) (see page 597). We set aside such concerns.
Then, given what has gone before, we could make the following very simple argument. Suppose T is a recursively axiomatized theory extending Q.

By T13.2, $T \vdash \Phi \iff \exists x \Prft(x, \ulcorner \Phi \urcorner)$, which is to say, $T \vdash \Phi \iff \sim \Prft(\ulcorner \Phi \urcorner)$; from this and (**), $T \vdash \Cont \rightarrow \Phi$; so if $T \vdash \Cont$ then $T \nvdash \Phi$; but from the first theorem (T13.4), if T is consistent, then $T \nvdash \Phi$; so if T is consistent, $T \nvdash \Cont$.

So the argument reduces to showing (**). Observe that in reasoning for T13.4 we have already shown, T is consistent $\implies T \nvdash \Phi$. Suppose T satisfies the following derivability conditions.

\begin{enumerate}
 \item [D1.] If $T \vdash \Phi$ then $T \vdash \Box \Phi$
 \item [D2.] $T \vdash \Box(\Phi \rightarrow \Psi) \rightarrow (\Box \Phi \rightarrow \Box \Psi)$
 \item [D3.] $T \vdash \Box \Phi \rightarrow \Box \Box \Phi$
\end{enumerate}

Then we shall be able to show $T \vdash \Cont \rightarrow \sim \Box \Phi$.

The utility of \Box in this context is that D1–D3 are exactly the conditions that define a standard modal logic, K4—and it is not surprising that provability should correspond to a kind of necessity. There is an elegant natural derivation system for this modal logic. For this you might check out Roy, “Natural Derivations for Priest” §2 (but in the nomenclature there borrowed from Priest, the system is NK). However rather
than explain and introduce a new derivation system, we obtain a version of K4 simply by adding A1–A3 and MP from ADs to D1–D3. So K4 has D1 as a new rule, and D2 and D3 as new axioms. Since A1–A3 and MP remain, we have all the theorems from before. Our proof of DT does not, however, extend in a straightforward way to include the new rule; DT is fine for derivations with just A1–A3 and MP; but in K4 derivations where the new rule is involved, we set DT to the side. As a simple K4 example,

\[(A)\]

1. \(\neg \varphi \rightarrow (\varphi \rightarrow \psi)\)
2. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))\)
3. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow [\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))]\)
4. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow [\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))]\)
5. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow [\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))]\)
6. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow [\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))]\)
7. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow [\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))]\)
8. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow [\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))]\)
9. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow [\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))]\)
10. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow [\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))]\)
11. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow [\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))]\)
12. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow [\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))]\)
13. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow [\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))]\)
14. \(\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow [\Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))]\)

So \(\vdash \Box (\neg \varphi \rightarrow (\varphi \rightarrow \psi))\).

Now, given that \(T \vdash \varphi \rightarrow \exists ! \text{Prft}(x, \overline{G}^\varphi)\) from T13.2, we shall be able to show that \(T \vdash \text{Cont} \rightarrow \neg \Box \varphi\).

T13.7. Let \(T\) be a recursively axiomatized theory extending Q. Then supposing \(T\) satisfies the derivability conditions and so the K4 logic of provability, \(T \vdash \text{Cont} \rightarrow \neg \text{Prvt}(\overline{G}^\varphi)\).

1. \(\varphi \rightarrow \neg \Box \varphi\)
2. \(\Box (\varphi \rightarrow \neg \Box \varphi)\)
3. \(\Box (\varphi \rightarrow \neg \Box \varphi) \rightarrow (\varphi \rightarrow \Box (\varphi \rightarrow \neg \Box \varphi))\)
4. \(\Box (\varphi \rightarrow \neg \Box \varphi) \rightarrow (\varphi \rightarrow \Box (\varphi \rightarrow \neg \Box \varphi))\)
5. \(\Box (\varphi \rightarrow \neg \Box \varphi) \rightarrow (\varphi \rightarrow \Box (\varphi \rightarrow \neg \Box \varphi))\)
6. \(\Box (\varphi \rightarrow \neg \Box \varphi) \rightarrow (\varphi \rightarrow \Box (\varphi \rightarrow \neg \Box \varphi))\)
7. \(\Box (\varphi \rightarrow \neg \Box \varphi) \rightarrow (\varphi \rightarrow \Box (\varphi \rightarrow \neg \Box \varphi))\)
8. \(\Box (\varphi \rightarrow \neg \Box \varphi) \rightarrow (\varphi \rightarrow \Box (\varphi \rightarrow \neg \Box \varphi))\)
9. \(\Box (\varphi \rightarrow \neg \Box \varphi) \rightarrow (\varphi \rightarrow \Box (\varphi \rightarrow \neg \Box \varphi))\)
10. \(\Box (\varphi \rightarrow \neg \Box \varphi) \rightarrow (\varphi \rightarrow \Box (\varphi \rightarrow \neg \Box \varphi))\)
11. \(\Box (\varphi \rightarrow \neg \Box \varphi) \rightarrow (\varphi \rightarrow \Box (\varphi \rightarrow \neg \Box \varphi))\)
12. \(\Box (\varphi \rightarrow \neg \Box \varphi) \rightarrow (\varphi \rightarrow \Box (\varphi \rightarrow \neg \Box \varphi))\)
13. \(\Box (\varphi \rightarrow \neg \Box \varphi) \rightarrow (\varphi \rightarrow \Box (\varphi \rightarrow \neg \Box \varphi))\)
14. \(\Box (\varphi \rightarrow \neg \Box \varphi) \rightarrow (\varphi \rightarrow \Box (\varphi \rightarrow \neg \Box \varphi))\)

Which is to say, \(T \vdash \text{Cont} \rightarrow \neg \text{Prvt}(\overline{G}^\varphi)\).

As usual for an axiomatic derivation, the reasoning is not entirely transparent. However we are at the stage where, given the derivability conditions, \(T\) proves the result. Given this, reason as before,

\[6\]While K4 correctly represents the derivability conditions, it is not a complete logic of provability. We get a complete system if we add to K4 a rule according to which from \(\Box \varphi \rightarrow \varphi\) we may infer \(\varphi\). For discussion see section 13.6.2 and Boolos, *The Logic of Provability.*
T13.8. Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies the derivability conditions, if T is consistent, $T \nvdash Cont$.

Suppose T is a recursively axiomatized theory extending Q that satisfies the derivability conditions. Then by T13.7, $T \vdash Cont \rightarrow \neg PrvT(\neg Cont)$; and by T13.2, $T \vdash \neg Cont \leftrightarrow \neg PrvT(\neg Cont)$; so $T \vdash Cont \rightarrow \neg Cont$; so if $T \vdash Cont$ then $T \vdash \neg Cont$; but from the first incompleteness theorem (T13.4), if T is consistent, then $T \nvdash \neg Cont$; so if T is consistent, $T \nvdash Cont$.

One might wonder about the significance of this theorem: If T were inconsistent, it would prove $Cont$. And from the theorem, if T is a recursively axiomatized theory extending Q that satisfies the derivability conditions and $T \vdash Cont$, then T is inconsistent! So a failure to prove $Cont$ is no reason to think that T is inconsistent. The interesting point here results from using one theory to prove the consistency of another. Recall the main Hilbert strategy as outlined in the introduction to part IV; a key component is the demonstration by means of some real theory R that an ideal theory I is consistent. But supposing that PA cannot prove its own consistency, we can be sure that no weaker theory can prove the consistency of PA. And if PA cannot prove even the consistency of PA, then PA and theories weaker than PA cannot be used to prove the consistency of theories stronger than PA. So a leg of the Hilbert strategy seems to be removed. Observe, however, that the theorem does not show that the consistency of PA is unprovable: A theory stronger than PA at least in some respects might still prove the consistency of PA. So for example, we might consider a theory PA^* like PA but with the addition of $Cons$ as an axiom. Then trivially PA^* proves $Cons$. Of course, as a means of demonstrating the consistency of PA such an argument assumes that which is to be shown. A non-question-begging demonstration of the consistency of PA by a strengthened theory requires some reason for accepting the soundness of the stronger theory that is not already a reason to think that PA is consistent.8

Another theorem is easy to show, and left as an exercise.

7And the same goes for Hilbert’s PRA (see page 683n5).
Hints: (i) Show that $T \vdash Cont \rightarrow \neg \Box Cont$; you can do this starting with $Cont \rightarrow \neg \Box \emptyset$ from T13.7 and $\neg \Box \emptyset \rightarrow \emptyset$ from T13.2. Then (ii) show $T \vdash \neg \Box Cont \rightarrow Cont$; for this, use T3.40 with T3.9 to show $T \vdash \emptyset = \top \rightarrow Cont$; then you should be able to obtain $\neg \Box Cont \rightarrow \neg \Box (\emptyset = \top)$ which is to say $\neg \Box Cont \rightarrow Cont$. Together these give the desired result.

From this theorem, supposing the derivability conditions, $Cont$ is another P which, like G, is such that $T \vdash P \iff \neg \mathbf{Prvt}(\ul{P})$; so $Cont$ is another fixed point for $\neg \mathbf{Prvt}(x)$. It follows that $Cont$ is another sentence such that both it and its negation are unprovable. Interestingly, $Cont$ uses the notion of provability, but is not constructed so as to say anything about its own provability—and so this instance of incompleteness does not depend on self-reference for the unprovable sentence.

We have shown that the second theorem holds for a theory if it meets the derivability conditions. But this is not to show that the theorem holds for any theories! In order to tie the result to something concrete, we turn now to showing that PA meets the derivability conditions, and so that PA and theories extending PA satisfy the theorem.

The first condition. Demonstration of the first condition is simple.

T13.10. Suppose T is a recursively axiomatized theory extending Q. Then if $T \vdash P$, then $T \vdash \Box P$.

Suppose $T \vdash P$; since T is recursively axiomatized, for some m, $\mathbf{Prft}(m, \ul{P})$; and since T extends Q, there is a \mathbf{Prft} that captures \mathbf{Prft}; so $T \vdash \mathbf{Prft}(\ul{m}, \ul{P})$; so by \exists, $T \vdash \exists x \mathbf{Prft}(x, \ul{P})$; so $T \vdash \mathbf{Prvt}(\ul{P})$; so $T \vdash \Box P$.

The next conditions are considerably more difficult. We build gradually to the required results in PA.

E13.6. Using corner quotes and overlines, unabbreviate $\Box P \rightarrow \Box \Box P$.

E13.7. Show that $\vdash_{\mathcal{K}_d} (\Box (P \land Q)) \rightarrow (\Box P \land \Box Q)$. Hint: as a preliminary result, use T9.4 to show $A \rightarrow B$, $A \rightarrow C \vdash_{AD} A \rightarrow (B \land C)$.

E13.8. (a) Produce derivations to show both directions of the biconditional in T13.9.
 (b) Use your result to demonstrate that T is negation incomplete—that if T is recursively axiomatized theory extending Q that satisfies the derivability conditions, then if T is consistent, $T \nvdash Cont$, and if T is ω-consistent, $T \nvdash \neg Cont$.
Additional Theorems of PA

*T13.11. The following are theorems of PA:

(a) PA ⊢ (r ≤ s ∧ s ≤ t) → r ≤ t
(b) PA ⊢ (r < s ∧ s < t) → r < t
(c) PA ⊢ (r ≤ s ∧ s < t) → r < t
(d) PA ⊢ ∅ ≤ t
(e) PA ⊢ ∅ < St
(f) PA ⊢ ∅ ≠ t ↔ ∅ < t
(g) PA ⊢ ∅ ≠ St ↔ ∅ < t
(h) PA ⊢ ∅ < t → ∃z (t = Sx) z not in t.
(i) PA ⊢ t < St
(j) PA ⊢ s ≤ t ↔ Ss ≤ St
(k) PA ⊢ s < t ↔ Ss < St
(l) PA ⊢ s < t ↔ Ss ≤ t
(m) PA ⊢ s ≤ t ↔ s < t ∨ s = t
(n) PA ⊢ s < St ↔ s < t ∨ s = t
(o) PA ⊢ s < St ↔ s ≤ t
(p) PA ⊢ s ≤ St ↔ s ≤ t ∨ s = St
(q) PA ⊢ s < t ∨ s = t ∨ t < s
(r) PA ⊢ s ≤ t ∨ t < s
(s) PA ⊢ t < s → t ≠ s
(t) PA ⊢ s ≤ t ↔ t ≠ s
(u) PA ⊢ (s ≤ t ∧ t ≤ s) → s = t
(v) PA ⊢ s ≤ s + t
(w) PA ⊢ r ≤ s ↔ r + t ≤ s + t
(x) PA ⊢ r < s ↔ r + t < s + t
(y) PA ⊢ (r ≤ s ∧ t ≤ u) → r + t ≤ s + u
(z) PA ⊢ (r < s ∧ t ≤ u) → r + t < s + u
(aa) PA ⊢ ∅ < t → s ≤ s × t
(ab) PA ⊢ r ≤ s → r × t ≤ s × t
(ac) PA ⊢ ∅ < r × s → ∅ < s
(ad) PA ⊢ (T < r ∧ ∅ < s) → s < r × s
(ae) PA ⊢ (∅ < t ∧ r < s) → r × t < s ∧ t
(af) PA ⊢ (∀x < n)∃y (x < y) y < x < n (fy ≤ n) (fy ≤ x) (fy ≤ y)
(ag) PA ⊢ ∀x (x ≤ x) p x x → ∀x ∃x (fy ≤ n) (fy ≤ x) (fy < n) (fy < x) (fy < y)
(ah) PA ⊢ (∃x (x ≤ x) p x x → ∃x ∃x (fy ≤ n) (fy < x) (fy < y)) → ∀x ∃x (fy ≤ x) (fy ≤ n) (fy < x) (fy < y)
(ai) PA ⊢ (x p x x → ∃x (fy ≤ x) (fy ≤ n) (fy < x) (fy < y)) → least number principle

Demonstrations are left for homework. Some are related to results we obtained in chapter 8 for Q. Compared to say (q), there we had that for any n, Q ⊢ t < t = t ∨ t; with PA, the induction is in the theory rather than in the metalanguage, and we obtain the universal quantifier (or rather, an arbitrary term which may be a free variable) in the object formula.
13.3 The Derivability Conditions: Background

As remarked above, much of what we do is (roughly) parallel to reasoning applied to recursive functions: we define coordinate functions into PA and demonstrate parallel results about them. Reasoning includes the following stages.

- PA defines functions and relations “coordinate” to ones from chapter 12
- PA proves a series of results about defined functions and relations
- PA proves the derivability conditions

We begin with definitions. Then we accumulate results about the defined notions that finally put us in a position to demonstrate the derivability conditions themselves. This section develops the first box. Then section 13.4 develops boxes two and three with respect to the second condition and, building on that, section 13.5 with respect to the third condition.

So the focus of this section is on definition. We begin with some remarks on what is required to introduce constant, function, operator, and relation symbols into PA.

Then we turn to showing that PA in fact defines functions and relations corresponding to the recursive functions and relations of chapter 12.

13.3.1 Remarks on Definition

In theories extending Q, a recursive function \(\text{rec}(\vec{x}) \) is captured by a formula \(\text{Rec}(\vec{x}, y) \). Now we shall want a defined function symbol \(\text{rec}(\vec{x}) \) that is matched to \(\text{Rec}(\vec{x}, y) \) so that \(\text{PA} \vdash \text{rec}(\vec{x}) = y \leftrightarrow \text{Rec}(\vec{x}, y) \). We shall be able to operate on the term \(\text{rec}(\vec{x}) \) very much as upon the recursive \(\text{rec}(\vec{x}) \). Up to this point, we have taken a language, as \(\mathcal{L}_Q \) or \(\mathcal{L}_{\text{ext}} \), as basic and introduced any additional symbols, for example \(\leq \), as means of abbreviation for expressions in the original language. But in the present context it will be convenient to extend the language by the definition of new symbols.

So, for example, given a theory \(T \) in language \(\mathcal{L} \), we might introduce symbols and corresponding axioms to obtain \(T' \) and \(\mathcal{L}' \) as follows,

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Axiom</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exists)</td>
<td>(\exists x \mathcal{P} \leftrightarrow \neg \forall x \sim \mathcal{P})</td>
<td>(T \vdash \exists y \forall x (x \neq y))</td>
</tr>
<tr>
<td>(\leq)</td>
<td>(x \leq y \leftrightarrow \exists z (z + x = y))</td>
<td></td>
</tr>
<tr>
<td>(\odot)</td>
<td>(y = \odot \leftrightarrow \forall x (x \neq y))</td>
<td></td>
</tr>
<tr>
<td>(S)</td>
<td>(y = Sx \leftrightarrow \forall z [z \in y \leftrightarrow (z \in x \lor z = x)])</td>
<td>(T \vdash \exists y \forall z [z \in y \leftrightarrow (z \in x \lor z = x)])</td>
</tr>
</tbody>
</table>
We are familiar with the first two cases. Strictly, the first lists an axiom schema, representing different axioms for different instances of \mathcal{P}. So far, we have thought of these as abbreviations—and as such the listed axioms are of the sort $Q \leftrightarrow Q$ with the abbreviated form on one side, and the unabbreviated on the other. A theory is not extended by the addition of an “axiom” of this sort. But is possible to see the symbols as new vocabulary. In all four cases T' includes an axiom to define the symbol. The last two require also a uniqueness condition in the original T. For these, let $\exists y \mathcal{P}(y)$ abbreviate $\exists y[\mathcal{P}(y) \land \forall z(\mathcal{P}(z) \to z = y)]$ or equivalently $\exists y \mathcal{P}(y) \land \forall y \forall z[(\mathcal{P}(y) \land \mathcal{P}(z)) \to y = z]$ so that exactly one thing is \mathcal{P}. Then the cases for a constant and function symbol are standard examples from set theory, where zero and successor are defined (taken together, these work as described on page 682).

Details of the examples are not important; examples are meant only to illustrate the idea of definition. We begin with a formal account, and then some basic applications.

Basic Account

Consider some theory T and language \mathcal{L}. We will consider a language \mathcal{L}' extended with some new symbol and theory T' extended with a corresponding axiom. There are separate cases for a relation symbol, operator symbol, constant symbol and function symbol.

Relation symbol. To introduce a new relation symbol $\mathcal{R}\vec{x}$ we require an axiom in the extended theory such that,

$$T' \vdash \mathcal{R}(\vec{x}) \leftrightarrow Q(\vec{x})$$

where $Q(\vec{x})$ is in \mathcal{L}. So \mathcal{R} is defined by formula Q. Then for a formula F' including the new symbol, there should be a conversion C such that $C[F'] = F$ for F in the original \mathcal{L}, and

$$T' \vdash F' \quad \text{iff} \quad T \vdash C[F']$$

So $C[F']$ is like our unabbreviated formula, always available in the original T when F' is a theorem of T'. The conversion for a relation $\mathcal{R}\vec{x}$ is straightforward. Make sure the bound variables of Q do not overlap the variables of \vec{x}. Then $C[F'] = F'_R^{x_1}$. So, from the example above,

$$T' \vdash x \leq y \leftrightarrow \exists z(z + x = y).$$

So $\mathcal{R}(x, y) = x \leq y$ and $Q(x, y) = \exists z(z + x = y)$. Suppose $F' = \forall z(a \leq z)$. Then we want to instantiate x and y from the axiom to a and z. But z is not
free for \(y \) in the axiom. We solve the problem by revising bound variables; so \(T' \vdash x \leq y \leftrightarrow \exists w(w + x = y) \) and then \(T' \vdash a \leq z \leftrightarrow \exists w(w + a = z) \). So \(\mathcal{C}[\mathcal{F}'] \) replaces \(\langle a \leq z \rangle \) in \(\mathcal{F}' \) with \(\exists w(w + a = z) \) to obtain \(\forall z \exists w(w + a = z) \).

Operator symbol. Extend notation in the obvious way so that \(\mathcal{O}[\tilde{\mathcal{P}}] \) indicates that operator symbol \(\mathcal{O} \) operates on formulas \(\mathcal{P}_1, \ldots, \mathcal{P}_n \) from some class \(\mathcal{P} \) (usually \(\mathcal{P} \) will be the set of all formulas, but we allow for restricted versions). To introduce a new operator symbol \(\mathcal{O}[\tilde{\mathcal{P}}] \) we require axioms in the extended theory such that,

\[
T' \vdash \mathcal{O}[\tilde{\mathcal{P}}] \leftrightarrow \mathcal{Q}[\tilde{\mathcal{P}}]
\]

where \(\mathcal{Q}[\tilde{\mathcal{P}}] \) is an expression in \(\mathcal{L} \). Again for \(\mathcal{F}' \) including the new symbol, there should be a conversion \(\mathcal{C} \) such that \(\mathcal{C}[\mathcal{F}'] = \mathcal{F} \) for \(\mathcal{F} \) in the original \(\mathcal{L} \) and \(T \vdash \mathcal{F}' \) iff \(T \vdash \mathcal{C}[\mathcal{F}'] \). The operator \(\mathcal{O} \) may have multiple occurrences in \(\mathcal{F}' \), some within the scope of others. In this case, replace occurrences one by one, beginning with ones that have the most narrow scope (much as for unabbreviation in chapter 2). Given this, set \(\mathcal{C}[\mathcal{F}'] = \mathcal{F}'_{\mathcal{O}[\tilde{\mathcal{P}}]} \). Thus, for the existential quantifier case above, suppose \(\mathcal{F}' = \forall x \exists z R x z \). We have as an axiom that \(T' \vdash \exists z R x z \leftrightarrow \sim \forall z \sim R x z \). Then \(\mathcal{C}[\mathcal{F}'] = \forall x \sim \forall z \sim R x z \).

Constant symbol. To introduce a new constant symbol we require an axiom in the extended theory, along with a condition in the original theory such that,

\[
T' \vdash y = c \leftrightarrow \mathcal{Q}(y) \quad \text{and} \quad T \vdash \exists y \mathcal{Q}(y)
\]

Again for a formula \(\mathcal{F}' \) including the new symbol, we expect a conversion \(\mathcal{C} \) such that \(\mathcal{C}[\mathcal{F}'] = \mathcal{F} \), where \(T' \vdash \mathcal{F}' \) iff \(T \vdash \mathcal{C}[\mathcal{F}'] \). Let \(z \) be a variable that does not appear in \(\mathcal{F}' \) or \(\mathcal{Q} \). Then,

\[
\mathcal{C}[\mathcal{F}'] = \exists z (\mathcal{Q}(z) \land \mathcal{F}'_{\mathcal{C}})
\]

So, from the example above, we are given \(T' \vdash y = \emptyset \leftrightarrow \forall x (x \notin y) \); suppose \(\mathcal{F}' = \exists x (\emptyset \in x) \). Then \(z \) is a variable that does not appear in \(\mathcal{F}' \) or \(\mathcal{Q} \)—in \(\exists x (\emptyset \in x) \) or \(\forall x (x \notin y) \). So \(\mathcal{C}[\mathcal{F}'] = \exists z (\forall x (x \notin z) \land \exists x (z \in x)) \).

Function symbol. To introduce a function symbol, there is an axiom and condition,

\[
T' \vdash y = \bar{h} \bar{x} \leftrightarrow \mathcal{Q}(\bar{x}, y) \quad \text{and} \quad T \vdash \exists y \mathcal{Q}(\bar{x}, y)
\]

The conversion for a function symbol works like that for constants when a single instance of \(\bar{h} \bar{x} \) appears in \(\mathcal{F}' \). Again, make sure the bound variables of \(\mathcal{Q} \) do not overlap the variables of \(\bar{x} \) and let \(z \) be a variable that does not appear in \(\mathcal{F}' \) or in \(\mathcal{Q} \). Then it is sufficient to set \(\mathcal{C}[\mathcal{F}'] = \exists z (\mathcal{Q}(\bar{x}, z) \land \mathcal{F}'_{\bar{h} \bar{x}}) \). In general, however, \(\mathcal{F}' \) may
include multiple instances of \(h \), including one in the scope of another. In this case, we replace instances of the function symbol beginning with ones that have widest scope. Begin where \(F' \) is an atomic \(R' = R t_1 \ldots t_n \) and \(t_1 \ldots t_n \) may involve instances of \(h \). Order instances of \(h \) in \(R' \) from the left (or, on a chapter 2 tree, from the bottom) into a list \(h_{i+1}, \ldots, h_m \), so that when \(i < j \), no \(h_{i+1} \) appears in the scope of \(h_{i+1} \) (but \(h_{i+1} \) may be in the scope of \(h_{i+1} \)). Then set \(R_0 = R' \), and for \(i \geq 1 \) and some new variable \(z \), \(R_i = \exists z (Q (h_{i+1} z) \wedge (h_{i+1} z)_{i+1}) \). Then \(C[R'] = R_m \) and for an arbitrary \(F' \), \(C[F'] = F'_{R_m} \). So, for example, if \(R' = R h^2 x y h^2 y z \), the tree is as follows,

![Tree diagram](image)

So instances of \(h q r \) are ordered \((h^2 h^2 x y h^2 y z, h^2 x y, h^2 y z)\). Then we use \(Q(u, v, y) \) to replace instances of \(h \), working our way up through the tree. So,

\[
R_0 = Rh^2 x y h^2 y z \\
R_1 = \exists u (Q h^2 x y h^2 y z u \wedge Ru) \\
R_2 = \exists v (Q x y v \wedge \exists u (Q v h^2 y z u \wedge Ru)) \\
R_3 = \exists w (Q y z w \wedge \exists v (Q x y v \wedge \exists u (Q v w u \wedge Ru)))
\]

\(R_1 \) uses \(Q \) to replace all of \(h^2 h^2 x y h^2 y z \), operating on the terms \(h^2 x y \) and \(h^2 y z \). \(R_2 \) uses \(Q \) to replace \(h^2 x y \) in \(R_1 \), and \(R_3 \) uses \(Q \) to replace \(h^2 y z \) in \(R_2 \). Observe that free variables of the result are the same as in \(R' \).

To show that this works, that \(T' \vdash F' \) iff \(T \vdash F \) we need a couple of theorems. The idea is to show that \(T' \vdash F' \leftrightarrow F \) and then that \(T' \vdash F \) iff \(T \vdash F \). Together, these give the result we want. First,

T13.12. For a defined symbol, with its associated axiom and conversion procedure, \(T' \vdash F' \leftrightarrow F \).
For an operator symbol, we are given (o)

The case for constants is left as an exercise. You are given (c)

So far, so good, but this only says what the extended (f)

For a function symbol (f)

For a relation symbol, we are given (r)

Things are arranged so that the variables of (x) and (y) do not overlap the variables of (z) (which we guarantee by reasoning as for T3.28) (z) is free for (x) in (Q), so (T' ⊨ R(z) ↔ Q(z)); so by T9.9, (T' ⊨ F' ↔ F[x/z]); so (T' ⊨ F' ↔ F).

(o) For an operator symbol, we are given (T' ⊨ O[\tilde{P}] ↔ Q[\tilde{P}]); so by T9.9, (T' ⊨ F' ↔ F'[O[\tilde{P}]]; so (T' ⊨ F' ↔ F).

The case for constants is left as an exercise. You are given (T' ⊨ y = c ↔ Q(y)); you need to show (T' ⊨ F'(c) ↔ \exists z (Q(z) \land F'(z))).

(f) For a function symbol \(h \), begin with a derivation to show (T' ⊨ R_{i-1} \leftrightarrow R_i).

Given (R_{i-1}[h(\tilde{z})]), (R_i(\tilde{z})) is \(\exists z (Q(\tilde{z}, z) \land R_{i-1}[z]) \). We have as an axiom that (T' ⊨ y = h(\tilde{x}) ↔ Q(\tilde{x}, y)).

1. \(y = h\tilde{x} ↔ Q(\tilde{x}, y) \) from (T')
2. \(R_{i-1}[h(\tilde{z})] \) (g, ↔ 1)
3. \(h(\tilde{z}) = h(\tilde{z}) ↔ Q(\tilde{z}, h(\tilde{z})) \) from (1)
4. \(h\tilde{z} = h\tilde{z} \) = (1)
5. \(Q(\tilde{z}, h(\tilde{z})) \) 3, 4 ↔ (E)
6. \(Q(\tilde{z}, h(\tilde{z})) \land R_{i-1}[h(\tilde{z})] \) 2, 5 Λ (1)
7. \(\exists z (Q(\tilde{z}, z) \land R_{i-1}[z]) \) 6 Λ (I)
8. \(R_i(\tilde{z}) \) 7 abv
9. \(R_i(\tilde{z}) \) A (g, ↔ 1)
10. \(\exists z (Q(\tilde{z}, z) \land R_{i-1}[z]) \) 9 abv
11. \(Q(\tilde{z}, j) \land R_{i-1}[j] \) A (g, 10 Λ (E))
12. \(Q(\tilde{z}, j) \) 11 Λ (E)
13. \(j = h(\tilde{z}) ↔ Q(\tilde{z}, j) \) from (1)
14. \(j = h(\tilde{z}) \) 13, 12 ↔ (E)
15. \(R_{i-1}[j] \) 11 Λ (E)
16. \(R_{i-1}[h(\tilde{z})] \) 15, 14 = E
17. \(R_{i-1}[h(\tilde{z})] \) 10, 11-16 Λ (E)
18. \(R_{i-1}[h(\tilde{z})] \leftrightarrow R_i(\tilde{z}) \) 2-8, 9-17 ↔ (I)

Things are arranged so that the variables of (z) are not bound upon substitution into (Q). So instances of the axiom at (3) and (13) along with (\exists z) and (\equiv) at (7) and (16) satisfy constraints. So (T' ⊨ R_{i-1} ↔ R_i); and by repeated applications of this theorem, (T' ⊨ R' ↔ R_m); so by T9.9, (T' ⊨ F' ↔ F[s/R]; so (T' ⊨ F' ↔ F).

So far, so good, but this only says what the extended (T') proves—that the richer
CHAPTER 13. GÖDEL’S THEOREMS

694

T' proves F' iff it proves F. But we want to see that T' proves F' iff the original T
proves F. We bridge the gap between T and T' by an additional theorem.

T13.13. For a T and L, given a defined symbol with its associated axiom, and for
any formula F in the original L, $T' \vdash F$ iff $T \vdash F$.

Since T' proves everything T proves, the direction from right to left is obvious.
So suppose $T' \vdash F$; by soundness, $T' \models F$; we show $T \models F$; so that, by
completeness, $T \vdash F$. To show $T \vdash F$, suppose there is a model M such that
$M[T] = T$; our aim is to show $M[F] = T$.

(r) Relation symbol. Extend M to a model M' like M except that for arbitrary d,
$\langle d[x_1]\ldots d[x_n] \rangle \in M'[\mathcal{R}]$ iff $M_d[\mathcal{Q}(x_1\ldots x_n)] = S$; iff $M'_d[\mathcal{Q}(x_1\ldots x_n)] = S$
(the latter by T10.15 since M and M' agree on assignments to symbols in \mathcal{Q}). Since M'
and M agree on assignments to symbols other than \mathcal{R}, by T10.15 $M'[T] = T$. And $M'[\mathcal{R} \overline{x} \leftrightarrow \mathcal{Q}(\overline{x})] = T$: suppose otherwise; then
by TI there is some d such that $M'_d[\mathcal{R}x_1\ldots x_n \leftrightarrow \mathcal{Q}(x_1\ldots x_n)] \neq S$; so
by SF(\leftrightarrow), $M'_d[\mathcal{R}x_1\ldots x_n] \neq S$ and $M'_d[\mathcal{Q}(x_1\ldots x_n)] = S$ (or the other
way around); from the former $\langle d[x_1]\ldots d[x_n] \rangle \not\in M'[\mathcal{R}]$ so by construction,
$M'_d[\mathcal{Q}(x_1\ldots x_n)] \neq S$; this is impossible, and similarly in the other case;
reject the assumption, $M'[\mathcal{R} \overline{x} \leftrightarrow \mathcal{Q}(\overline{x})] = T$. So $M'[T'] = T$; so since $T' \vdash F$,
$M'[F] = T$; and by T10.15 again, $M[F] = T$: and since this reasoning applies
for arbitrary M, $T \vdash F$.

(o) Operator symbol. We do not usually think of the specification for an oper-
ator as part of an interpretation and, so long as this is so, cannot extend an
interpretation for operator symbols as above. Still, it is possible to provide an
equivalent to the usual formulation on which operator symbols are interpreted.
For any \mathcal{P} and M, let $|\mathcal{P}|_M$ be the set of all variable assignments on which
\mathcal{P} is satisfied. So \mathcal{P} is T when $|\mathcal{P}|_M$ is the set of all assignments, and \mathcal{P}
is F when $|\mathcal{P}|_M$ is the empty set. We have understood the interpretation of
a relation symbol \mathcal{R}^n as a set of tuples—and so, with interpretation of the
terms, as a specification of the set of assignments on which $\mathcal{R}^{i_1}\ldots i_n$ is
satisfied, so $|\mathcal{R}^{i_1}\ldots i_n|_M = \{d \mid \langle M_d[i_1]\ldots M_d[i_n] \rangle \in M[\mathcal{R}]\}$. After that,
for an n-place operator \mathcal{O}, $M[\mathcal{O}]$ is a function with members $\langle \{V_1\ldots V_n\}, V \rangle$
where $V_1\ldots V_n$ and V are sets of assignments; and $\mathcal{O}[\mathcal{P}_1\ldots \mathcal{P}_n]$ is satisfied
on d just in case $d \in M[\mathcal{O}][|\mathcal{P}_1|_M\ldots |\mathcal{P}_n|_M]$. So, for example, conjunction
is a function that takes $|\mathcal{P}_1|_M$ and $|\mathcal{P}_2|_M$ to $|\mathcal{P}_1|_M \cap |\mathcal{P}_2|_M$—a conjunction
$\mathcal{P}_1 \land \mathcal{P}_2$ is satisfied on d just in case d is among the assignments that satisfy
both \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \). And an existential \(x \)-quantifier takes \(|\mathcal{P}|_M \) to the set of all assignments that have an \(x \)-variant in \(|\mathcal{P}|_M \).

Insofar as ordinary and revised models are equivalent as applied to standard operators, derivations remain sound on revised models. So from \(\Gamma \vdash \mathcal{F} \) it follows that \(\Gamma \vdash \mathcal{F} \)—that there is no (revised) model on which the members of \(\Gamma \) are true and \(\mathcal{F} \) is not. Given this, the argument proceeds very much as before: from \(M[T] = T \) we obtain \(M'[T'] = T \); then with \(T' \vdash \mathcal{F} \), we have \(M'[\mathcal{F}] = T \) and so \(M[\mathcal{F}] = T \).

Extend \(M \) to a model \(M' \) like \(M \) except that \(\mathfrak{d} \in M'[\mathcal{Q}] \langle |\mathcal{P}_1| \ldots |\mathcal{P}_n| \rangle \) iff \(M'_d[\mathcal{Q}(\mathcal{P}_1 \ldots \mathcal{P}_n)] = S \); iff \(M'_d[\mathcal{Q}(\mathcal{P}_1 \ldots \mathcal{P}_n)] = S \) (this by a simple extension of T10.15). Again since \(M' \) and \(M \) agree on assignments to symbols other than \(\mathcal{Q} \), with T10.15, \(M'[\mathcal{T}] = T \). And \(M'[\mathcal{Q}(\mathcal{P})] \iff \mathcal{Q}(\mathcal{P}) \) = T: suppose otherwise; then by TI there is some \(\mathfrak{d} \) such that \(M'_d[\mathcal{Q}(\mathcal{P})] \iff \mathcal{Q}(\mathcal{P}) \) \(\neq S \); so by SF(\(\mathcal{Q} \)), \(M'_d[\mathcal{Q}(\mathcal{P})] \neq S \) and \(M'_d[\mathcal{Q}(\mathcal{P})] \) = S (or the other way around); from the former, \(\mathfrak{d} \notin M'[\mathcal{Q}] \langle |\mathcal{P}_1| \ldots |\mathcal{P}_n| \rangle \); so by construction \(M'_d[\mathcal{Q}(\mathcal{P})] \) \(\neq S \); this is impossible, and similarly in the other direction; reject the assumption: \(M'[\mathcal{Q}(\mathcal{P})] \iff \mathcal{Q}(\mathcal{P}) \) = T. So \(M'[T'] = T \); so since \(T' \vdash \mathcal{F} \), \(M'[\mathcal{F}] = T \); and by T10.15 again, \(M[\mathcal{F}] = T \) and since this reasoning applies for arbitrary \(M \), \(T' \vdash \mathcal{F} \).

(c) The case for constants is left as an exercise.

(f) Function symbol. Since \(T \vdash \exists ! y \mathcal{Q}(\mathcal{x}, y) \), by soundness \(T \vdash \exists ! y \mathcal{Q}(\mathcal{x}, y) \); so since \(M[T] = T \), \(M[\exists ! y \mathcal{Q}(\mathcal{x}, y)] = T \); so by TI, for any \(\mathfrak{d} \), \(M'_d[\exists ! y \mathcal{Q}(\mathcal{x}, y)] = S \), and there is exactly one \(\mathfrak{m} \in U \) such that \(M_{d(y|m)}[\mathcal{Q}(\mathcal{x}, y)] = S \). Extend \(M \) to a model \(M' \) like \(M \) except that for arbitrary \(\mathfrak{d} \), \(\langle (d[x_1] \ldots d[x_n], \mathfrak{m}) \rangle \in M'[\mathcal{Q}) \langle |\mathcal{P}_1| \ldots |\mathcal{P}_n| \rangle \) iff \(M_{d(y|m)}[\mathcal{Q}(x_1 \ldots x_n, y)] = S \); by T10.15 iff \(M'_{d(y|m)}[\mathcal{Q}(x_1 \ldots x_n, y)] = S \).

Since \(M' \) and \(M \) agree on assignments to symbols other than \(\mathcal{Q} \), by T10.15 \(M'[\mathcal{T}] = T \). And \(M'[y = h \mathcal{x} \iff \mathcal{Q}(\mathcal{x}, y)] = T \); suppose otherwise; then by TI there is some \(h \) such that \(M'_{h}[y = h \mathcal{x} \iff \mathcal{Q}(\mathcal{x}, y)] \neq S \); so by SF(\(\mathcal{Q} \)), \(M'_{h}[y = h \mathcal{x}] \neq S \) and \(M'_{h}[\mathcal{Q}(\mathcal{x}, y)] = S \) (or the other way around). Say \(h(y) = a \); then \(M'_{h}[y = a] \) and \(h = h(y.a) \); with the latter, \(M'_{h(y.a)}[\mathcal{Q}(x_1 \ldots x_n, y)] = S \); so by construction \(\langle (\mathcal{h}[x_1] \ldots \mathcal{h}[x_n]), a \rangle \in M'[\mathcal{Q)} \langle |\mathcal{P}_1| \ldots |\mathcal{P}_n| \rangle \); so by TA(\(\mathcal{Q} \)), \(M'_{h}[h \mathcal{x}_1 \ldots h \mathcal{x}_n] = a \); but \(\langle a, a \rangle \in M'[=] \); so by SF(\(\mathcal{Q} \)), \(M'_{h}[y = h \mathcal{x}] = S \); this is impossible; and similarly in the other case; reject the assumption, \(M'[y = h \mathcal{x} \iff \mathcal{Q}(\mathcal{x}, y)] = T \). So \(M'[\mathcal{T}] = T \); so since \(T' \vdash \mathcal{F} \), \(M'[\mathcal{F}] = T \); and by T10.15 again, \(M[\mathcal{F}] = T \); and since this reasoning applies for arbitrary \(M \), \(T' \vdash \mathcal{F} \).
This argument repeatedly constructs from \(M \) an \(M' \) on which all the axioms of \(T' \) are true; then since \(T' \) entails \(\mathcal{F} \), \(M' [\mathcal{F}] = T \); and since \(M' \) and \(M \) agree on assignments to all the symbols in \(\mathcal{F} \), \(M [\mathcal{F}] = T \). The reasoning is interesting insofar as it exhibits how an interpretation \(M \) for \(T \) in \(\mathcal{L} \) extends to an \(M' \) for \(T' \) with the symbols of \(\mathcal{L}' \).

For T13.13 it is, in fact, important to show that the specifications are consistent: that we do not both assert and deny that some objects are in the interpretation of a symbol. But this is easily done. Here one case and the start for another.

(f) The specification for a function symbol is consistent: Suppose otherwise; that is, suppose there are some assignments \(d \) and \(h \) such that \(\langle \{ d[x_1] \ldots d[x_n] \}, m \rangle \in M' [h] \) and \(\langle \{ h[x_1] \ldots h[x_n] \}, m \rangle \notin M' [h] \) but \(d[x_1] = h[x_1] \) and \(\ldots \) and \(d[x_n] = h[x_n] \). From the first, \(M_{d[y|m]} [Q(x_1 \ldots x_n, y)] = S \); from the second, \(M_{h[y|m]} [Q(x_1 \ldots x_n, y)] \neq S \); but \(d(y|m) \) and \(h(y|m) \) make the same assignments to variables free in \(Q(\vec{x}, y) \); so by T8.5, \(M_{d[y|m]} [Q(\vec{x}, y)] = M_{h[y|m]} [Q(\vec{x}, y)] \); so \(M_{d[y|m]} [Q(\vec{x}, y)] = S \); reject the assumption: if \(d[x_1] = h[x_1] \) and \(\ldots \) and \(d[x_n] = h[x_n] \) and \(\langle \{ d[x_1] \ldots d[x_n] \}, m \rangle \in M' [h] \) then \(\langle \{ h[x_1] \ldots h[x_n] \}, m \rangle \in M' [h] \).

(o) The specification for an operator symbol is consistent: Suppose otherwise; that is, suppose \(d \in M'[\emptyset] \{ |A_1|_{M'} \ldots |A_n|_{M'} \} \) and \(d \notin M'[\emptyset] \{ |B_1|_{M'} \ldots |B_n|_{M'} \} \) but \(|A_1|_{M'} = |B_1|_{M'} \) and \(\ldots \) and \(|A_n|_{M'} = |B_n|_{M'} \). From the first, \(M_{d}[Q(A_1 \ldots A_n)] = S \) and from the second, \(M'_{d}[Q(B_1 \ldots B_n)] \neq S \). Now reasoning is similar except with T9.10 instead of T8.5.

And now our desired result is simple. The basic idea is that for some \(T \) and \(\mathcal{L} \) with a defined operator, constant, relation, or function symbol, from T13.12, \(T \vdash \mathcal{F}' \iff \mathcal{F} \) — so that \(T \vdash \mathcal{F}' \iff T \vdash \mathcal{F} \); and from T13.13 \(T' \vdash \mathcal{F} \iff T \vdash \mathcal{F} \). So \(T' \vdash \mathcal{F}' \iff T \vdash \mathcal{F} \). Put more generally,

T13.14. For some defined symbols, with their associated axioms and conversion procedures, \(T' \vdash \mathcal{F}' \iff T \vdash \mathcal{F} \).

Consider a sequence of formulas \(\mathcal{F}_0 \ldots \mathcal{F}_n \) and theories \(T_0 \ldots T_n \) ordered according to the number of new symbols where for any \(i \), \(\mathcal{F}_i = \mathcal{C} [\mathcal{F}_{i+1}] \). By T13.12, \(T_{i+1} \vdash \mathcal{F}_{i+1} \iff \mathcal{F}_i \); so \(T_{i+1} \vdash \mathcal{F}_{i+1} \iff T_{i+1} \vdash \mathcal{F}_i \); and by T13.13, \(T_{i+1} \vdash \mathcal{F}_i \iff T_i \vdash \mathcal{F}_i \); and by the simple induction, \(T_n \vdash \mathcal{F}_n \iff T_0 \vdash \mathcal{F}_0 \), which is to say \(T' \vdash \mathcal{F}' \iff T \vdash \mathcal{F} \).

In the following, we will be clear about when new symbols and associated axioms are introduced, and about the conditions under which this may be done. In light of the
results we have achieved however, we will not generally distinguish between a theory and its definitional extensions.

It is worth remarking on the uniqueness requirement for definition relative to capture. In particular, for a function, capture requires $T \vdash \forall z [F (\bar{m}_1 \ldots \bar{m}_n, z) \rightarrow \bar{a} = z]$. For definition, the comparable condition is $T \vdash \forall y \forall z [(F (\bar{x}, y) \land F (\bar{x}, z)) \rightarrow y = z]$. So definition builds in a sort of generality not required in the other case. Q is great about proving particular facts—but not so great when it comes to generality (this was a sticking point about the shift between Q and Qₙ in chapter 12 (page 630 and below). But this is just the sort of thing PA is fitted to do.⁹

E13.9. Supposing that $T' \vdash y = h^2 uv \leftrightarrow Q(u, v, y)$ use the method of the text to find $\mathcal{E}[A \land B h^2 c h^2 x y]$.

E13.10. Where D_M is the set of all variable assignments on interpretation M, let $\mathcal{V} = \{ d \mid d \in D_M \text{ and } d \not\in V \}$. Suppose we set up an alternative to the usual semantics by definitions as follows,

1. \(M[\sim] = \{ \langle V_1, V_2 \rangle \mid V_2 = \mathcal{V}_1 \} \)
2. \(M[\rightarrow] = \{ \langle \langle V_1, V_2 \rangle, V_3 \rangle \mid V_3 = \mathcal{V}_1 \cup V_2 \} \)
3. \(M[\forall x] = \{ \langle V_1, V_2 \rangle \mid d \in V_2 \text{ iff for any } o \in U, d(o) \in V_1 \} \)

4. \(M[s] = \{ \langle V_1 \rangle \mid V_1 = M[s] \} \text{ iff } M[\delta] = T \)
5. \(M[R^n] = \{ \langle t_1 \ldots t_n \rangle \mid t_1 \ldots t_n \text{ are terms, } (M[t_1] \ldots M[t_n]) \in M[R^n] \} \)
6. \(M[\theta] = \{ \langle (P_1 \ldots P_n) \rangle \mid d \in M[\theta][P_1 \ldots P_n] \} \text{ iff } d \in M[\theta][P_1 \ldots P_n] \)

(i) By induction on the number of operators in a formula \mathcal{P} show that on this account $d \in M[\mathcal{P}]$ iff on our usual account $M_d[\mathcal{P}] = S$. (ii) Suppose we introduce a derived (\lor) operator such that $d \in M[\lor][P \lor Q] \text{ iff } d \in M[\lor][P \lor Q]$. Extend your induction to show that $d \in M[\lor \lor Q] \text{ iff } M_d[\mathcal{P} \lor Q] = S$.

E13.11. Complete the unfinished cases for constants in T13.12 and T13.13 (including the consistency result). Hint: All you need for consistency in this case is that there are no d and h such that $M'_{\mathcal{M}(y)[m]}[Q(y)] = S$ and $M'_{\mathcal{M}(y)[m]}[Q(y)] \neq S$ (so that, on our specification, $M'[c]$ would and would not be m).

⁹Is definition so described necessary for reasoning to follow? We might continue to think in terms of abbreviation—or even unabbreviated formulas themselves, so that there are no new symbols. Even so, the conditions on such formulas would be like those for definition, so that the overall argument would remain the same.
*E13.12. (i) Show T13.11af from left to right (the other direction was E12.12). (ii) Show T13.11ag; and then, without IN, show that the principles of strong induction and the least number principle are equivalent in PA by (iii) deriving the biconditional between (ag) for \(\sim P(x) \) and (ai) for \(P(x) \); and (iv) between (ag) and (ah) each applied to \(P(x) \). You may assume our usual abbreviations for inequalities. Hard-core: demonstrate each of the results in T13.11. Hint: (iii) works entirely by replacement rules; (iv) requires some prior theorems. This, of course, proves (ah) and (ai).

First Applications

Here are some quick results that will be helpful as we move forward. We specify conditions under which PA defines functions by composition, and by regular and bounded minimization.

First, if PA defines some functions \(h. E x;w; E z/ \) and \(g. E y/ \), then PA defines their composition \(f. E x;y;z/ = h. E x;g. E y;z/ \). We are introducing a function symbol, so we introduce an axiom and then show that the condition is met. This pattern will repeat many times.

T13.15. If PA defines \(h. E x;w; E z/ \) and \(g. E y/ \), then PA defines \(f. E x;y;z/ = h. E x;g. E y;z/ \).

Suppose PA defines some \(h. E x;w; E z/ \) and \(g. E y/ \). Let,

\[
\text{Def}[\text{cmp}(g, h)] \quad \text{PA} \vdash v = f. E x; E y; E z/ = h. E x; g. E y;z/.
\]

Then,

(i) PA \(\vdash \exists v \exists [v = h. E x; g. E y;z/] \)

1. \(h. E x; g. E y;z/ = h. E x; g. E y;z/ \) =I
2. \(\exists v \exists [v = h. E x; g. E y;z/] \) 1 EI

(ii) PA \(\vdash \forall u \forall v \exists [u = h. E x; g. E y;z/] \wedge v = h. E x; g. E y;z/] \rightarrow u = v \)

1. \(j = h. E x; g. E y;z/ \wedge k = h. E x; g. E y;z/ \) A (g. \(\rightarrow \) I)
2. \(j = h. E x; g. E y;z/ \) 1 \(\wedge E \)
3. \(k = h. E x; g. E y;z/ \) 1 \(\wedge E \)
4. \(j = k \) 2,3 =E
5. \((j = h. E x; g. E y;z/) \wedge k = h. E x; g. E y;z/) \rightarrow j = k \) 1-4 \(\rightarrow I \)
6. \(\forall v[(j = h. E x; g. E y;z/) \wedge v = h. E x; g. E y;z/) \rightarrow j = v] \) 5 \(\forall I \)
7. \(\forall v \forall v [(u = h. E x; g. E y;z/) \wedge v = h. E x; g. E y;z/) \rightarrow u = v] \) 6 \(\forall I \)

So PA \(\vdash \exists v \exists [v = h. E x; g. E y;z/] \) and PA defines \(f. E x; E y;z/ \).

In addition, we can introduce a function for minimization. The idea is to set \(v = \mu y Q(\bar{x}, y) \leftrightarrow [Q(\bar{x}, v) \wedge (\forall z < v) \sim Q(\bar{x}, z)] \). In the ordinary case, a new
function symbol \(h \) is introduced with an axiom of the sort \(v = h \bar{x} \leftrightarrow \mathcal{Q}(\bar{x}, v) \) under the condition \(T \vdash \exists ! v \mathcal{Q}(\bar{x}, v) \). But, in this case, the situation is simplified by the following theorem.

T13.16. If \(PA \vdash \exists v \mathcal{Q}(\bar{x}, v) \), then \(PA \) defines \(\mu y \mathcal{Q}(\bar{x}, y) \). Suppose \(PA \vdash \exists v \mathcal{Q}(\bar{x}, v) \).

Let,

\[\text{Def}[\mu y \mathcal{Q}(\bar{x}, y)] \quad PA \vdash v = \mu y \mathcal{Q}(\bar{x}, y) \leftrightarrow [\mathcal{Q}(\bar{x}, v) \land (\forall z < v) \neg \mathcal{Q}(\bar{x}, z)] \]

(i) \(PA \vdash \exists v[\mathcal{Q}(\bar{x}, v) \land (\forall z < v) \neg \mathcal{Q}(\bar{x}, z)] \). Since \(PA \vdash \exists v \mathcal{Q}(\bar{x}, v) \), by the least number principle T13.11ai, \(PA \vdash \exists v[\mathcal{Q}(\bar{x}, v) \land (\forall z < v) \neg \mathcal{Q}(\bar{x}, z)] \).

(ii) \(PA \vdash \forall u \forall v[(\mathcal{Q}(\bar{x}, u) \land (\forall z < u) \neg \mathcal{Q}(\bar{x}, z) \land \mathcal{Q}(\bar{x}, v) \land (\forall z < v) \neg \mathcal{Q}(\bar{x}, z)) \rightarrow u = v] \)

\[
\begin{align*}
1. & \quad \mathcal{Q}(\bar{x}, j) \land (\forall z < j) \neg \mathcal{Q}(\bar{x}, z) \land \mathcal{Q}(\bar{x}, k) \land (\forall z < k) \neg \mathcal{Q}(\bar{x}, z) & \text{A (g, \(\rightarrow \))} \\
2. & \quad j < k \lor j = k \land j < j & \text{T13.11q} \\
3. & \quad j < k & \text{A (c, \(\sim \))} \\
4. & \quad (\forall z < k) \neg \mathcal{Q}(\bar{x}, z) & 1 \land E \\
5. & \quad \neg \mathcal{Q}(\bar{x}, j) & 4,3 (\forall E) \\
6. & \quad \mathcal{Q}(\bar{x}, j) & 1 \land E \\
7. & \quad \bot & 6,5 \bot I \\
8. & \quad j \neq k & 3-7 \sim I \\
9. & \quad k < j & \text{A (c, \(\sim \))} \\
10. & \quad (\forall z < j) \neg \mathcal{Q}(\bar{x}, z) & 1 \land E \\
11. & \quad \neg \mathcal{Q}(\bar{x}, k) & 10,9 (\forall E) \\
12. & \quad \mathcal{Q}(\bar{x}, k) & 1 \land E \\
13. & \quad \bot & 12,11, \bot I \\
14. & \quad k \neq j & 9-13 \sim I \\
15. & \quad j = k & 2,8,14 \text{DS} \\
16. & \quad (\mathcal{Q}(\bar{x}, j) \land (\forall z < j) \neg \mathcal{Q}(\bar{x}, z) \land \mathcal{Q}(\bar{x}, k) \land (\forall z < k) \neg \mathcal{Q}(\bar{x}, z)) \rightarrow j = k & \text{1-15 } \rightarrow I \\
17. & \quad \forall v[(\mathcal{Q}(\bar{x}, j) \land (\forall z < j) \neg \mathcal{Q}(\bar{x}, z) \land \mathcal{Q}(\bar{x}, v) \land (\forall z < v) \neg \mathcal{Q}(\bar{x}, z)) \rightarrow j = v] & 16 \forall I \\
18. & \quad \forall u \forall v[(\mathcal{Q}(\bar{x}, u) \land (\forall z < u) \neg \mathcal{Q}(\bar{x}, z) \land \mathcal{Q}(\bar{x}, v) \land (\forall z < v) \neg \mathcal{Q}(\bar{x}, z)) \rightarrow u = v] & 17 \forall I \\
\end{align*}
\]

So both (i) and (ii) follow with \(PA \vdash \exists v \mathcal{Q}(\bar{x}, v) \). As from the strengthened capture result (chapter 12, page 637) this is because the bounded quantifier already builds in that at most one thing satisfies the expression. We shall be able to apply this result in multiple contexts.

For bounded minimization, we want the least \(y \leq z \) such that \(\mathcal{Q}(\bar{x}, y) \) if one exists and otherwise \(z \)—where \(z \) may or may not appear in \(\bar{x} \) and so among the variables of \(\mathcal{Q} \). Again, the situation is simplified as follows.
T13.17. For any formula $Q(\bar{x}, y)$, PA defines $(\mu y \leq z)Q(\bar{x}, y)$.

Def[$(\mu y \leq z)Q(\bar{x}, y)$] $\vdash v = (\mu y \leq z)Q(\bar{x}, y) \iff v = \mu y[y = z \lor Q(\bar{x}, y)]$

Let $m(\bar{x}, z) = \mu y[y = z \lor Q(\bar{x}, y)]$; then we require,

(i) $\vdash \exists v(v = m(\bar{x}, z))$

(ii) $\vdash \forall u\forall v([u = m(\bar{x}, z) \land v = m(\bar{x}, z)] \rightarrow u = v)$

These conditions are trivially met so long as $m(\bar{x}, z)$ is defined; and by T13.16 $m(\bar{x}, z)$ is defined given just the existential condition $\vdash \exists v[v = z \lor Q(\bar{x}, v)]$, which follows immediately from $\vdash z = z$; so the conditions for bounded minimization are always satisfied.

Given these notions, we may obtain some immediate results.

*T13.18. Let $m(\bar{x}) = \mu y Q(\bar{x}, y)$; then,

(a) $\vdash Q(\bar{x}, m(\bar{x})) \land (\forall z < m(\bar{x}))\neg Q(\bar{x}, z)$

(b) $\vdash Q(\bar{x}, m(\bar{x}))$

(c) $\vdash (\forall z < m(\bar{x}))\neg Q(\bar{x}, z)$

*(d) $\vdash Q(\bar{x}, v) \rightarrow m(\bar{x}) \leq v$

(e) $\vdash (\mu y \leq \emptyset)Q(\bar{x}, y) = \emptyset$

(f) If $\vdash (\exists v \leq t)Q(\bar{x}, v)$ then PA defines $m(\bar{x})$

(g) If $\vdash (\exists v \leq t)Q(\bar{x}, v)$ then $\vdash (\mu y \leq t)Q(\bar{x}, y) = m(\bar{x})$

Because it is always possible to switch bound variables so that Q is converted to an equivalent Q' whose bound variables do not overlap with variables free in $m(\bar{x})$, we simply assume $m(\bar{x})$ is free for v in $Q(\bar{x}, v)$ (and we will generally make this move). Given this, (a)–(d) are straightforward. (e) follows easily from the definitions. For (f) the existential condition for the definition of $m(\bar{x})$ follows easily from the bounded existential. For (g) see the derivation on page 701.

Of these, (a)–(c) simply observe that the definition applies to the function defined. From (d), the least y such that $Q(\bar{x}, y)$ is always \leq an arbitrary v such that $Q(\bar{x}, v)$. From (e) it does not matter about Q, the least y under the bound \emptyset is always \emptyset. (f) gives a condition under which minimization is defined and then, under that same condition, (g) converts between a bounded minimization and one without a bound.
T13.18g

1. \((\exists v \leq t)\mathcal{Q}(\bar{x}, v)\)
2. \(n(\bar{x}, t) = (\mu y \leq t)\mathcal{Q}(\bar{x}, y)\)
3. \(n(\bar{x}, t) = \mu y[y = t \lor \mathcal{Q}(\bar{x}, y)]\)
4. \(n(\bar{x}, t) = t \lor \mathcal{Q}(\bar{x}, n(\bar{x}, t))\)
5. \(\mathcal{Q}(\bar{x}, j)\)
6. \(j \leq t\)
7. \(j < t \lor j = t\)
8. \(j = t\)
9. \(t = n(\bar{x}, t) \lor t \neq n(\bar{x}, t)\)
10. \(I = n(\bar{x}, t)\)
11. \(\mathcal{Q}(\bar{x}, t)\)
12. \(\mathcal{Q}(\bar{x}, n(\bar{x}, t))\)
13. \(j \neq n(\bar{x}, t)\)
14. \(\mathcal{Q}(\bar{x}, n(\bar{x}, t))\)
15. \(\mathcal{Q}(\bar{x}, n(\bar{x}, t))\)
16. \(j < t\)
17. \(j = t \lor \mathcal{Q}(\bar{x}, j)\)
18. \(n(\bar{x}, t) \leq j\)
19. \(n(\bar{x}, t) < t\)
20. \(n(\bar{x}, t) \neq t\)
21. \(\mathcal{Q}(\bar{x}, n(\bar{x}, t))\)
22. \(\mathcal{Q}(\bar{x}, n(\bar{x}, t))\)
23. \((\forall w < n(\bar{x}, t)) \sim[w = t \lor \mathcal{Q}(\bar{x}, w)]\)
24. \(j < n(\bar{x}, t)\)
25. \(\sim [I = t \lor \mathcal{Q}(\bar{x}, I)]\)
26. \(I \neq t \land \sim \mathcal{Q}(\bar{x}, I)\)
27. \(\sim \mathcal{Q}(\bar{x}, I)\)
28. \((\forall w < n(\bar{x}, t)) \sim \mathcal{Q}(\bar{x}, w)\)
29. \(\mathcal{Q}(\bar{x}, n(\bar{x}, t)) \land (\forall w < n(\bar{x}, t)) \sim \mathcal{Q}(\bar{x}, w)\)
30. \(n(\bar{x}, t) = \mu y \mathcal{Q}(\bar{x}, y)\)
31. \(n(\bar{x}, t) = \mu y \mathcal{Q}(\bar{x}, y)\)
32. \((\mu y \leq t)\mathcal{Q}(\bar{x}, y) = \mu y \mathcal{Q}(\bar{x}, y)\)

In this derivation, \(t\) is the bound, there is a \(j \leq t\) such that \(\mathcal{Q}(\bar{x}, j)\), and \(n(\bar{x}, t)\) is the least \(y \leq t\) such that \(\mathcal{Q}(\bar{x}, y)\). Recall that, generally, when \(n(\bar{x}, t) = t\), \(n(\bar{x}, t)\) need not be such that \(\mathcal{Q}(\bar{x}, n(\bar{x}, t))\); but when \(j = t = n(\bar{x}, t)\), we have from the premise that \(\mathcal{Q}(\bar{x}, n(\bar{x}, t))\). And in any case when \(n(\bar{x}, t)\) is other than the bound, \(\mathcal{Q}(\bar{x}, n(\bar{x}, t))\). In each case, then, the least \(y\) such that \(\mathcal{Q}(\bar{x}, y)\) is the same as \(n(\bar{x}, t)\).
First Theorems of Chapter 13

T13.1 For any recursively axiomatized theory T whose language includes \mathcal{L}_{NT}, $\mathbb{N}[\mathcal{F}] = \mathbb{N}[\neg \exists x \Prft(x, \overline{\mathcal{F}})]$, Carnap’s result for \mathcal{F}.

T13.2 Let T be any recursively axiomatized theory extending Q; then $T \vdash \mathcal{F} \iff \neg \exists x \Prft(x, \overline{\mathcal{F}})$.

Diagonal result for \mathcal{F}.

T13.3 If T is a recursively axiomatized sound theory whose language includes \mathcal{L}_{NT}, then T is negation incomplete.

T13.4 If T is a recursively axiomatized theory extending Q, then if T is consistent $T \not\vdash \mathcal{F}$, and if T is ω-consistent, $T \not\vdash \neg \mathcal{F}$.

T13.5 Let T be any recursively axiomatized theory extending Q; then $T \vdash \mathcal{R} \iff \neg \exists x \Prft(x, \overline{\mathcal{R}})$.

Diagonal result for \mathcal{R}.

T13.6 If T is a consistent, recursively axiomatized theory extending Q, then $T \not\vdash \mathcal{R}$ and $T \not\vdash \neg \mathcal{R}$.

T13.7 Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies the derivability conditions and so the K4 logic of provability, $T \vdash \text{Cont} \iff \neg \Prft(\overline{\text{Cont}})$.

T13.8 Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies the derivability conditions, if T is consistent, $T \not\vdash \text{Cont}$.

T13.9 Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies the derivability conditions and so the K4 logic of provability, $T \vdash \text{Cont} \iff \neg \Prft(\overline{\text{Cont}})$.

T13.10 Suppose T is a recursively axiomatized theory extending Q. Then if $T \vdash \mathcal{P}$, then $T \vdash \Box \mathcal{P}$.

T13.11 This lists a number of theorems of PA including for inequality and strong induction.

T13.12 For a defined symbol, with its associated axiom and conversion procedure, $T' \vdash \mathcal{F}' \iff \mathcal{F}$.

T13.13 For a T and \mathcal{L}, given a defined symbol with its associated axiom, and for any formula \mathcal{F} in the original \mathcal{L}, $T' \vdash \mathcal{F}$ iff $T \vdash \mathcal{F}$.

T13.14 For some defined symbols, with their associated axioms and conversion procedures, $T' \vdash \mathcal{F}'$ iff $T \vdash \mathcal{F}$.

T13.15 If PA defines some $h(\bar{x}, u, \bar{y})$ and $g(\bar{y})$, then PA defines $f(\bar{x}, \bar{y}, \bar{z}) = h(\bar{x}, g(\bar{y}), \bar{z})$.

T13.16 If PA $\vdash \exists v \mathcal{Q}(\bar{x}, v)$, then PA defines $\mu \nu \mathcal{Q}(\bar{x}, v)$.

T13.17 For any formula $\mathcal{Q}(\bar{x}, y)$, PA defines $(\mu y \leq z) \mathcal{Q}(\bar{x}, y)$.

T13.18 Where $m(\bar{x}) = \mu \nu \mathcal{Q}(\bar{x}, v)$,

(a) PA $\vdash \mathcal{Q}(\bar{x}, m(\bar{x})) \land (\forall z < m(\bar{x})) \neg \mathcal{Q}(\bar{x}, z)$;

(b) PA $\vdash \mathcal{Q}(\bar{x}, m(\bar{x}))$;

(c) PA $\vdash (\forall z < m(\bar{x})) \neg \mathcal{Q}(\bar{x}, z)$;

(d) PA $\vdash \mathcal{Q}(\bar{x}, v) \rightarrow m(\bar{x}) \leq v$.

(e) PA $\vdash (\mu y \leq z) \mathcal{Q}(\bar{x}, y) = \emptyset$;

(f) if PA $\vdash (\exists v \leq u) \mathcal{Q}(\bar{x}, u, v)$ then PA defines $m(\bar{x})$;

(g) if PA $\vdash (\exists v \leq u) \mathcal{Q}(\bar{x}, u, v)$ then PA $\vdash (\mu v \leq u) \mathcal{Q}(\bar{x}, u, v) = m(\bar{x})$.

CHAPTER 13. GÖDEL’S THEOREMS

13.3.2 Definitions for Recursive Functions

Our aim is to show $T \vdash \text{Cont} \rightarrow \neg \text{Prvt}(\overline{G})$—where this corresponds to our previous result that if T is consistent, then $T \nvdash G$. For this it is no surprise that we shall want to define and manipulate functions and relations corresponding to the recursive functions and relations of chapter 12. Thus in this section we set out to show that PA defines functions and relations corresponding to ones from chapter 12. We begin with the core argument to show that PA defines functions corresponding to recursive functions of chapter 12. Then a series of results to show that this argument goes through for the case when functions arise by recursion. Finally, the main theorem is extended to show that PA defines functions and relations coordinate to ones in chapter 12.

Insofar as we understand what a theorem of PA is, not all of the demonstrations of the theorems are required to understand the argument—and some may obscure the overall flow. Thus, for our main argument, we often list results, shifting hints and demonstrations into exercises and answers to exercises. To retain demonstration of results, a great many exercises are in fact included in the answers.

The Core Result

To define functions and relations corresponding to the recursive functions and relations of chapter 12, the main argument is an induction on the sequence of recursive functions. However, with an eye to the β-function, we begin showing that PA defines remainder $rm(m, n)$ and quotient $qt(m, n)$ functions corresponding to $m/(n + 1)$. Division is by $n + 1$ to avoid the possibility of division by zero.10

*Def[rm] Let $PA \vdash v = rm(m, n) \iff (\exists w \leq m)[m = S n \times w + v \land v < S n]$.

(i) $PA \vdash \exists x(\exists w \leq m)[m = S n \times w + x \land x < S n]$.

(ii) $PA \vdash \forall x \forall y[(\exists w \leq m)[m = S n \times w + x \land x < S n] \land (\exists w \leq m)[m = S n \times w + y \land y < S n]) \rightarrow x = y]$.

10A choice is made: Another option is define the functions so that an arbitrary value is assigned for division by zero (as for example Boolos, *The Logic of Provability*, page 27). Our selection makes for somewhat unintuitive statements of that which is intuitively true—rather than (relatively) intuitive statements including that which is intuitively undefined or false.
Def[qt] Let $PA \vdash v = qt(m, n) \leftrightarrow m = Sn \times v + rm(m, n)$.

(i) $PA \vdash \exists x[m = Sn \times x + rm(m, n)].$

(ii) $PA \vdash \forall x \forall y[(m = Sn \times x + rm(m, n) \land m = Sn \times y + rm(m, n)) \rightarrow x = y].$

Def[β] $PA \vdash \beta(p, q, i) = rm(p, q \times Si).$

Since this is a composition of functions, immediate from T13.15.

For hints on the first two see the associated exercise E13.14. Observe that from the definition, $PA \vdash v = \beta(p, q, i) \leftrightarrow (\exists w \leq p)[p = S(q \times Si) \times w + v \land v < S(q \times Si)]$, which is to say $PA \vdash v = \beta(p, q, i) \leftrightarrow \beta(p, q, i, v)$, where β is the original formula to express the beta function.\footnote{In 12.2.3 we considered an intuitive $rm(p, q)$ and said $\beta(p, q, i) = rm[p, S(q \times S(i))].$ That rm is partial insofar as it returns no value when $q = 0$, though β remains total insofar division is by successors. Here, rm corresponds to an $rms = rm[p, S(q)].$ So rms is total and $rm[p, S(q \times S(i))] = rms(p, q \times Si)$ so that the β-function comes out the same either way.}

And now our main argument that PA defines functions corresponding to recursive functions. The main result is for functions—it will extend to relations as an easy corollary. However we shall not be able to show that PA defines functions corresponding to all the recursive functions: When a recursive function $g(x, y)$ captured by some original $G(x, y, z)$ is regular, $\exists y G(x, y, \emptyset)$ is true. Say an application of regular minimization to generate $f(\bar{x})$ from $g(\bar{x}, y)$ is (PA) friendly iff we can prove it—iff $PA \vdash \exists y G(\bar{x}, y, \emptyset)$. Then a recursive function is (PA) friendly just in case it is an initial function or arises by applications of composition, recursion or friendly regular minimization. Observe that all primitive recursive functions are automatically friendly insofar as they involve no applications of minimization at all.

*T13.19. For any friendly recursive function $r(\bar{x})$ and original formula $\mathcal{R}(\bar{x}, v)$ by which it is expressed and captured, PA defines a function $r(\bar{x})$ such that $PA \vdash v = r(\bar{x}) \leftrightarrow \mathcal{R}(\bar{x}, v)$.

Suppose $r(\bar{x})$ is a friendly recursive function. By induction on the sequence of recursive functions.

Basis: $t_0(\bar{x})$ is an initial function $\text{zero}()$, $\text{suc}(x)$ or $\text{idn}_k(x_1 \ldots x)$.

(s) $t_0(\bar{x}) = \text{suc}(x)$. Let $PA \vdash v = \text{suc}(x) \leftrightarrow Sx = v$. But $Sx = v$ is the original formula $\text{suc}(x, v)$ by which $\text{suc}(x)$ is expressed and captured; so $PA \vdash v = \text{suc}(x) \leftrightarrow \text{suc}(x, v)$. And by reasoning as follows,
CHAPTER 13. GÖDEL’S THEOREMS

1. \(Sx = Sx = 1 \)
2. \(\exists y (Sx = y) \) 1 \(\exists y \)

1. \(\begin{align*}
Sx &= j \land Sx = k \\
Sx &= j \\
Sx &= k \\
j &= k \\
(Sx = j \land Sx = k) &\to j = k \\
\forall z [(Sx = j \land Sx = z) &\to j = z] \\
\forall y \forall z [(Sx = y \land Sx = z) &\to y = z]
\end{align*} \)

PA \models \exists y (Sx = y). So PA defines \(\text{succ}(x) \).

(z) \(\tau_0(\bar{x}) \) is zero(). Let PA \models v = \text{zero}() \leftrightarrow \bar{v} = v. Then PA \models v = \text{zero}() \leftrightarrow \text{Zero}(v). And by (homework) PA defines \(\text{zero}() \).

(i) \(\tau_0(\bar{x}) \) is \(\text{Idnt}^1_k(x_1 \ldots x_j) \). Let PA \models v = \text{Idnt}^1_k(x_1 \ldots x_j) \leftrightarrow (x_1 = x_1 \land \ldots \land x_j = x_j) \land \land_k = v. Then PA \models v = \text{Idnt}^1_k(x_1 \ldots x_j) \leftrightarrow \text{Idnt}^1_k(x_1 \ldots x_j, v). And by (homework) PA defines \(\text{Idnt}^1_k(x_1 \ldots x_j). \)

Assp: For any \(i, 0 \leq i \leq k \), and \(\tau_0(\bar{x}) \) with \(\mathcal{R}_i(\bar{x}, v) \), PA defines \(\tau_0(\bar{x}) \) such that PA \models v = \tau_0(\bar{x}) \leftrightarrow \mathcal{R}_k(\bar{x}, v).

Show: PA defines \(\tau_0(\bar{x}) \) such that PA \models v = \tau_0(\bar{x}) \leftrightarrow \mathcal{R}_k(\bar{x}, v).

\(\tau_0(\bar{x}) \) is either an initial function or arises by composition, recursion or friendly regular minimization. If \(\tau_0(\bar{x}) \) is an initial function, then reason as in the basis. So suppose one of the other cases.

(c) \(\tau_0(\bar{x}, \bar{y}, \bar{z}) \) is \(h(\bar{x}, g(\bar{y}), \bar{z}) \) for some \(h_i(\bar{x}, w, \bar{z}) \) and \(g_j(\bar{y}) \) where \(i, j < k \). By assumption PA defines \(h(\bar{x}, w, \bar{z}) \) such that PA \models v = h(\bar{x}, w, \bar{z}) \leftrightarrow \mathcal{H}(\bar{x}, w, \bar{z}, v) \) and PA defines \(g(\bar{y}) \) such that PA \models w = g(\bar{y}) \leftrightarrow \mathcal{G}(\bar{y}, w). \)

Let PA \models \tau_0(\bar{x}, \bar{y}, \bar{z}) = h(\bar{x}, g(\bar{y}), \bar{z}). Then by T13.15 PA defines \(\mathcal{R}_k. \)

And, where the original \(\mathcal{R}_k \) is of the sort \(\exists w [\mathcal{G}(\bar{y}, w) \land \mathcal{H}(\bar{x}, w, \bar{z}, v)] \), PA \models v = \tau_0(\bar{x}, \bar{y}, \bar{z}) \leftrightarrow \mathcal{R}_k(\bar{x}, \bar{y}, \bar{z}, v). Dropping \(\bar{x} \) and \(\bar{z} \) and reducing \(\bar{y} \) to a single variable, the derivation is as on page 708.

(r) \(\tau_0(\bar{x}, \bar{y}) \) arises by recursion from some \(g_i(\bar{x}) \) and \(h_i(\bar{x}, y, u) \) where \(i, j < k \).

By assumption PA defines \(g(\bar{x}) \) such that PA \models v = g(\bar{x}) \leftrightarrow \mathcal{G}(\bar{x}, v) \) and PA defines \(h(\bar{x}, y, u) \) such that PA \models v = h(\bar{x}, y, u) \leftrightarrow \mathcal{H}(\bar{x}, y, u, v). Then PA \models z = \tau_0(\bar{x}, \bar{y}) \iff \exists p \forall q [\beta(p, q, 0) = g(\bar{x}) \land (\forall i < y) h(\bar{x}, i, \beta(p, q, i)) = \beta(p, q, Si) \land \beta(p, q, y) = z] \]

By the argument of the next section, PA defines \(r(\bar{x}, \bar{y}) \). And where the original \(\mathcal{R}(\bar{x}, \bar{y}, z) = \exists p \forall q [\exists v [B(p, q, 0, v) \land \mathcal{G}(\bar{x}, v)] \land (\forall i < y) \exists u \exists v [B(p, q, i, u) \land B(p, q, Si, v) \land \mathcal{H}(\bar{x}, i, u, v)] \land B(p, q, y, z)] \)
we require \(\text{PA} \vdash z = r_k(\bar{x}, y) \iff \mathcal{R}_k(\bar{x}, y, z) \). The argument from left to right is as on page 709. The other direction is homework.

(m) \(r_k(\bar{x}) \) arises by friendly regular minimization from \(g(\bar{x}, y) \). By assumption \(\text{PA} \) defines \(g(\bar{x}, y) \) such that \((*) \text{ PA} \vdash v = g(\bar{x}, y) \iff \mathcal{G}(\bar{x}, y, v) \) where \(\mathcal{G} \) is the original formula to express and capture \(g \). Let \(\text{PA} \vdash r_k(\bar{x}) = \mu y[g(\bar{x}, y) = \bar{0}] \). Since the minimization is friendly, \(\text{PA} \vdash \exists y \mathcal{G}(\bar{x}, y, \bar{0}) \); so with \((*) \text{ PA} \vdash \exists y(g(\bar{x}, y) = \bar{0}) \); and by T13.16, \(\text{PA} \) defines \(r_k(\bar{x}) \). By definition, \(\text{PA} \vdash v = r_k(\bar{x}) \iff [g(\bar{x}, v) = \bar{0} \land (\forall z < v)(g(\bar{x}, z) \not= \bar{0})] \). And \(\text{PA} \vdash \mathcal{R}(\bar{x}, v) \iff [\mathcal{G}(\bar{x}, v, \bar{0}) \land (\forall y < v)\exists z(\mathcal{G}(\bar{x}, y, z) \land \bar{0} \not= z)] \). Then with \((*) \) it is easy to show \(\text{PA} \vdash v = r_k(\bar{x}) \iff \mathcal{R}(\bar{x}, v) \). Homework.

Indct: For any friendly recursive function \(r(\bar{x}) \) and the original formula \(\mathcal{R}(\bar{x}, v) \) by which it is expressed and captured, \(\text{PA} \) defines a function \(r(\bar{x}) \) such that \(\text{PA} \vdash v = r(\bar{x}) \iff \mathcal{R}(\bar{x}, v) \).

Of course it remains to show that \(\text{PA} \) defines \(r(\bar{x}, y) \) in the case when \(r(\bar{x}, y) \) arises by recursion.

*E13.14. Complete the justifications for \(\text{Def}[rm] \) and \(\text{Def}[qt] \).

Hints for remainder: (i) This is an argument by \(\text{IN} \) on \(m \). It is easy to show \(\exists x(\exists w \leq \emptyset)[\emptyset = S_n \times w + x \land x < S_n] \), from \(\emptyset = S_n \times \emptyset + \emptyset \land \emptyset < S_n \) with \((\exists 1) \) and \(\exists 1 \). Then you want to show that if the result holds for \(j \), it holds for \(S_j \). For remainder \(k, k < n \lor k = n \). In the first case \(S_j \) is divided by leaving the quotient \(l \) the same, and incrementing \(k \); in the second case \(S_j \) is divided by \(S_l \) with remainder zero. (ii) This does not require \(\text{IN} \), but is an involved derivation all the same. Once you instantiate the bounded existential quantifiers to quotients \(p \) with remainder \(j \) and \(q \) with remainder \(k \), you have \(p < q \lor p = q \lor q < p \). When \(p = q \), \(j = k \) follows easily with cancellation for addition. And the other cases contradict—if \(p < q \), you will be able to set up an \(l \) such that \(S_l + p = q \), and show \(j \not= S_n \). And similarly in the other case.

Hints for quotient: (i) With \(\text{Def}[rm] \), \(\text{PA} \vdash (\exists w \leq m)[m = S_n \times w + rm(m, n) \land \text{rm}(m, n) < S_n] \); and the result follows easily. (ii) This is easy with cancellation laws for addition and multiplication.

*E13.15. Complete the cases left to homework from T13.19. You should set up the entire induction, but may refer to the text as the text refers unfinished cases to homework.
We turn now to a series of definitions and results with the aim of showing that PA defines \(r \) in the case when \(r \) arises by recursion. Some of the functions so-defined are equivalent to ones that will result by T13.19. However, insofar as we have not yet proved T13.19, we cannot use it! So we are showing directly that PA gives the required results.

Uniqueness. It will be easiest to begin with the uniqueness clause. Where \(\mathcal{F}(\vec{x}, y, z) \) is our formula,

\[
\exists p \exists q [g(p, q, \emptyset) = g(\vec{x}) \land (\forall i < y) h(\vec{i}, i, \beta(p, q, i)) = \beta(p, q, Si) \land \beta(p, q, y) = z]
\]

*T13.20. PA \(\vdash \forall m \forall n [(\mathcal{F}(\vec{x}, y, m) \land \mathcal{F}(\vec{x}, y, n)) \rightarrow m = n] \).

By IN on the value of \(y \). For the zero case you need PA \(\vdash \forall m \forall n [(\mathcal{F}(\vec{x}, \emptyset, m) \land \mathcal{F}(\vec{x}, \emptyset, n)) \rightarrow m = n] \). This is simple enough and left as homework. Given the zero case, see the main argument by IN on page 710.

*E13.16. Complete the demonstration for T13.20 by completing the demonstration of the zero case.

Existence. Considerably more difficult is the existential condition. To show that

\[
\exists z \mathcal{F}(\vec{x}, y, z),
\]

\[
\exists z \exists p \exists q [g(p, q, \emptyset) = g(\vec{x}) \land (\forall i < y) h(\vec{i}, i, \beta(p, q, i)) = \beta(p, q, Si) \land \beta(p, q, y) = z]
\]

we shall have to show that there are the \(p \) and \(q \) to give the right result from the \(\beta \)-function. And for this we require the Chinese remainder theorem in PA. Though we have resources to state the \(\beta \)-function, we do not yet have all that is required to duplicate reasoning for the remainder theorem as from the beta function reference in chapter 12 (for example, factorial). Thus we shall have to proceed in a different way. In particular, we specially depend on the least common multiple of a sequence of values. Again, we build by a series of results.

First, subtraction with cutoff. The definition is not recursive as before. However the effect is the same: \(x \div y \) works like subtraction when \(x \geq y \), and otherwise goes to \(\emptyset \).

*Def[−] PA \(\vdash v = x \div y \leftrightarrow x = y + v \land (x < y \land v = \emptyset) \)
As usual, we suppose that quantifiers are arranged so that substitutions are allowed—and so, for example, that $g(y)$ is free for w in $H(w, v)$ and $G(y, w)$.

T13.19(c)

1. $r(y) = h(g(y))$ def
2. $v = h(w) \iff H(w, v)$ by assp
3. $w = g(y) \iff G(y, w)$ by assp
4. $v = r(y)$ A $(g, \iff I)$
5. $v = h(g(y))$ 1,4 =E
6. $g(y) = g(y)$ =I
7. $g(y) = g(y) \iff G(y, g(y))$ 3 VE
8. $G(y, g(y))$ 7,6 =E
9. $h(g(y)) = h(g(y))$ =I
10. $h(g(y)) = h(g(y)) \iff H(g(y), h(g(y)))$ 2 VE
11. $H(g(y), h(g(y)))$ 10,9 =E
12. $H(g(y), v)$ 11,5 =E
13. $G(y, g(y)) \land H(g(y), v)$ 8,12 ∧I
14. $\exists w[G(y, w) \land H(w, v)]$ 13 ∃I
15. $\exists w[G(y, w) \land H(w, v)]$ A $(g, \iff I)$
16. $G(y, j) \land H(j, v)$ A $(g, 15\iff E)$
17. $j = g(y) \iff G(y, j)$ 3 VE
18. $G(y, j)$ 16 ∧E
19. $j = g(y)$ 17,18 =E
20. $v = h(j) \iff H(j, v)$ 2 VE
21. $H(j, v)$ 16 ∧E
22. $v = h(j)$ 20,21 =E
23. $v = h(g(y))$ 22,19 =E
24. $v = r(y)$ 1,23 =E
25. $v = r(y)$ 15,16-24 ∃E
26. $v = r(y) \iff \exists w[G(y, w) \land H(w, v)]$ 4-14,15-25 =I
\[v = \beta(p, q, i) \iff B(p, q, i, v) \]
\[v = g(\xi) \iff G(\xi, v) \]
\[v = h(\xi, y, u) \iff H(\xi, y, u, v) \]
\[z = r(\xi, y) \]
\[3. v = g(\xi) \]
\[G(\xi, v) \]
\[4. v = h(\xi, y, u) \]
\[H(\xi, y, u, v) \]
\[5. z = r(\xi, y) \]
\[\beta(a, b, \emptyset) = g(\xi) \land (\forall i < y) h(\xi, i, \beta(p, q, i)) = \beta(p, q, Si) \land \beta(p, q, y) = z \]
\[6. \beta(a, b, \emptyset) = g(\xi) \land (\forall i < y) h(\xi, i, \beta(a, b, i)) = \beta(a, b, Si) \land \beta(a, b, y) = z \]
\[7. \beta(a, b, \emptyset) = g(\xi) \]
\[8. \beta(a, b, \emptyset, g(\xi)) \]
\[9. \beta(a, b, \emptyset, g(\xi)) \]
\[10. \beta(a, b, \emptyset, g(\xi)) \]
\[11. \beta(a, b, \emptyset, g(\xi)) \land \beta(\xi, g(\xi)) \]
\[12. \beta(a, b, \emptyset, v) \land \beta(\xi, v) \]
\[13. (\forall i < y) h(\xi, i, \beta(a, b, i)) = \beta(a, b, Si) \]
\[14. \beta(a, b, \emptyset) = \beta(a, b, Si) \]
\[15. \beta(\xi, l, \beta(a, b, l)) = \beta(a, b, Si) \]
\[16. \beta(\xi, l, \beta(a, b, l)) \]
\[17. \beta(\xi, l, \beta(a, b, l)) \land \beta(\xi, l, \beta(a, b, l)) \]
\[18. \beta(\xi, l, \beta(a, b, l)) \land \beta(\xi, l, \beta(a, b, l)) \]
\[19. \beta(\xi, l, \beta(a, b, l)) \land \beta(\xi, l, \beta(a, b, l)) \]
\[20. \beta(\xi, l, \beta(a, b, l)) \land \beta(\xi, l, \beta(a, b, l)) \]
\[21. \beta(\xi, l, \beta(a, b, l)) \land \beta(\xi, l, \beta(a, b, l)) \]
\[22. (\forall i < y) \beta(\xi, i, \beta(a, b, i)) = \beta(a, b, Si) \]
\[23. \beta(a, b, y) = \beta(a, b, y) \]
\[24. \beta(a, b, y) = \beta(a, b, y) \]
\[25. \beta(a, b, y, z) \]
\[26. \beta(a, b, y, z) \]
\[27. \beta(a, b, y, z) \]
\[28. \beta(a, b, y, z) \]
\[29. \beta(a, b, y, z) \]
\[30. z = r(\xi, y) \rightarrow R(\xi, y, z) \]

With the use of (1), (2) and (3) as on lines (8), (9) and so forth, this derivation is straightforward. The other direction is left as an exercise.

T13.20

1. \(\forall m \forall n [(F(\check{x}, \emptyset, m) \land F(\check{\emptyset}, n)) \rightarrow m = n] \)

2. \(\forall m \forall n [(F(\check{x}, j, m) \land F(\check{x}, j, n)) \rightarrow m = n] \)

3. \(F(\check{x}, Sj, u) \land F(\check{x}, Sj, v) \)

4. \(\exists p \exists q \exists u \exists v (p, q, u) = g(\check{x}) \land (p, q, i) = \beta(p, q, Sj) \land \beta(p, q, Sj) = u \)

5. \(\exists p \exists q \exists u \exists v (p, q, u) = g(\check{x}) \land (p, q, i) = \beta(p, q, Sj) \land \beta(p, q, Sj) = v \)

6. \(\beta(a, b, j) = g(\check{x}) \land (V_i < Sj) \land h(\check{x}, i, \beta(a, b, i)) = u \)

7. \(F(\check{x}, Sj, j) \)

8. \((V_i < Sj) \land h(\check{x}, i, \beta(a, b, j)) = \beta(a, b, Sj) \)

9. \(\beta(a, b, Sj) = u \)

10. \(\beta(\check{x}, \emptyset, j) = g(\check{x}) \land (V_i < Sj) \land h(\check{x}, i, \beta(\check{x}, \emptyset, i)) = \beta(\check{x}, \emptyset, Sj) \land \beta(\check{x}, \emptyset, Sj) = u \)

11. \(\beta(\check{x}, \emptyset, j) = g(\check{x}) \land (V_i < Sj) \land h(\check{x}, i, \beta(\check{x}, \emptyset, i)) = \beta(\check{x}, \emptyset, Sj) \land \beta(\check{x}, \emptyset, Sj) = v \)

12. \(\exists p \exists q \exists u \exists v (p, q, j) = g(\check{x}) \land (V_i < Sj) \land h(\check{x}, i, \beta(p, q, j)) = \beta(p, q, Sj) \land \beta(p, q, Sj) = u \)

13. \(\exists p \exists q \exists u \exists v (p, q, j) = g(\check{x}) \land (V_i < Sj) \land h(\check{x}, i, \beta(p, q, j)) = \beta(p, q, Sj) \land \beta(p, q, Sj) = v \)

14. \(\beta(p, q, j) = g(\check{x}) \land (V_i < Sj) \land h(\check{x}, i, \beta(p, q, j)) = \beta(p, q, Sj) \land \beta(p, q, Sj) = u \)

15. \(\beta(p, q, j) = g(\check{x}) \land (V_i < Sj) \land h(\check{x}, i, \beta(p, q, j)) = \beta(p, q, Sj) \land \beta(p, q, Sj) = v \)

16. \(\beta(p, q, j) = g(\check{x}) \land (V_i < Sj) \land h(\check{x}, i, \beta(p, q, j)) = \beta(p, q, Sj) \land \beta(p, q, Sj) = u \)

17. \(\beta(p, q, j) = g(\check{x}) \land (V_i < Sj) \land h(\check{x}, i, \beta(p, q, j)) = \beta(p, q, Sj) \land \beta(p, q, Sj) = v \)

18. \(\forall m \forall n [(F(\check{x}, j, m) \land F(\check{x}, j, n)) \rightarrow m = n] \)

19. \(\forall m \forall n [(F(\check{x}, Sj, m) \land F(\check{x}, Sj, n)) \rightarrow m = n] \)

As for parallel reasoning in T12.10, the key to this argument is attaining \(F(\check{x}, j, \beta(a, b, j)) \) and \(F(\check{x}, j, \beta(c, d, j)) \) on lines (24) and (32). From these the assumption on (2) comes into play, and the result follows with other equalities.
(i) $\text{PA} \vdash \exists v [x = y + v \lor (x < y \land v = \emptyset)]$

(ii) $\text{PA} \vdash \forall m \forall n [(x = y + m \lor (x < y \land m = 0)] \land [x = y + n \lor (x < y \land n = 0))] \rightarrow m = n$

The proof of (i) and (ii) is left as an exercise. So PA defines (\vdash). And it proves a series of intuitive results.

*T13.21. The following result in PA:

(a) $\text{PA} \vdash b \leq a \rightarrow a = b + (a \div b)$

(b) $\text{PA} \vdash a \leq b \rightarrow a \div b = \emptyset$

(c) $\text{PA} \vdash a \div b \leq a$

(d) $\text{PA} \vdash (a \leq r \land r \leq s) \rightarrow r \div a \leq s \div a$

(e) $\text{PA} \vdash (a \leq r \land r < s) \rightarrow r \div a < s \div a$

(f) $\text{PA} \vdash b < a \rightarrow \emptyset < a \div b$

(g) $\text{PA} \vdash \emptyset < a \rightarrow a \div \neg 1 < a$

(h) $\text{PA} \vdash a \div \emptyset = a$

(i) $\text{PA} \vdash Sa \div a = \neg 1$

(j) $\text{PA} \vdash a = Sa \div \neg 1$

(k) $\text{PA} \vdash \emptyset < a \rightarrow a = S(a \div \neg 1)$

(l) $\text{PA} \vdash Sb \leq a \rightarrow a \div b = S(a \div Sb)$

(m) $\text{PA} \vdash c \leq a \rightarrow (a \div c) + b = (a + b) \div c$

(n) $\text{PA} \vdash (b \leq a \land c \leq b) \rightarrow a \div (b \div c) = (a \div b) + c$

(o) $\text{PA} \vdash (a \div b) \div c = a \div (b + c)$

(p) $\text{PA} \vdash (a + c) \div (b + c) = a \div b$

(q) $\text{PA} \vdash a \times (b \div c) = (a \times b) \div (a \times c)$
(a) and (b) are from the definition, and the basis upon which the rest depend. (c)–(l) are simple subtraction facts—except where the inequalities are required to protect against cases when \(a \div b\) goes to \(\emptyset\). And (m)–(q) are some results for association and distribution. For hints see E13.17 along with answers to the exercise.

Next factor. Again, consistent with remainder and quotient, we say \(m|n\) when \(m + 1\) divides \(n\).

\[\text{Def}[] \quad \text{PA} \vdash m|n \iff \exists q (Sm \times q = n)\]

Since factor is a relation, no condition is required over and above the axiom so that the definition is good as it stands. And, again, PA proves a series of results. These are reasonably intuitive. Observe however that our choice to divide by \(m + 1\) means that, as in T13.22a below, \(\emptyset|a\).

*T13.22. The following result in PA:

(a) \(\text{PA} \vdash \emptyset|a\)

(b) \(\text{PA} \vdash a|Sa\)

(c) \(\text{PA} \vdash a|\emptyset\)

(d) \(\text{PA} \vdash a|b \rightarrow a|(b \times c)\)

(e) \(\text{PA} \vdash [(a \div \overline{1})|c \wedge (b \div \overline{1})|d] \rightarrow (ab \div \overline{1})|cd\)

(f) \(\text{PA} \vdash (a|Sb \wedge b|c) \rightarrow a|c\)

*(g) \(\text{PA} \vdash a|b \rightarrow [a|(b + c) \leftrightarrow a|c]\)

(h) \(\text{PA} \vdash (c \leq b \wedge a|b) \rightarrow [a|(b \div c) \leftrightarrow a|c]\)

(i) \(\text{PA} \vdash a < b \rightarrow b \nmid Sa\)

(j) \(\text{PA} \vdash a|b \leftrightarrow rm(b, a) = \emptyset\)

*(k) \(\text{PA} \vdash rm[a + (y \times Sd), d] = rm(a, d)\)

*(l) \(\text{PA} \vdash Sd \times z \leq a \rightarrow z \leq qt(a, d)\)

*(m) \(\text{PA} \vdash y \times Sd \leq a \rightarrow rm[a \div (y \times Sd), d] = rm(a, d)\)
CHAPTER 13. GÖDEL’S THEOREMS

So (a) (the successor of) \(\emptyset \) divides any number; (b) (the successor of) \(a \) divides \(Sa \); and (c) any number divides into \(\emptyset \) zero times. (d) if \(a \) divides \(b \) then it divides \(b \times c \); (e) where subtraction compensates for successor, if \(a \) divides \(c \) and \(b \) divides \(d \), \(ab \) divides \(cd \); and (f) if \(a \) divides \(Sb \) and (the successor of) \(b \) divides \(c \), then \(a \) divides \(c \). (g) is like \((b + c)/a = b/a + c/a\) so that dividing the sum breaks into dividing the members; (h) is the comparable principle for subtraction. From (i) if \(a < b \), then (the successor of) \(b \) does not divide \(Sa \). (j) makes the obvious connection between remainder and factor. In (k) the remainder of the second part \((y \times Sd)\) is \(\emptyset \) so that the remainder of the sum is just whatever there is from the first \(rm(a, d) \); (m) is the comparable principle for subtraction. The intervening (l) is required for (m) and tells us that if \(z \) multiples of (the successor of) \(d \) come to \(\leq a \), then \(z \leq qt(a, d) \) since the quotient maximizes the multiples of (the successor of) \(d \) that are \(\leq a \).

And now PA defines relations prime and relatively prime. Prime has its usual sense. And numbers are relatively prime when they have no common divisor other than one—though they may not therefore individually be prime. Though division is by successor, these notions are given their usual sense by adjusting the numbers that are said to “divide.”

\[
\text{Def}[\Pr]\ PA \vdash \Pr(n) \leftrightarrow \top < n \land \forall x[x|n \rightarrow (Sx = \top \lor Sx = n)]
\]

\[
\text{Def}[\Rp]\ PA \vdash \Rp(a, b) \leftrightarrow \forall x[(x|a \land x|b) \rightarrow Sx = \top]
\]

Since these are relations, no condition is required over and above the axioms. For any \(b \) we get \(\Rp(\top, b) \) since the only number that divides both \(\top \) and \(b \) is (the successor of) \(\emptyset \). And \(\Rp(\emptyset, \top) \): anything divides \(\emptyset \), so (the successor of) \(\emptyset \) divides \(\emptyset \); and the only number that divides \(S\emptyset \) is (the successor of) \(\emptyset \). But for \(a \neq \emptyset \) (and so \(Sa \neq \top \)), \(\neg \Rp(\emptyset, Sa) \), for when \(a \neq \emptyset \), both \(\emptyset \) and \(Sa \) are divided by (the successor of) \(a \) and so by a number other than (the successor of) \(\emptyset \).

To make progress with \(\Pr \) and \(\Rp \), it will be helpful to introduce a couple of subsidiary notions. When \(G(a, b, i) \) we say that \(i \) is good, and \(d(a, b) \) is (zero or) the least good when \(a \) and \(b \) are greater than zero.

\[
\text{Def}[G]\ PA \vdash G(a, b, i) \leftrightarrow \exists x \exists y(ax + i = by)
\]

\[
\text{Def}[d]\ PA \vdash d(a, b) = \mu v[(\emptyset < a \land \emptyset < b) \rightarrow G(a, b, Sv)]
\]

(i) \(PA \vdash \exists v[(\emptyset < a \land \emptyset < b) \rightarrow G(a, b, Sv)] \)
If \(a \) or \(b \) is not greater than \(\emptyset \) then vacuously \(d(a, b) \) is just \(\emptyset \). Otherwise, the notion is more significant.

And PA proves a series of results for these notions. Observe again that if we are interested in whether a prime divides some \(b \) we are interested in whether \(Pr(Sa) \land a \mid b \) since it is the successor that is divided into \(b \).

*13.23. The following result in PA:

\[
\begin{align*}
(1) & \quad \text{PA} \vdash \sim Pr(\emptyset) \\
(2) & \quad \text{PA} \vdash \sim Pr(\bar{\emptyset}) \\
(3) & \quad \text{PA} \vdash Pr(\bar{\emptyset}) \\
(4) & \quad \text{PA} \vdash \bar{\emptyset} < a \rightarrow \exists z (Pr(Sz) \land z \mid a) \\
(5) & \quad \text{PA} \vdash Rp(a, b) \leftrightarrow \exists x [Pr(Sx) \land x \mid a \land x \mid b] \\
(6) & \quad \text{PA} \vdash G(a, b, m) \rightarrow G(a, b, m \times n) \\
(7) & \quad \text{PA} \vdash (\emptyset < a \land \emptyset < b) \rightarrow \forall m \forall n [(G(a, b, m) \land G(a, b, n) \land n \leq m) \rightarrow G(a, b, m \times n)] \\
(8) & \quad \text{PA} \vdash [Rp(a, b) \land \emptyset < a \land \emptyset < b] \rightarrow G(a, b, \bar{\emptyset}) \\
(9) & \quad \text{PA} \vdash [Pr(Sa) \land a \mid (b \times c)] \rightarrow (a \mid b \lor a \mid c)
\end{align*}
\]

The argument for (h) is relatively complex; its main stages are as follows.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>[[(\emptyset < a \land \emptyset < b) \rightarrow G(a, b, Sd(a, b))] \land (\forall y < d(a, b)) \sim [(\emptyset < a \land \emptyset < b) \rightarrow G(a, b, Sy)]]</td>
<td>def d</td>
</tr>
<tr>
<td>2.</td>
<td>((\emptyset < a \land \emptyset < b) \rightarrow G(a, b, Sd(a, b)))</td>
<td>1 \land E</td>
</tr>
<tr>
<td>3.</td>
<td>(Rp(a, b) \land \emptyset < a \land \emptyset < b)</td>
<td>A (g, \rightarrow I)</td>
</tr>
<tr>
<td>4.</td>
<td>(Rp(a, b))</td>
<td>3 \land E</td>
</tr>
<tr>
<td>5.</td>
<td>(\forall x [(x \mid a \land x \mid b) \rightarrow Sx = \bar{\emptyset}])</td>
<td>4 def</td>
</tr>
<tr>
<td>6.</td>
<td>(\emptyset < a \land \emptyset < b)</td>
<td>3 \land E</td>
</tr>
<tr>
<td>7.</td>
<td>(G(a, b, Sd(a, b)))</td>
<td>2.6 \rightarrow E</td>
</tr>
<tr>
<td>8.</td>
<td>(G(a, b, a))</td>
<td>[a]</td>
</tr>
<tr>
<td>9.</td>
<td>(G(a, b, b))</td>
<td>[b]</td>
</tr>
<tr>
<td>10.</td>
<td>(\forall x [(G(a, b, x) \rightarrow d(a, b) \mid x)])</td>
<td>[c]</td>
</tr>
<tr>
<td>11.</td>
<td>(d(a, b) \mid a)</td>
<td>8.10 \forall E</td>
</tr>
<tr>
<td>12.</td>
<td>(d(a, b) \mid b)</td>
<td>9.10 \forall E</td>
</tr>
<tr>
<td>13.</td>
<td>(d(a, b) \mid a \land d(a, b) \mid b)</td>
<td>11.12 \land I</td>
</tr>
<tr>
<td>14.</td>
<td>(Sd(a, b) = \bar{\emptyset})</td>
<td>5.13 \forall E</td>
</tr>
<tr>
<td>15.</td>
<td>(G(a, b, \bar{\emptyset}))</td>
<td>7.14 \equiv E</td>
</tr>
<tr>
<td>16.</td>
<td>([Rp(a, b) \land \emptyset < a \land \emptyset < b] \rightarrow G(a, b, \bar{\emptyset}))</td>
<td>3-15 \rightarrow I</td>
</tr>
</tbody>
</table>

So the argument reduces to [a]–[c]. For hints, see the associated E13.19.
T13.23(a)–(c) are simple particular facts. From (d) every number greater than one is divided by some prime (which may or may not be itself). From (e), \(a \) and \(b \) are relatively prime iff there is no prime that divides them both; in one direction this is obvious—if a prime divides them both, then they are not relatively prime; in the other direction, if some number other than (the successor of) zero divides them both, then some prime of it divides them both. (f) and (g) let you manipulate \(G \); they are required for (h) which is in turn required for (i). (h) is an instance of Bézout’s lemma according to which there are \(x \) and \(y \) such that \(ax + by = d \) when \(d \) is (some multiple of) the greatest common divisor of \(a \) and \(b \); if \(a \) and \(b \) are relatively prime, their greatest common divisor is one. (i) is Euclid’s lemma according to which if \(Ssa \) is prime and \(Ssa \) divides \(b \times c \) then \(Ssa \) divides \(b \) or divides \(c \); if \(Ssa \) is prime and divides \(b \times c \) then it must appear in the factorization of \(b \) or the factorization of \(c \)—so that it divides one or the other.

Now least common multiple. Given a function \(m(i), \text{lcm}\{m(i) \mid i < k\} \) is the least \(v > \emptyset \) such that for any \(i < k \), \(Sm(i) \) divides \(v \). We avoid worries about the case when \(m(i) = \emptyset \) by our usual account of factor. And since \(\emptyset < v \) it is possible to define a predecessor to the least common multiple, helpful when switching between the numerator and denominator of fractions.

*Def\([\text{lcm}]\) \[\text{lcm}\{m(i) \mid i < k\} = \mu v[\emptyset < v \land (\forall i < k) m(i) | v] \]

(i) PA \(\vdash \exists x[\emptyset < x \land (\forall i < k) m(i) | x] \)

Because \(\text{lcm} \) is defined by minimization, only the existence condition is required. As a matter of notation, let \(l[m]_k = \text{lcm}\{m(i) \mid i < k\} \) and, where \(m \) is clear from context, let \(l_k = \text{lcm}\{m(i) \mid i < k\} \).

*Def\([\text{plm}]\) \[v = \text{plm}\{m(i) \mid i < k\} \iff Sv = \text{lcm}\{m(i) \mid i < k\} \]

(i) PA \(\vdash \exists v(Sv = l_k) \)

(ii) PA \(\vdash \forall x \forall y[(Sx = l_k \land Sy = l_k) \rightarrow x = y]\)

Again, let \(p[m]_k = \text{plm}\{m(i) \mid i < k\} \) and, where \(m \) is clear from context, \(p_k = \text{plm}\{m(i) \mid i < k\} \).

*T13.24. The following result in PA:

(a) PA \(\vdash l_\emptyset = 1 \)

(b) PA \(\vdash j < k \rightarrow m(j)|l_k \)
* (c) \(\text{PA} \vdash (\forall i < k) m(i) \models x \rightarrow p_k \models x \)

* (d) \(\text{PA} \vdash \forall n[(Pr(Sn) \land n \models l_k) \rightarrow (\exists i < k) n \models Sm(i)] \)

(a) for any function \(m(i) \), the least common multiple for \(i < 0 \) defaults to \(1 \). (b) applies the definition for the result that when \(j < k \), \(m(j) \) divides \(\text{lcm} \{m(i) \mid i < k\} \). (c) is perhaps best conceived by prime factorization: the least common multiple of some collection has all the primes of its members and no more; but any number into which all the members of the collection divide must include all those primes; so the least common multiple divides it as well. (d) is the related result that if a prime divides the least common multiple of some collection, then it divides some member of the collection.

Finally we arrive at the Chinese Remainder Theorem. Let \(m(i) \) be a function such that (successors of) its values are relatively prime; \(h(i) \) is a function whose values are to be matched by remainders. Then the theorem tells us that if for all \(i < k \), \(m(i) \) is “big enough” (\(0 < m(i) \) and \(h(i) \leq m(i) \)), and if for all \(i < j < k \), \(Sm(i) \) and \(Sm(j) \) are relatively prime, then \(\exists p(\forall i < k) \models p.m(i) = h(i) \). So the remainder of \(p \) and \(m(i) \) matches the value of \(h(i) \).

\(\text{T13.25} \). \(\text{PA} \vdash [(\forall i < k)(0 < m(i) \land h(i) \leq m(i)) \land \forall i \forall j((i < j \land j < k) \rightarrow Rp(\text{Sm}(i), \text{Sm}(j)))] \)

\(\rightarrow \exists p(\forall i < k) \models p.m(i) = h(i) \). Let,

\(A(k) = (\forall i < k)(0 < m(i) \land h(i) \leq m(i)) \land \forall i \forall j((i < j \land j < k) \rightarrow Rp(\text{Sm}(i), \text{Sm}(j)))] \)

\(B(k) = \exists p(\forall i < k) \models p.m(i) = h(i) \).

So we want \(\text{PA} \vdash A(k) \rightarrow B(k) \). By induction on \(n \) we show \(\forall n[n \leq k \rightarrow (A(n) \rightarrow B(n))] \). The result \(A(k) \rightarrow B(k) \) follows immediately with \(k \leq k \).

For the overall structure of the main argument by IN, see page 717.

The key to this important argument is the construction of a term \(s \) such that for any \(i < Sa \) the remainder of \(s \) and \(m(i) \) is \(h(i) \). With this, there are remainders to match each \(h(i) \).

We are almost done! Having obtained T13.25 it remains to show in PA that, (i) as applied to the \(\beta \)-function, we can get the antecedent to T13.25 and so detach its consequent; and (ii) the values \(h(i) \) to which remainders are matched may be given by the original recursive conditions for the function \(r \)—and so that there are \(p \) and \(q \) that make remainders equal to the values of \(r \).

As preliminaries to showing that we can detach the consequent of T13.25, we require a couple notions for maximum value: First \(\text{maxp} \) for the greatest of a pair of values, and then \(\text{maxs} \) for the maximum from a set.
T13.25

1. \(\emptyset \leq k \rightarrow (A(\emptyset) \rightarrow B(\emptyset)) \)
2. \(a \leq k \rightarrow (A(a) \rightarrow B(a)) \)
3. \(S_a \leq k \)
4. \(a < k \)
5. \(a \leq k \)
6. \(A(a) \rightarrow B(a) \)
7. \(A(S_a) \)
8. \([(\forall i < a)(\emptyset < m(i) \land h(i) \leq m(i)) \land \forall j((i < j \land j < a) \rightarrow Rp(Sm(i), Sm(j)))] \rightarrow \exists p(\forall i < a)m(p, m(i)) = h(i) \)
9. \(\forall i < Sa)(\emptyset < m(i) \land h(i) \leq m(i)) \land \forall j((i < j \land j < Sa) \rightarrow Rp(Sm(i), Sm(j)) \)
10. \(\exists p(\forall i < a)m(p, m(i)) = h(i) \)
11. \((\forall i < a)m(r, m(i)) = h(i) \)
12. \(Rp(l[m]_x, Sm(a)) \)
13. \(\emptyset < Sm(a) \)
14. \(\emptyset < l_a \)
15. \(G(l_a, Sm(a), \top) \)
16. \(G(l_a, Sm(a), r + (l_a \land \top) \times h(a)) \)
17. \(f \leq y \)
18. \([l_a \times b + [r + (l_a \land \top) \times h(a)] = Sm(a) \times c \)
19. \(x = l_a \times (b + h(a)) + r \)
20. \(x = Sm(a) \times c + h(a) \)
21. \((\forall i < Sa)m(s, m(i)) = h(i) \)
22. \(\exists p(\forall i < a)m(p, m(i)) = h(i) \)
23. \(B(Sa) \)
24. \(B(Sa) \)
25. \(A(Sa) \rightarrow B(Sa) \)
26. \(A(Sa) \rightarrow B(Sa) \)
27. \(\forall m[n \leq k \rightarrow (A(n) \rightarrow B(n))] \rightarrow [Sn \leq k \rightarrow (A(Sn) \rightarrow B(Sn)) \)
28. \((\forall n < k)(A(n) \rightarrow B(n)) \)
29. \(k \leq k \)
30. \(A(k) \rightarrow B(k) \)

First lines (12) and so (13) use assumptions to detach the consequent of (8). Then from (11) we get (14) according to which \(l[m]_x \), and \(Sm(a) \) are relatively prime, and from this (19) and if we get (20)—intuitively, if some \(d \ldots e \) and \(f \) are relatively prime, they have no primes in common; but the least common multiple of \(d \ldots e \) has just the primes of \(d \ldots e \); so their least common multiple has no primes in common with \(f \).

Then term \(s \) is constructed so that for any \(i < Sa \) the remainder of \(s \) and \(m(i) \) is \(h(i) \): For a claim about all \(i < Sa \), \(s \) appears in the forms from both (21) and (22). For \(i < a \) and \(x \), \(m(i) \) divides \(l_a \times x \) evenly; so \(m(i) \) divides the first term from (21) evenly; so the remainder of \(m(i) \) and \(s \) is the same as the remainder of \(m(i) \) with \(r \) —and with (13) this is just \(h(i) \). But from (20) and (21), we get (22): so when \(i = a \), \(m(i) \) divides the first term evenly, and since \(h(a) < m(a) \), again the remainder of \(m(i) \) and \(s \) is \(h(i) \). Putting these together, for any \(i < Sa \), the remainder of \(m(i) \) and \(s \) is \(h(i) \).

The “trick” to this is in the construction of \(s \) so that remainders for \(i < a \) stay the same, but the remainder at \(a \) is \(h(a) \).

Hints and derivations for [a]–[e] are associated with E13.21.
Def [maxp] PA ⊢ maxp(x, y) = μv[x ≤ v ∧ y ≤ v]

(i) PA ⊢ ∃v[x ≤ v ∧ y ≤ v]

Hint: y ≤ x ∨ x < y; in either case the result is easy.

Def [maxs] PA ⊢ maxs{m(i) | i < k} = μv[(∀i < k)m(i) ≤ v]

(i) PA ⊢ ∃v[(∀i < k)m(i) ≤ v]

For hints see the associated exercise E13.22.

So maxp(x, y) is the maximum of x and y, and maxs{m(i) | i < k} is the maximum from m(i) with i < k. As a matter of notation, let maxs[m]k = maxs{m(i) | i < k} and where m is understood, maxsk = maxs{m(i) | i < k}. A couple of results are immediate with T13.18b.

T13.26. The following result in PA.

(a) PA ⊢ x ≦ maxp(x, y) ∧ y ≦ maxp(x, y)

(b) PA ⊢ (∀i < k)m(i) ≤ maxsk

These simply state the obvious: that the maximum is greater than or equal to the rest. From (a) the maximum is the greater of the two in the pair; from (b) the maximum is the greatest of the values of the function.

Now with values of q and m(i) as below, we demonstrate the antecedent to the CRT (T13.25), and so obtain its consequent—where this is a result for the β-function.

T13.27. PA ⊢ ∃p∃q(∀i < k)β(p, q, i) = h(i).

Let r = maxp(k, maxs[h]k);

q = lcm{i | i < Sr};

m(i) = q × Si.

Recall from Def[beta] that PA ⊢ β(p, q, i) = rm(p, q × Si). And we may reason,
1. \[(\forall i < k)(\emptyset < m(i) \land h(i) \leq m(i))\] [i]

2. \[\forall i \forall j[(i < j \land j < k) \rightarrow Rp(Sm(i), Sm(j))]\] [ii]

3. \[\exists p(\forall i < k)rm(p, m(i)) = h(i)\] 1,2 T13.25

4. \[(\forall i < k)rm(p, m(i)) = h(i)\] A (g 3∃E)

5. \[m(i) = q \times Si\] def

6. \[(\forall i < k)rm(p, q \times Si) = h(i)\] 4,5 =E

7. \[\beta(p, q, i) = rm(p, q \times Si)\] def

8. \[(\forall i < k)\beta(p, q, i) = h(i)\] 6,7 =E

9. \[\exists q(\forall i < k)\beta(p, q, i) = h(i)\] 8 ∃

10. \[\exists p\exists q(\forall i < k)\beta(p, q, i) = h(i)\] 9 ∃

11. \[\exists p\exists q(\forall i < k)\beta(p, q, i) = h(i)\] 3,4-10 ∃E

So the demonstration reduces to that of [i] and [ii], the two conjuncts to the antecedent of \(CRT\) (T13.25). [i]: Under the assumption \(j < k\) for \((\forall i)\) it will be easy to show \(\emptyset < m(j)\); then you will be able to use T13.26 to show \(h(j) < Sr\); but also with T13.24b that \(r|q\) and from this that \(Sr \leq q\) which gives \(Sr \leq q \times Sj\) and the result you want. [ii]: For the main structure of the argument, see page 720.

Now, moving toward the result that values for \(h(i)\) may derive from the recursive conditions, a theorem that uses the above result to show that a \(\beta\)-function for values \(< k\) can always be extended to another like it but with an arbitrary \(k^{th}\) value. We show that given \(\beta(a, b, i)\) there are sure to be \(p\) and \(q\) such that \(\beta(p, q, i)\) is like \(\beta(a, b, i)\) for \(i < k\) and for arbitrary \(n\), \(\beta(p, q, k) = n\). This is because we may define a function \(h\) which is like \(\beta(a, b, i)\) for \(i < k\) and otherwise \(n\)—and find \(p, q\) such that \(\beta(p, q, i)\) matches it. Thus,

\[\text{Def}[h(i)] \quad PA \vdash v = h(i) \iff [(i < k \land v = \beta(a, b, i)) \lor (k \leq i \land v = n)]\]

(i) \[PA \vdash \exists v[(i < k \land v = \beta(a, b, i)) \lor (k \leq i \land v = n)]\]

(ii) \[PA \vdash \forall x \forall y[(i < k \land x = \beta(a, b, i)) \lor (k \leq i \land x = n)] \land [i < k \land y = \beta(a, b, i)) \lor (k \leq i \land y = n)) \rightarrow x = y]\]

Then,

\(*T13.28. PA \vdash \exists p\exists q(\forall i < k)\beta(p, q, i) = \beta(a, b, i) \land \beta(p, q, k) = n].\)

For hints see the associated exercise E13.24.

For application of this theorem it is important that the free variables \(k, n, a, b\) are (effectively) universally quantified and so may be instantiated in the usual way. T13.28
already suggests that we can take an arbitrary sequence and extend it according to recursive conditions.

Finally, then, the result we have been after in this section: As before, let $\mathcal{F}(\bar{x}, y, v)$ be our formula,

$$\exists p \exists q [\beta(p, q, \emptyset) = g(\bar{x}) \land (\forall i < y) \beta(\bar{x}, i, \beta(p, q, i)) = \beta(p, q, Si) \land \beta(p, q, y) = v]$$
CHAPTER 13. GÖDEL’S THEOREMS

*T13.29. For F as above, $PA \vdash \exists v F(\bar{x}, y, v)$.

Let $F(\bar{x}, y, v)$ be as above; the argument is by IN on y. The zero case is left as an exercise. See page 722 for the main argument.

This completes the demonstration of T13.19! So for any friendly recursive function $r(\bar{x})$ and original formula $R(\bar{x}, v)$ by which it is expressed and captured, PA defines a function $r(\bar{x})$ such that $PA \vdash v = r(\bar{x}) \leftrightarrow R(\bar{x}, v)$. In particular, then, PA defines functions corresponding to all the primitive recursive functions from chapter 12.

*E13.17. Show (i) and (ii) for $\text{Def}[\neg]$. Then show T13.21 (a) and (p). Hard-core: show all of the results in T13.21.

Hints for T13.21. (f): with the assumption you can get both $a = Sj + b$ and $a = b + (a \div b)$; then you have what you need with T6.70. (m): with the assumption $c \leq a$ you have also $c \leq a + b$; so that both $a = c + (a \div c)$ and $a + b = c + [(a + b) \div c]$; then =E and T6.70 do the work. (n): You can get this with a couple applications of (m). (o): First, $b + c \leq a \vee a < b + c$; in the second case, $b \leq a \vee a < b$; in each of these cases, both sides equal 0; for the first main option, you will be able to show that $(b + c) + [(a \div b) \div c] = (b + c) + [a \div (b + c)]$ and apply T6.70. (q): First $\emptyset = a \vee \emptyset < a$; in the first case, both sides equal 0; then in the second case, $c \leq b \vee b < c$; again in the second of these cases, both sides equal 0; in the other case, you will be able to show $ac + a(b \div c) = ac + (ab \div ac)$ and apply T6.70.

Hints for T13.22. (g): The assumption $a|b$ gives $Sa \times j = b$; then the biconditional from right to left is not hard; in the other direction, $a|(b + c)$ gives $Sa \times k = b + c$; you will have to show $j \leq k$ so that $l + j = k$; $a|c$ follows with these. (k): Let $r = rm(a, d)$; then from the definition, $(\exists w \leq a)[a = Sd \times w + r \wedge r < Sd]$ and you have $a = (Sd \times j) + r \wedge r < Sd$; if you assert $a + (y \times Sd) = a + (y \times Sd)$ by =1 you should be able to show $a + (y \times Sd) = Sd \times (j + y) + r \wedge r < Sd$, and the result from this. (l): With $r = rm(a, d)$ and $q = qt(a, d)$ by $\text{Def}[\neg t]$ you have $a = Sd \times q + r \wedge r < Sd$; assume $Sd \times z \leq a$ for $\rightarrow I$ and $q < z$ for $\neg \rightarrow I$; then you should be able to show $a < Sd \times z$ to contradict the assumption for $\rightarrow I$. (m): Again let $r = rm(a, d)$ and $q = qt(a, d)$; then by $\text{Def}[\neg t]$ you have $a = Sd \times q + r \wedge r < Sd$; assume $y \times Sd \leq a$ for $\rightarrow I$; you should
From the assumption (2), there are a, b such that the β-function has the right features for every $i < j$. With T13.28 there are c, d such that the β-function has the right features for $i < S_j$. The derivation establishes that this is so and generalizes.
be able to show $a \div (y \times Sd) = Sd(q \div y) + r \land r < Sd$; you need $(\exists w < a \div (y \times Sd))[a \div (y \times Sd) = Sd \times w + r \land r < Sd]$ to apply Def[rm].

Hint for Def[d]. Begin with $\emptyset \notin b \lor \emptyset < b$ and go for the existentially quantified goal. In the second case, there is some j such that $b = Sj$ and it is easy to show $a \times \emptyset + b = b \times \emptyset$ and generalize.

Hints for T13.23h. [a] Show $a \times \emptyset + b = b \times a$ and generalize. [b] Show $a \times \emptyset + b = b \times \emptyset$ and generalize. [c] Let $q = qt(i, d(a, b))$ and $r = rm(i, d(a, b))$ then from the definitions you have $i = (Sd(a, b) \times q) + r$ and $r < Sd(a, b)$ and from (1) of the main argument you have that $(\forall y < d(a, b)) \sim [(\emptyset < a \land \emptyset < b) \rightarrow G(a, b, Sy)]$; then under the assumption $G(a, b, i)$ for $\rightarrow I$ you should be able to show $G(a, b, i \sim (Sd(a, b) \times q))$ using (6) from the main argument with T13.23f and T13.23g; but also $i \sim (Sd(a, b) \times q) = r$ so that $G(a, b, r)$. Now the assumption that r is a successor leads to contradiction; so $r = \emptyset$ and $d(a, b) \mid i$.

Hints for the rest of T13.23. (c): This is straightforward with T13.22i. (d): You can do this by the second form of strong induction T13.11ah; the zero case is trivial; to reach $\forall x \{ (\forall y \leq x)[\emptyset < y \rightarrow \exists z(Pr(Sz) \land z|y)] \rightarrow [\emptyset < x \rightarrow \exists z(Pr(Sz) \land z|y)] \}$ assume $(\forall y \leq k)[\emptyset < y \rightarrow \exists z(Pr(Sz) \land z|y)]$ and $\emptyset < Sk$; then Sk is prime or not; if it is prime, the result is immediate; if it is not, you will be able to show $Sj \leq k$ and apply the assumption. (e): From left to right, under the assumption for $\leftrightarrow I$ assume $\exists x[Pr(Sx) \land x|a \land x|b]$ and $Pr(Sj) \land j|a \land j|b$ for $\sim I$ and $\exists E$; then you should be able to show that $\emptyset < Sj$ and $\emptyset \neq Sj$; in the other direction, under the assumption for $\leftrightarrow I$ and then $j|a \land j|b$ for $\rightarrow I$, suppose $\emptyset < j$ this is impossible, which gives the result you want. (g): Under the assumptions $\emptyset < a \land \emptyset < b$ and then $G(a, b, i) \land G(a, b, j) \land k \leq i$ for $\rightarrow I$ and then $ap + i = bq$ and $ar + j = bs$ for $\exists E$, starting with $(bq + bar) + (bsa + bs) = (bq + bar) + (bsa + bs)$ by $=I$, with some effort, you will be able to show $a[(p + bs) + (br + r)] + (i + j) = b[(q + ar) + (sa + s)]$ and generalize. (i): Under the assumption $Pr(Sa) \land a|(b \times c)$ assume $a \nmid b$ with the idea of obtaining $a \nmid b \rightarrow a|c$ for Impl; set out to show $Rp(b, Sa)$ for an application of T13.23h to get $\exists x \exists y[bx + \emptyset = Sa \times y]$; with this, you will have $bp + \emptyset = Sa \times q$ by $\exists E$; and you should be able to show $a|cbp$ and $a|(cbp + c)$ for an application of T13.22g.
E13.20. Show the condition for Def[\(lcm\)] and provide a demonstration for T13.24d.

Hard-core: show all of the results for Def[\(lcm\)], Def[\(plm\)] and T13.24.

Hint for Def[\(lcm\)]. This is an argument by IN on \(k\). For the basis, you may assert that \(\emptyset < T\); then the argument is trivial. For the main argument, under the assumptions :\(\exists x[0 < x \land (\forall i < j)m(i)]x\) for \(\rightarrow I\) and \(0 < a \land (\forall i < j)m(i)\) for \(\forall E\), set out to show \(0 < a \times Sm(j) \land (\forall i < Sj)m(i)((a \times Sm(j))\) and generalize.

Hints for T13.24. (c): Let \(q = qt(x, p_k)\) and \(r = rm(x, p_k)\); assume \((\forall i < k)m(i)|x\) for \(\rightarrow I\); you have \((\forall y < l_k)\sim[0 < y \land (\forall i < k)m(i)]y\) from def \(l_k\) with T13.18c; you should be able to apply this to show that \(r = 0\) and so that \(p_k|x\). (d): This is an induction on \(k\). The basis is straightforward given \(l_0 = T\) from T13.24a; for the main argument, you have \((\forall i < j)m(i)|l_j\) from def \(l_j\); under assumptions \(\forall n[(Pr(Sn) \land n|l_j) \rightarrow (\exists i < j)n|Sm(i)]\) and \(Pr(Sa) \land a|l_j\) for \(\rightarrow I\), you should be able to use T13.24c to show \(p_{Sj}|l_j \times Sm(j)\); and from this \(a|l_j \lor a|Sm(j)\); in either case, you have your result.

E13.21. Provide derivations to show parts [c] and [e] to the derivation for T13.25.

Hard-core: complete the entire derivation.

Hints. [a]: Trivially \((\forall i < 0)rm(0, m(i)) = h(i)\); this gives you \(B(0)\) and (1) follows easily from this. [b]: You will be able to use (10) and (11) to generate the antecedent to (8); (12) then follows by \(\rightarrow E\). [c]: Suppose otherwise; with T13.23c there is a \(u\) such that \(Pr(Su) \land u|a \land u|Sm(a)\); then with T13.24d there is a \(v < a\) such that \(u|Sm(v)\) so that with (11) \(Rp(Sm(v), Sm(a))\). But this is impossible with \(u|Sm(a), u|Sm(v)\) and T13.23e. [d]: By Def[\(lcm\)], \(0 < l_a\) so that \(h(a) < h(a)|l_a\). Then with T13.21a and T13.21q you can show \(s = (l_a \times b + [r + (l_a \div T) \times h(a)]) + h(a)\) and apply (20). [e]: Suppose for \((\forall 1) u < Sa\); then \(u < a \lor u = a\). In the first case, with T13.24b and T13.22d \(m(u))|l_a(b + h(a))\); so that there is a \(v\) such that \(Sm(u)v = l_a(b + h(a))\); then using (21) and T13.22k, \(rm(s, m(u)) = rm(r, m(u))\); so that you can apply (13). In the second case, with (22) and T13.22k \(rm(s, m(u)) = rm(h(u), m(u))\); but from (10), \(h(u) \leq m(u)\) and you will be able to show that \(rm(h(u), m(u)) = h(u)\).

As you encounter extended derivations, a good strategy is to set up a main page for overall structure, with subparts shifted to auxiliary sheets, as here.
E13.22. Given maxp and T13.26a provide a derivation to show the condition of $\text{Def}[\text{maxs}]$. Hard-core: Provide justification $\text{Def}[\text{maxp}]$; and show the results in T13.26 as well.

Hint for $\text{Def}[\text{maxs}]$: First obtain maxp and T13.26a. Then the argument is by IN on k. For the show you will have assumptions of the sort $(\forall i < j)m(i) \leq l$ and (with some setup) $a < Sj$; then $a < j \lor a = j$; in either case you will be able to show that $m(a) \leq \text{maxp}(l, m(j))$.

Hint for $\text{Def}[h(i)]$: (i) is straightforward under $i < k \lor k \leq i$ from T13.11r.

Hints for T13.28: From $\text{Def}[h(i)]$ you have $(k < k \land h(k) = \beta(a, b, k)) \lor (k \leq k \land h(k) = n)$ and $(l < k \land h(l) = \beta(a, b, l)) \lor (k \leq l \land h(l) = n)$; and from T13.27 applied to Sk, $\exists p \exists q(\forall i < Sk)\beta(p, q, i) = h(i)$; then with $(\forall i < Sk)\beta(c, d, i) = h(i)$ for $\exists E$, you will be able to show that $\beta(c, d, k) = n$ and under $l < k$ for $(\forall l)$ that $\beta(c, d, l) = \beta(a, b, l)$.

*E13.25. Complete the demonstration of T13.29 by showing the zero case.

Hint: Apply T13.27 with $h(i) = g(x)$ to get $\exists p \exists q(\forall i < \bar{\top})\beta(p, q, i) = g(\bar{x})$; then under an assumption for $\exists E$, with $\emptyset < \bar{\top}$ the result easily follows.

Coordinate Functions, Operators, and Relations

We conclude this section showing that, in addition to functions, PA defines operators and relations corresponding to the recursive operators and relations, and then that defined functions, operators and relations are coordinate to ones from chapter 12.

As a preliminary, we require a result that is fundamental to every case where a function is defined by recursion. As above let $F(\bar{x}, y, v)$ be,

$$\exists p \exists q[\beta(p, q, \emptyset) = g(\bar{x}) \land (\forall i < y)h(\bar{x}, i, \beta(p, q, i)) = \beta(p, q, Si) \land \beta(p, q, y) = v]$$

and suppose PA $\vdash v = f(\bar{x}, y) \iff F(\bar{x}, y, v)$ so that $f(\bar{x}, y)$ is defined by recursion. Then the standard recursive conditions apply. That is,
T13.30. Suppose $f(x,y)$ is defined by $g(x)$ and $h(x, y, u)$ so that PA $\vdash v = f(x, y) \leftrightarrow F(x, y, v)$. Then,

(a) PA $\vdash f(x, \theta) = g(x)$

(b) PA $\vdash f(x, S(y)) = h(x, y, f(x, y))$

Hint: (a) follows easily in just a few lines with $\exists \exists q[p(\beta(p,q), \theta) = g(x) \land (\forall i < 0)h(x, i, \beta(p,q, i)) = \beta(p,q,Si) \land \beta(p,q, \theta) = f(x, \theta)]$. For (b),

1. $F(x, y, f(x,y))$
2. $\exists \exists q[p(\beta(p,q, \theta) = g(x) \land (\forall i < S)h(x, i, \beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q, \theta) = f(x, S\gamma)]$ 1 abv
3. $\beta(a,b, \theta) = g(x) \land (\forall i < S)h(x, i, \beta(a,b,i)) = \beta(a,b,Si) \land \beta(a,b, \theta) = f(x, S\gamma)$ A (g, 2BE)
4. $(\forall i < S)h(x, i, \beta(a,b,i)) = \beta(a,b, Si)$ 3 AE
5. $y < Sy$ T13.11i
6. $h(x, y, \beta(a,b,y)) = \beta(a,b, Sy)$ 4,5 (\forall E)
7. $\beta(a,b, Sy) = f(x, Sy)$ 3 AE
8. $f(x, Sy) = h(x, y, \beta(a,b,y))$ 6,7 \equiv
9. $\beta(a,b, \theta) = g(x)$ 3 AE
10. $i < y$ A (g, (\forall i))
11. $y < Sy$ T13.11i
12. $j < Sy$ 10,11 T13.11c
13. $h(x, j, \beta(a,b,j)) = \beta(a,b, Sj)$ 4,12,13 (\forall E)
14. $(\forall i < y)h(x, i, \beta(a,b,i)) = \beta(a,b, Si)$ 10-13 (\forall i)
15. $\beta(a,b, y) = \beta(a,b, y)$ =I
16. $\beta(a,b, \theta) = g(x) \land (\forall i < y)h(x, i, \beta(a,b,i)) = \beta(a,b, Si) \land \beta(a,b, y) = \beta(a,b, y)$ 9,14,15 \equiv
17. $\exists \exists q[p(\beta(p,q, \theta) = g(x) \land (\forall i < y)h(x, i, \beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q, \theta) = \beta(a,b, y)]$ 16 \equiv
18. $f(x, y) = \beta(a,b, y)$ 17 def
19. $f(x, Sy) = h(x, y, f(x,y))$ 8,18 \equiv
20. $f(x, S\gamma) = h(x, y, f(x, y))$ 2,3-19 \equiv

The key stages of this argument are at (8) which has the result with $\beta(a,b,y)$ where we want $f(x,y)$ and then (17) which shows they are one and the same.

From this theorem, our defined functions behave like ones we have seen before, with clauses for the basis and then for successor. This lets us manipulate the functions very much as before. The importance of this point will emerge shortly, in application to recursive cases.

Now say a recursive operator \mathcal{O} is friendly just in case, for friendly recursive function f, the characteristic function of $\mathcal{O}(p_1(x) \ldots p_n(y))$ is $f(ch_{p_1}(x) \ldots ch_{p_n}(y))$. Then for some characteristic functions, $ch_{p_1}(x) \ldots ch_{p_n}(y)$ and formulas $\mathcal{P}_1 \ldots \mathcal{P}_n$ such that PA $\vdash \mathcal{P}_1 \iff ch_{p_1} = \bar{0}$ and ... and PA $\vdash \mathcal{P}_n \iff ch_{p_n} = \bar{0}$,

\[\operatorname{Def}[\mathcal{O}] \quad \text{PA} \vdash \mathcal{O}(\mathcal{P}_1(x) \ldots \mathcal{P}_n(y)) \iff f(ch_{p_1}(x) \ldots ch_{p_n}(y)) = \bar{0}\]
So, for example, \(\text{ds}(p(x), o(x)) \) has characteristic function \(\text{times}(ch_p(x), ch_o(x)) \); supposing then that \(\text{PA} \vdash p(x) \leftrightarrow ch_p(x) = \emptyset \) and \(\text{PA} \vdash q(x) \leftrightarrow ch_q(x) = \emptyset \), \(\text{PA} \vdash \text{ds}(p(x), q(x)) \leftrightarrow \text{times}(ch_p(x), ch_q(x)) = \emptyset \). And similarly \(\text{PA} \) defines \(\phi \) as applied to any \(P_1(x) \ldots P_n(y) \) such that \(\text{PA} \vdash P_1(x) \leftrightarrow ch_{P_1}(x) = \emptyset \) and \(\ldots \) and \(\text{PA} \vdash P_n(y) \leftrightarrow ch_{P_n}(y) = \emptyset \). Clearly, then, it defines \(\phi \) as applied to \(ch_{P_1} = \emptyset \) and \(\ldots \) and \(ch_{P_n} = \emptyset \); but also \(\text{PA} \) defines \(\phi \) as applied to any of the recursive relations described below.\(^{12}\)

Now say a recursive relation is friendly iff it has a friendly characteristic function. Then \(\text{PA} \) defines relations corresponding to each friendly recursive relation. At one level, this is easy: Suppose \(r \) is a friendly recursive relation. Since \(r \) is friendly, its characteristic function \(ch_r(x) \) is friendly and so \(\text{PA} \) defines \(ch_r \). Set,

\[
\text{PA} \vdash R(x) \leftrightarrow ch_r(x) = \emptyset
\]

Then \(\text{PA} \) defines \(R(x) \). In fact, however, we shall desire specifications that are structurally parallel to specifications from chapter 12. For this, it will be helpful to obtain the same result by a short induction.

T13.31. For any friendly recursive relation \(r \), \(\text{PA} \) defines \(R \) such that \(\text{PA} \vdash R(x) \leftrightarrow ch_r(x) = \emptyset \). Corollary: where \(r(x) \) is originally captured by \(R(x, \emptyset) \), \(\text{PA} \vdash R(x) \leftrightarrow R(x, \emptyset) \).

By induction on the number of recursive operators in the definition of \(r(x) \).

Basis: Suppose \(r \) is defined without recursive operators. Let,

\[
\text{PA} \vdash R(x) \leftrightarrow ch_r(x) = \emptyset
\]

Since \(R \) is friendly, \(ch_r \) is friendly so \(\text{PA} \) defines \(ch_r \); so \(\text{PA} \) defines \(R \) and, trivially, \(\text{PA} \vdash R(x) \leftrightarrow ch_r(x) = \emptyset \).

Assp: For any \(i, 0 \leq i < k \), if a friendly recursive \(r \) is defined by \(i \) recursive operators, then \(\text{PA} \) defines \(R \) such that \(\text{PA} \vdash R(x) \leftrightarrow ch_{r_i}(x) = \emptyset \).

Show: If a friendly recursive \(r \) is defined by \(k \) recursive operators, then \(\text{PA} \) defines \(R \) such that \(\text{PA} \vdash R(x) \leftrightarrow ch_r(x) = \emptyset \).

Suppose \(r \) is defined by \(k \) recursive operators where \(r = \phi(p_1(x) \ldots p_n(y)) \) and \(ch_{r_k} = f(ch_{p_1}(x) \ldots ch_{p_n}(y)) \). Then \(p_1(x) \ldots p_n(y) \) are defined by \(< k \)

\(^{12}\)This defining axiom is not strictly of the form \(\sigma[\bar{P}H] \leftrightarrow \sigma[\bar{P}H] \) in which \(\bar{P} \) appears on both sides (see page 691). Let \(\sigma_{p_1}(x) = \mu v([P(x) \land v = \emptyset] \lor (\neg P(x) \land v = \top)) \). By T13.36 (which we shall see shortly), \(\text{PA} \vdash ch_{p_1}(x) = \emptyset \lor ch_{p_1}(x) = \top \); and it is easy to see \(\text{PA} \vdash \sigma_{p_1}(x) = \sigma_{p_1}(x) \). So \(f(ch_{p_1}(x) \ldots ch_{p_n}(x)) = \emptyset \) is (equivalent to) an expression of the appropriate form.
recursive operators; so by assumption PA defines $P_1 \ldots P_n$ such that
$PA \vdash P_1(\vec{x}) \leftrightarrow \chi h_1(\vec{x}) = \vec{0}$ and ... and $PA \vdash P_n(\vec{x}) \leftrightarrow \chi h_n(\vec{x}) = \vec{0}$, f is friendly; so PA defines Op as above. Let,

$$PA \vdash R(\vec{x}) \leftrightarrow Op(P_1(\vec{x}) \ldots P_n(\vec{x}))$$

So PA defines R. And with $Def[Op]$, $PA \vdash Op(P_1(\vec{x}) \ldots P_n(\vec{x})) \leftrightarrow f(\chi h_1(\vec{x}) \ldots \chi h_n(\vec{x})) = \vec{0}$; so $PA \vdash R(\vec{x}) \leftrightarrow f(\chi h_1(\vec{x}) \ldots \chi h_n(\vec{x})) = \vec{0}$. So $PA \vdash R(\vec{x}) \leftrightarrow \chi h_n(\vec{x}) = \vec{0}$.

Indet: For any friendly recursive R, PA defines R such that $PA \vdash R(\vec{x}) \leftrightarrow \chi h_n(\vec{x}) = \vec{0}$.

Corollary: with T13.19, $\chi h_n(\vec{x})$ is associated with an $R(\vec{x}, v)$ such that $PA \vdash v = \chi h_n(\vec{x}) \leftrightarrow R(\vec{x}, v)$; so $PA \vdash \vec{0} = \chi h_n(\vec{x}) \leftrightarrow R(\vec{x}, \vec{0})$; so $PA \vdash R(\vec{x}) \leftrightarrow R(\vec{x}, \vec{0})$.

In the cases with which we are familiar, operators from the basis are E_Q, L_{EQ} and $LESS$; so for example, $PA \vdash E_Q(\vec{x}) \leftrightarrow \chi h_{E_Q}(\vec{x}) = \vec{0}$. Then for a complex relation as $R(\vec{x}) = D_{SU}(P(\vec{x}), o(\vec{x}))$, $PA \vdash R(\vec{x}) \leftrightarrow D_{SU}(P(\vec{x}), Q(\vec{x}))$; so with $Def[Op]$, $PA \vdash R(\vec{x}) \leftrightarrow times(\chi h_n(\vec{x}), \chi k(\vec{x})) = \vec{0}$. Thus PA defines both functions and relations corresponding to the friendly recursive functions and relations, equivalent to the original formulas used to express and capture them.

And now we can show that definitions of functions and relations from chapter 12 are “coordinate” with definitions in PA.

CF The definition of a recursive function (except a function defined by bounded minimization) is coordinate with its definition in PA iff,

1. $f(\vec{x})$ is an initial function zero, suc or χh_{k}^l and $f(\vec{x})$ is zero, suc or χh_{k}^l,
2. and $PA \vdash v = zero(\vec{x}) \leftrightarrow \vec{0} = v$, $PA \vdash v = suc(\vec{x}) \leftrightarrow Sx = v$,
3. $PA \vdash v = \chi h_{k}^l(x_1 \ldots x_j) \leftrightarrow (x_1 = x_1 \land \ldots \land x_j = x_j) \land x_k = v$.
4. $f(\vec{x}, \vec{y}, \vec{z})$ is defined from $g(\vec{y})$ and $h(\vec{x}, w, \vec{z})$ by composition so that $f(\vec{x}, \vec{y}, \vec{z}) = h(\vec{x}, g(\vec{y}), \vec{z})$, and for coordinate $g(\vec{x})$ and $h(\vec{x}, w, \vec{z})$, $PA \vdash f(\vec{x}, \vec{y}, \vec{z}) = h(\vec{x}, g(\vec{y}), \vec{z})$.
5. $f(\vec{x}, y)$ is defined from $g(\vec{x})$ and $h(\vec{x}, y, u)$ by recursion so that $f(\vec{x}, 0) = g(\vec{x})$ and $f(\vec{x}, Sx) = h(\vec{x}, y, f(\vec{x}, y))$ and for coordinate $g(\vec{x})$ and $h(\vec{x}, y, u)$, $PA \vdash f(\vec{x}, 0) = g(\vec{x})$ and $PA \vdash f(\vec{x}, Sx) = h(\vec{x}, y, f(\vec{x}, y))$.
6. $f(\vec{x}, y)$ is defined from $g(\vec{x}, y)$ by friendly regular minimization so that $f(\vec{x}) = \mu y[g(\vec{x}, y) = \vec{0}]$ and for coordinate $g(\vec{x}, y)$, $PA \vdash f(\vec{x}) = \mu y[g(\vec{x}, y) = \vec{0}]$.

CO The definition of a recursive operator is coordinate with its definition in PA iff \(\mathcal{O}(p_1(x) \ldots p_n(x)) \) has characteristic function \(f(ch_{p_1}(x) \ldots ch_{p_n}(x)) \) and for coordinate \(f \) and \(ch_{p_1} \ldots ch_{p_n} \), where \(PA \vdash p_1 \leftrightarrow ch_{p_1} = \overline{0} \) and \(\ldots \) and \(PA \vdash p_n \leftrightarrow ch_{p_n} = \overline{0} \), \(PA \vdash \mathcal{O}(p_1(x) \ldots p_n(y)) \leftrightarrow f(ch_{p_1}(x) \ldots ch_{p_n}(x)) = \overline{0} \).

CR The definition of a recursive relation is coordinate with its definition in PA iff,

(a) \(r(x) \) is an atomic \(EQ(x, y) \), \(LEQ(x, y) \) or \(LESS(x, y) \) and \(R(x) \) is \(EQ(x, y) \), \(LEQ(x, y) \) or \(LESS(x, y) \), and in each case, for the coordinate characteristic function, \(PA \vdash R(x) \leftrightarrow ch_R(x) = \overline{0} \).

(b) \(r(x) \) is \(\mathcal{O}(p_1(x) \ldots p_n(x)) \) and for coordinate \(\mathcal{O} \) and \(p_1(x) \ldots p_n(x) \), \(PA \vdash R(x) \leftrightarrow \mathcal{O}(p_1(x) \ldots p_n(x)) \).

CM The definition of a recursive function \((\mu y \leq z) \mu(x, y) \) is coordinate with its definition in PA iff for coordinate \(\mu \) and \(ch_\mu \), \(PA \vdash (\mu y \leq z) \mu(x, y) = g(x, z) \), given \(q \) and \(R \) such that \(PA \vdash gch_\mu(x) = ch_\mu(x, \overline{0}) \); \(PA \vdash hch_\mu(x, v, u) = times(u, ch_\mu(x, Sv)) \); \(PA \vdash gq(x) = zero(x) \); and \(PA \vdash hq(x, v, u) = plus(u, ch_\mu(x, v)) \).

Syntactically, coordinate definitions are “congruent” but in different fonts, as suc and suc. The case for (CM) is anomalous compared to others: the functions are defined from T13.19 in the usual way—only the coordinate representation is by the relation symbol through stages parallel to chapter 12 (page 644). Now we simply observe that PA in fact defines functions, operators, and relations coordinate to the friendly recursive functions, operators and relations.

T13.32. For any friendly recursive function, operator, or relation: If \(r(x) \) is a function, PA defines a coordinate function \(r(x) \); if \(\mathcal{O} \) is an operator, PA defines a coordinate operator \(\mathcal{O} \); and if \(r(x) \) is a relation, PA defines a coordinate relation \(R(x) \).

The argument is by simple review of arguments for T13.19, Def(\[\mathcal{O}\]) and T13.31 together with T13.30.

In particular, PA defines functions, operators, and relations coordinate to primitive recursive functions, operators and relations defined in chapter 12. From this theorem we simply “write down” claims for defined functions, operators and relations directly from the recursive definitions. Distinguish \(\overline{n} = suc(\ldots suc(zero())\ldots) \) in addition to \(\overline{n} = S \ldots S\overline{0} \) and \(\overline{n} = suc(\ldots suc(zero())\ldots) \); so \(\overline{n} \) is coordinate with \(n \). Then, for example,
T13.33. The following result in PA.

(a) PA ⊢ \(\text{gplus}(x) = \text{idnt}_1^1(x) \)

(b) PA ⊢ \(\text{hplus}(x, y, u) = \text{suc}(\text{idnt}_3^1(x, y, u)) \)

(c) PA ⊢ \(\text{plus}(x, \emptyset) = \text{gplus}(x) \)

(d) PA ⊢ \(\text{plus}(x, S(y)) = \text{hplus}(x, y, \text{plus}(x, y)) \)

(e) PA ⊢ \(\text{neg}(n) = \text{ncat}(\text{~}^\sim, n) \)

(f) PA ⊢ \(\text{sunv}(v, n) = \text{ncat}(\text{~}^\uparrow, \text{ncat}(v, n)) \)

(g) PA ⊢ \(\text{snd}(n, o) = \text{ncat}(\text{~}^\downarrow, \text{ncat}(n, \text{ncat}(\text{~}^\uparrow, \text{ncat}(o, \text{~}^\uparrow)))) \)

(h) PA ⊢ \(\text{mp}(m, n, o) \leftrightarrow \text{Eq}(\text{snd}(n, o), m) \)

(i) PA ⊢ \(\text{gh}(\vec{x}) = \text{ch}_n(\vec{x}, \vec{0}) \)

(j) PA ⊢ \(\text{hch}(\vec{x}, v, u) = \text{times}(u, \text{ch}_n(\vec{x}, \text{suc}(v))) \)

(k) PA ⊢ \((\exists y \leq v) \vec{p}(\vec{x}, y) \leftrightarrow \text{ch}_n(\vec{x}, v) = \vec{0} \)

(a)–(d) are from the definition for \(\text{plus}(x, y) \) on page 604. (e)–(h) are from definitions on pages 653 and 655. (i)–(k) apply to the function \(\text{ch}_n \) that is part of (CM) for bounded minimization, and are from the definitions on page 644.

E13.27. From the recursive definition of \(\text{times} \) on page 604, what theorems do CF and T13.32 let you write down for \(\text{times}, \text{gtimes} \) and \(\text{htimes} \)?

E13.28. By induction on the sequence of recursive functions, demonstrate the first part of T13.32, that if \(r(\vec{x}) \) is a friendly recursive function then PA defines a coordinate \(r(\vec{x}) \). This is the “simple review” of T13.19 with T13.30.
Font Conventions

At different stages, we employ different fonts for items of different sorts. For the most part, this is straightforward. Here we collect our conventions together.

1. Expressions of symbolic object languages are given in italics; these include the function (lowercase) and relation (first letter uppercase) symbols abbreviated or defined in Q and PA.

 function, Relation

2. Objects from the semantic account are indicated by a sanserif font; these include recursive functions (lowercase) and relations (small capitals)—and bold when special symbols are used.

 function, RELATION

3. ‘=’, ‘<’, ‘+’ and ‘×’ are symbols in symbolic languages, and in the metalanguage names for themselves; when bold they pick out recursively defined relations and functions. Narrowed versions are used to express the relations in the metalanguage.

 \[=, \equiv, =, <, <, +, +, \times, \times, \times\]

4. Expressions may be indicated by quotation as, ‘Bob is happy’, and ‘∀x’; but often and where confusion will not arise, distinguished just by their font and symbols and indicated by simple display, ∀x(Ax → Bx). The (meta-)language for description of object expressions includes script variables.

 \[\mathcal{P}, p\]

5. Variables in the Fraktur font range over metalinguistic expressions and over classes (whose members are themselves identified in the metalanguage). Metalinguistic operators have versions ⇒, ⇔, ¬, ∆, ∨ and ⊥.

 \[\mathfrak{A}, a, \mathfrak{M}, m\]

6. Function and relation symbols introduced into PA from recursive functions and relations by T13.32 have their first character in a “hollow” blackboard font—these are not automatically equivalent to ones that may be described in (1), though we may set out to demonstrate equivalence.

 function, Relation

7. \(n\) is a natural number and \(\tilde{n}\) the recursive function \(\text{suc}(\ldots \text{suc}(\text{zero})(\ldots))\) that returns \(n\). In \(\mathcal{L}_{\text{scr}}\), \(\tilde{n}\) is \(\text{suc}(\ldots \text{suc}(\text{zero})(\ldots))\), and \(\tilde{n}\) is \(S \ldots S \emptyset\).

8. Object expressions for computer languages are given in a typewriter font,

 Expression

9. In addition, for informal inductions italic \(i, j\) generally index objects arranged in series, but \(i, j\) when the objects are specifically the members of \(\mathbb{N}\).
13.4 The Second Condition: $\Box(\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\Box \mathcal{P} \rightarrow \Box \mathcal{Q})$

We turn now to demonstration of the second derivability condition. Again there is some background—after which demonstration of the condition itself is straightforward. The overall idea is simple: Suppose both $T \vdash \Box(\mathcal{P} \rightarrow \mathcal{Q})$ and $T \vdash \Box \mathcal{P}$. Then there are j and k such that $\text{PRFT}(j, \Gamma) = \mathcal{P}$ and $\text{PRFT}(k, \Gamma) = \mathcal{Q}$. Intuitively, then, $l = j \ast k \ast 2^{-i}$. Numbers a proof of \mathcal{Q}—for we prove $\mathcal{P} \rightarrow \mathcal{Q}$ and \mathcal{P}, so that \mathcal{Q} follows immediately as the last line by MP. So $\text{PRFT}(l, \Gamma)$, and $\Box \mathcal{Q}$ follows from the assumptions. The task is to prove all of this in PA. Thus, having shown that PA defines recursive functions, we set out to obtain some results about them.

13.4.1 Equivalencies

To start, observe that $\text{plus}(x, y)$, say, is defined by a complex expression through T13.32, and so is not the same expression as our old friend $x + y$. Thus it is not obvious that our standard means for manipulation of $+$ apply to plus. We could recover our ordinary results if we could show $\text{PA} \vdash x + y = \text{plus}(x, y)$. And similar comments apply to other ordinary functions, operators and relations. Thus initially we seek to show that defined functions, operators and relations are equivalent to ones with which we are familiar.

T13.34. The following result in PA.

(a) $\text{PA} \vdash \text{suc}(x) = Sx$

\begin{align*}
1. & v = \text{suc}(x) \iff Sx = v & \text{T13.32} \\
2. & \text{suc}(x) = \text{suc}(x) \iff Sx = \text{suc}(x) & \text{1 VE} \\
3. & \text{suc}(x) = \text{suc}(x) & \text{=I} \\
4. & \text{suc}(x) = Sx & 2, 3 \iff E
\end{align*}

(b) $\text{PA} \vdash \text{idnt}_{k}(x_{1} \ldots x_{j}) = x_{k}$

(c) $\text{PA} \vdash \text{zero}() = 0$

(d) $\text{PA} \vdash \text{zero}^{n}(x_{1} \ldots x_{n}) = 0$

(e) $\text{PA} \vdash \bar{n} = \bar{n}$

(f) $\text{PA} \vdash \text{pred}(\emptyset) = 0$

(g) $\text{PA} \vdash \text{pred}(Sy) = y$

(h) $\text{PA} \vdash \text{pred}(y) = y - 1$
(i) \(\text{PA} \vdash \text{plus}(x, y) = x + y \)

(j) \(\text{PA} \vdash \text{times}(x, y) = x \times y \)

As corollaries to (h), by T13.21k and T13.22e, \(\text{PA} \vdash 0 < y \rightarrow \text{S pred}(y) = y \) and \(\text{PA} \vdash (\text{pred}(x) | a \land \text{pred}(y) | b) \rightarrow \text{pred}(xy) | ab \). Except (e), arguments for (a)–(g) are very much the same and nearly trivial. (e) is by an easy induction in the metalanguage. For (h) it will be helpful to assert \(y \equiv 0 _ 0 < y \). Arguments for (i) and (j) are by IN. Here is (i) as an example.

1. \(g\text{plus}(x) = \text{idnt}^1_1(x) \) T13.32
2. \(g\text{plus}(x) = x \) T13.34b
3. \(\text{plus}(x, 0) = g\text{plus}(x) \) T13.32
4. \(\text{plus}(x, 0) = x \) 3.2 =E
5. \(x + 0 = x \) T6.44
6. \(\text{plus}(x, 0) = x + 0 \) 4.5 =E
7. \(\text{plus}(x, j) = x + j \) A (g, \(\rightarrow I \))
8. \(\text{plus}(x, Sj) = k\text{plus}(x, j, \text{plus}(x, j)) \) T13.32
9. \(k\text{plus}(x, j, u) = \text{suc}(\text{idnt}^2_2(x, j, u)) \) T13.32
10. \(k\text{plus}(x, j, u) = \text{suc}(u) \) 9 T13.34b
11. \(k\text{plus}(x, j, u) = S\text{u} \) 10 T13.34a
12. \(k\text{plus}(x, j, \text{plus}(x, j)) = S\text{plus}(x, j) \) 11 YE
13. \(\text{plus}(x, Sj) = S\text{plus}(x, j) \) 8.12 =E
14. \(\text{plus}(x, Sj) = S(x + j) \) 13.7 =E
15. \(S(x + j) = x + Sj \) T6.45
16. \(\text{plus}(x, Sj) = x + Sj \) 14.15 =E
17. \(\text{plus}(x, j) = x + j \rightarrow [\text{plus}(x, Sj) = x + Sj] \) 7-16 \(\rightarrow I \)
18. \(\forall y([\text{plus}(x, y) = x + y \rightarrow [\text{plus}(x, Sj) = x + Sj]] \) 17 \(\forall I \)
19. \(\text{plus}(x, y) = x + y \) 6.18 IN

Again, we simply write down the expressions on (1) and (9) with T13.32 (or T13.33); and on (3) and (8) T13.32 makes the conditions for \(\text{plus}(x, y) \) work like the ones for \(x + y \)—so that with zero and inductive cases, the equivalence results by IN.

So this theorem establishes the equivalences we expect for the defined symbols \(\text{\bar{\alpha}} \), \(\text{\text{suc}} \), \(\text{zero} \), \(\text{idnt} \), \(\text{plus} \) and \(\text{times} \). Again, \(+ \), \(\times \) and the like are primitive symbols of \(\mathcal{L}_{\text{NT}} \) where \(\text{plus} \) and \(\text{times} \) are defined according to our induction from the corresponding recursive functions. Having shown that the functions are equivalent, however, we may manipulate the one with all the results we have achieved for the other.

Additional results will be facilitated by theorems for \(g(y) \) and \(cs\text{g}(y) \). These are not equivalences (because no equivalents have previously been defined), but result directly for the defined functions.

T13.35. The following result in PA.
CHAPTER 13. GÖDEL’S THEOREMS

(a) PA ⊨ sg(∅) = 0

(b) PA ⊨ sg(Sy) = 1

(c) PA ⊨ y = ∅ ↔ sg(y) = 0

(d) PA ⊨ ∅ < y ↔ sg(y) = 1

(e) PA ⊨ csg(∅) = 1

(f) PA ⊨ csg(Sy) = 0

(g) PA ⊨ y = ∅ ↔ csg(y) = 1

(h) PA ⊨ ∅ < y ↔ csg(y) = 0

These are all simple results. For the biconditionals you may find it convenient to assert PA ⊨ y = ∅ ∨ ∃z (y = Sz) by T6.52.

We pause to notice a simple consequence for characteristic functions. Recall from (Cf) that a characteristic function is (officially) of the sort sg(p(\vec{x})) so that,

T13.36. For any recursive characteristic function ch_R(\vec{x}), PA ⊨ ch_R(\vec{x}) = ∅ ∨ ch_R(\vec{x}) = 1.

From (Cf), ch_R(\vec{x}) is of the sort sg(p(\vec{x})); so with T13.32, PA ⊨ ch_R(\vec{x}) = sg(p(\vec{x})). The result is nearly immediate with PA ⊨ p(\vec{x}) = ∅ ∨ ∅ < p(\vec{x}) and results for sg.

This theorem, which depends on results for functions through T13.35, is independent of any applications of T13.31 or T13.32 for operator and relation symbols. There is therefore no problem about the appeal to T13.36 at page 727n12.

And we can build on these notions for another set of equivalents.

*T13.37. The following result in PA.

*(a) PA ⊨ subc(x, y) = x ∩ y

(b) PA ⊨ absval(x - y) = (x ⊖ y) + (y ⊖ x)

*(c) PA ⊨ Eq(x, y) ↔ x = y

(d) PA ⊨ Lleq(x, y) ↔ x ≤ y

(e) PA ⊨ Less(x, y) ↔ x < y
Again, for hints see the associated exercise, E13.31. So this theorem delivers the equivalences we expect for absc, absval, Eq, Leq, Less, Neg, and Dsj. Given this, we will typically move without comment, say, from some PA ⊢ Dsj(A; B) given from T13.32 to PA ⊢ A ∨ B. And similarly in other cases.

Now reasoning for the bounded quantifiers, bounded minimization, and a couple relations built on them.

*T13.38. The following result in PA.

*(a) PA ⊢ (∃y ≤ z) P(¯x, y) ↔ (∃y ≤ z) P(¯x, y)

(b) PA ⊢ (∃y < z) P(¯x, y) ↔ (∃y < z) P(¯x, y)

(c) PA ⊢ (∀y ≤ z) P(¯x, y) ↔ (∀y ≤ z) P(¯x, y)

(d) PA ⊢ (∀y < z) P(¯x, y) ↔ (∀y < z) P(¯x, y)

*(e) PA ⊢ (μy ≤ z) P(¯x, y) = (μy ≤ z) P(¯x, y)

*(f) PA ⊢ Fctr(m, n) ↔ m|n

*(g) PA ⊢ Prime(n) ↔ Pr(n)

The argument for T13.38e is particularly involved. See page 736 for the main outlines of that argument. Hints and derivations appear with E13.32. T13.38 delivers the equivalences we expect for the bounded quantifiers, bounded minimization, factor and prime.

At this stage, we have defined in PA functions, relations and operators corresponding to all the friendly recursive functions, relations and operators. And in simple cases we have established equivalences to functions, relations and operators already defined. For the recursive cnocat(m, n), let cnocat(m, n) = m * n—so m * n is the defined correlate to m * n. Then, for some examples, we are in a position simply to write down the following.

T13.39. The following are theorems of PA:
T13.38e

<table>
<thead>
<tr>
<th>Step</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(q(\bar{x}, \emptyset) = (\mu y \leq \emptyset) P(\bar{x}, y))</td>
</tr>
<tr>
<td>2</td>
<td>(ch_n(\bar{x}, j) = \emptyset \lor c b_n(\bar{x}, j) = \top)</td>
</tr>
<tr>
<td>3</td>
<td>(ch_n(\bar{x}, j) = \emptyset \iff (\exists y \leq j) P(x, y))</td>
</tr>
<tr>
<td>4</td>
<td>(q(\bar{x}, S j) = h q(\bar{x}, j, q(\bar{x}, j)))</td>
</tr>
<tr>
<td>5</td>
<td>(h q(\bar{x}, j, u) = pl u(u, c b_n(\bar{x}, j)))</td>
</tr>
<tr>
<td>6</td>
<td>((\mu y \leq z) P(x, y) = q(\bar{x}, z))</td>
</tr>
<tr>
<td>7</td>
<td>(ch_n(\bar{x}, j) = \emptyset \iff (\exists y \leq j) P(x, y))</td>
</tr>
<tr>
<td>8</td>
<td>(h q(\bar{x}, j, u) = u + c b_n(\bar{x}, j))</td>
</tr>
<tr>
<td>9</td>
<td>(h q(\bar{x}, j, q(\bar{x}, j)) = q(\bar{x}, j) + c b_n(\bar{x}, j))</td>
</tr>
<tr>
<td>10</td>
<td>(q(\bar{x}, S j) = q(\bar{x}, j) + c b_n(\bar{x}, j))</td>
</tr>
<tr>
<td>11</td>
<td>(q(\bar{x}, j) = (\mu y \leq j) P(\bar{x}, y))</td>
</tr>
<tr>
<td>12</td>
<td>(a = q(\bar{x}, j))</td>
</tr>
<tr>
<td>13</td>
<td>(b = q(\bar{x}, S j))</td>
</tr>
<tr>
<td>14</td>
<td>(b = a + c b_n(\bar{x}, j))</td>
</tr>
<tr>
<td>15</td>
<td>(a = (\mu y \leq j) P(\bar{x}, y))</td>
</tr>
<tr>
<td>16</td>
<td>(a = y j = j \lor P(\bar{x}, y))</td>
</tr>
<tr>
<td>17</td>
<td>((\forall y < a)[w \neq j \land \sim P(\bar{x}, w)])</td>
</tr>
<tr>
<td>18</td>
<td>(a = j \lor P(\bar{x}, a))</td>
</tr>
<tr>
<td>19</td>
<td>(a = j)</td>
</tr>
<tr>
<td>20</td>
<td>(\sim P(\bar{x}, j) \lor P(\bar{x}, j))</td>
</tr>
<tr>
<td>21</td>
<td>(\sim P(\bar{x}, j))</td>
</tr>
<tr>
<td>22</td>
<td>([b = S j \lor P(\bar{x}, b)] \land (\forall w < b)(w \neq S j \land \sim P(\bar{x}, w)))</td>
</tr>
<tr>
<td>23</td>
<td>(P(\bar{x}, j))</td>
</tr>
<tr>
<td>24</td>
<td>([b = S j \lor P(\bar{x}, b)] \land (\forall w < b)(w \neq S j \land \sim P(\bar{x}, w)))</td>
</tr>
<tr>
<td>25</td>
<td>([b = S j \lor P(\bar{x}, b)] \land (\forall w < b)(w \neq S j \land \sim P(\bar{x}, w)))</td>
</tr>
<tr>
<td>26</td>
<td>(P(\bar{x}, a))</td>
</tr>
<tr>
<td>27</td>
<td>([b = S j \lor P(\bar{x}, b)] \land (\forall w < b)(w \neq S j \land \sim P(\bar{x}, w)))</td>
</tr>
<tr>
<td>28</td>
<td>(b = S j \lor P(\bar{x}, b))</td>
</tr>
<tr>
<td>29</td>
<td>(b = (\mu y \leq S j) P(\bar{x}, y))</td>
</tr>
<tr>
<td>30</td>
<td>(q(\bar{x}, S j) = (\mu y \leq S j) P(\bar{x}, y))</td>
</tr>
<tr>
<td>31</td>
<td>(q(\bar{x}, S j) = (\mu y \leq S j) P(\bar{x}, y))</td>
</tr>
<tr>
<td>32</td>
<td>(q(\bar{x}, j) = (\mu y \leq j) P(\bar{x}, y))</td>
</tr>
<tr>
<td>33</td>
<td>(q(\bar{x}, S j) = (\mu y \leq S j) P(\bar{x}, y))</td>
</tr>
<tr>
<td>34</td>
<td>(q(\bar{x}, S) = (\mu y \leq S n) P(\bar{x}, y))</td>
</tr>
<tr>
<td>35</td>
<td>(q(\bar{x}, \emptyset) = (\mu y \leq z) P(\bar{x}, y))</td>
</tr>
<tr>
<td>36</td>
<td>((\mu y \leq z) P(\bar{x}, y) = (\mu y \leq z) P(\bar{x}, y))</td>
</tr>
</tbody>
</table>

Hints: The zero case [a] is straightforward with T13.18e; for [b] you will be able to show that \(b = S j \); for [c] and [d] you will be able to show \(b = a \).
(a) PA ⊢ \text{neg}(n) = \overline{\overline{n}} \ast n
(b) PA ⊢ \text{unv}(v, n) = \overline{\overline{v}} \ast v \ast n
(c) PA ⊢ \text{and}(n, o) = \overline{\overline{(n \ast o)} \ast o \ast o}
(d) PA ⊢ \mathcal{M}p(m, n, o) ↔ \text{and}(n, o) = m
(e) PA ⊢ \text{Gen}(m, n) ↔ (\exists v \leq n)[\text{Var}(v) \land n = \text{unv}(v, m)]
(f) PA ⊢ \text{Icon}(m, n, o) ↔ \mathcal{M}p(m, n, o) \lor (m = n \land \text{Gen}(n, o))
(g) PA ⊢ \text{Axiomad}1(n) ↔ (\exists p \leq n)(\exists q \leq n)[\text{Wff}(p) \land \text{Wff}(q) \land n = \text{and}(p, \text{and}(q, p))]

and similarly for the other axioms

(h) PA ⊢ \text{Axiompa} \leftrightarrow \text{Axiomad}1(n) \lor \ldots \lor \text{Axiomad}8(n) \lor \mathcal{A}xiompa1(n) \lor \ldots \lor \mathcal{A}xiompa7(n)
(i) PA ⊢ \text{Prf}(m, n) ↔ \text{exp}(m, \text{len}(m) = \overline{\overline{1}}) = n \land \overline{\overline{1}} < m \land (\forall k < \text{len}(m))[\mathcal{A}xiomt(\text{exp}(m, k)) \lor (\exists i < k)(\exists j < k)\text{Icon}(\text{exp}(m, i), \text{exp}(m, j), \text{exp}(m, k))]

These follow directly from our results with recursive definitions. (a)–(d) develop T13.33. So for example T13.33h (the definition MP, with T13.32) gives us PA ⊢ \mathcal{M}p(m, n, o) ↔ \text{and}(n, o) = m; then with T13.37c, we arrive at (d). Officially instances of concatenation should be grouped in pairs; however T13.46h is an association result so that the grouping does not matter.

Where MP, and the like are defined relative to corresponding recursive functions, it is important that the operators in expressions above are the ordinary operators of \mathcal{L}_{	ext{ext}}. Thus we shall be able to manipulate the expressions in the usual ways. And similarly for other functions defined through T13.32.

E13.29. Produce a derivation to show T13.34j. Hard-core: show all the remaining cases (b)–(h) and (j) from T13.34.

E13.30. Show T13.35 (a)–(c) Hard-core: Show T13.36 along with each of the results in T13.35.

*E13.31. Show (a), (d) and (g) from T13.37. Hard-core: Demonstrate each of the results in T13.37.

Hints for T13.37. (a): This works in the usual way up to the point in the show stage where you get \text{subc}(x, Sj) = \text{pred}(x \div j); then it will take some work to show \text{pred}(x \div j) = \text{pred}(x \div j); for this begin with \text{subc}(x, j) ; x < j by T13.11r; the first case is straightforward; for the second, you will be able to show
CHAPTER 13. GÖDEL’S THEOREMS

738

S(x ⊕ S j) = S \text{pred}(x ⊕ j) and apply T6.43. (c): For this relation, you have
\[Eq(x, y) ↔ \neg g(\text{absval}(x - y)) = 0 \text{ from T13.32; this gives } Eq(x, y) ↔ [(x ⊕ y) + (y ⊕ x)] = 0; \]
now for ↔1, the case from \(x = y \) is easy; from \(Eq(x, y) \),
you have \(y \leq x \vee x < y \) from T13.11r; the cases are not hard and similar (since
\(x < y \) gives \(x \leq y \)). (f): This is straightforward with \(P(\tilde{x}) ↔ ch_{\tilde{a}}(\tilde{x}) = 0 \text{ from T13.31 and }\)
\(N e g(\tilde{P(\tilde{x}})) ↔ cs g(ch_{\tilde{a}}(\tilde{x})) = 0 \text{ from T13.32.} \)

Hints for T13.38. (a): Recall from chapter 12 that \(s(\tilde{x}, z) = (\exists y \leq z)\tilde{p}(\tilde{x}, y) \)
is defined by means of an \(r(\tilde{x}, n) \) corresponding to \((\exists y \leq n)p(\tilde{x}, y); \) the main
argument is to show by IN that \(PA \vdash ch_{\tilde{a}}(\tilde{x}, n) = 0 ↔ (\exists y \leq n)\tilde{p}(\tilde{x}, y). \)
You have \(\tilde{P}(\tilde{x}, y) ↔ ch_{\tilde{a}}(\tilde{x}, y) = 0 \text{ from T13.31. For the zero case, you have } \)
\(ch_{\tilde{a}}(\tilde{x}, \emptyset) = gch_{\tilde{a}}(\tilde{x}), \) and \(gch_{\tilde{a}}(\tilde{x}) = ch_{\tilde{a}}(\tilde{x}, \emptyset) \) from the definitions with
T13.32; for the main reasoning, you have \(ch_{\tilde{a}}(\tilde{x}, Sj) = ch_{\tilde{a}}(\tilde{x}, j, ch_{\tilde{a}}(\tilde{x}, j)), \)
and \(\times h_{\tilde{a}}(\tilde{x}, j, u) = times[u, ch_{\tilde{a}}(\tilde{x}, suc(j))] \text{ from T13.32; once you have fin-} \)
ished the induction, it is a simple matter of applying \(ch_{\tilde{a}}(\tilde{x}, z) = ch_{\tilde{a}}(\tilde{x}, z) \) from
the definition, and where \(S(\tilde{x}, z) \) just abbreviates \((\exists y \leq z)\tilde{p}(\tilde{x}, y), \) applying
\(S(\tilde{x}, z) ↔ ch_{\tilde{a}}(\tilde{x}, z) = 0 \) to get \((\exists y \leq z)\tilde{p}(\tilde{x}, y) ↔ (\exists y \leq z)\tilde{p}(\tilde{x}, y). \) (f)
and (g): Given previous results, the left and right sides have nearly matching
definitions except that the recursive side includes a bounded quantifier—so that
you have to work to show the bound obtains for one direction of the biconditional.

E13.33. Finish writing out cases for Axiomad1—Axiomad8 and Axiompa1—Axiompa7
for T13.39g. For Axiomad7, notice that you will need to unabbreviate \(\tilde{\wedge} \tilde{\wedge} \tilde{\wedge} \) compared to the version on p. 661.

13.4.2 Further Results

We have seen that PA defines functions, operators and relations coordinate to ones
from chapter 12. Some of the elementary functions, operators and relations so defined
are equivalent to those already in PA. This much is contained in T13.39. Now we
require results for defined functions and relations beyond the elementary ones. Thus,
proceeding roughly in the order from chapter 12, we begin with results for exponentia-
tion, factorial and the like, and continue through to complex notions including \(Wff \) and
\(\text{forms sub.} \) At this stage, we are acquiring results, not by demonstrating equivalence to
expressions already defined (since there are no such expressions already defined), but
by showing them directly for the coordinate functions and relations.
CHAPTER 13. GÖDEL’S THEOREMS

*T13.40. The following are theorems of PA.

(a) (i) PA ⊢ m^0 = 1
 (ii) PA ⊢ m^{S n} = m^n \times m
(b) PA ⊢ m^1 = m
(c) PA ⊢ 0 < a → 0^a = 0
(d) PA ⊢ m^a \times m^b = m^{a+b}
(e) PA ⊢ m \leq n \rightarrow m^a \leq n^a
(f) PA ⊢ \text{pred}(m^b) \mid m^{a+b}
(g) PA ⊢ 0 < m \rightarrow 0 < m^a

* (h) PA ⊢ (0 < m \land b \leq a) \rightarrow m^b \leq m^a
(i) PA ⊢ (1 < m \land b < a) \rightarrow m^b < m^a
(j) PA ⊢ 0 < a \rightarrow m \leq m^a
(k) PA ⊢ (0 < a \land 1 < m) \rightarrow \text{pred}(m^{a+b}) \upharpoonright m^b

* (l) PA ⊢ 1 < m \rightarrow a < m^a
(m) PA ⊢ 1 < m \rightarrow (m^a = m^b \rightarrow a = b)

(a) unpacks the definition. Then (b)–(m) are basic results that should be accessible from ordinary arithmetic.

*T13.41. The following are theorems of PA.

(a) (i) PA ⊢ \text{fact}(0) = 1
 (ii) PA ⊢ \text{fact}(S n) = \text{fact}(n) \times S n
(b) PA ⊢ \text{fact}(1) = 1
(c) PA ⊢ 0 < \text{fact}(n)
(d) PA ⊢ (\forall y < n) y \mid \text{fact}(n)

* (e) (\exists v \leq S \text{fact}(n))[n < v \land Pr(v)]

These are some basic results for factorial. Again (a) gives the recursive conditions from which the rest follow. (b) is a simple particular fact; and the result from (c) is
obvious. (d) is a consequence of the way the factorial includes successors of all the numbers less than it. (e) is like a result we have seen before according to which the successor of a product of all the primes up to some \(n \) is not divisible by any of those primes; and since \(n! \) includes all the primes up to \(n \), there is a prime greater than \(n \) but less than \(S(n!) \) (see G2 in the arithmetic for Gödel numbering reference).

*T13.42. The following are theorems of PA.

(a) (i) \(\text{PA} \vdash \pi(\emptyset) = \overline{2} \)

(ii) \(\text{PA} \vdash \pi(Sn) = (\mu z \leq S \text{fact}(\pi(n)))[\pi(n) < z \land Pr(z)] \)

(b) \(\text{PA} \vdash (\exists v \leq S \text{fact}(\pi(n)))[\pi(n) < v \land Pr(v)] \)

(c) \(\text{PA} \vdash \pi(Sn) = \mu z[\pi(n) < z \land Pr(z)] \)

(d) \(\text{PA} \vdash \pi(n) < \pi(Sn) \land Pr(\pi(Sn)) \)

(e) \(\text{PA} \vdash (\forall w < \pi(Sn)) \sim [\pi(n) < w \land Pr(w)] \)

(f) \(\text{PA} \vdash Pr(\pi(n)) \)

(g) \(\text{PA} \vdash \overline{1} < \pi(n) \)

(h) \(\text{PA} \vdash \emptyset < \pi(n)^a \)

(i) \(\text{PA} \vdash \emptyset < a \rightarrow \overline{1} < \pi(n)^a \)

corollary: \(\text{PA} \vdash \emptyset < a \rightarrow \overline{1} < \overline{2}^a \)

(j) \(\text{PA} \vdash S \text{pred}(\pi(n)^a) = \pi(n)^a \)

(k) \(\text{PA} \vdash (\forall m < n) \pi(m) < \pi(n) \)

(l) \(\text{PA} \vdash (\forall m \leq n) Sm < \pi(n) \)

*(m) \(\text{PA} \vdash \forall y[Pr(y) \rightarrow \exists j \left(\pi(j) = y \right)] \)

*(n) \(\text{PA} \vdash m \neq n \rightarrow \text{pred}(\pi(m)) \upharpoonright \pi(n)^a \)

(o) \(\text{PA} \vdash m \neq n \rightarrow \text{pred}(\pi(m)^Sb) \upharpoonright \pi(n)^a \)

*(p) \(\text{PA} \vdash [m \neq n \land \text{pred}(\pi(m)^b|[s \times \pi(n)^a]) \rightarrow \text{pred}(\pi(m)^b)|s] \)

These are some basic results from prime sequences. (a) gives the basic recursive conditions. (b) is an existential result; then (c) extracts the successor condition from bounded to unbounded minimization; this allows application of the definition in (d) and (e). (f)–(j) are some simple consequences of the fact that \(\pi(n) \) is prime. Then the
primes are ordered (k). And (l) each prime is greater than the successor of its index. (m) every prime appears as some \(p_i^n \). And (n)–(p) echo results for factor except combined with primes and exponentiation.

In this theorem (b) and then (c)–(e) are a first instance of a pattern we shall see repeatedly: Given a bounded condition \(a = (\mu x \leq t) \mathcal{P}(x) \) of the sort that arises from a primitive recursive definition, we show there exists some \(\mathcal{P}(x) \) less than or equal to the bound; this allows application of T13.18g to “extract” the bounded to an unbounded minimization, and then T13.18 (b) and (c) to obtain \(\mathcal{P}(a) \) and that for \(z < a, \sim \mathcal{P}(z) \); this forms the basis for further results.

In order to manipulate \(\exp \), it will be convenient to introduce a function \(\text{ex} \), that finds the least exponent \(x \) such that \(p_i^x \) does not divide \(S_n \).

*\text{T13.43.} The following are theorems of PA.

(a) \(\text{PA} \vdash \exp(n,i) = (\mu x)[\text{pred}(p_i^x)]n \land \text{pred}(p_i^{Sx}) \not\vdash n \]

(b) \(\text{PA} \vdash \exp(0,i) = 0 \)

*\text{(c)} \(\text{PA} \vdash \exp(Sn,i) = (\mu x)[\text{pred}(p_i^x)]Sn \land \text{pred}(p_i^{Sx}) \not\vdash Sn \]

(d) \(\text{PA} \vdash \text{pred}(p_i^{\exp(Sn,i)})][Sn \land \text{pred}(p_i^{\exp(Sn,i)}) \not\vdash Sn \]

(e) \(\text{PA} \vdash (\forall w < \exp(Sn,i))\sim[\text{pred}(p_i^w)]Sn \land \text{pred}(p_i^{Sw}) \not\vdash Sn \]

(f) \(\text{PA} \vdash [\text{pred}(p_i^a)]Sn \land \text{pred}(p_i^{Sa}) \not\vdash Sn] \rightarrow \exp(Sn,i) = a \)

(g) \(\text{PA} \vdash \exp(m,j) \leq m \)

(h) \(\text{PA} \vdash n \leq j \rightarrow \exp(Sn,j) = 0 \)

(i) \(\text{PA} \vdash \exp(p_i^P,i) = p \)
(j) PA \vdash i \neq j \rightarrow \exp(\bar{p}(i)^p, j) = \emptyset

(k) PA \vdash \text{pred}(\bar{p}(i)) \cdot Sm \leftrightarrow \bar{t} \leq \exp(Sm, i)

*(l) PA \vdash \exists q[\bar{p}(i)^{\exp(Sn,i)} \times q = Sn \land \text{pred}(\bar{p}(i)) \land q \land \forall y(y \neq i \rightarrow \exp(q, y) = \exp(Sn, y))]

*(m) PA \vdash \exp(Sm \times Sn, i) = \exp(Sm, i) + \exp(Sn, i)

(a) is from the definition. (b) is the standard result for minimization with bound \emptyset. (c) uses \text{ex} to extract the successor case from the bounded to an unbounded minimization; this allows application of the definition in (d) and (e). From (f) the reasoning goes the other way around: not only does the condition apply to the exponent, but if the condition applies to some \(a\), then \(a\) is the exponent. Then (g) the exponent of some prime in the factorization of \(m\) cannot be greater than \(m\); and (h) a prime whose index is greater than or equal to \(n\) does not divide into \(Sn\). (i) and (j) make an obvious connection for the exponent of a prime, and (k) between exponent and factor. According (l) once you divide \(Sn\) by \(\bar{p}(i)^{\exp(Sn,i)}\) times you are left with a \(q\) such that \(\bar{p}(i)\) does not divide into it any more, and such that the exponents of all the other primes remain the same as in \(Sn\). From (m) the \(i^{th}\) exponent of a product sums the \(i^{th}\) exponents of its factors.

*T13.44. The following are theorems of PA.

(a) PA \vdash \text{len}(n) = (\mu y \leq n)(\forall z \leq n)[y \leq z \rightarrow \exp(n, z) = \bar{0}]

(b) PA \vdash \text{len}(\emptyset) = \emptyset

(c) PA \vdash \text{len}(Sn) = \mu y(\forall z \leq Sn)[y \leq z \rightarrow \exp(Sn, z) = \bar{0}]

(d) PA \vdash (\forall z \leq Sn)[\text{len}(Sn) \leq z \rightarrow \exp(Sn, z) = \bar{0}]

(e) PA \vdash (\forall w < \text{len}(Sn))(\forall z \leq Sn)[w \leq z \rightarrow \exp(Sn, z) = \bar{0}]

(f) PA \vdash \text{len}(\bar{t}) = \emptyset

(g) PA \vdash \emptyset < \text{len}(m) \rightarrow \bar{t} < m

*(h) PA \vdash \emptyset < \exp(m, l) \rightarrow l < \text{len}(m)

(i) PA \vdash (\forall k : l < k)\exp(Sm, k) = \emptyset \rightarrow \text{len}(Sm) \leq Sl

(j) PA \vdash \bar{t} < m \rightarrow \emptyset < \text{len}(m)
CHAPTER 13. GÖDEL’S THEOREMS

*(k) PA ⊢ 0 < p → len(\(\overline{p}(i)^p\)) = Si

corollary: PA ⊢ 0 < p → len(\(\overline{2}^p\)) = 1

(l) PA ⊢ (∀z : len(n) ≤ z)exp(n, z) = 0

*(m) PA ⊢ len(n) = Sl → \(\overline{1} \leq \exp(n, l)\)

Again (a) is from the definition and (b) gives the standard result for bound 0. (c) extracts the successor case from bounded to unbounded minimization; (d) and (e) then apply the definition. (f) is a simple particular result; and then (g) is an immediate consequence of (b) and (f). From (h) if an exponent of some prime in the factorization of m is greater than zero, that prime is involved in the factorization of m; (i) length is set up so that it finds the first prime such that it and all the ones after have exponent zero; so if all the primes after some point have exponent zero, then the length is no greater than the next; (j) gives the biconditional from (g); (k) gives the length for a prime to any power; and from (l) primes ≥ the length of n must all have exponent 0; (m) the prime prior to the length has exponent ≥ \(\overline{1}\).

For the rest of this section including results for concatenation to follow, it will be helpful to introduce a pair of auxiliary notions. These are recursive functions with coordinate versions in PA by T13.32. First exc(m, n, i) takes the value of the \(i^{th}\) exponent in the concatenation of m and n.

\[
\begin{align*}
\text{PA ⊢ exc}(m, n, i) & = (\mu y \leq \exp(m, i) + \exp(n, i - \text{len}(m))) \\
& \quad (i < \text{len}(m) \land y = \exp(m, i)) \lor (\text{len}(m) \leq i \land y = \exp(n, i - \text{len}(m)))
\end{align*}
\]

The idea is simply to set \(y\) to one or the other of \(\exp(m, i)\) or \(\exp(n, i - \text{len}(m))\) so that \(y\) takes the value of the \(i^{th}\) exponent in the concatenation. Next, wal(n, i) returns the product of the first \(i\) members of the prime factorization of \(n\). wal is defined by recursion so that,

\[
\begin{align*}
\text{PA ⊢ wal}(n, \emptyset) & = \overline{1} \\
\text{PA ⊢ wal}(n, Sy) & = \text{wal}(n, y) \times \overline{p}(y)^{\exp(n, y)}
\end{align*}
\]

Similarly wal*(m, n, i) is defined by recursion and,

\[
\begin{align*}
\text{PA ⊢ wal}^*(m, n, \emptyset) & = \overline{1} \\
\text{PA ⊢ wal}^*(m, n, Sy) & = \text{wal}^*(m, n, y) \times \overline{p}(y)^{\text{exc}(m, n, y)}
\end{align*}
\]

So wal*(m, n, i) returns the product of the first \(i\) primes in the factorization of the concatenation of \(m\) and \(n\). Here are some results for these notions. Let \(l = \text{len}(m) + \text{len}(n)\).

*T13.45. The following are theorems of PA.
(a) $\text{PA} \vdash \text{exc}(m, n, i) = \mu y ([i < \text{len}(m) \land y = \exp(m, i)] \lor \{\text{len}(m) \leq i \land y = \exp(n, i - \text{len}(m))\})$

(b) $\text{PA} \vdash i < \text{len}(m) \to \text{exc}(m, n, i) = \exp(m, i)$

(c) $\text{PA} \vdash \text{len}(m) \leq i \to \text{exc}(m, n, i) = \exp(n, i - \text{len}(m))$

(d) $\text{PA} \vdash \emptyset < \text{val}^*(m, n, i)$

(e) $\text{PA} \vdash (\forall i : a \leq i) \text{pred}(\bar{p}_i(i)) \succ \text{val}^(m, n, a)$

(f) $\text{PA} \vdash (\forall j < i) \exp(\text{val}^(m, n, i), j) = \exp(m, n, j)$

(g) $\text{PA} \vdash (\forall i < \text{len}(m))[\exp(\text{val}^(m, n, l), i) = \exp(m, i)] \land (\forall i < \text{len}(n))[\exp(\text{val}^*(m, n, l), i + \text{len}(m)) = \exp(n, i)]$

(h) $\text{PA} \vdash \text{val}^(m, n, l) \leq [\bar{p}_l(l)^{m+n}]^l$

(i) $\text{PA} \vdash \emptyset < \text{val}(m, i)$

(j) $(\forall i : a \leq i) \text{pred}(\bar{p}_i(i)) \succ \text{val}(m, a)$

(k) $\text{PA} \vdash (\forall j < i) \exp(\text{val}(m, i), j) = \exp(m, j)$

(l) $\text{PA} \vdash \text{len}(\text{val}(a, j)) \leq j$

(m) $\text{PA} \vdash \text{len}(\text{val}(a, j)) \leq \text{len}(a)$

(n) $\text{PA} \vdash (\forall i < k) \exp(a, i) = \exp(b, i) \to \text{val}(a, k) = \text{val}(b, k)$

*(o) $\text{PA} \vdash \text{len}(\text{Sn}) \leq x \to \text{val}(\text{Sn}, x) = \text{Sn}$

\text{corollary: PA} \vdash \text{val}(\text{Sn}, \text{len}(\text{Sn})) = \text{Sn}

*(p) $\text{PA} \vdash [\text{len}(n) \leq q \land (\forall k < \text{len}(n))\exp(n, k) \leq r] \to \text{val}(n, \text{len}(n)) \leq [\bar{p}_l(l)^{m+n}]^q$

(a) extracts exc from bounded to unbounded minimization. (b) and (c) apply the definition. (d) is obvious. (e) results because $\text{val}^*(m, n, a)$ is a product of primes prior to $\bar{p}_a(a)$ so that greater primes do not divide it. Then (f) the exponents in val^* are like the exponents in exc. This gives us (g) that the exponents in val^* are like the exponents in m and n. But (h) val^* is constructed so that $\text{val}^*(m, n, l)$ is always less than or equal to $[\bar{p}_l(l)^{m+n}]^l$. Then (i)–(p) are related results for val. In cases to follow, (h) and the closely related (p) will be crucial for finding bounds and so extracting results from bounded minimization.

We are now ready for some results about concatenation. Again let $m \ast n$ be the defined correlate to $m \ast n$; and as above let \(l = \text{len}(m) + \text{len}(n) \).
*T13.46. The following are theorems of PA.

(a) \(\forall \mu x \leq B_{m,n} [\overline{\overline{\mu x}} \leq x \land (\forall i < \text{len}(m)) \{\exp(x,i) = \exp(m,i)\} \land (\forall i < \text{len}(n)) \{\exp(x,i + \text{len}(m)) = \exp(n,i)\}] \)

(b) \(\forall \mu x [\overline{\overline{\mu x}} \leq x \land (\forall i < \text{len}(m)) \{\exp(x,i) = \exp(m,i)\} \land (\forall i < \text{len}(n)) \{\exp(x,i + \text{len}(m)) = \exp(n,i)\}] \)

(c) \(\forall \mu x [\overline{\overline{\mu x}} \leq x \land (\forall i < \text{len}(m)) \{\exp(m * n, i) = \exp(m, i)\} \land (\forall i < \text{len}(n)) \{\exp(m * n, i + \text{len}(m)) = \exp(n, i)\}] \)

(d) \(\forall \mu x [\overline{\overline{\mu x}} \leq x \land (\forall i < \text{len}(m)) \{\exp(w, i) = \exp(m, i)\} \land (\forall i < \text{len}(n)) \{\exp(w, i + \text{len}(m)) = \exp(n, i)\}] \)

*(e) \(\forall \mu x [\overline{\overline{\mu x}} \leq \text{len}(m * n)] \)

*(f) \(\forall \mu x [\overline{\overline{\mu x}} \leq \text{len}(m * n)] \)

(g) \(\forall \mu x [\overline{\overline{\mu x}} \leq \text{len}(m * n)] \)

(h) \(\forall \mu x [\overline{\overline{\mu x}} \leq \text{len}(m * n)] \)

(i) \(\forall \mu x [\overline{\overline{\mu x}} \leq \text{len}(m * n)] \)

(j) \(\forall \mu x [\overline{\overline{\mu x}} \leq \text{len}(m * n)] \)

(k) \(\forall \mu x [\overline{\overline{\mu x}} \leq \text{len}(m * n)] \)

(l) \(\forall \mu x [\overline{\overline{\mu x}} \leq \text{len}(m * n)] \)

*(m) \(\forall \mu x [\overline{\overline{\mu x}} \leq \text{len}(m * n)] \)

(n) \(\forall \mu x [\overline{\overline{\mu x}} \leq \text{len}(m * n)] \)

(o) \(\forall \mu x [\overline{\overline{\mu x}} \leq \text{len}(m * n)] \)

(a) is from the definition. T13.45h enables us to extract \(m * n \) from bounded to unbounded minimization to get (b) and then (c) and (d). (e) and (f) establish that
the length of \(m \ast n \) sums the lengths of \(m \) and \(n \). (g) generalizes the last conjunct of (c). (h) is an association result—and with this, we typically drop parentheses for concatenations. From (i) and (j) concatenation with a number less than or equal to one results in no change. (k) and (l) enable a sort of cancellation law for concatenation. (m) distributes \(v \)al over concatenation; then (n) and (o) apply results from T13.45n and T13.45o for relative values of \(m \ast n \).

The idea for application of T13.45h to get (b) is the same as behind the intuitive account of the bound from chapter 12: \(\prod_{i} \frac{p_{i}}{l_{i}} \cdot m \) is greater than every term in the factorization of \(m \ast n \); so \(\prod_{i} \frac{p_{i}}{l_{i}} \cdot m \ast n \) remains greater than \(\prod_{i} \frac{p_{i}}{l_{i}} \cdot (m, n, i) \); and \(\prod_{i} \frac{p_{i}}{l_{i}} \cdot (m, n, l) \) is therefore both under the bound and satisfies the condition for \(m \ast n \)—so that the existential condition is satisfied, and we may extract the bounded to an unbounded minimization. Once this is accomplished, we are most of the way home.

To manipulate \(\text{Termseq} \) it will be convenient to let,

\[
\begin{align*}
A(s, x) &= \exp(s, x) = \prod_{i} \frac{p_{i}}{l_{i}} \lor \text{Var}(\exp(s, x)) \\
B(s, x) &= (\exists j < x) \exp(s, x) = \prod_{i} \frac{p_{i}}{l_{i}} \ast \exp(s, j) \\
C(s, x) &= (\exists i < x) (\exists j < x) \exp(s, x) = \prod_{i} \frac{p_{i}}{l_{i}} \ast \exp(s, i) \ast \exp(s, j) \\
D(s, x) &= (\exists i < x) (\exists j < x) \exp(s, x) = \prod_{i} \frac{p_{i}}{l_{i}} \ast \exp(s, i) \ast \exp(s, j)
\end{align*}
\]

*T13.47. The following are theorems of PA.

(a) PA \models \text{Termseq}(m, t) \iff \{\exp(m, \text{len}(m) \sim \top) = t \land \top < m \land (\forall k < \text{len}(m)) [A(m, k) \lor B(m, k) \lor C(m, k) \lor D(m, k)]\}

(b) (i) PA \models \text{Term}(t) \iff (\exists x \leq B_{t}) \text{Termseq}(x, t)

(ii) PA \models B_{t} = [\prod (\text{len}(t))^{\top} \land \text{len}(t)]

(c) PA \models \text{Var}(v) \iff (\exists x \leq v)(v = \frac{2^{\prod + \text{len}(t)}}{2^{\prod}})

(d) PA \models \text{Var}(v) \rightarrow \text{len}(v) = \top

(e) PA \models \text{Var}(v) \rightarrow (\text{Var}(v \times 4) \land v \times 4 \neq v)

(f) PA \models \text{Termseq}(m, t) \rightarrow (\forall k < \text{len}(m))(\top < \exp(m, k))

(g) PA \models \text{Term}(t) \rightarrow \top < t

(h) PA \models t = \frac{\prod}{\frac{1}{3}} \rightarrow \text{Termseq}(\frac{2^{\prod}}{3}, t)

(i) PA \models \text{Var}(t) \rightarrow \text{Termseq}(\frac{2^{\prod}}{3}, t)

* (j) PA \models \text{Termseq}(m, t) \rightarrow \text{Termseq}(m \ast \frac{2^{\prod}}{3}, \frac{2^{\prod}}{3} \ast t)$
(k) \(\text{PA} \vdash [\text{Termseq}(m, t) \land \text{Termseq}(n, q)] \rightarrow \text{Termseq}(m \ast n \ast 2^x \ast t \ast q, \mathcal{T} \ast \mathcal{T} \ast t) \)

(l) \(\text{PA} \vdash [\text{Termseq}(m, t) \land \text{Termseq}(n, q)] \rightarrow \text{Termseq}(m \ast n \ast 2^x \ast t \ast q, \mathcal{T} \ast \mathcal{T} \ast t) \)

*(m) \(\text{PA} \vdash \text{Termseq}(m, t) \rightarrow (\forall k < \text{len}(m)) \exists n[\text{Termseq}(n, \text{exp}(m, k)) \land \text{len}(n) \leq \text{len}(\text{exp}(m, k)) \land (\forall i < \text{len}(n)) \text{exp}(n, i) \leq \text{exp}(m, k)] \)

(n) \(\text{PA} \vdash \text{Termseq}(m, t) \rightarrow \text{Term}(t) \)

*(o) \(\text{PA} \vdash \text{Termseq}(m, t) \rightarrow (\forall i < \text{len}(m)) \text{Term}(\text{exp}(m, i)) \)

(p) \(\text{PA} \vdash \text{Term}(\emptyset) \)

(q) \(\text{PA} \vdash \text{Var}(v) \rightarrow \text{Term}(v) \)

(r) \(\text{PA} \vdash \text{Term}(t) \rightarrow \text{Term}(\mathcal{T} \ast \mathcal{T} \ast t) \)

(s) \(\text{PA} \vdash (\text{Term}(s) \land \text{Term}(t)) \rightarrow \text{Term}(\mathcal{T} \ast \mathcal{T} \ast s \ast t) \)

(t) \(\text{PA} \vdash (\text{Term}(s) \land \text{Term}(t)) \rightarrow \text{Term}(\mathcal{T} \ast \mathcal{T} \ast s \ast t) \)

(a), (b) and (c) are from the definitions term sequence and term and variable. (d)–(g) are simple results. (h)–(l) generate term sequences; they are important for (m) according to which each member of a term sequence has a term sequence constrained by bounds related to \(B_t \). (m) yields (n), that anything with a term sequence is a term; the rest follow from that.

From its definition, \(\text{Term}(t) \) does not immediately follow from \(\text{Termseq}(m, t) \) insofar as the sequence might build in extraneous terms not required for \(t \)—with the result that \(m \) is not less than \(B_t \) (see page 653n14). The general idea for these theorems is that given a term sequence, there is a standard term sequence containing just the elements you would have included in a chapter 2 tree, adequate to yield \(\text{Term}(t) \). Thus we move from the existence of a term sequence through (m) to a term sequence of the right sort, and so to (n). Something new happens in (m) insofar as the induction is not on the length of \(m \) but on the length of its exponents. Reasoning, as it were, “down” through the tree and using (h)–(l), we show that for each member of the original sequence there is a “standard” sequence that comes in under the bound.

We continue with some results for \(\text{Formseq} \) and \(\text{Wff} \) that are closely related to T13.47. Let,
CHAPTER 13. GÖDEL'S THEOREMS

\[E(s, x) = \text{Atomic}(\exp(s, x)) \]
\[F(s, x) = (\exists j < x)[\exp(s, x) = \text{neg}(\exp(s, j))] \]
\[G(s, x) = (\exists i < x)(\exists j < x)[\exp(s, x) = \text{and}(\exp(s, i), \exp(s, j))] \]
\[H(p, s, x) = (\exists i < x)(\exists j \leq p)[\text{Var}(j) \land \exp(s, x) = \text{un}(j, \exp(s, i))] \]

*T13.48. The following are theorems of PA.

(a) \(\text{PA} \vdash \exists \text{Formseq}(m, p) \leftrightarrow \{\exp(m, \text{len}(m) \nleq i) = p \land i < m \land (\forall k < \text{len}(m))[E(m, k) \lor F(m, k) \lor G(m, k) \lor H(p, m, k)]\} \)

(b) (i) \(\text{PA} \vdash \text{Wff}(p) \leftrightarrow (\exists x \leq B_p)\exists \text{Formseq}(x, p) \)
(ii) \(\text{PA} \vdash B_p = [\tilde{g}(\text{len}(p))^p]^{\text{len}(p)} \)

(c) \(\text{PA} \vdash \text{Atomic}(p) \leftrightarrow (\exists x \leq p)(\exists y \leq p)[\text{Term}(x) \land \text{Term}(y) \land p = \tilde{\text{mul}} \ast x \ast y] \)

(d) \(\text{PA} \vdash \exists \text{Formseq}(m, p) \rightarrow (\forall k < \text{len}(m))(\exists i < \exp(m, k)) \)

(e) \(\text{PA} \vdash \text{Wff}(p) \rightarrow i < p \)

(f) \(\text{PA} \vdash \text{Atomic}(p) \rightarrow \exists \text{Formseq}(\tilde{2}^p, p) \)

(g) \(\text{PA} \vdash \exists \text{Formseq}(m, p) \rightarrow \exists \text{Formseq}(m \ast \tilde{2}^{\text{neg}(p)}, \text{neg}(p)) \)

(h) \(\text{PA} \vdash [\exists \text{Formseq}(m, p) \land \exists \text{Formseq}(n, q)] \rightarrow \exists \text{Formseq}(m \ast n \ast \tilde{2}^{\text{and}(p, q)}, \text{and}(p, q)) \)

(i) \(\text{PA} \vdash [\exists \text{Formseq}(m, p) \land \exists \text{var}(v)] \rightarrow \exists \text{Formseq}(m \ast \tilde{2}^{\text{var}(v, p)}, \text{un}(v, p)) \)

(j) \(\text{PA} \vdash \exists \text{Formseq}(m, p) \rightarrow (\forall k < \text{len}(m))\exists n[\exists \text{Formseq}(n, \exp(m, k)) \land \text{len}(n) \leq \text{len}(\exp(m, k)) \land (\forall i < \text{len}(n))\exp(n, i) \leq \exp(m, k)] \)

(k) \(\text{PA} \vdash \exists \text{Formseq}(m, p) \rightarrow \text{Wff}(p) \)

(l) \(\text{PA} \vdash \exists \text{Formseq}(m, p) \rightarrow (\forall i < \text{len}(m))\text{Wff}(\exp(m, i)) \)

(m) \(\text{PA} \vdash \text{Atomic}(p) \rightarrow \text{Wff}(p) \)

(n) \(\text{PA} \vdash \text{Wff}(p) \rightarrow \text{Wff}(\text{neg}(p)) \)

(o) \(\text{PA} \vdash [\text{Wff}(p) \land \text{Wff}(q)] \rightarrow \text{Wff}(\text{and}(p, q)) \)

(p) \(\text{PA} \vdash [\text{Wff}(p) \land \text{Var}(v)] \rightarrow \text{Wff}(\text{un}(v, p)) \)

Again, from its definition, \(\text{Wff}(p) \) does not immediately follow from \(\exists \text{Formseq}(m, p) \) insofar as the sequence might build in extraneous elements not required for \(p \)—with the result that \(m \) is not less than \(B_p \). And again the general idea is that given a formula sequence, there is a standard formula sequence containing just the elements you
would have included in a chapter 2 tree, adequate to yield $\text{Wff}(n)$. Thus we move from the existence of a formula sequence through (j) to a formula sequence of the required sort.

Continuing roughly in the order of chapter 12, we move on to some substitution results for terms and atomics. For T_{subseq} let,

\[
\begin{align*}
I(m,n,k) &= \exp(m,k) = \overline{\exp{n}{k}} \\
J(v,m,n,k) &= \forall\exp(m,k) \wedge \exp(m,k) \neq \exp(n,k) = \exp(m,k) \\
K(v,s,m,n,k) &= \forall\exp(m,k)) \wedge \exp(m,k) = v \wedge \exp(n,k) = s \\
L(m,n,k) &= (3i < k)(\exp(m,k) = \overline{\exp{n}{i}} \wedge \exp(n,k) = \overline{\exp{n}{i}}) \\
M(m,n,k) &= (3i < k)(3j < k)[\exp(m,k) = \overline{\exp{n}{i}} \wedge \exp(m,j) \wedge \exp(n,k) = \overline{\exp{n}{i}} \wedge \exp(n,j)] \\
N(m,n,k) &= (3i < k)(3j < k)[\exp(m,k) = \overline{\exp{n}{i}} \wedge \exp(m,j) \wedge \exp(n,k) = \overline{\exp{n}{i}} \wedge \exp(n,j)]
\end{align*}
\]

*T13.49. The following are theorems of PA.

(a) PA $\vdash T_{\text{subseq}}(m,n,t,v,s,u) \leftrightarrow \{\text{Termseq}(m,t) \wedge \text{len}(m) = \text{len}(n) \wedge \exp(n,\text{len}(n) \vdash \overline{1}) = u \wedge (\forall k < \text{len}(m)) (I(m,n,k) \vee J(v,m,n,k) \vee K(v,s,m,n,k) \vee L(m,n,k) \vee M(m,n,k) \vee N(m,n,k))\}$

(b) (i) PA $\vdash T_{\text{atoms}}(t,v,s,u) \leftrightarrow (\exists X \leq X_t)(\exists y \leq Y_{t,u}) T_{\text{subseq}}(x,y,t,v,s,u)$

(ii) PA $\vdash X_t = [\overline{p}(\text{len}(t))^{\overline{1}}]^{\text{len}(t)}$

(iii) PA $\vdash Y_{t,u} = [\overline{p}(\text{len}(t))^{\overline{1}}]^{\text{len}(t)}$

(c) PA $\vdash T_{\text{atoms}}(p,v,s,q) \leftrightarrow (\exists a \leq p)(\exists b \leq p)(\exists a' \leq q)(\exists b' \leq q)[\text{Term}(a) \wedge \text{Term}(b) \wedge p = \overline{\exp{n}{a} \ast b} \wedge \text{Term}(a',\text{Term}(b',\text{Term}(b',\text{Term}(q = \overline{\exp{n}{a' \ast b'}}))}$

(d) PA $\vdash T_{\text{atoms}}(p,v,s,q) \rightarrow \overline{1} < q$

(e) PA $\vdash [\text{Term}(s) \wedge T_{\text{subseq}}(m,n.t,v,s,u)] \rightarrow (\forall j < \text{len}(n)) \text{Term}(\exp(n,j))$

*corollary: PA $\vdash [\text{Term}(s) \wedge T_{\text{atoms}}(t,v,s,u)] \rightarrow \text{Term}(u)$

(f) PA $\vdash [\text{Term}(s) \wedge T_{\text{atoms}}(p,v,s,q)] \rightarrow \text{Atomic}(q)$

(g) PA $\vdash t = \overline{\exp{s}{t}} \rightarrow T_{\text{subseq}}(\overline{2},\overline{2},t,v,s,t)$

(h) PA $\vdash (\forall t \wedge t \neq v) \rightarrow T_{\text{subseq}}(\overline{2},\overline{2},t,v,s,t)$

(i) PA $\vdash (\text{Term}(s) \wedge \text{Term}(t) \wedge t = v) \rightarrow T_{\text{subseq}}(\overline{2},\overline{2},t,v,s,s)$

*\(j\) PA $\vdash T_{\text{subseq}}(m,n,t,v,s,u) \rightarrow T_{\text{subseq}}(m \ast \overline{2} \ast \overline{2} \ast \overline{2} \ast \overline{1},n \ast \overline{2} \ast \overline{1},u \ast \overline{2} \ast \overline{1},t,v,s,\overline{2} \ast \overline{1} \ast \overline{u})$
(k) \(\text{PA} \vdash [\mathcal{T}_{\text{subseq}}(m, n, t, v, s, u) \land \mathcal{T}_{\text{subseq}}(m', n', t', v, s, u')] \rightarrow \mathcal{T}_{\text{subseq}}(m \times 2^{t \times t'}, n \times n' \times 2^{t \times u \times u'}, m \times n \times t \times t', v, s, m \times n \times t \times t') \)

(l) \(\text{PA} \vdash [\mathcal{T}_{\text{subseq}}(m, n, t, v, s, u) \land \mathcal{T}_{\text{subseq}}(m', n', t', v, s, u')] \rightarrow \mathcal{T}_{\text{subseq}}(m \times 2^{t \times t'}, n \times n' \times 2^{t \times u \times u'}, m \times n \times t \times t', v, s, m \times n \times t \times t') \)

*(m) \(\text{PA} \vdash \mathcal{T}_{\text{subseq}}(m, n, t, v, s, u) \rightarrow \mathcal{T}_{\text{subseq}}(t, v, s, u) \)

*(n) \(\text{PA} \vdash [\text{Term}(t) \land \text{Term}(s)] \rightarrow \exists u[\mathcal{T}_{\text{subseq}}(t, v, s, u) \land \text{len}(u) \leq \text{len}(t) \times \text{len}(s) \land (\forall k < \text{len}(u))\exp(u, k) \leq t + s] \)

*(o) \(\text{PA} \vdash [\text{Atomic}(p) \land \text{Term}(s)] \rightarrow \exists q[\mathcal{A}_{\text{sub}}(p, v, s, q) \land \text{len}(q) \leq \text{len}(p) \times \text{len}(s) \land (\forall k < \text{len}(q))\exp(q, k) \leq p + s] \)

(a)–(c) are from the definitions. (d)–(f) follow directly. Then (g)–(l) generate standard sequences to yield (m)–(o).

Some substitution results for formulas are closely related to the previous theorem. Let,

\[
\begin{align*}
O(v, s, m, n, k) & = \text{Atomic}(\exp(m, k)) \land \text{Atoms}_{\text{sub}}(\exp(m, k), v, s, \exp(n, k)) \\
P(m, n, k) & = (\exists i < k)[\exp(m, k) = \neg(\exp(m, i)) \land \exp(n, k) = \neg(\exp(n, i))] \\
Q(m, n, k) & = (\exists i < k)(\exists j < k)[\exp(m, k) = \text{and}(\exp(m, i), \exp(m, j)) \land \exp(n, k) = \text{and}(\exp(n, i), \exp(n, j))] \\
R(v, p, m, n, k) & = (\exists i < k)(\exists j \leq p)[\text{Var}(j) \land j \neq v \land \exp(m, k) = \text{unv}(j, \exp(m, i)) \land \exp(n, k) = \text{unv}(j, \exp(n, i))] \\
S(v, p, m, n, k) & = (\exists i < k)(\exists j \leq p)[\text{Var}(j) \land j = v \land \exp(m, k) = \text{unv}(j, \exp(m, i)) \land \exp(n, k) = \exp(m, k)]
\end{align*}
\]

*\text{T13.50}. The following are theorems of \(\text{PA} \).

(a) \(\text{PA} \vdash \mathcal{F}_{\text{Subseq}}(m, n, p, v, s, q) \iff [\mathcal{F}_{\text{Subseq}}(m, p) \land \text{len}(m) = \text{len}(n) \land \exp(n, \text{len}(n) \div 1) = q \land (\forall k < \text{len}(m))(O(v, s, m, n, k) \lor P(m, n, k) \lor Q(m, n, k) \lor R(v, p, m, n, k) \lor S(v, p, m, n, k))] \)

(b) (i) \(\text{PA} \vdash \mathcal{F}_{\text{Subseq}}(p, v, s, q) \iff (\exists x \leq X_p)(\exists y \leq Y_{p,q})\mathcal{F}_{\text{Subseq}}(x, y, p, v, s, q) \)

(ii) \(\text{PA} \vdash X_p = [\max(\text{len}(p))]^{\text{len}(p)} \)

(iii) \(\text{PA} \vdash Y_{p,q} = [\max(\text{len}(p))]^{\text{len}(p)} \)

(c) (i) \(\text{PA} \vdash \text{forms}_{\text{sub}}(p, v, s) = (\mu q \leq Z_{p,s})\mathcal{F}_{\text{Subseq}}(p, v, s, q) \)

(ii) \(\text{PA} \vdash Z_{p,s} = [\max(\text{len}(p) \times \text{len}(s))]^{\text{len}(p) \times \text{len}(s)} \)

(d) \(\text{PA} \vdash [\text{Term}(s) \land \mathcal{F}_{\text{Subseq}}(m, n, p, v, s, q)] \rightarrow (\forall j < \text{len}(n))\mathcal{W}_{\text{ff}}(\exp(n, j)) \)

corollary: \(\text{PA} \vdash [\text{Term}(s) \land \mathcal{F}_{\text{Subseq}}(p, v, s, q)] \rightarrow \mathcal{W}_{\text{ff}}(q) \)
CHAPTER 13. GÖDEL’S THEOREMS

751

(e) \(\text{PA} \vdash [\text{Atomic}(p) \land \text{Atomsub}(p, v, s, q)] \rightarrow \text{Fsubseq}(\mathcal{Z}_p, \mathcal{Z}_q, p, v, s, q) \)

(f) \(\text{PA} \vdash \text{Fsubseq}(m, n, p, v, s, q) \rightarrow \text{Fsubseq}(m \cdot \mathcal{Z}_{\text{neg}(p)}, n \cdot \mathcal{Z}_{\text{neg}(q)}, \text{neg}(p), v, s, \text{neg}(q)) \)

(g) \(\text{PA} \vdash [\text{Fsubseq}(m, n, p, v, s, q)] \land \text{Fsubseq}(m', n', p', v, s, q')] \rightarrow \text{Fsubseq}(m \cdot \mathcal{Z}_{\text{neg}(p)}, n \cdot \mathcal{Z}_{\text{neg}(q)}, \text{neg}(p), v, s, \text{neg}(q)) \)

(h) \(\text{PA} \vdash [\text{Fsubseq}(m, n, p, v, s, q) \land \text{Var}(u) \land u \neq v] \rightarrow \text{Fsubseq}(m \cdot \mathcal{Z}_{\text{neg}(u, p)}, n \cdot \mathcal{Z}_{\text{neg}(u, q)}, \text{neg}(u, p), v, s, \text{neg}(u, q)) \)

(i) \(\text{PA} \vdash [\text{Fsubseq}(m, n, p, v, s, q) \land \text{Var}(u) \land u = v] \rightarrow \text{Fsubseq}(m \cdot \mathcal{Z}_{\text{neg}(u, p)}, n \cdot \mathcal{Z}_{\text{neg}(u, q)}, \text{neg}(u, p), v, s, \text{neg}(u, q)) \)

(j) \(\text{PA} \vdash \text{Fsubseq}(m, n, p, v, s, q) \rightarrow \text{Fsubseq}(p, v, s, q) \)

(k) \(\text{PA} \vdash \exists \phi(\text{Term}(s)) \rightarrow \exists q [\text{Fsubseq}(p, v, s, q) \land \text{len}(q) \leq \text{len}(p) \times \text{len}(s) \land (\forall k < \text{len}(q)) \text{exp}(q, k) < p + s] \)

(l) \(\text{PA} \vdash \exists \phi(\text{Term}(s)) \rightarrow \text{Fsubseq}(p, v, s, \text{formsub}(p, v, s)) \)

(m) \(\text{PA} \vdash \exists \phi(\text{Term}(s)) \rightarrow \text{Wff}(\text{formsub}(p, v, s)) \)

Finally we extend our results by means of a pair of matched theorems whose results are related to unique readability for terms and then for formulas (see section 11.2).

*T13.51. The following result in PA.

First, as a preliminary to T13.51f and then T13.52h it will be helpful to show the following. We are thinking of \(c \ast a \ast c_1 \ast b \ast c_2 \) as for example, \(\mathcal{F}(\ast a \ast \mathcal{F} \rightarrow \mathcal{F} \ast b \ast \mathcal{F}) \).

Let,

\[
\begin{align*}
 l_1 &= \text{len}(c) \\
 l_2 &= \text{len}(c) + \text{len}(a) \\
 l_3 &= \text{len}(c) + \text{len}(a) + \text{len}(c_1) \\
 l_4 &= \text{len}(c) + \text{len}(a) + \text{len}(c_1) + \text{len}(b) \\
 l_5 &= \text{len}(c) + \text{len}(a) + \text{len}(c_1) + \text{len}(b) + \text{len}(c_2)
\end{align*}
\]

* (a) \(\begin{align*}
 a. & \quad \mathcal{P}(a) \land \mathcal{P}(b) \land \mathcal{P}(d) \land \mathcal{P}(e) \\
 b. & \quad \forall u(\mathcal{P}(u) \land \text{len}(u) \leq s) \rightarrow (\forall k < \text{len}(u)) \sim \mathcal{P}(\text{unit}(u, k)) \\
 c. & \quad \text{unit}(c, j) \ast \text{unit}(a, j \cdot l_1) \ast \text{unit}(c_1, j \cdot l_2) \ast \text{unit}(b, j \cdot l_3) \ast \text{unit}(c_2, j \cdot l_4) = c \ast d \ast c_1 \ast e \ast c_2 \\
 d. & \quad \forall v(\mathcal{P}(v) \rightarrow T < v) \\
 e. & \quad \text{len}(c) = T \land \emptyset < c_1 \land \emptyset < c_2 \land \text{len}(c_1) \leq T \land \text{len}(c_2) \leq T \\
 f. & \quad j < 1 \land 1 \leq Sx \\
 g. & \quad \bot
\end{align*} \)
then it cannot be that (c) an initial segment of the concatenation with terms (formulas) \(a \) and \(b \) is equal to the concatenation with terms (formulas) \(d \) and \(e \). As a corollary, when \(c_1 = c_2 = \overline{1} \) their lengths go to zero and by T13.45o for any \(x, \text{val}(c_1, x) = \text{val}(c_2, x) = \overline{1} \) so that these terms drop out of the concatenations and the theorem reduces to a version where (c) is \(\text{val}(c, j) * \text{val}(a, j \div l_1) * \text{val}(b, j \div l_3) = c * d * e \), and the only substantive conjunct of (e) is the first.

(b) \(\text{PA} \vdash \left[\text{Term}(a) \land \text{Term}(b) \right] \rightarrow \overline{1}S^{-1} * a = \overline{1}S^{-1} * b \rightarrow a = b \)

(c) \(\text{PA} \vdash \text{Term}(\overline{1}S^{-1} * a) \rightarrow \exists r [\overline{1}S^{-1} * a = \overline{1}S^{-1} * r \land \text{Term}(r)] \)

(d) \(\text{PA} \vdash \text{Term}(\overline{1}S^{-1} * a) \rightarrow \exists r \exists s [\overline{1}S^{-1} * a = \overline{1}S^{-1} * r * s \land \text{Term}(r) \land \text{Term}(s)] \)

(e) \(\text{PA} \vdash \text{Term}(\overline{1}S^{-1} * a) \rightarrow \exists r \exists s [\overline{1}S^{-1} * a = \overline{1}S^{-1} * r * s \land \text{Term}(r) \land \text{Term}(s)] \)

(f) \(\text{PA} \vdash \text{Term}(t) \rightarrow (\forall k < \text{len}(t)) \sim \text{Term}(\text{val}(t, k)) \)

(g) \(\text{PA} \vdash \left[\text{Term}(a) \land \text{Term}(b) \land \text{Term}(c) \land \text{Term}(d) \right] \rightarrow [r * a * b = r * c * d \rightarrow (a = c \land b = d)] \)

Returning to our chapter 11 discussion of unique readability, reasoning for (c)–(e) is like that for T11.3. Then (f) is like T11.4. (g) applies especially in the case when \(r \) is \(\overline{1}S^{-1} \) or \(\overline{1}S^{-1} \) or \(\overline{1}S^{-1} \); then it gives a uniqueness result for \(r * a * b \) like T11.5. And now there are the parallel results for formulas.

*T13.52. The following are theorems of PA.

(a) \(\text{PA} \vdash [\text{Wff}(p) \land \text{Wff}(q)] \rightarrow [\neg \text{neg}(p) = \neg \text{neg}(q) \rightarrow p = q] \)

(b) \(\text{PA} \vdash [\text{Var}(u) \land \text{Var}(v)] \rightarrow [\text{unv}(u, p) = \text{unv}(v, q) \rightarrow u = v] \)

(c) \(\text{PA} \vdash [\text{Wff}(p)] \land \text{Wff}(q) \land \text{Var}(u) \land \text{Var}(v)] \rightarrow [\text{unv}(u, p) = \text{unv}(v, q) \rightarrow p = q] \)

(d) \(\text{PA} \vdash \text{Wff}(\overline{1}S^{-1} * a) \rightarrow \exists r \exists s [\overline{1}S^{-1} * a = \overline{1}S^{-1} * r * s \land \text{Term}(r) \land \text{Term}(s)] \)

(e) \(\text{PA} \vdash \text{Wff}(\overline{1}S^{-1} * p) \rightarrow \exists r [\overline{1}S^{-1} * p = \neg \text{neg}(r) \land \text{Wff}(r)] \)

(f) \(\text{PA} \vdash \text{Wff}(\overline{1}S^{-1} * p) \rightarrow \exists r \exists s [\overline{1}S^{-1} * p = \text{unv}(r, s) \land \text{Wff}(r) \land \text{Wff}(s)] \)

(g) \(\text{PA} \vdash \text{Wff}(\overline{1}S^{-1} * p) \rightarrow \exists u \exists r [\overline{1}S^{-1} * p = \text{unv}(u, r) \land \text{Var}(u) \land \text{Wff}(r)] \)

(h) \(\text{PA} \vdash \text{Wff}(p) \rightarrow (\forall k < \text{len}(p)) \sim \text{Wff}(\text{val}(p, k)) \)
*E13.34. Show (d) and (i) from T13.40. Hard-core: show each of the results from T13.40.

Hints for T13.40. (a) is from the definition of power and prior results. (d) uses IN on the value of b. (e) uses IN on a. (f) is straightforward with cases for $m^b = \emptyset$ and $\emptyset < m^b$. (g) and (l) are by IN. For (h) and (i) unpack the inequalities. For (m), $a < b \lor a = b \lor b < a$; but the first and last are impossible.

*E13.35. Show (d) and (e) from T13.41. Hard-core: show each of the results from T13.41.

Hints for T13.41. (a) is from the definition of fact and prior results. (c) and (d) are straightforward by IN. Reasoning for (e) is like (G2) in the arithmetic for Gödel numbering reference once you realize that all the primes less than n are included in $\text{act}(n)$.

*E13.36. Show (k) and (l) from T13.42. Hard-core: show each of the results from T13.42.

Hints for T13.42. (a) is from definition π and prior results. (b) is from T13.41c; (c) applies T13.18.g; and then (d) and (e) are by T13.18(b) and (c). (k) and (l) are simple inductions. (m) is by using IN on i to show $(\forall y \leq \pi(i))[Pr(y) \rightarrow \exists j \pi(j) = y]$; the result then follows easily with (l). Under the assumption for $\rightarrow 1$, (n) is by IN on a. For (o) you will be able to show that if $pred(\pi(m)^{Sb})|\pi(n)^a$ then $pred(\pi(m))|\pi(n)^a$ and use (n). For (p) under the assumption for $\rightarrow 1$ you will be able to show $i \leq b \rightarrow pred(\pi(m)^i)|s$ by induction on i; the result then follows easily with $b \leq b$.

Let $Prv(n) = \exists x Prft(x, n)$ and so $Prvpa(n) = \exists x Prfpa(x, n)$. In the following we shall assume results like (k) and (l) for theories extending PA—though, of course, our prime example just is PA. Insofar as theories are recursively axiomatized, some such results should be in the offing.
*E13.37. Show (c) and (f) from T13.43. Hard-core: show each of the results from
T13.43.

Hints for T13.43. (a) is from definition \(\text{exp} \) and prior results. For (c) obtain
\(\exists x \leq S_n \left[\text{pred}(\bar{p}(i)^x) \cap S_n \land \text{pred}(\bar{p}(i)^{S_n}) \upharpoonright S_n \right] \) and apply T13.18g; for this, \(\text{ex}(n, i) = \emptyset \lor \emptyset < \text{ex}(n, i) \); the first is impossible; then the trick is to
generalize on the number prior to \(\text{ex}(n, i) \). (f) is by showing that
\(a = \mu x [\text{pred}(\bar{p}(i)^x) \cap S_n \land \text{pred}(\bar{p}(i)^{x+T}) \upharpoonright S_n] \). (l): from
\(\text{pred}(\bar{p}(i)^{\text{exp}(S_n, i)}) \cap S_n \) there is a \(j \) such that \(\bar{p}(i)^{\text{exp}(S_n, i)} \times j = S_n \); the hard part is to show \(k \neq i \rightarrow \text{exp}(j, k) = \text{exp}(S_n, k) \)—for this, it will be helpful to establish that \(j \) is a successor. (m): toward an application of T13.43f it will be easy to establish
that \(\text{pred}(\bar{p}(i)^{\text{exp}(S_n, i)}) \cap (S_m \times S_n) \); for the other conjunct, it will be helpful to begin with a couple applications of T13.43l.

*E13.38. Show (f) and (l) from T13.44. Hard-core: show each of the results from
T13.44.

Hints for T13.44. (a) is from the definition of length and prior results. (c) follows
with T13.43h and existentially generalizing on \(S_n \) itself. (f) is by application
of (c). Under the assumption for \(\rightarrow I \), (h) divides into cases for \(m = \emptyset \) and
\(\emptyset < m \); for the latter, suppose \(i \neq \text{len}(m) \); then you will be able to make use
of (d). (j) is straightforward with T13.23d and ultimately (h). For (k), begin with
\(\text{len}(\bar{p}(i)^P) < S_i \lor \text{len}(\bar{p}(i)^P) = S_i \lor S_i < \text{len}(\bar{p}(i)^P) \) by T13.11q; the first is easily eliminated with T13.44h; then, supposing \(S_i < \text{len}(\bar{p}(i)^P) \), you will be able to obtain a contradiction using T13.44e. (l): under the assumption \(\text{len}(n) \leq a \)
for (\(\forall I \)), either \(n = \emptyset \) or \(\emptyset < n \); the first case is easy; for the second, there is some
\(m \) such that \(n = S_m \); your main reasoning will be to show \(\text{exp}(S_m, a) = \emptyset \). (m): under the assumption for \(\rightarrow I \), \(\emptyset = n \) or \(\emptyset < n \); the first is impossible; so there is some
\(m \) such that \(n = S_m \); with this, suppose \(i \neq \text{exp}(S_m, l) \); then you will be able to show, contrary to your assumption, that \(\text{len}(S_m) = l \) and so \(\text{len}(n) = l \).

*E13.39. Show (a) and (b) from T13.45. Hard-core: show each of the results from
T13.45.

Hints for T13.45. (e) is by IN on \(a \). (f) is by IN on \(i \); in the show under
(\(\forall j < i \) \(\text{exp}(\text{wd}(m, n, i), j) = \text{exc}(m, n, j) \) and \(a < S_i \) you will have separate
cases for \(a < i \) and \(a = i \). (g) is straightforward with applications of (f), (b) and
(c). For (h) you may obtain \(i \leq l \rightarrow \text{wd}(m, n, i) \leq [\bar{p}(l)^{m+n}]^i \) by induction
on \(i \), where in the show a main task is to obtain \(\text{exc}(m, n, i) \leq m + n \); the result
then follows with previously established inequalities. (l) is easy with (j). For (o) you will be able to show \(\forall n[\text{len}(Sn) \leq x \to \text{val}(Sn, x) = Sn] \) by induction on \(x \): the \(0 \)-case is straightforward; then under the inductive assumption with \(\text{len}(Sa) \leq Sx \) for \(\rightarrow I \) you have \(\text{len}(Sa) \leq x \lor \text{len}(Sa) = Sx \); the first case is straightforward; the second is an extended argument—you will be able to apply T13.43l to obtain an \(Sr \) whose prime factorization is like that of \(Sa \) but without \(p_i \). (k) and (l) are straightforward with T13.46c. For (m) under the assumption for \(\rightarrow I \), you will be able to show \(\forall i < a/\text{exp}(Sm \ast Sn, i) = \text{exp}(\text{val}(Sm, a) \ast \text{val}(Sn, a \div \text{len}(Sm)), i) \) and so \(\text{val}(Sm \ast Sn, a) = \text{val}(\text{val}(Sm, a) \ast \text{val}(Sn, a \div \text{len}(Sm), a); and from this the result you want. (n) and (o) are by induction on \(a. \)

*E13.40. Show (b) and (e) from T13.46. Hard-core: show each of the results from T13.46.

Hints for T13.46. (a) is from the definition concatenation with prior results. (b) is easy with theorems from T13.45. (e) divides into cases for \(\text{len}(n) \) and \(\theta < \text{len}(n); \) and within the first, again, cases for \(\theta = \text{len}(m) \) and \(\theta < \text{len}(m). \) For (f) show \(\text{len}(m \ast n) \leq l \) and apply (e); for the main argument assume \(\text{len}(m \ast n) \not\leq l \) then you will be able to apply T13.43l and show that the \(q \) so obtained contradicts T13.46d. (h) where \(l' = \text{len}(a) + \text{len}(b) + \text{len}(c), \) you will be able to show \((\forall i < l)\text{exp}(a \ast b \ast c, i) = \text{exp}(a \ast (b \ast c), i). \) (k) and (l) are straightforward with T13.46c. For (m) you will be able to show \((\forall i < a)\text{exp}(Sm \ast Sn, i) = \text{exp}(\text{val}(Sm, a) \ast \text{val}(Sn, a \div \text{len}(Sm)), i) \) and so \(\text{val}(Sm \ast Sn, a) = \text{val}(\text{val}(Sm, a) \ast \text{val}(Sn, a \div \text{len}(Sm)), a); and from this the result you want. (n) and (o) are by induction on \(a. \)

*E13.41. Work T13.47n and T13.48g including at least the \(E \) and \(F \) cases. Hard-core: show each of the results from T13.47 and T13.48.

Hints for T13.47. (f) is straightforward by an extended \(\forall E. \) (j)–(l) are disjunctive but straightforward. For (m) under the assumption for \(\rightarrow I \) you can show \(\forall x(\forall k < \text{len}(m))\{\forall x(\forall k < \text{len}(m))\{\exists x(\forall y \text{Termseq}(x, \text{exp}(m, y)) \land \text{len}(y) \leq \text{len}(\text{exp}(m, y)) \cap \text{len}(x) \leq \text{len}(\text{exp}(m, x)) \cap (\forall i < \text{len}(m))\text{exp}(a, i) \leq \text{exp}(m, k))\} \} \) by induction on \(x \): the basis is straightforward; then, under the inductive assumption along with \(a < \text{len}(m) \) for \(\forall I \) and \(\text{len}(\text{exp}(m, a)) \leq Sx \) for \(\rightarrow I, \) apply (a); the derivation is then a (long) argument by cases where you will be able to apply (h)–(l). (n) follows easily with T13.45p. For (o) under the assumption for \(\rightarrow I, \) you will be able to show \(\forall k[k < \text{len}(m) \to \exists x(\text{Termseq}(x, \text{exp}(m, k))) \} \) by strong induction; the result follows easily.

Hints for T13.48. (a)–(l) work very much like the parallel theorems from T13.47. In particular, T13.48g parallels T13.47j.
CHAPTER 13. GÖDEL’S THEOREMS

*E13.42. Work T13.50j including at least the O case. Hard-core: show each of the results from T13.49 and T13.50.

Hints for T13.49. For (m) let \(P(m, n, v, s, k) = \exists a \exists b [\text{subseq}(a, b, \text{exp}(m, k), v, s, \text{exp}(n, k)) \land \text{len}(a) \leq \text{len}(\text{exp}(m, k)) \land (\forall i < \text{len}(a)) (\text{exp}(a, i) \leq \text{exp}(m, k) \land \text{exp}(b, i) \leq \text{exp}(n, k))] \); then under the assumption for \(\neg I \), show \(\forall x (\forall k < \text{len}(m)) [\text{len}(\text{exp}(m, k) \leq x \to \mathcal{P}] \) by IN; the result follows from this. Similarly, for (n) let \(P(m, i, v, s) = \exists x \exists y \exists u [\text{subseq}(x, y, \text{exp}(m, i), v, s, u) \land \text{len}(u) \leq \text{len}(\text{exp}(m, i)) \times \text{len}(s) \land (\forall k < \text{len}(u)) \text{exp}(u, k) \leq \text{exp}(m, i) \times s] \); under the assumption \(\text{Term}(t) \land \text{Term}(s) \) given \(\text{TermSeq}(m, t) \) you will be able to show \(\forall i [i < \text{len}(m) \to \mathcal{P}] \) by strong induction on \(i \) (with extended disjunctions in both the basis and show); the result follows easily from this.

Hints for T13.50: (a)–(k) work very much like the parallel theorems from T13.49. (l) follows easily with (k).

*E13.43. Work T13.52h including at least the F case. Hard-core: show each of the results from T13.51 and T13.52.

Hints for T13.51. For (a) suppose \(j < l_1 \), this leads to contradiction so that \(l_1 \leq j \) and you can “pick off” the first concatenated terms from premise (c) to get \(\text{val}(a, j \div l_1) \times \text{val}(c_1, j \div l_2) \times \text{val}(b, j \div l_3) \times \text{val}(c_2, j \div l_4) = d \times c_1 \times e \times c_2 \); suppose \(j < l_2 \), again this leads to contradiction so that \(l_2 \leq j \); either \(\text{len}(d) < \text{len}(a) \lor \text{len}(d) = \text{len}(a) \lor \text{len}(a) < \text{len}(d) \); the first and last lead to contradiction, and with the other you will be able to pick off the next terms; continue to \(l \leq j \), which contradicts the last premise. For (f) show \(\forall x \forall y [(\exists x \exists y \exists u [\text{subseq}(x, y, \text{exp}(m, i), v, s, u) \land \text{len}(u) \leq \text{len}(\text{exp}(m, i)) \times \text{len}(s) \land (\forall k < \text{len}(u)) \text{exp}(u, k) \leq \text{exp}(m, i) \times s]] \) by IN on \(x \); the zero case is easy; then under the inductive assumption with \(\text{Term}(a) \land \text{len}(a) \leq x \) for \(\neg I \) and \(j < \text{len}(a) \) for \((\forall I) \), \(0 = j \lor 0 < j \); the first case is easy; for the second you can assume \(\text{Term}(\text{val}(a, j)) \) and with \(\text{TermSeq}(m, a) \) the argument becomes an extended disjunction from \(A(m, \text{len}(m) \div T) \lor B(m, \text{len}(m) \div T) \lor C(m, \text{len}(m) \div T) \lor D(m, \text{len}(m) \div T) \) where you can reach contradiction in each.

Hints for T13.52. Reasoning for (h) is like T13.51f. Reasoning for (j) is like the final uniqueness part of T11.5; the result is straightforward, starting with (f)—though with \(\text{Term}(d^{-1} \times q) = \text{Term}(d^{-1} \times s) \) for an application of T13.46l, you will need to worry about the case \(q = \emptyset \). Beginning with T13.39, (k) and (l) are not hard; you have some of the work for (k) from E13.33.
13.4.3 The Condition

After all our preparation, we are ready to turn to the second condition, that \(\text{PA} \vdash \Box(P \rightarrow Q) \rightarrow (\Box P \rightarrow \Box Q)\). Again, given both \(T \vdash \Box(P \rightarrow Q)\) and \(T \vdash \Box P\) the idea is that there are \(j\) and \(k\) such that \(\text{PRFT}(j, \Box P \rightarrow \Box Q)\) and \(\text{PRFT}(k, \Box P \rightarrow \Box Q)\) so that \(l = j \times k \times 2^l\) numbers a proof of \(Q\). We show \(\text{PA} \vdash \text{Prvt}(\text{end}(p, q)) \rightarrow (\text{Prvt}(p) \rightarrow \text{Prvt}(q))\); the second condition (without free variables) follows as an immediate corollary.

Observe that we have on the table expressions of the sort, \(+\), \(\text{Plus}\) and \(\text{plus}\)—where the first is a primitive symbol of \(\mathcal{L}_{\text{nt}}\), the second the original relation to capture the recursive function \(\text{plus}\), and the last a function symbol defined from the recursive function. In view of demonstrated equivalences, we will tend to slide between them without notice. So, for example, given that \(\langle 2, 2, 4 \rangle \in \text{plus}\), by capture \(\text{PA} \vdash \text{Plus}(2, 2, 4)\); and by demonstrated equivalences, \(\text{PA} \vdash \text{plus}(2, 2) = 4\) and \(\text{PA} \vdash \text{plus}(2, 2) = 4\). In particular \(\text{Prvt}(n) = \exists x \text{Prft}(x, n)\) is equivalent to \(\text{Prvt}(n)\).

*T13.53. \(\text{PA} \vdash \text{Prvt}(\text{end}(p, q)) \rightarrow (\text{Prvt}(p) \rightarrow \text{Prvt}(q))\). Corollary: \(\text{PA} \vdash \Box(P \rightarrow Q) \rightarrow (\Box P \rightarrow \Box Q)\).

See the derivation on page 758.

This derivation is long, and skips steps; but it should be enough for you to see how the argument works—and to fill in the details if you choose. First, from the part up to the line labeled (a), under assumptions for \(\rightarrow I\), there are derivations numbered \(j\), \(k\) and a longer sequence numbered \(l\) (at lines 10, 11, 12). And the last member of this longer sequence is an immediate consequence of last members from the derivations numbered \(j\) and \(k\). At (b) the results from (16) are all applied to the sequence numbered \(l\); so the last sentence in the longer sequence is an immediate consequence of its earlier members. From lines up to (c), the different fragments of the longer sequence have the character of a proof. And at (d), the whole sequence numbered \(l\) has the character of a proof. Finally, from lines up to (e) we observe that this longer sequence yields \(\text{Prvt}(q)\) and discharge the assumptions for the result that \(\text{Prvt}(\text{end}(p, q)) \rightarrow [\text{Prvt}(p) \rightarrow \text{Prvt}(q)]\) so that \(\text{PA} \vdash \text{Prvt}(\text{end}(p, q)) \rightarrow (\text{Prvt}(p) \rightarrow \text{Prvt}(q))\).

But then we have \(\text{Prvt}(\text{end}(\Box P \rightarrow \Box Q)) \rightarrow [\text{Prvt}(\Box P \rightarrow \Box Q)] \rightarrow \text{Prvt}(\Box P \rightarrow \Box Q)\) as an instance, and by capture, \(\text{Prvt}(\Box P \rightarrow \Box Q) \rightarrow [\text{Prvt}(\Box P \rightarrow \Box Q)] \rightarrow \text{Prvt}(\Box P \rightarrow \Box Q)\) so that \(\text{PA} \vdash \Box(P \rightarrow Q) \rightarrow (\Box P \rightarrow \Box Q)\). Thus the second derivability condition is established.

*E13.44. As a start to a complete demonstration of T13.53, provide a demonstration through part (c) that does not skip any steps. You may find it helpful to divide
T13.53

1. $\mathsf{Prf}(\mathsf{cur}(p, q))$
2. $\mathsf{Wff}(\mathsf{cur}(p, q))$
3. $\mathsf{Prf}(p)$
4. $\mathsf{Wff}(p)$
5. $\mathsf{Wff}(q)$
6. $\emptyset < \mathsf{cur}(p, q) \land \emptyset < p \land \emptyset < q$
7. $\mathsf{Icon}(\mathsf{cur}(p, q), p, q)$
8. $\exists v \mathsf{Prf}(v, \mathsf{cur}(p, q))$
9. $\exists v \mathsf{Prf}(v, p)$
10. $\mathsf{Prf}(j, \mathsf{cur}(p, q))$
11. $\mathsf{Prf}(k, p)$
12. $l = j \ast k \ast 2^q$
13. $\exp(j, len(j) \downarrow T) = \mathsf{cur}(p, q)$
14. $\exp(k, len(k) \downarrow T) = p$
15. $\exp(l, len(j) + len(k)) = q$
16. $\mathsf{Icon}[\exp(j, len(j) \downarrow T), \exp(k, len(k) \downarrow T), \exp(l, len(j) + len(k))]$
17. $(\forall i < \mathsf{len}(j) \lbrack \exp(l, i) = \exp(j, i) \rbrack)$
18. $\exp(l, len(j) + len(k) = \exp(k, len(k) \downarrow T)$
19. $\exp(l, len(j) + len(k) = \exp(k, len(k) \downarrow T)$
20. $\exp(l, len(j) + len(k) = \exp(k, len(k) \downarrow T)$
21. $\mathsf{Icon}[\exp(l, len(j) \downarrow T), \exp(l, len(j) + len(k) \downarrow T), \exp(l, len(j) + len(k))]$
22. $(\forall i < \mathsf{len}(k) \lbrack \mathsf{Axiom}(\exp(l, i)) \lor (\exists m < i)(\exists n < i)\mathsf{Icon}(\exp(l, m), \exp(l, n), \exp(l, i)) \rbrack$
23. $(\forall i < \mathsf{len}(k) \lbrack \mathsf{Axiom}(\exp(l, j + i)) \lor (\exists m < i)(\exists n < i)\mathsf{Icon}(\exp(l, m), \exp(l, n), \exp(l, i)) \rbrack$
24. $(\forall i < \mathsf{len}(j) \lbrack \mathsf{Axiom}(\exp(l, i)) \lor (\exists m < i)(\exists n < i)\mathsf{Icon}(\exp(l, m), \exp(l, n), \exp(l, i)) \rbrack$
25. $x < \mathsf{len}(l)$
26. $x < \mathsf{len}(j) \lor \mathsf{len}(j) \leq x < \mathsf{len}(j) + \mathsf{len}(k) \lor x = \mathsf{len}(j) + \mathsf{len}(k)$
27. $x < \mathsf{len}(j)$
28. $\mathsf{Axiom}(\exp(l, x)) \lor (\exists m < x)(\exists n < x)\mathsf{Icon}(\exp(l, m), \exp(l, n), \exp(l, x))$
29. $\mathsf{len}(j) \leq x < \mathsf{len}(j) + \mathsf{len}(k)$
30. $\mathsf{Axiom}(\exp(l, x)) \lor (\exists m < x)(\exists n < x)\mathsf{Icon}(\exp(l, m), \exp(l, n), \exp(l, x))$
31. $x = \mathsf{len}(j) + \mathsf{len}(k)$
32. $\mathsf{Icon}(\exp(l, x)) \lor (\exists m < x)(\exists n < x)\mathsf{Icon}(\exp(l, m), \exp(l, n), \exp(l, x))$
33. $\mathsf{Axiom}(\exp(l, x)) \lor (\exists m < x)(\exists n < x)\mathsf{Icon}(\exp(l, m), \exp(l, n), \exp(l, x))$
34. $\mathsf{Icon}(\exp(l, x)) \lor (\exists m < x)(\exists n < x)\mathsf{Icon}(\exp(l, m), \exp(l, n), \exp(l, x))$
35. $(\forall x < \mathsf{len}(l) \lbrack \mathsf{Axiom}(\exp(l, x)) \lor (\exists m < x)(\exists n < x)\mathsf{Icon}(\exp(l, m), \exp(l, n), \exp(l, x)) \rbrack)$
36. $\mathsf{len}(\mathbb{Z}^2) = T$
37. $T \leq \mathsf{len}(l)$
38. $T < l$
39. $\exp(l, len(l) \downarrow T) = q$
40. $\exp(l, len(l) \downarrow T) = q \land T < l \land$
41. $\mathsf{Prf}(l, q)$
42. $\mathsf{Prf}(q)$
43. $\mathsf{Prf}(q)$
44. $\mathsf{Prf}(q)$
45. $\mathsf{Prf}(p) \rightarrow \mathsf{Prf}(q)$
46. $\mathsf{Prf}(\mathsf{cur}(p, q)) \rightarrow [\mathsf{Prf}(p) \rightarrow \mathsf{Prf}(q)]$
your demonstration into separate parts for (a), (b) and then for lines (22), (23) and (24). Hard-core: complete the entire derivation.

Hint: As a preliminary to (24) it will be helpful to show PA proves \((\forall i < t)(\exists m < i)\varphi(t + i) \vee (\exists n < i)(\exists r < i)(t + m, t + n, t + r) \rightarrow (\forall i : t < i < t + s)[\varphi(i) \vee (\exists m < i)(\exists n < i)(t + m, t + n, t + i)] \).

13.5 The Third Condition: \(\Box \varphi \rightarrow \Box \Box \varphi \)

To show the third condition, that PA \(\vdash \Box \varphi \rightarrow \Box \Box \varphi \), it is sufficient to show PA \(\vdash \Box \varphi \rightarrow \Box \varphi \). For when \(\varphi \) is \(\Box \varphi \), the result is immediate. Further, \(\Box \varphi \) is \(\text{Prvt}(\varphi, \psi) \) and \(\text{Prvt}(\varphi, \psi) \) is a \(\Sigma_1 \) sentence. So it is sufficient to show that for any \(\Sigma_1 \) sentence \(\varphi \), PA \(\vdash \Box \varphi \rightarrow \Box \varphi \). For this, we begin with some additional applications, especially with respect to \(\text{formsub} \) (13.5.1). Then we focus on what needs to be shown by an alternate characterization of \(\Sigma_1 \) formulas (13.5.2). Then some results that apply \(\text{Prvt} \) to special forms substituting numerals into places for free variables (13.5.3). Finally we will be in a position to show the third condition (13.5.4).

13.5.1 More Applications

Recall that where \(p = \varphi \psi \), \(v = \psi \psi \), and \(s = \psi \psi \), \(\text{formsub}(p, v, s) \) returns the Gödel number of \(p \psi \). Let \(\text{gvar}(n) = 2^{2^{3 + 2n}} \) be the Gödel number of variable \(x_n \).

In addition, \(\text{num}(n) \) returns the Gödel number of the standard numeral for \(n \). So \(\text{formsub}(p, \text{gvar}(n), \text{num}(y)) \) is a function which returns the number of the formula that substitutes a numeral for the value (number) assigned to \(y \) into the place of \(x_n \). So, for example, if \(y \) is assigned the value of 2, then \(\text{formsub}(p, \text{gvar}(n), \text{num}(y)) \) returns \(\varphi \psi \). Of course, PA defines coordinate \(\text{formsub}(p, \text{gvar}(n), \text{num}(y)) \). We require some results for these notions.

First, a pair of theorems with some results for substitutions into terms and then into formulas. As on pages 749–750, \(I \sim N \) and \(O \sim S \) are subformulas of \(\text{Tsubseq} \) and \(\text{Fsubseq} \) respectively.

*T13.54. The following are theorems of PA.

(a) PA \(\vdash \text{Free}(t, v) \iff \neg \text{Termsub}(t, v, v \times t, t) \)

(b) PA \(\vdash \exp(m, k) = \varphi \rightarrow \neg [J(v, m, n, k) \vee K(v, s, m, n, k) \vee L(m, n, k) \vee M(m, n, k) \vee N(m, n, k)] \)

(c) PA \(\vdash [\text{Var}(\exp(m, k)) \land \exp(m, k) \neq v] \rightarrow \neg [I(m, n, k) \vee K(v, s, m, n, k) \vee L(m, n, k) \vee M(m, n, k) \vee N(m, n, k)] \)
CHAPTER 13. GÖDEL’S THEOREMS

T13.19. For any friendly recursive function \(r(\vec{x}) \) and original formula \(\mathcal{R}(\vec{x}, \upsilon) \) by which it is expressed and captured, PA defines a function \(r(\vec{x}) \) such that \(\text{PA} \vdash \upsilon = r(\vec{x}) \leftrightarrow \mathcal{R}(\vec{x}, \upsilon) \). This theorem depends on conditions for the recursion clause and so on T13.20 and T13.29.

T13.20. Where \(\mathcal{F}(\vec{x}, \upsilon, \nu) \) is the formula for recursion, \(\text{PA} \vdash \forall m \forall n[(\mathcal{F}(\vec{x}, \nu, m) \land \mathcal{F}(\vec{x}, \upsilon, n)) \Rightarrow m = n] \).

T13.30. PA \(\vdash [(\forall y < k_1)(\emptyset < m(y) \land h(i) < m(i)) \land \forall y \forall j(i < j \land j < k \rightarrow Rp(Sm(i), Sm(j)))] \Rightarrow \exists p(\forall y < k_1)\exists m(p, m(i)) = h(i). \)

T13.31. For any friendly recursive function \(\alpha \), PA defines \(\mathcal{R} \) such that \(\text{PA} \vdash \mathcal{R}(\vec{x}) \leftrightarrow \alpha(\vec{x}) = \overline{0} \). Corollary, where \(\alpha(\vec{x}) \) is originally captured by \(\mathcal{R}(\vec{x}, \overline{0}) \), \(\text{PA} \vdash \mathcal{R}(\vec{x}) \leftrightarrow \mathcal{R}(\vec{x}, \overline{0}) \).

T13.32–T13.33. T13.32 For primitive recursive functions, operators, and relations defined in Chapter 12: (i) If \(r(\vec{x}) \) is a function, PA defines a coordinate function \(r(\vec{x}) \). (ii) If \(\mathcal{O} \mathcal{P} \) is an operator, PA defines a coordinate operator \(\mathcal{O} \mathcal{P} \). (iii) And if \(\mathcal{R}(\vec{x}) \) is a relation, PA defines a coordinate relation \(\mathcal{R}(\vec{x}) \). T13.33 is some sample applications.

T13.34–T13.35. T13.34 equivalences for \(\text{auc, zero, idm}_k^j \), \text{plus} and \(\text{times} \). T13.35 results for \(\text{pred, s} \mathcal{G} \) and \(\text{exg} \).

T13.36. PA proves a characteristic function takes the value \(\emptyset \) or \(\overline{1} \).

T13.37–T13.38. Equivalences for \(\text{pred, subc, absval, s} \mathcal{G}, \text{exg, Eq, Leq, Less, Neg, and Dxy} \). T13.38 Equivalences for \((\exists y \leq z), (\exists y < z), (\forall y \leq z), (\forall y < z), (\mu y \leq z), \text{Fctr}, \text{and Prime} \).

T13.39–T13.43. T13.39 first applications to recursive functions. T13.40 Results for \(\text{m}^a \). T13.41 results for \(\text{fact} \). T13.42 results for \(\text{pi} \). T13.43 results for \(\text{exp} \).

T13.44–T13.50. T13.44 results for \(\text{len} \). T13.45 results for \(\text{ulf} \). T13.46 results for \(m \ast n \). T13.47 results for \(\text{Termseq} \). T13.48 results for \(\text{Formseq} \). T13.49 results for \(\text{Subseq} \). T13.50 results for \(\text{Fsubseq} \).

T13.51–T13.52. T13.51 on unique readability. T13.52 results for \(\text{Wff} \) and \(\text{Prwpa} \).

T13.53. PA \(\vdash \Box(\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\Box \mathcal{P} \rightarrow \Box \mathcal{Q}) \).
(d) $\text{PA} \vdash [\text{Var}(\exp(m, k)) \land \exp(m, k) = v] \rightarrow [I(m, n, k) \lor J(v, m, n, k) \lor L(m, n, k) \lor M(m, n, k) \lor N(m, n, k)]$

(e) $\text{PA} \vdash \exp(m, k) = \overline{S}a \rightarrow [I(m, n, k) \lor J(v, m, n, k) \lor K(v, s, m, n, k) \lor M(m, n, k) \lor N(m, n, k)]$

(f) $\text{PA} \vdash \exp(m, k) = \overline{+}a \rightarrow [I(m, n, k) \lor J(v, m, n, k) \lor K(v, s, m, n, k) \lor L(m, n, k) \lor N(m, n, k)]$

(g) $\text{PA} \vdash \exp(m, k) = \overline{\times}{a} \rightarrow [I(m, n, k) \lor J(v, m, n, k) \lor K(v, s, m, n, k) \lor L(m, n, k) \lor M(m, n, k)]$

*(h) $\text{PA} \vdash [\text{Ttermsub}(t, v, s, q) \land \text{Ttermsub}(t, v, s, r)] \rightarrow q = r$

(i) $\text{PA} \vdash [\text{Atomsub}(p, v, s, q) \land \text{Atomsub}(p, v, s, r)] \rightarrow q = r$

(j) $\text{PA} \vdash [\text{Term}(t) \land \text{Term}(s) \land \text{Var}(v)] \rightarrow [\neg \text{Free}_t(t, v) \rightarrow \text{Ttermsub}(t, v, s, t)]$

(k) $\text{PA} \vdash [\text{Term}(s) \land \text{Var}(v)] \rightarrow [\text{Atomsub}(p, v, v \times 4, p) \rightarrow \text{Atomsub}(p, v, s, p)]$

(l) $\text{PA} \vdash [\text{Term}(t) \land \text{Var}(v)] \rightarrow [(\neg \text{Free}_t(t, v) \land \text{Ttermsub}(t, v, s, u)) \rightarrow s \leq u]$

*(m) $\text{PA} \vdash \text{Var}(v) \rightarrow [\neg \text{Atomsub}(p, v, v \times 4, p) \land \text{Atomsub}(p, v, s, q)) \rightarrow s \leq q]$

Reasoning with $\text{Ttermsub}(t, v, s, q)$ and $\text{Ttermsub}(t, v, s, r)$ as for (h) results in an extended $\lor E$ inside an extended $\lor E$. Theorems like (b)–(g) let us “pick off” disjuncts in a reasonable way. And similarly for (b)–(f) in the theorem that follows.

T13.55. The following are theorems of PA.

(a) $\text{PA} \vdash \text{Free}_p(p, v) \leftrightarrow \neg \text{Formsub}(p, v, v \times 4, p)$

(b) $\text{PA} \vdash \text{Atomic}(\exp(m, k)) \rightarrow [\neg P(m, n, k) \lor Q(m, n, k) \lor R(v, p, m, n, k) \lor S(v, p, m, n, k)]$

(c) $\text{PA} \vdash \exp(m, k) = \overline{\neg}{a} \rightarrow [\neg O(v, s, m, n, k) \lor Q(m, n, k) \lor R(v, p, m, n, k) \lor S(v, p, m, n, k)]$

(d) $\text{PA} \vdash \exp(m, k) = \overline{\neg}{a} \rightarrow [\neg O(v, s, m, n, k) \lor P(m, n, k) \lor R(v, p, m, n, k) \lor S(v, p, m, n, k)]$

(e) $\text{PA} \vdash [\text{Var}(j) \land j \neq v \land \exp(m, k) = \overline{\neg}{j} * a] \rightarrow \neg [O(v, s, m, n, k) \lor P(m, n, k) \lor Q(m, n, k) \lor S(v, p, m, n, k)]$
(f) \(\text{PA} \vdash \varphi \)
\[\forall j \in \mathbb{N} \quad \exists k \in \mathbb{N} \quad \varphi(j, k) \]
\[\Rightarrow \exists \alpha \in \mathbb{N} \quad \exists \beta \in \mathbb{N} \quad \varphi(j, k) \]
\[\Rightarrow \exists \gamma \in \mathbb{N} \quad \exists \delta \in \mathbb{N} \quad \varphi(j, k) \]
\[\Rightarrow \exists \epsilon \in \mathbb{N} \quad \exists \zeta \in \mathbb{N} \quad \varphi(j, k) \]
\[\Rightarrow \exists \eta \in \mathbb{N} \quad \exists \theta \in \mathbb{N} \quad \varphi(j, k) \]
\[\Rightarrow \exists \iota \in \mathbb{N} \quad \exists \kappa \in \mathbb{N} \quad \varphi(j, k) \]

(g) \(\text{PA} \vdash [\text{Formsub}(p, v, s, q) \land \text{Formsub}(p, v, s, r)] \rightarrow q = r \)

(h) \(\text{PA} \vdash [\text{Wff}(p) \land \text{Term}(s)] \rightarrow [\text{Formsub}(p, v, s, q) \rightarrow \text{Formsub}(p, v, s) = q] \)

(i) \(\text{PA} \vdash [\text{Wff}(p) \land \text{Term}(s) \land \text{Var}(v)] \rightarrow [\neg \text{Free}(p, v) \rightarrow \text{Formsub}(p, v, s) = p] \)

We are now positioned for some results about numerals, and results related to Gen and A4. For the former let \(\text{numseq}(n) \) be as follows.

\[\text{PA} \vdash \text{numseq}(\emptyset) = p(\emptyset)_{\text{num}(\emptyset)} \]
\[\text{PA} \vdash \text{numseq}(Sy) = \text{numseq}(y) \times p(Sy)_{\text{num}(Sy)} \]

The exponents of \(\text{numseq}(n) \) are the Gödel numbers of \(\overline{0} \ldots \overline{n} \). We shall be able to show that \(\text{numseq}(n) \) numbers a term sequence for \(\text{num}(n) \). Toward the axiom, for a function coordinate to \(\text{ffseq}(m, s, v, u) \) let,

\[T(m, k) = \text{Atomic}(\text{exp}(m, k)) \]
\[U(m, k) = \exists j < k [\text{exp}(m, k) = \text{neg}(\text{exp}(m, j))] \]
\[V(m, k) = \exists i < k \exists j < k [\text{exp}(m, k) = \text{end}(\text{exp}(m, i), \text{exp}(m, j))] \]
\[W(u, v, m, k) = \exists p \leq u [\text{Wff}(p) \land \text{exp}(m, k) = \text{vexp}(v, p)] \]
\[X(u, v, s, m, k) = \exists i < k \exists j < u [\text{Var}(j) \land j \neq v \land (\sim \text{Free}(s, j) \lor \sim \text{Free}(\text{exp}(m, i), v)) \land \text{exp}(m, k) = \text{vexp}(j, \text{exp}(m, i))] \]

T13.56. The following are theorems of PA.

(a) \(\text{PA} \vdash \text{ffseq}(m, s, v, u) \leftrightarrow \{ \text{exp}(m, \text{len}(m) \div 1) = u \land \exists k \in \mathbb{N} \land (\forall k < \text{len}(m)) (T(m, k) \lor U(m, k) \lor V(m, k) \lor W(u, v, m, k) \lor X(u, v, s, m, k)) \} \)

(b) (i) \(\text{PA} \vdash \text{freefor}(s, v, u) \leftrightarrow (\exists x \leq B_u) \text{ffseq}(x, s, v, u) \)

(ii) \(\text{PA} \vdash B_u = [\exists \text{len}(u)]^u_x \)

(c) (i) \(\text{PA} \vdash \text{num}(\emptyset) = \overline{0} \)

(ii) \(\text{PA} \vdash \text{num}(Sy) = \overline{S} \)

(d) \(\text{PA} \vdash gvar(n) = 2^{\overline{n} + 2} \times n \)
(e) $\text{PA} \vdash \forall \text{gvar}(\text{gvar}(n))$

(f) $\text{PA} \vdash \text{gvar}(m) = \text{gvar}(n) \rightarrow m = n$

* (g) $\text{PA} \vdash [\text{Prvt}(p) \land \text{Var}(v)] \rightarrow \text{Prvt}(\text{unv}(v, p))$

(h) $\text{PA} \vdash \text{Axiom}(n) \rightarrow \text{Prvt}(n)$

* (i) $\text{PA} \vdash [\text{Wff}(p) \land \text{Var}(v)] \rightarrow \text{Freefor}(v, v, p)$

* (j) $\text{PA} \vdash \text{Axiomad4}(n) \leftrightarrow \exists s(\exists p \leq n)(\exists v \leq n)[\text{Wff}(p) \land \text{Var}(v) \land
\text{Term}(s) \land \text{Freefor}(s, v, p) \land n = \text{cn}(\text{unv}(v, p), \text{forms}(p, v, s))]$

(k) $\text{PA} \vdash \emptyset < \text{num}(x)$

(l) $\text{PA} \vdash 1 < \text{numseq}(x)$

(m) $\text{PA} \vdash \text{len}(\text{num}(x)) = Sx$

* (n) $\text{PA} \vdash \text{len}(\text{numseq}(x)) = Sx$

(o) $\text{PA} \vdash y \leq x \rightarrow \text{exp}(\text{numseq}(x), y) = \text{num}(y)$

(p) $\text{PA} \vdash \forall \text{Var}(v) \rightarrow v \neq \text{num}(y)$

(q) $\text{PA} \vdash \text{Termseq}(\text{numseq}(x), \text{num}(x))$

\hspace{1cm} corollary: $\text{PA} \vdash \text{Term}(\text{num}(x))$

(r) $\text{PA} \vdash \text{Termseq}(\text{numseq}(n), \text{numseq}(n), \text{num}(n), v, s, \text{num}(n))$

\hspace{1cm} corollary: $\text{PA} \vdash \text{Termseq}(\text{num}(n), v, s, \text{num}(n))$

\hspace{1cm} corollary: $\text{PA} \vdash \sim \text{Free}(\text{num}(n), v)$

* (s) $\text{PA} \vdash [\text{Wff}(p) \land \text{Var}(v)] \rightarrow \text{Freefor}(\text{num}(x), v, p)$

(t) $\text{PA} \vdash \text{Wff}(p) \rightarrow \text{Prvt}(\text{cn}(\text{unv}(\text{gvar}(n), p), \text{forms}(p, \text{gvar}(n), \text{num}(x))))$

Effectively, (g) is like Gen. (j) is like the intuitive version of A4 from page 659—from T13.39g PA proves,

\begin{align*}
\text{Axiomad4}(n) & \leftrightarrow (\exists s \leq n)(\exists v \leq n)[\text{Wff}(p) \land \text{Var}(v) \land [\neg \text{Free}(p, v) \land n = \text{cn}(\text{unv}(v, p), p)] \\
& \quad \lor \neg \text{Free}(p, v) \land (\exists s \leq n)(\text{Term}(s) \land \text{Freefor}(s, v, p) \land n = \text{cn}(\text{unv}(v, p), \text{forms}(p, v, s))))]
\end{align*}

(you you will have worked this out in E13.33) and (j) follows from this. Then (t) results with (j) when the substituted term is a numeral (so that associated restrictions are automatically met).
Finally, a theorem with results first for substitution into a conditional, and then for substitution into other substitutions. Each of the latter include matched results for \(\text{TermSub}, \text{AtomSub} \) and then \(\text{FormSub} \). Suppose \(x = x_i \) and \(y = x_j \).

*\(\text{T13.57.} \) The following are theorems of PA.

(a) PA \(\vdash [\text{Wff}(p) \land \text{Wff}(q) \land \text{Term}(s)] \rightarrow \text{formsSub}(\text{and}(p, q), v, s) = \text{and}(\text{formsSub}(p, v, s), \text{formsSub}(q, v, s)) \)

(b) PA \(\vdash [\text{Term}(p) \land \text{Term}(a)] \rightarrow \exists q[\text{TermSub}(p, v, \text{num}(y), q) \land \text{TermSub}(q, v, a, q)] \)

(c) PA \(\vdash [\text{Atomic}(p) \land \text{Term}(a)] \rightarrow \exists q[\text{AtomSub}(p, v, \text{num}(y), q) \land \text{AtomSub}(q, v, a, q)] \)

(d) PA \(\vdash [\text{Wff}(p) \land \text{Term}(a)] \rightarrow \text{formsSub}(p, v, \text{num}(y)) = \text{formsSub}(\text{formsSub}(p, v, \text{num}(y)), v, a) \)

(e) PA \(\vdash [\text{Term}(p) \land v \neq w] \rightarrow \exists q\exists q'[\text{TermSub}(p, v, \text{num}(y), t) \land \text{TermSub}(p, w, \text{num}(z), t') \land \text{TermSub}(t, w, \text{num}(z), q) \land \text{TermSub}(t', v, \text{num}(y), q)] \)

(f) PA \(\vdash [\text{Atomic}(p) \land v \neq w] \rightarrow \exists q\exists q'[\text{AtomSub}(p, v, \text{num}(y), t) \land \text{AtomSub}(p, w, \text{num}(z), t') \land \text{AtomSub}(p, w, \text{num}(z), t') \land \text{AtomSub}(t, w, \text{num}(z), q) \land \text{AtomSub}(t', v, \text{num}(y), q)] \)

(g) PA \(\vdash [\text{Wff}(p) \land v \neq w] \rightarrow \text{formsSub}(\text{formsSub}(p, v, \text{num}(y)), w, \text{num}(z)) = \text{formsSub}(\text{formsSub}(p, w, \text{num}(z)), v, \text{num}(y)) \)

(h) PA \(\vdash [\text{Term}(p) \land \text{Var}(w)] \rightarrow \exists q\exists q'[\text{TermSub}(p, v, \text{num}(y), t) \land \text{TermSub}(p, v, \text{num}(y), t') \land \text{TermSub}(t, w, \text{num}(y), q) \land \text{TermSub}(t', w, \text{num}(y), q)] \)

(i) PA \(\vdash [\text{Atomic}(p) \land \text{Var}(w)] \rightarrow \exists q\exists q'[\text{AtomSub}(p, v, \text{num}(y), t) \land \text{AtomSub}(p, v, \text{num}(y), t') \land \text{AtomSub}(t, w, \text{num}(y), q) \land \text{AtomSub}(t', w, \text{num}(y), q)] \)

(j) PA \(\vdash [\text{Wff}(p) \land \text{Var}(w)] \rightarrow \text{formsSub}(\text{formsSub}(p, v, w), w, \text{num}(y)) = \text{formsSub}(\text{formsSub}(p, v, \text{num}(y)), w, \text{num}(y)) \)

(k) PA \(\vdash [\text{Term}(p) \land \text{Var}(w)] \rightarrow \exists q\exists q'[\text{TermSub}(p, v, \text{num}(y), t) \land \text{TermSub}(p, v, \text{num}(S_y), t') \land \text{TermSub}(t, w, \text{num}(y), q) \land \text{TermSub}(t', w, \text{num}(y), q)] \)

(l) PA \(\vdash [\text{Atomic}(p) \land \text{Var}(w)] \rightarrow \exists q\exists q'[\text{AtomSub}(p, v, \text{num}(y), t) \land \text{AtomSub}(p, v, \text{num}(S_y), t') \land \text{AtomSub}(t, w, \text{num}(y), q) \land \text{AtomSub}(t', w, \text{num}(y), q)] \)
(m) $PA \vdash [\mathrm{Wff}(p) \land \forall w (\exists y \ni w \in \varphi(y))] \rightarrow \varphi_{\mathrm{formsub}(\text{forms} \circ \psi(p,v,y), w, \varphi_{\mathrm{num}(y)})}$

$\quad = \varphi_{\mathrm{formsub}(\text{forms} \circ \psi(p,v,\varphi_{\mathrm{num}(y)}), w, \varphi_{\mathrm{num}(y)})}$.

Speaking loosely: From (a), $\varphi_{\mathrm{\mu}(\varphi)} = \varphi_{\mu} \rightarrow \varphi_{\mu}$. From theorems leading up to (d), $\varphi_{\mathrm{num}(y)} = \varphi_{\mathrm{num}(y)}$. From theorems leading up to (g), if $v \neq w$ then $\varphi_{\mathrm{num}(y)} = \varphi_{\mathrm{num}(y)}$. From ones leading to (j), $\varphi_{\mathrm{num}(y)} = \varphi_{\mathrm{num}(y)}$. And from ones leading to (m), $\varphi_{\mathrm{num}(y)} = \varphi_{\mathrm{num}(y)}$. For these it is important that $\varphi_{\mathrm{num}(y)}$ is a numeral and so has no variables to be replaced. Arguments combine methods we have seen before; reasoning is straightforward but long.

*E13.45. Set up the argument for T13.55i including assertion of the main proposition to be shown by induction; then set up the show part working just the P case.

Hard-core: finish each of the results in T13.54 and T13.55.

Hints for T13.54. (h) Under assumptions for $\rightarrow I$ and (3E) you have both $\varphi_{\mathrm{subseq}}(m',n,t,v,s,q)$ and $\varphi_{\mathrm{subseq}}(m',n',t,v,s,r)$; with this show $\forall k[k < \mathrm{len}(m) \rightarrow (\forall x < \mathrm{len}(m'))(\exp(m,k) = \exp(m',x) \rightarrow \exp(n,k) = \exp(n',x))]$ by strong induction; the result follows easily from this. (j) Under assumptions for $\rightarrow I$ and (3E) and with T13.49, you have both $\varphi_{\mathrm{subseq}}(m',n,t,v,s,r)$ and $\varphi_{\mathrm{subseq}}(m',n',t,v,s,u)$ with goal $t = u$; by strong induction show $\forall k[k < \mathrm{len}(m) \rightarrow (\forall x < \mathrm{len}(m'))(\exp(m,k) = \exp(m',x) \rightarrow (\exp(m,k) = \exp(n,k) \rightarrow \exp(m',x) = \exp(n',x)))]; then the result follows easily. (l) Under assumptions for $\rightarrow I$ and (3E) you have $\varphi_{\mathrm{subseq}}(m,n,t,v,s,u)$ and $\varphi_{\mathrm{subseq}}(m',n',t,v,s,u)$ where $r \neq t$ with goal $s \leq u$; by strong induction show $\forall k[k < \mathrm{len}(m) \rightarrow (\forall x < \mathrm{len}(m'))(\exp(m,k) = \exp(m',x) \rightarrow (\exp(m,k) = \exp(n,k) \rightarrow s \leq \exp(n',x)))]; the result follows.

Hints for T13.55: See the corresponding members of T13.54.

E13.46. Taking as given that $PA \vdash \forall v \in \varphi_{\mathrm{termseq}(t,v), t}$, show that $PA \vdash (\forall v \in \varphi_{\mathrm{termseq}(t,v), t}) \leftrightarrow \neg \varphi_{\mathrm{Free}(p,v)}$. Hint: Under the assumption for $\rightarrow I$ you will be able to obtain $\varphi_{\mathrm{formsub}(p,v,v)} = p$ as an intermediate result.

*E13.47. Show (t) from T13.56. Hard-core: show the rest of the results from T13.56.

Hints for T13.56. For (o) show $\forall x y [y \leq x \rightarrow \exp(\mathrm{numseq}(x), y) = \mathrm{num}(y)]$ by induction on the value of x. For the show part of (p) it may help to think about the lengths of v and $\mathrm{num}(y)$. For (q) to show the bounded quantification for $\mathrm{Termseq}(\mathrm{numseq}(x), \mathrm{num}(x))$ you assume $a < \mathrm{len}(\mathrm{numseq}(x))$; then $\emptyset =$
13.5.2 Sigma Star

We begin showing that there are \(\Sigma \) results which apply to all the other direction: that every formula, it is obvious that every \(\Sigma \) formula is \(\Sigma_1 \). We aim to show the bounded quantifier, \(\forall \theta \lor \emptyset < \forall \theta \lor \emptyset < a \).

\[a \lor \emptyset < a \text{ and the cases are easy.} \]

(r) again, in the argument for the bounded quantifier, \(\emptyset = a \lor \emptyset < a \).

\[\text{\[E13.48\]. Show T13.57a. Hard-core: finish the rest of the results in T13.57.} \]

Hints for T13.57. (b) Under assumptions \(T_{\text{subseq}}(m, n, p, v, \text{num}(y), t) \) and \(T_{\text{subseq}}(m', n', t, v, a, t') \), get \(\forall x(\forall k < \text{len}(m))(\forall k' < \text{len}(m'))[\text{len}(\text{exp}(m, k)) \leq x \rightarrow (\text{exp}(n, k) = \text{exp}(m', k') \rightarrow \exists c \exists d T_{\text{subseq}}(c, d, \text{exp}(m', k'), v, a, \text{exp}(m', k')))] \) by IN; the result follows. (c) Under the assumption for \(\rightarrow 1 \), apply T13.48c and then (b). (e) Under assumption \(T_{\text{subseq}}(m, n, p, v, \text{num}(y), t) \) and \(T_{\text{subseq}}(m', n', p, w, \text{num}(z), t') \), let \(P = \exists q \exists a \exists b \exists c \exists d[T_{\text{subseq}}(a, b, \text{exp}(n, k), w, \text{num}(z), q) \land T_{\text{subseq}}(c, d, \text{exp}(n', k'), v, \text{num}(y), q)] \); show \(\forall x(\forall k < \text{len}(m))(\forall k' < \text{len}(m'))[\text{len}(\text{exp}(m, k)) \leq x \rightarrow (\text{exp}(m, k) = \text{exp}(m', k') \rightarrow P)] \) by IN. (h) Under assumptions \(T_{\text{subseq}}(m, n, p, v, w, t) \) and \(T_{\text{subseq}}(m', n', p, v, w, t') \), let \(P = \exists q \exists a \exists b \exists c \exists d[T_{\text{subseq}}(a, b, \text{exp}(n, k), w, \text{num}(y), q) \land T_{\text{subseq}}(c, d, \text{exp}(n', k'), w, \text{num}(y), q)] \); show \(\forall x(\forall k < \text{len}(m))(\forall k' < \text{len}(m'))[\text{len}(\text{exp}(m, k)) \leq x \rightarrow (\text{exp}(m, k) = \text{exp}(m', k') \rightarrow P)] \) by IN.

13.5.2 Sigma Star

Our aim is to show \(\text{PA} \vdash \varnothing \rightarrow \Box \varnothing \) for any \(\Sigma_1 \) sentence \(\varnothing \). Given our minimal resources, the task is simplified if we can give a minimal specification of the \(\Sigma_1 \) formulas themselves. Toward this end, we introduce a special class of formulas, the \(\Sigma_* \) formulas; and show that every \(\Sigma_1 \) formula is provably equivalent to a \(\Sigma_* \) formula. \(\Sigma_* \) formulas are as follows.

(\(\Sigma_* \)) For any variables \(x, y \) and \(z \),

(a) \(\emptyset = z, y = z, Sy = z, x + y = z \) and \(x \times y = z \) are \(\Sigma_* \).

(\(\exists \)) If \(P \) is \(\Sigma_* \), then so is \(\exists x P \).

(s) If \(P \) and \(\varnothing \) are \(\Sigma_* \), then so are \((P \lor \varnothing) \), and \((P \land \varnothing) \).

(\(\forall \)) If \(P \) is \(\Sigma_* \), then so is \((\forall x \leq y) \) where \(y \) does not occur in \(P \).

(c) Nothing else is \(\Sigma_* \).

Notice the new restriction on a bounded universal, where the bound is a variable \(y \) that does not occur in \(P \). Given that the specification of \(\Sigma_* \) formulas is a restriction of that for \(\Sigma_1 \) formulas, it is obvious that every \(\Sigma_* \) formula is \(\Sigma_1 \). We aim to show the other direction: that every \(\Sigma_1 \) formula is provably equivalent to a \(\Sigma_* \) formula. Then results which apply to all the \(\Sigma_* \) formulas immediately transfer to the \(\Sigma_1 \) formulas. We begin showing that there are \(\Sigma_* \) formulas equivalent to atomic equalities of the
sort \(t = x \). Then (depending on an extended notion of normal form and a result according to which \(\Delta_0 \) formulas always have equivalent normal forms) we show that there are \(\Sigma_* \) formulas equivalent to all the \(\Delta_0 \) formulas. And from this there are \(\Sigma_* \) formulas equivalent to all the \(\Sigma_1 \) formulas. First, then, the result for atomic equalities.

T13.58. For any atomic \(\mathcal{P} \) of the form \(t = x \), there is a \(\Sigma_* \) formula \(\mathcal{P}_{\Sigma_*} \) such that \(\text{PA} \vdash \mathcal{P} \leftrightarrow \mathcal{P}_{\Sigma_*} \).

Suppose \(\mathcal{P} \) is of the form \(t = x \). By induction on the function symbols in \(t \).

Basis: If \(t \) has no function symbols, then it is the constant \(\emptyset \) or a variable \(y \), so \(\mathcal{P} \) is of the form \(\emptyset = x \) or \(y = x \); but these are already \(\Sigma_* \) formulas. So let \(\mathcal{P}_{\Sigma_*} \) be the same as \(\mathcal{P} \). Then \(\text{PA} \vdash \mathcal{P} \leftrightarrow \mathcal{P}_{\Sigma_*} \).

Assp: For any \(i, 0 \leq i < k \), if \(t \) has \(i \) function symbols, there is a \(\mathcal{P}_{\Sigma_*} \) such that \(\text{PA} \vdash \mathcal{P} \leftrightarrow \mathcal{P}_{\Sigma_*} \).

Show: If \(t \) has \(k \) function symbols, there is a \(\mathcal{P}_{\Sigma_*} \) such that \(\text{PA} \vdash \mathcal{P} \leftrightarrow \mathcal{P}_{\Sigma_*} \).

If \(t \) has \(k \) function symbols, then it is of the form \(S^r, r + s \) or \(r \times s \) for \(r \) and \(s \) with \(< k \) function symbols.

(S) \(t \) is \(S^r \), so that \(\mathcal{P} \) is \(S^r = x \). Set \(\mathcal{P}_{\Sigma_*} = \exists z[(r = z)_{\Sigma_*} \land S^z = x] \); then by assumption, \(\text{PA} \vdash r = z \leftrightarrow (r = z)_{\Sigma_*} \). So reason as follows,

1. \(r = z \leftrightarrow (r = z)_{\Sigma_*} \) \hspace{1cm} \text{assp}
2. \(S^r = x \) \hspace{1cm} \text{A (g, \(\leftrightarrow I \))}
3. \(r = r \land S^r = x \) \hspace{1cm} \text{from 2}
4. \(\exists z[(r = z)_{\Sigma_*} \land S^z = x] \) \hspace{1cm} 3 \text{ \(\exists I \)}
5. \(\exists z[(r = z)_{\Sigma_*} \land S^z = x] \) \hspace{1cm} 1,4 with T9.9
6. \(\exists z[(r = z)_{\Sigma_*} \land S^z = x] \) \hspace{1cm} \text{A (g, \(\leftrightarrow I \))}
7. \((r = z)_{\Sigma_*} \land S^z = x \) \hspace{1cm} \text{A (g, 6\(\exists E \))}
8. \(r = z \) \hspace{1cm} 1,7 \(\exists E \)
9. \(S^r = x \) \hspace{1cm} \text{from 7,8}
10. \(S^r = x \) \hspace{1cm} 6,7-9 \(\exists E \)
11. \(S^r = x \leftrightarrow \exists z[(r = z)_{\Sigma_*} \land S^z = x] \) \hspace{1cm} 2-5,6-10 \(\leftrightarrow I \)

So \(\text{PA} \vdash \mathcal{P} \leftrightarrow \mathcal{P}_{\Sigma_*} \).

(+) \(t = s + r \), so that \(\mathcal{P} \) is \(s + r = x \). Set \(\mathcal{P}_{\Sigma_*} = \exists u \exists v[(s = u)_{\Sigma_*} \land (r = v)_{\Sigma_*} \land u + v = x] \). Then \(\text{PA} \vdash \mathcal{P} \leftrightarrow \mathcal{P}_{\Sigma_*} \).

(\(\times \)) Similarly.

Indct: For any \(\mathcal{P} \) of the form \(t = x \), there is a \(\mathcal{P}_{\Sigma_*} \) such that \(\text{PA} \vdash \mathcal{P} \leftrightarrow \mathcal{P}_{\Sigma_*} \).
Now generalize some operations from T8.1. There we said a formula is in normal form iff its only operators are \(\lor, \land, \) and \(\neg \), and the only instances of \(\neg \) are immediately prefixed to atomics. Now a formula is in (extended) normal form iff its only operators are \(\lor, \land, \neg \), or a bounded quantifier, and the only instances of \(\neg \) are immediately prefixed to atomics (which may include inequalities). Again, generalizing from before, where \(\mathcal{P} \) is a normal form, let \(\mathcal{P}_0 \) be like \(\mathcal{P} \) except that \(\lor \) and \(\land \), universal and existential quantifiers and, for an atomic \(A \), \(A \) and \(\neg A \) are interchanged.

So, for example, \(\forall x \leq p)(x = p \lor p
 x)' = (\forall x \leq p)(x \neq p \land p < x) \).

Still generalizing, for any \(\Delta_0 \) formula whose operators are \(\lor, \land, \) and the bounded quantifiers, for atomic \(A \), let \(A' = A \); and \([\neg \mathcal{P}]_N = [\mathcal{P}']_N \); \((\mathcal{P} \rightarrow \mathcal{Q})_N = ([\mathcal{P}']_N \lor [\mathcal{Q}]_N) \); \([\exists x \leq t] \mathcal{P}_N = (\exists x \leq t) \mathcal{P}_N \) and \([\forall x \leq t] \mathcal{P}_N = (\forall x \leq t) \mathcal{P}_N \) (and similarly for \((\exists x < t) \mathcal{P} \) and \((\forall x < t) \mathcal{P} \)). Then as a simple extension to the result from E8.10,

T13.59. For any \(\Delta_0 \) formula \(\mathcal{P}_{\Delta_0} \), there is a normal formula \(\mathcal{P}_N \) such that \(\vdash \mathcal{P}_{\Delta_0} \iff \mathcal{P}_N \).

The demonstration is straightforward extension of the reasoning from E8.9 and E8.10.

We show our result as applied to these normal forms. Thus,

T13.60. For any \(\Delta_0 \) formula \(\mathcal{P}_{\Delta_0} \) there is a \(\Sigma_\ast \) formula \(\mathcal{P}_{\Sigma_} \) such that \(\vdash \mathcal{P}_{\Delta_0} \iff \mathcal{P}_{\Sigma_*} \).

From T13.59, for any \(\Delta_0 \) formula \(\mathcal{P}_{\Delta_0} \), there is a normal \(\mathcal{P}_N \) such that \(\vdash \mathcal{P}_{\Delta_0} \iff \mathcal{P}_N \). Now by induction on the number of operators in \(\mathcal{P}_N \), we show there is a \(\mathcal{P}_{\Sigma_*} \) such that \(\vdash \mathcal{P}_N \iff \mathcal{P}_{\Sigma_*} \).

Basis: If \(\mathcal{P}_N \) has no operators, then it is an atomic of the sort \(s = t \), \(s \leq t \) or \(s < t \).

\((=) \mathcal{P}_N \) is \(s = t \). Set \(\mathcal{P}_{\Sigma_*} = \exists z[(s = z)_{\Sigma_*} \land (t = z)_{\Sigma_*}] \). By T13.58, \(\vdash s = z \iff (s = z)_{\Sigma_*} \), and \(\vdash t = z \iff (t = z)_{\Sigma_*} \); so \(\vdash \mathcal{P}_N \iff \mathcal{P}_{\Sigma_*} \).

\((\leq) \mathcal{P}_N \) is \(s \leq t \), which is to say \(\exists z(z + s = t) \). By the case immediately above, \(\vdash (z + s = t) \iff (z + s = t)_{\Sigma_*} \). Set \(\mathcal{P}_{\Sigma_*} = \exists z(z + s = t)_{\Sigma_*} \). Then \(\vdash \mathcal{P}_N \iff \mathcal{P}_{\Sigma_*} \). And similarly for <.

Assp: For any \(i \), \(0 \leq i < k \), if a normal \(\mathcal{P}_N \) has \(i \) operator symbols, then there is a \(\Sigma_\ast \) formula \(\mathcal{P}_{\Sigma_*} \) such that \(\vdash \mathcal{P}_N \iff \mathcal{P}_{\Sigma_*} \).
Show: If a normal \(\mathcal{P}_N \) has \(k \) operator symbols, then there is a \(\Sigma_* \) formula \(\mathcal{P}_{\Sigma_*} \) such that \(\text{PA} \vdash \mathcal{P}_N \leftrightarrow \mathcal{P}_{\Sigma_*} \).

If \(\mathcal{P}_N \) has \(k \) operator symbols, then it is of the form \(\sim \mathcal{A}, \mathcal{B} \land \mathcal{C}, \mathcal{B} \lor \mathcal{C}, \mathcal{(}\exists x \leq t) \mathcal{B}, \mathcal{(}\exists x < t) \mathcal{B}, (\forall x \leq t) \mathcal{B} \) or \((\forall x < t) \mathcal{B} \), where \(\mathcal{A} \) is atomic and \(\mathcal{B} \) and \(\mathcal{C} \) are normal with \(< k \) operator symbols.

\((\sim)\) \(\mathcal{P}_N \) is \(\sim \mathcal{A} \) for atomic \(\mathcal{A} \). There are three cases:

(i) \(\mathcal{P}_N \) is \(s \neq t \). Set \(\mathcal{P}_{\Sigma_*} = (s < t)_{\Sigma_*} \lor (t < s)_{\Sigma_*} \); then by assumption, \(\text{PA} \vdash s < t \leftrightarrow (s < t)_{\Sigma_*} \) and \(\text{PA} \vdash t < s \leftrightarrow (t < s)_{\Sigma_*} \); and with T13.11q,s, \(\text{PA} \vdash \mathcal{P}_N \leftrightarrow \mathcal{P}_{\Sigma_*} \).

(ii) \(\mathcal{P}_N \) is \(s \neq t \); set \(\mathcal{P}_{\Sigma_*} = (t \leq s)_{\Sigma_*} \); then by assumption, \(\text{PA} \vdash t \leq s \leftrightarrow (t \leq s)_{\Sigma_*} \); and with T13.11v, \(\text{PA} \vdash \mathcal{P}_N \leftrightarrow \mathcal{P}_{\Sigma_*} \).

(iii) And similarly for \(\mathcal{P}_{\Sigma_*} = s \neq t \).

\((\wedge)\) \(\mathcal{P}_N \) is \(\mathcal{B} \land \mathcal{C} \). Set \(\mathcal{P}_{\Sigma_*} = \mathcal{B}_{\Sigma_*} \land \mathcal{C}_{\Sigma_*} \); since \(\mathcal{B} \) and \(\mathcal{C} \) are normal, by assumption \(\text{PA} \vdash \mathcal{B} \leftrightarrow \mathcal{B}_{\Sigma_*} \) and \(\text{PA} \vdash \mathcal{C} \leftrightarrow \mathcal{C}_{\Sigma_*} \); so \(\text{PA} \vdash \mathcal{P}_N \leftrightarrow \mathcal{P}_{\Sigma_*} \).

And similarly for \(\lor \).

\((\forall)\) \(\mathcal{P}_N \) is \(\mathcal{(}\forall x \leq t) \mathcal{B} \). Set \(\mathcal{P}_{\Sigma_*} = \exists z[(t = z)_{\Sigma_*} \land (\forall x \leq z) \mathcal{B}_{\Sigma_*}] \); by T13.58 \(\text{PA} \vdash t = z \leftrightarrow (t = z)_{\Sigma_*} \) and by assumption, \(\text{PA} \vdash \mathcal{B} \leftrightarrow \mathcal{B}_{\Sigma_*} \); so \(\text{PA} \vdash \mathcal{P}_N \leftrightarrow \mathcal{P}_{\Sigma_*} \). And, by a related construction, similarly for \((\forall x < t) \mathcal{B} \).

\((\exists)\) \(\mathcal{P}_N \) is \(\mathcal{(}\exists x \leq t) \mathcal{B} \). Set \(\mathcal{P}_{\Sigma_*} = \exists x[(x \leq t)_{\Sigma_*} \land \mathcal{B}_{\Sigma_*}] \); then by assumption \(\text{PA} \vdash x \leq t \leftrightarrow (x \leq t)_{\Sigma_*} \) and \(\text{PA} \vdash \mathcal{B} \leftrightarrow \mathcal{B}_{\Sigma_*} \); so \(\text{PA} \vdash \mathcal{P}_N \leftrightarrow \mathcal{P}_{\Sigma_*} \).

And similarly for \((\exists x < t) \mathcal{B} \).

\textbf{Indic:} For any normal \(\mathcal{P}_N \) there is a \(\mathcal{P}_{\Sigma_*} \) such that \(\text{PA} \vdash \mathcal{P}_N \leftrightarrow \mathcal{P}_{\Sigma_*} \).

So from T13.59 for any \(\Delta_0 \) formula \(\mathcal{P}_{\Delta_0} \), there is a normal \(\mathcal{P}_N \) such that \(\vdash \mathcal{P}_{\Delta_0} \leftrightarrow \mathcal{P}_N \) and by the above reasoning, \(\text{PA} \vdash \mathcal{P}_N \leftrightarrow \mathcal{P}_{\Sigma_*} \). So \(\text{PA} \vdash \mathcal{P}_{\Delta_0} \leftrightarrow \mathcal{P}_{\Sigma_*} \).

Now you can show that for any \(\Sigma_1 \) formula \(\mathcal{P}_{\Sigma_1} \) there is a \(\Sigma_* \) formula \(\mathcal{P}_{\Sigma_*} \) such that \(\text{PA} \vdash \mathcal{P}_{\Sigma_1} \leftrightarrow \mathcal{P}_{\Sigma_*} \).

\textbf{*T13.61}. For any \(\Sigma_1 \) formula \(\mathcal{P}_{\Sigma_1} \) there is a \(\Sigma_* \) formula \(\mathcal{P}_{\Sigma_*} \) such that \(\text{PA} \vdash \mathcal{P}_{\Sigma_1} \leftrightarrow \mathcal{P}_{\Sigma_*} \).

Treating \(\Delta_0 \) formulas as atomic, the argument is by induction on the number of operators in \(\mathcal{P}_{\Sigma_1} \). Homework.

So every \(\Sigma_1 \) formula is provably equivalent to a \(\Sigma_* \) formula. So a result for all \(\Sigma_* \) formulas transfers to all the \(\Sigma_1 \) formulas. And that is what we set out to show in this subsection.
E13.49. By the method of T13.58, T13.59 and T13.60 find a P^\dagger such that $PA \vdash (\forall x \leq y)[z < Sy \rightarrow x = z] \leftrightarrow P^\dagger$; then show that PA proves the biconditional in at least one direction. Hard-core: show the biconditional in both directions. Hints: Begin converting $(\forall x \leq y)[z < Sy \rightarrow x = z]$ to normal form; then by the methods of T13.60 eliminate negated atomics and inequalities. Consider a tree for the resultant expression; for each term t (and the quantifier bound) generate a Σ^* formula equivalent to $t = z$ by the methods of T13.58; finally build P^\dagger.

E13.50. Provide a demonstration to show T13.59.

E13.51. Fill in the parts of T13.58 and T13.60 that are left as “similarly” to show that $PA \vdash P_{\Sigma_1} \leftrightarrow P_{\Sigma^*}$.

13.5.3 Substitutions

The demonstration that for any Σ^* (and so Σ_1) sentence Q, $PA \vdash Q \rightarrow \square Q$ is by induction on the number of operators in Q—where such an induction naturally reasons about parts that are not sentences. But given our minimal resources, we shall find it easier to demonstrate the provability of whole sentences than of open formulas. With this in mind, we introduce a $\text{sub}(\overline{x}.P, \overline{y})$ which substitutes numerals for variables free in P. The substitutions result in (numbers of) sentences about which we shall be able to obtain results. And when P is itself a sentence, there are no variables to replace, so that our results apply directly to the original P.

For this, where \overline{y} is a (possibly empty) sequence of n variables, consider an enumeration $\text{enum}(\overline{y}, i)$ of variable subscripts in \overline{y} so that $\text{enum}(\overline{y}, i) = y_i$ is the subscript of the i^{th} variable and \overline{y}_i the numeral corresponding to that subscript; so if \overline{y} is $x_3x_6x_2$, $\text{enum}(\overline{y}, 1) = y_1 = 3$, $\text{enum}(\overline{y}, 2) = y_2 = 6$ and $\text{enum}(\overline{y}, 3) = y_3 = 2$; and generally the variables of \overline{y} are $x_{y_1} \ldots x_{y_n}$, the variables of \overline{z} are $x_{z_1} \ldots x_{z_n}$, and so forth. Then for $i < n$,

$$PA \vdash \text{sub}_0(p, \overline{y}) = p$$

$$PA \vdash \text{sub}_{Si}(p, \overline{y}) = \text{formsub}(\text{sub}_i(p, \overline{y}), \text{gvar}(\overline{y}_{Si}), \text{num}(x_{y_i}))$$
Then \(PA \vdash sub(p, \bar{y}) = sub_n(p, \bar{y}) \). In the ordinary case, \(p \) is the number of a formula \(\mathcal{P} \), and \(\bar{y} \) includes all the variables free in \(\mathcal{P} \). So, for a one-variable case, \(\text{enum}(x_i, 1) \) is just \(i \) and \(sub(\bar{P}(x_i)^\bar{\sim}, x_i) = sub_1(\bar{P}(x_i)^\bar{\sim}, x_i) = \text{forms}(\bar{P}(x_i)^\bar{\sim}, gvar(\bar{1}), \text{num}(x_i)) \). Observe that \(sub(\bar{P}(x_i)^\bar{\sim}, x_i) \) still has \(x_i \) free but returns the number of the sentence that substitutes a numeral for the value assigned to \(x_i \) into the \(x_i \)-place of \(\mathcal{P} \). Also we have not defined a function by recursion, but rather recursively specified a sequence of functions. Thus \(i \) is not a variable of \(sub_1(p, \bar{y}) \) and a correlate to \(\text{enum} \) does not appear in the \(\mathcal{L}_{\mathfrak{T}} \) expression; rather we use \(\text{enum} \) to make the specification in which there appears a certain numeral (in this case \(\bar{1} \)), and variable (in this case \(x_i \)). For this notion we have,

T13.62. For any \(i \) and formula \(\mathcal{P} \), \(PA \vdash \text{Wff}(sub_i(\bar{P}^\bar{\sim}, \bar{y})) \)

By an easy induction with T13.50m.

So \(PA \vdash \text{Wff}(sub_n(\bar{P}^\bar{\sim}, \bar{y})) \) and \(PA \vdash \text{Wff}(sub(\bar{P}^\bar{\sim}, \bar{y})) \). And from a few quick theorems (collected in the substitution vectors box), so long as \(\bar{x} \) and \(\bar{y} \) each include all the variables free in \(\mathcal{P} \), \(PA \vdash sub(\bar{P}^\bar{\sim}, \bar{x}) = sub(\bar{P}^\bar{\sim}, \bar{y}) \). Given this, we shall not usually worry about details of the vectors.

Now, introducing double brackets as a special notation: Where \(\bar{x} \) includes all the variables free in \(\mathcal{P} \),

\[
Prvt[\mathcal{P}(\bar{x})] = Prvt(sub(\bar{P}^\bar{\sim}, \bar{x}))
\]

Suppose the free variables of \(\mathcal{P} \) just are the members of \(\bar{x} \). Then \(Prvt(\bar{P}^\bar{\sim}) \) asserts the provability of the open formula \(\mathcal{P}(\bar{x}) \). But \(Prvt[\mathcal{P}(\bar{x})] \) itself has all the free variables of \(\mathcal{P} \) and asserts the provability of whatever sentences have numerals for the variables free in \(\mathcal{P} \): so, for example, \(\forall x Prvt[\mathcal{P}(x)] \) asserts the provability of \(\mathcal{P}_x^\bar{\sim} \), \(\mathcal{P}_{\bar{0}}^\bar{\sim} \), and so forth. When \(\mathcal{P} \) is a sentence, there are no substitutions to be made and \(Prvt[\mathcal{P}] \) is the same as \(Prvt(\bar{P}^\bar{\sim}) \). Thus we set out to show \(PA \vdash \mathcal{P} \rightarrow Prvt[\mathcal{P}] \) for \(\Sigma_n \) formulas. When \(\mathcal{P} \) is a sentence, this gives \(PA \vdash \mathcal{P} \rightarrow Prvt(\bar{P}^\bar{\sim}) \), which is to be shown.

In order to do this we shall require some quick theorems in order to manipulate this new notion. There are analogs to D1 and D2, and results for substitution. Each is by a short induction. Again, given their equivalence, we apply results for \(Prvt \) directly to \(Prvt \). First, the results like D1 and D2.

T13.70. If \(PA \vdash \mathcal{P} \), then \(PA \vdash Prvt[\mathcal{P}] \)
CHAPTER 13. GÖDEL’S THEOREMS

Substitution Vectors

T13.63. For \(\vec{x} = x_1 \ldots x_n, \; i \leq n, \) and arbitrary \(\vec{u}, \vec{v}, \) \(\text{PA} \vdash \text{sub}_i(\vec{P}, \vec{x}, \vec{u}) = \text{sub}_i(\vec{P}, \vec{x}, \vec{v}). \) By an easy induction.

*T13.64. For any formula \(\mathcal{P} \) and \(i \leq n, \) \(\text{PA} \vdash \text{sub}_{i+1}(\vec{P}, x_1, x_2, \ldots, x_i, x_{i+1}, \ldots, x_n) = \text{sub}_{i+1}(\vec{P}, x_1, x_2, \ldots, x_i, x_{i+1}, \ldots, x_n). \) Corollary: \(\text{PA} \vdash \text{sub}(\vec{P}, x_1, x_2, \ldots, x_i, x_{i+1}, \ldots, x_n) = \text{sub}(\vec{P}, x_1, x_2, \ldots, x_i, x_{i+1}, \ldots, x_n). \)

T13.65. If the variables of \(\vec{x} \) are the same as the variables of \(\vec{y} \) and \(\text{PA} \vdash \text{sub}(\vec{P}, \vec{x}, \vec{y}) \) then \(\text{PA} \vdash \text{sub}(\vec{P}, \vec{x}, \vec{x}). \)

Suppose the variables of \(\vec{x} \) are the same as the variables of \(\vec{y} \) but in a possibly different order. To convert \(\vec{y} \) to \(\vec{x} \), a straightforward approach is to use T13.64 to switch members into the first position in the reverse of their order in \(\vec{x} \). Suppose \(\vec{y} = (x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6}). \) Then we may sort the variables as follows,

0. \(x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6} \)
1. \(x_{i_1}, x_{i_2}, x_{i_5}, x_{i_3}, x_{i_4}, x_{i_6} \)
2. \(x_{i_1}, x_{i_2}, x_{i_3}, x_{i_5}, x_{i_4}, x_{i_6} \)
3. \(x_{i_1}, x_{i_2}, x_{i_4}, x_{i_3}, x_{i_5}, x_{i_6} \)
4. \(x_{i_1}, x_{i_2}, x_{i_4}, x_{i_5}, x_{i_3}, x_{i_6} \)
5. \(x_{i_1}, x_{i_2}, x_{i_5}, x_{i_3}, x_{i_4}, x_{i_6} \)
6. \(x_{i_1}, x_{i_2}, x_{i_5}, x_{i_4}, x_{i_3}, x_{i_6} \)

The reasoning is officially by induction, but simple enough, so left as an exercise.

T13.66. For any formula \(\mathcal{P} \) and variable \(x_a \) not free in \(\mathcal{P}, \) \(\text{PA} \vdash \text{sub}_{i+1}(\vec{P}, x_1, \ldots, x_i, x_a, x_{i+1}, \ldots, x_n) = \text{sub}_i(\vec{P}, x_1, \ldots, x_i, x_a, x_{i+1}, \ldots, x_n). \)

T13.67. For any formula \(\mathcal{P} \) and variable \(x_a \) duplicating a variable from earlier in the sequence, then \(\text{PA} \vdash \text{sub}_{i+2}(\vec{P}, x_1, \ldots, x_i, x_a, x_a, x_{i+1}, \ldots, x_n) = \text{sub}_{i+1}(\vec{P}, x_1, \ldots, x_i, x_a, x_{i+1}, \ldots, x_n). \)

*T13.68. If the variables of \(\vec{y} \) and \(\vec{z} \) are ordered by their subscripts, \(\vec{y} \) includes just the free variables of formula \(\mathcal{P}, \) but \(\vec{z} \) includes variables not in \(\vec{y}, \) then \(\text{PA} \vdash \text{sub}(\vec{P}, \vec{y}) = \text{sub}(\vec{P}, \vec{z}). \)

T13.69. If \(\vec{x} \) and \(\vec{y} \) include all the free variables of formula \(\mathcal{P}, \) then \(\text{PA} \vdash \text{sub}(\vec{P}, \vec{x}) = \text{sub}(\vec{P}, \vec{y}). \)

Let \(\vec{x}' \) and \(\vec{y}' \) be like \(\vec{x} \) and \(\vec{y} \) except that variables are in standard order, and \(\vec{z} \) be just the free variables of formula \(\mathcal{P} \) in standard order. Then by T13.65, \(\text{PA} \vdash \text{sub}(\vec{P}, \vec{x}) = \text{sub}(\vec{P}, \vec{y}'); \) by T13.68, \(\text{PA} \vdash \text{sub}(\vec{P}, \vec{x}') = \text{sub}(\vec{P}, \vec{z}); \) by T13.68 again, \(\text{PA} \vdash \text{sub}(\vec{P}, \vec{z}) = \text{sub}(\vec{P}, \vec{y}'); \) and with T13.65, \(\text{PA} \vdash \text{sub}(\vec{P}, \vec{y}') = \text{sub}(\vec{P}, \vec{y}). \)

So \(\text{PA} \vdash \text{sub}(\vec{P}, \vec{x}) = \text{sub}(\vec{P}, \vec{y}). \)
Suppose PA ⊨ \mathcal{P} and \bar{x} includes all the variables free in \mathcal{P}. By induction on the value of \(n \), we show PA ⊨ Prvt(sub_{n}(\overline{\mathcal{P}^n}, \bar{x}))\); the case when \(i = n \) gives the desired result. We revert to (III) from the induction schemes reference.

Basis: sub_{0}(\overline{\mathcal{P}^0}, \bar{x}) = \overline{\mathcal{P}^0}. Since PA ⊨ \mathcal{P}, by D1, PA ⊨ Prvt(\overline{\mathcal{P}^0})\); so PA ⊨ Prvt(sub_{0}(\overline{\mathcal{P}^0}, \bar{x}))\).

Asp: PA ⊨ Prvt(sub_{1}(\overline{\mathcal{P}^1}, \bar{x})).

Show: PA ⊨ Prvt(sub_{S_{1}}(\overline{\mathcal{P}^1}, \bar{x})).

1. Prvt(sub_{1}(\overline{\mathcal{P}^1}, \bar{x}))
2. \textsf{Wff}(sub_{1}(\overline{\mathcal{P}^1}, \bar{x}))
3. \textsf{Var}(gvar(x_{S_{1}}))
4. Prvt(\text{and}(gvar(x_{S_{1}}), sub_{1}(\overline{\mathcal{P}^1}, \bar{x})), formsub(sub_{1}(\overline{\mathcal{P}^1}, \bar{x}), gvar(x_{S_{1}}), num(x_{S_{1}})))
5. Prvt(\text{and}(gvar(x_{S_{1}}), sub_{1}(\overline{\mathcal{P}^1}, \bar{x})), formsub(sub_{1}(\overline{\mathcal{P}^1}, \bar{x}), gvar(x_{S_{1}}), num(x_{S_{1}})))
6. Prvt(\text{and}(gvar(x_{S_{1}}), sub_{1}(\overline{\mathcal{P}^1}, \bar{x})), formsub(sub_{1}(\overline{\mathcal{P}^1}, \bar{x}), gvar(x_{S_{1}}), num(x_{S_{1}})))
7. Prvt(sub_{S_{1}}(\overline{\mathcal{P}^1}, \bar{x}))

Indct: For any \(n \), PA ⊨ Prvt(sub_{n}(\overline{\mathcal{P}^n}, \bar{x}))\); which is to say PA ⊨ Prvt[\mathcal{P}]\.

So PA ⊨ Prvt(sub_{\overline{\mathcal{P}^1}}, \bar{x}))\); which is to say PA ⊨ Prvt[\mathcal{P}]\.

It is a simple matter to go from, say, PA ⊨ \mathcal{P}(x) to PA ⊨ \mathcal{P}(\bar{a}) by Gen and A4. In this case, we mirror that reasoning to show that if PA demonstrates the provability of the first, then it demonstrates the provability of the latter. T13.56t applies insofar as we substitute a numeral for the variable.

T13.71. PA ⊨ Prvt[\mathcal{P} ⊢ \mathcal{Q}] \iff (Prvt[\mathcal{P}] → Prvt[\mathcal{Q}])

Suppose \bar{x} includes all the free variables of \(\mathcal{P} → \mathcal{Q} \). We set out to show PA ⊨ sub_{1}(\text{and}(\overline{\mathcal{P}^1}, \overline{\mathcal{Q}^1}), \bar{x})) = \text{and}(sub_{1}(\overline{\mathcal{P}^1}, \bar{x}), sub_{1}(\overline{\mathcal{Q}^1}, \bar{x})). This leads immediately to the desired result.

Basis: sub_{0}(\text{and}(\overline{\mathcal{P}^1}, \overline{\mathcal{Q}^1}), \bar{x})) = \text{and}(sub_{0}(\overline{\mathcal{P}^1}, \bar{x}), sub_{0}(\overline{\mathcal{Q}^1}, \bar{x}))

1. sub_{0}(\text{and}(\overline{\mathcal{P}^1}, \overline{\mathcal{Q}^1}), \bar{x}) = \text{and}(\overline{\mathcal{P}^1}, \overline{\mathcal{Q}^1})\)
2. sub_{0}(\overline{\mathcal{P}^1}, \bar{x}) = \overline{\mathcal{P}^1}\)
3. sub_{0}(\overline{\mathcal{Q}^1}, \bar{x}) = \overline{\mathcal{Q}^1}\)
4. sub_{0}(\text{and}(\overline{\mathcal{P}^1}, \overline{\mathcal{Q}^1}), \bar{x})) = \text{and}(sub_{0}(\overline{\mathcal{P}^1}, \bar{x}), sub_{0}(\overline{\mathcal{Q}^1}, \bar{x}))\)

Asp: PA ⊨ sub_{1}(\text{and}(\overline{\mathcal{P}^1}, \overline{\mathcal{Q}^1}), \bar{x})) = \text{and}(sub_{1}(\overline{\mathcal{P}^1}, \bar{x}), sub_{1}(\overline{\mathcal{Q}^1}, \bar{x}))
CHAPTER 13. GÖDEL’S THEOREMS

Show: PA ⊢ sub₁(\(\text{end}(\{\bar{P}, \bar{Q}\}, \bar{x})\)) = \(\text{end}(\text{sub}_3(\{\bar{P}, \bar{x}\}, \bar{x}), \text{sub}_3(\{\bar{Q}, \bar{x}\}, \bar{x}))\)

1. \(\text{Wff}(\text{sub}_1(\{\bar{P}, \bar{x}\})) \land \text{Wff}(\text{sub}_1(\{\bar{Q}, \bar{x}\}))\) T13.62
2. \(\text{Term}(\text{num}(\text{sub}_1))\) T13.56q
3. \(\text{sub}_1(\{\bar{P}, \bar{x}\}) = \text{formsub}(\text{sub}_1(\{\bar{P}, \bar{x}\}, \text{gvar}(\bar{x}), \text{num}(\text{sub}_1)))\) def
4. \(\text{sub}_1(\{\bar{Q}, \bar{x}\}) = \text{formsub}(\text{sub}_1(\{\bar{Q}, \bar{x}\}, \text{gvar}(\bar{x}), \text{num}(\text{sub}_1)))\) def
5. \(\text{sub}_3(\{\bar{P}, \bar{x}\}, \bar{x})\) def
6. \(\text{formsub}(\text{sub}_1(\{\bar{P}, \bar{x}\}, \bar{x}), \text{gvar}(\bar{x}), \text{num}(\text{sub}_1))\) def
7. \(\text{formsub}(\text{sub}_1(\{\bar{Q}, \bar{x}\}, \bar{x}), \text{gvar}(\bar{x}), \text{num}(\text{sub}_1))\) def
8. \(\text{formsub}(\text{sub}_1(\{\bar{P}, \bar{x}\}, \bar{x}), \text{gvar}(\bar{x}), \text{num}(\text{sub}_1)))\)
9. \(\text{formsub}(\text{sub}_1(\{\bar{Q}, \bar{x}\}, \bar{x}), \text{gvar}(\bar{x}), \text{num}(\text{sub}_1)))\)

\(\text{Indct:}\) For any \(i\), \(\text{PA} \vdash \text{sub}_i(\text{end}(\{\bar{P}, \bar{Q}\}, \bar{x})) = \text{end}(\text{sub}_i(\{\bar{P}, \bar{x}\}, \bar{x}), \text{sub}_i(\{\bar{Q}, \bar{x}\}, \bar{x}))\)

So \(\text{PA} \vdash \text{sub}(\text{end}(\{\bar{P}, \bar{Q}\}, \bar{x})) = \text{end}(\text{sub}(\{\bar{P}, \bar{x}\}, \bar{x}), \text{sub}(\{\bar{Q}, \bar{x}\}, \bar{x}))\). Now moving to the desired result,

1. \(\begin{align*}
\varphi & \vdash \text{Prvt}(\text{sub}(\{\bar{P} \rightarrow \bar{Q}\}, \bar{x})) \\
\varphi & \vdash \text{Prvt}(\text{end}(\{\bar{P} \rightarrow \bar{Q}\}))
\end{align*}\) A (g, →I)
2. \(\varphi \vdash \text{Prvt}(\text{end}(\{\bar{P} \rightarrow \bar{Q}\}))\) cap
3. \(\varphi \vdash \text{Prvt}(\text{end}(\{\bar{P} \rightarrow \bar{Q}\}, \bar{x}))\) 1, 2 =E
4. \(\varphi \vdash \text{Prvt}(\text{end}(\{\bar{P}, \bar{x}\}, \text{sub}(\{\bar{Q}, \bar{x}\}, \bar{x})))\) 3 above
5. \(\varphi \vdash \text{Prvt}(\text{end}(\{\bar{P}, \bar{x}\}, \text{sub}(\{\bar{Q}, \bar{x}\}, \bar{x})))\) 4 D2
6. \(\varphi \vdash \text{Prvt}(\text{end}(\{\bar{P} \rightarrow \bar{Q}\})) \rightarrow \text{Prvt}(\text{sub}(\text{end}(\{\bar{P}, \bar{x}\}, \bar{x})) \rightarrow \text{Prvt}(\text{sub}(\{\bar{Q}, \bar{x}\}, \bar{x}))))\) 1-5 →I

So \(\varphi \vdash \text{Prvt}(\text{end}(\{\bar{P} \rightarrow \bar{Q}\})) \rightarrow \text{Prvt}(\text{sub}(\text{end}(\{\bar{P}, \bar{x}\}, \bar{x})) \rightarrow \text{Prvt}(\text{sub}(\{\bar{Q}, \bar{x}\}, \bar{x}))))\) which is just to say, \(\varphi \vdash \text{Prvt}(\{\bar{P} \rightarrow \bar{Q}\}) \rightarrow (\text{Prvt}(\{\bar{P}\}) \rightarrow \text{Prvt}(\{\bar{Q}\}))\).

Finally, the substitution results. In the simplest case, \(\text{Prvt}(\{\bar{P}(x)\})\) is of the sort \(\text{Prvt}(\text{formsub}(\{\bar{P}(x)\}, \text{gvar}(\bar{I}), \text{num}(x)))\). The free \(x\) in this expression may be replaced by a term \(t\) to yield \(\text{Prvt}(\text{formsub}(\{\bar{P}(x)\}, \text{gvar}(\bar{I}), \text{num}(t)))\). But this is not obviously the same as \(\text{Prvt}(\{\bar{P}(x)\})\)—for \(\{\bar{P}(x)\}\) is a numeral and so lacks any free \(x\). However, we may obtain a result that moves certain substitutions across the double bracket.

T13.72. Let \(x = x_i\) and \(y = x_j\). Then if \(t\) is one of \(\emptyset, y\) or \(S\) and \(t\) is free for \(x\) in \(\bar{P}\), then \(\varphi \vdash \text{Prvt}(\{\bar{P}\}) \leftrightarrow \text{Prvt}(\{\bar{P}\})\).

We consider just the case when \(t = S\). Others are similar and left for homework. Suppose \(t = S\) and take the variables in the order \(x, y, \bar{z}\) where \(x\) and \(y\) do not appear in \(\bar{z}\) and \(x\) and \(y\) are variables \(x_i\) and \(x_j\). We set out to show \(\varphi \vdash \text{sub}(\{\bar{P}, S\})\), \(x, y, \bar{z} = \text{sub}(\{\bar{P}, x, y, \bar{z}\})\). The result follows easily. The equality between these terms first obtains at \(\text{sub}_2\) and continues after. So our sequence for the induction is \(\text{sub}_2, \text{sub}_3\) and so on. Say the indexes on \(\bar{z}\) begin at three.
CHAPTER 13. GÖDEL'S THEOREMS

Basis: PA ⊢ sub\(_2\)(P\(^x\)_\(\mathcal{S}_y\), x, y, z) = sub\(_2\)(P\(^x\), x, y, z)\(_y^y\).

1. Wff(P\(^y\))
2. Var(gvar(\(\mathcal{T}\))) ∧ Term(\text{num}(x))
3. sub\(_1\)(P\(^x\)_\(\mathcal{S}_y\), x, y, z)
4. = formsub\(_1\)(P\(^x\)_\(\mathcal{S}_y\), gvar(\(\mathcal{T}\)), \text{num}(x))
5. = P\(^x\)_\(\mathcal{S}_y\)
6. sub\(_2\)(P\(^x\)_\(\mathcal{S}_y\), x, y, z)
7. = formsub\(_1\)(P\(^x\)_\(\mathcal{S}_y\), x, y, z), gvar(\(\mathcal{T}\)), \text{num}(y))
8. = formsub\(_1\)(P\(^x\)_\(\mathcal{S}_y\), gvar(\(\mathcal{T}\)), \text{num}(y))
9. = formsub\(_1\)(P\(^x\), gvar(\(\mathcal{T}\)), \text{num}(y))
10. = formsub\(_1\)(P\(^x\), gvar(\(\mathcal{T}\)), \text{num}(y))
11. sub\(_1\)(P\(^x\), x, y, z)
12. = formsub\(_1\)(P\(^x\), gvar(\(\mathcal{T}\)), \text{num}(x))
13. sub\(_2\)(P\(^x\), x, y, z)\(_y^y\)
14. = formsub\(_1\)(P\(^x\), x, y, z), gvar(\(\mathcal{T}\)), \text{num}(y))\(_y^y\)
15. = formsub\(_1\)(P\(^x\), gvar(\(\mathcal{T}\)), \text{num}(y))\(_y^y\)
16. = formsub\(_1\)(P\(^x\), gvar(\(\mathcal{T}\)), \text{num}(y))\(_y^y\)

Show: PA ⊢ sub\(_1\)(P\(^x\)_\(\mathcal{S}_y\), x, y, z) = sub\(_1\)(P\(^x\), x, y, z)\(_y^y\).

1. sub\(_1\)(P\(^x\)_\(\mathcal{S}_y\), x, y, z)
2. = formsub\(_1\)(P\(^x\)_\(\mathcal{S}_y\), x, y, z), gvar(\(\mathcal{T}\)), \text{num}(x)\(_{z_0}\))
3. = formsub\(_1\)(P\(^x\)_\(\mathcal{S}_y\), x, y, z)\(_y^y\), gvar(\(\mathcal{T}\)), \text{num}(x)\(_{z_0}\))
4. = formsub\(_1\)(P\(^x\), x, y, z), gvar(\(\mathcal{T}\)), \text{num}(x)\(_{z_0}\))\(_y^y\)
5. = sub\(_1\)(P\(^x\), x, y, z)\(_y^y\)

Indec: For any i, PA ⊢ sub\(_1\)(P\(^x\)_\(\mathcal{S}_y\), x, y, z) = sub\(_1\)(P\(^x\), x, y, z)\(_y^y\)

Line (4) of the basis is justified by the corollary to T13.55i insofar as x is not free in P\(^x\)_\(\mathcal{S}_y\); and (4) of the show is justified insofar as x does not appear in z. So PA ⊢ sub\(_1\)(P\(^x\)_\(\mathcal{S}_y\), x, y, z) = sub\(_1\)(P\(^x\), x, y, z)\(_y^y\); so PA ⊢ Prvt(sub\(_1\)(P\(^x\)_\(\mathcal{S}_y\), x, y, z)) ↔ Prvt(sub\(_1\)(P\(^x\), x, y, z))\(_y^y\); but this is to say, PA ⊢ Prvt(P\(^x\)_\(\mathcal{S}_y\)) ↔ Prvt(P\(^x\))\(_y^y\).

*E13.54. Provide a demonstration for T13.64. Hard-core: Show each of the results from the substitution vectors box.
Hints for T13.64. The argument is an induction on the value of i. For the show, you need

$PA \vdash \text{formsub}(\phi(x_1, x_2), y_1, x_3) \rightarrow PA \vdash \phi(x_1, x_2, x_3).$

The key to this is that

$PA \vdash \text{formsub}(\phi(x_1, x_2), y_1, x_3) \rightarrow PA \vdash \phi(x_1, x_2, x_3).$

Hints for T13.66. By T13.63, $PA \vdash \text{formsub}(\phi(x_1, x_2, x_3), y_1, x_4) \rightarrow PA \vdash \phi(x_1, x_2, x_3, x_4).$

The argument is by induction on i, where the basis uses T13.65 and then T13.66.1 to establish

$PA \vdash \text{formsub}(\phi(x_1, x_2, x_3), y_1, x_4) \rightarrow PA \vdash \phi(x_1, x_2, x_3, x_4).$

Hints for T13.68. Where the variables of \overline{y} are y_1, \ldots, y_m, and of \overline{z} are z_1, \ldots, z_n, let i, j “count” from 0 to m, n so that when $y_{S_i} = z_{S_j}$ then $S(i, j) = S_i, S_j$, and when $y_{S_i} \neq z_{S_j}$ then $S(i, j) = i, S_j$. Then you will be able to show that for any member of i, j sequence, $PA \vdash \text{formsub}(\phi(x_1, x_2), y_1, x_3) \rightarrow \phi(x_1, x_2, x_3, x_4).$

E13.55. Complete \emptyset-case to T13.72. Hard-core, complete both of the remaining cases.

13.5.4 The Condition

We are finally (!) ready to show that for any Σ_* formula ϕ, $PA \vdash \phi \rightarrow Prvt[[\phi]]$. This is the result we need for D3 and so to complete the demonstration of T13.8 Gödel’s second incompleteness theorem. The argument is by induction on the number of operators in a Σ_* formula.

Before we launch into the main argument, a word about substitution. From their original statement, the rules $\forall I$ and $\exists E$ result in formulas of the sort ϕ^x or ϕ^t. So from, say, $\forall x \exists y \phi(x, y)$ we get a ϕ^x, ϕ^t. But we need to be careful about what the substitution comes to. In the simplest case, $Prvt[[\phi^x]]$ is of the sort $Prvt([\phi^x], gvar(\overline{y}), \text{num}(x)))$, where there is a free x to be replaced by i; but upon substitution this does not automatically convert to $Prvt[[\phi^x]]$ insofar as ϕ^x is a numeral and so lacks any free x. But we do have a theorem, T13.72 which tells us that in certain cases $PA \vdash \phi \leftrightarrow Prvt[[\phi]]$, so that the replacements can be moved across the bracket in the natural way. With this said, we turn to our theorem.
T13.73. For any \(\Sigma_* \) formula \(\mathcal{P} \), \(\text{PA} \vdash \mathcal{P} \rightarrow \text{Prvt}[\mathcal{P}] \).

By induction on the number of operators in \(\mathcal{P} \).

Basis: If a \(\Sigma_* \) \(\mathcal{P} \) has no operator symbols, then it is an atomic of the sort \(\emptyset = z \), \(y = z \), \(Sy = z \), \(x + y = z \) or \(x \times y = z \).

(\(\emptyset \)) Suppose \(\mathcal{P} \) is \(\emptyset = z \). Homework.

(\(y \)) Suppose \(\mathcal{P} \) is \(y = z \). Homework.

(\(S \)) Suppose \(\mathcal{P} \) is \(Sy = z \). Reason as follows,

1. \(Sy = Sy \) =I
2. \(\text{Prvt}[Sy = Sy] \) 1 T13.70
3. \(Sy = z \) A (g, \(\rightarrow I \))
4. \(\text{Prvt}[Sy = z] Sy \) 2 abv
5. \(\text{Prvt}[Sy = z] Sy \) 4 T13.72
6. \(\text{Prvt}[Sy = z] \) 5,3 =E
7. \(Sy = z \rightarrow \text{Prvt}[Sy = z] \) 3-6 \(\rightarrow \)

Observe that T13.70 applies to theorems, and so not to formulas under the assumption for \(\rightarrow I \). Thus we take care to restrict its application to formulas against the main scope line. Also, at (5) we use T13.72 to move the substitution across the bracket. With this done, the substitution on line (5) applies only to the free \(z \) of \(\text{Prvt}[Sy = z] \)—that is, to the free \(z \) of \(\text{Prvt}(\text{sub}(Sy = z), y, z) \); so that =E applies in a straightforward way to substitute a \(z \) back into that place. The argument is similar for \(\emptyset = z \) and \(y = z \).

(\(+ \)) Suppose \(\mathcal{P} \) is \(x + y = z \). The proof in PA requires appeal to IN, with induction on the value of \(x \) in \(\forall y \forall z (x + y = z \rightarrow \text{Prvt}[x + y = z]) \).

See the derivation on page 778.

(\(\times \)) Suppose \(\mathcal{P} \) is \(x \times y = z \). The proof in PA requires appeal to IN, on the value of \(x \) in \(\forall y \forall z (x \times y = z \rightarrow \text{Prvt}[x \times y = z]) \). The argument is as on page 779.

Assp: For any \(i \), \(0 \leq i < k \) if a \(\Sigma_* \) \(\mathcal{P} \) has \(i \) operator symbols, then \(\text{PA} \vdash \mathcal{P} \rightarrow \text{Prvt}[\mathcal{P}] \).

Show: If a \(\Sigma_* \) \(\mathcal{P} \) has \(k \) operator symbols, then \(\text{PA} \vdash \mathcal{P} \rightarrow \text{Prvt}[\mathcal{P}] \).

If \(\Sigma_* \) \(\mathcal{P} \) has \(k \) operator symbols, then it is of the form, \(\mathcal{A} \lor \mathcal{B} \), \(\mathcal{A} \land \mathcal{B} \), \((\forall x \leq y) \mathcal{A} \) (\(y \) not in \(\mathcal{A} \)), or \(\exists x \mathcal{A} \) for \(\Sigma_* \) \(\mathcal{A} \) and \(\mathcal{B} \) with \(< k \) operator symbols.

(\(\land \)) \(\mathcal{P} \) is \(\mathcal{A} \land \mathcal{B} \). Reason as follows.
We are able to apply the assumption (16) to get \(\text{Prvt}[x + y = z] \) at (21) and convert this into the desired result. So PA \(\vdash x + y = z \rightarrow \text{Prvt}[x + y = z] \).
CHAPTER 13. GÖDEL’S THEOREMS

T13.73 (x)

1. \(0 \times y = 0\)
2. \(Sx \times y = z \iff x \times y + y = z\)
3. \(x \times y = v \rightarrow (v + y = z \rightarrow x \times y + y = z)\)
4. \(\text{Prvt}[0 \times y = 0]\)
5. \(\text{Prvt}[x \times y + y = z \rightarrow Sx \times y = z]\)
6. \(\text{prvt}[x \times y = v \rightarrow (v + y = z \rightarrow x \times y + y = z)]\)
7. \((x \times y = z)_\alpha^\beta\)
8. \(0 \times y = z\)
9. \(z = 0\)
10. \(\text{prvt}[(0 \times y = z)_\alpha]\)
11. \(\text{prvt}[(0 \times y = z)_\alpha^\beta]\)
12. \(\text{prvt}[(0 \times y = z)_\alpha^\beta]\)
13. \(\text{prvt}[(x \times y = z)_\alpha^\beta]\)
14. \(\text{prvt}[(x \times y = z)_\alpha^\beta]\)
15. \((x \times y = z)_\alpha^\beta \rightarrow \text{prvt}[x \times y = z]_\alpha^\beta\)
16. \((x \times y = z \rightarrow \text{prvt}[x \times y = z]_\alpha^\beta\)
17. \(\forall y \forall z(x \times y = z \rightarrow \text{prvt}[x \times y = z]_\alpha^\beta\)
18. \(\forall y \forall z(x \times y = z \rightarrow \text{prvt}[x \times y = z]_\alpha^\beta\)
19. \((x \times y = z)_\alpha^\beta\)
20. \(Sx \times y = z\)
21. \(x \times y + y = z\)
22. \(\exists v(x \times y = v)\)
23. \(x \times y = v\)
24. \(v + y = z\)
25. \(\text{prvt}[v + y = z]\)
26. \(x \times y \rightarrow \text{prvt}[x \times y = z]_\alpha^\beta\)
27. \(\text{prvt}[x \times y = z]_\alpha^\beta\)
28. \(\text{prvt}[x \times y = v]\)
29. \(\text{prvt}[x \times y = v \rightarrow (v + y = z \rightarrow x \times y + y = v)]\)
30. \(\text{prvt}[v + y = z \rightarrow (x \times y + y = z)]\)
31. \(\text{prvt}[v + y = z \rightarrow (x \times y + y = z)]\)
32. \(\text{prvt}[x \times y + y = z]\)
33. \(\text{prvt}[x \times y + y = z \rightarrow \text{prvt}[Sx \times y = z]]\)
34. \(\text{prvt}[Sx \times y = z]\)
35. \(\text{prvt}[x \times y = z]_\alpha^\beta\)
36. \(\text{prvt}[x \times y = z]_\alpha^\beta\)
37. \((x \times y = z)_\alpha^\beta \rightarrow \text{prvt}[x \times y = z]_\alpha^\beta\)
38. \((x \times y = z \rightarrow \text{prvt}[x \times y = z]_\alpha^\beta\)
39. \(\forall y \forall z(x \times y = z \rightarrow \text{prvt}[x \times y = z]_\alpha^\beta\)
40. \(\forall y \forall z(x \times y = z \rightarrow \text{prvt}[x \times y = z]_\alpha^\beta\)
41. \(\forall y \forall z(x \times y = z \rightarrow \text{prvt}[x \times y = z]_\alpha^\beta\)

Because the complex term \(x \times y\) does not come across the double bracket, the (+) case does not directly apply to \(x \times y + y = z\). However, having identified \(x \times y\) with variable \(v\) we get \(\text{prvt}[v + y = z]\), and with the inductive assumption \(\text{prvt}[x \times y = v]\). These then unpack into \(\text{prvt}[Sx \times y = z]\). So \(\text{PA} \vdash x \times y = z \rightarrow \text{prvt}[x \times y = z]\).
1. $A \rightarrow \text{Prvt}[A]$ by assp
2. $B \rightarrow \text{Prvt}[B]$ by assp
3. $A \rightarrow (B \rightarrow (A \land B))$ T9.4
4. $\text{Prvt}[A \rightarrow (B \rightarrow (A \land B))]$ 3 T13.70
5. $A \land B$ $A (g, \rightarrow I)$
6. $\text{Prvt}[A]$ $1.5 \land E, \rightarrow E$
7. $\text{Prvt}[B]$ $2.5 \land E, \rightarrow E$
8. $\text{Prvt}[A] \rightarrow \text{Prvt}[B \rightarrow (A \land B)]$ 4 T13.71
9. $\text{Prvt}[B] \rightarrow \text{Prvt}[A \land B]$ 8 T13.71
10. $\text{Prvt}[A \land B]$ 10.7 $\rightarrow E$
11. $(A \land B) \rightarrow \text{Prvt}[A \land B]$ 5-11 I
12. $(A \land B) \rightarrow \text{Prvt}[A \land B]$ 5-11 I

(\forall) Similarly.

(\exists) P is $\exists x A$. Reason as follows.
1. $A \rightarrow \text{Prvt}[A]$ by assp
2. $A \rightarrow \exists x A$ T3.30
3. $\text{Prvt}[A \rightarrow \exists x A]$ 2 T13.70
4. $\exists x A$ $A (g, \rightarrow I)$
5. $\exists x A$ $A (g, 4\exists E)$
6. $\text{Prvt}[A]$ $1.5 \rightarrow E$
7. $\text{Prvt}[A] \rightarrow \text{Prvt}[\exists x A]$ 3 T13.71
8. $\text{Prvt}[\exists x A]$ 7.6 $\rightarrow E$
9. $\text{Prvt}[\exists x A]$ 4.5-8 $\exists E$
10. $\exists x A \rightarrow \text{Prvt}[\exists x A]$ 5-9 I

Let $\text{Prvt}[\exists x A]$ at (8) have the same free variables as $\exists x A$; then x is not free in $\text{Prvt}[\exists x A]$, and the restriction is met for $\exists E$ at (9).

(\forall) P is $(\forall x \leq y)A$. The argument in PA requires appeal to IN, for induction on the value of y. For the zero case,
For (5) and (10) it is important that \(y \) in a bound quantifier of the \(\Sigma_* \)
formula does not appear in \(A \). Now the inductive stage.

13. \[A^x_{\Sigma y} \rightarrow Prvt[A^y_{\Sigma y}] \] by assp

14. \((\forall x \leq y)A \iff (\forall x \leq y)A \land A^x_{\Sigma y} \) with T13.11p

15. \[Prvt[(\forall x \leq y)A \land A^x_{\Sigma y}] \rightarrow (\forall x \leq S y)A \] 14 T13.70

16. \[(\forall x \leq y)A \rightarrow Prvt[(\forall x \leq y)A] \] A (g, \(\rightarrow I \))

17. \[((\forall x \leq y)A \land A^x_{\Sigma y}) \rightarrow Prvt[(\forall x \leq y)A \land A^y_{\Sigma y}] \] 13,16 as for \(\land \)

18. \[(\forall x \leq S y)A \] A (g, \(\rightarrow I \))

19. \[(\forall x \leq y)A \land A^x_{\Sigma y} \] 14.18 \(\iff E \)

20. \[Prvt[(\forall x \leq y)A \land A^x_{\Sigma y}] \] 17.19 \(\rightarrow E \)

21. \[Prvt[(\forall x \leq y)A \land A^x_{\Sigma y}] \rightarrow Prvt[(\forall x \leq S y)A] \] 15 T13.71

22. \[Prvt[(\forall x \leq S y)A] \] 21.20 \(\rightarrow E \)

23. \[Prvt[(\forall x \leq y)A]_{\Sigma y} \] 22 T13.72

24. \[(\forall x \leq S y)A \rightarrow Prvt[(\forall x \leq y)A]_{\Sigma y} \] 18-23 \(\rightarrow I \)

25. \[((\forall x \leq y)A \rightarrow Prvt[(\forall x \leq y)A])_{\Sigma y} \] 24 abv

26. \[((\forall x \leq y)A \rightarrow Prvt[(\forall x \leq y)A]) \rightarrow ((\forall x \leq y)A \rightarrow Prvt[(\forall x \leq y)A])_{\Sigma y} \] 16-25 \(\rightarrow I \)

27. \[(\forall x \leq y)A \rightarrow Prvt[(\forall x \leq y)A] \] 12.26 \(\square \)

So \(PA \vdash (\forall x \leq y)A \rightarrow Prvt[(\forall x \leq y)A] \).

Indct: For any \(\Sigma_* \) formula \(\mathcal{P} \), \(PA \vdash \square \mathcal{P} \rightarrow \square \square \mathcal{P} \).

Now it is a simple matter to pull together our results into the third derivability
condition.

T13.74. For any formula \(\mathcal{P} \), \(PA \vdash \square \mathcal{P} \rightarrow \square \square \mathcal{P} \)
Consider any formula \mathcal{P} and the Σ_1 sentence $(\Box \mathcal{P})_{\Sigma_1}$. By T13.61, there is a $(\Box \mathcal{P})_{\Sigma_1}$ such that PA $\vdash (\Box \mathcal{P})_{\Sigma_1} \iff (\Box \mathcal{P})_{\Sigma_1}$. By T13.73, PA $\vdash (\Box \mathcal{P})_{\Sigma_1} \rightarrow \Prvt[[\Box \mathcal{P}]_{\Sigma_1}]$. Reason as follows.

1. $(\Box \mathcal{P})_{\Sigma_1} \iff (\Box \mathcal{P})_{\Sigma_1}$ \hspace{1cm} T13.61
2. $(\Box \mathcal{P})_{\Sigma_1} \rightarrow \Prvt[[\Box \mathcal{P}]_{\Sigma_1}]$ \hspace{1cm} T13.73
3. $\Prvt[[\Box \mathcal{P}]_{\Sigma_1}] \rightarrow (\Box \mathcal{P})_{\Sigma_1}$ \hspace{1cm} 1 T13.70
4. $\Prvt[[\Box \mathcal{P}]_{\Sigma_1}] \rightarrow \Prvt[[\Box \mathcal{P}]_{\Sigma_1}]$ \hspace{1cm} 3 T13.71
5. $(\Box \mathcal{P})_{\Sigma_1} \rightarrow \Prvt[[\Box \mathcal{P}]_{\Sigma_1}]$ \hspace{1cm} 1,2,4 HS

So for the Σ_1 sentence $\Box \mathcal{P}$, PA $\vdash \Box \mathcal{P} \rightarrow \Prvt[[\Box \mathcal{P}]]$; and since $\Box \mathcal{P}$ is a sentence, this is to say, PA $\vdash \Box \mathcal{P} \rightarrow \Box \Box \mathcal{P}$.

So, at long last, we have a demonstration of D3 and so, given demonstration of the other conditions, a complete demonstration of T13.8, Gödel’s second incompleteness theorem!

It is worth reflecting a bit on what we have accomplished. Beginning in section 13.2 we saw how the second theorem follows from the derivability conditions. The first is easy, the others not. In section 13.3 we introduced the idea of definition in PA and demonstrated that PA defines (friendly) recursive functions. 13.4 moves to demonstration of the second condition. The basic idea is straightforward: To show $\Box (\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\Box \mathcal{P} \rightarrow \Box \mathcal{Q})$, suppose $\Box (\mathcal{P} \rightarrow \mathcal{Q})$ and $\Box \mathcal{P}$; then there are j and k such that $\Prft(j, \Box \mathcal{Q})$ and $\Prft(k, \Box \mathcal{P})$; so $l = j \ast k \ast 2^{\Box \mathcal{Q}}$ numbers a proof of \mathcal{Q}. But considerable effort is expended to show that PA has the resources for the relevant results. And we have just completed discussion of the third condition, in which we simplified the problem by substitution theorems and Σ_1 formulas. If you have gotten this far you have seen the theorem proved. Thus you have progressed considerably beyond the initial argument from the derivability conditions. One reason why it is typical to bypass the details is that there are so many details—not all themselves mathematically significant. Still, it is interesting to see how reasoning from chapter 12 is reflected in PA for the second theorem.

E13.56. Complete the demonstration of T13.73 by completing the remaining cases.

13.6 Reflections on the Theorem

We conclude this chapter with a couple final reflections and consequences on our results. In particular we say something about alternate characterizations of consistency, and then about the relation between Gödel’s second theorem and Löb’s theorem.
13.6.1 Consistency sentences

As is typical for demonstrations of Gödel’s second theorem, we have let \(\text{Cont} \) be \(\neg \text{Prvt}(\overline{\emptyset} \equiv S\emptyset^3) \). But other sentences would do as well. So, where \(T \) is any theorem of \(\mathcal{T} \), we might let \(\text{Cont}_a \) be \(\neg \text{Prvt}(\overline{\neg T}) \). In particular, we might simply consider the case where \(\neg T \) is (equivalent to) \(\bot \) and set \(\text{Cont}_a = \neg \text{Prvt}(\overline{\bot}) \). Then it is easy to see that \(\text{PA} \vdash \text{Cont} \iff \text{Cont}_a \).

\[
\text{PA} \vdash \emptyset = S\emptyset \iff \bot; \text{ so with D1, } \text{PA} \vdash \text{Prvt}(\overline{\emptyset = S\emptyset} \equiv \bot); \text{ so with D2, } \text{PA} \vdash \text{Prvt}(\overline{\emptyset = S\emptyset^3}) \iff \text{Prvt}(\overline{\bot}); \text{ and contraposing, } \text{PA} \vdash \text{Cont} \iff \text{Cont}_a.
\]

Thus, having shown \(\text{PA} \not\vdash \text{Cont} \) we have \(\text{PA} \not\vdash \text{Cont}_a \) as well.

Again, one might let \(\text{Cont}_b = \neg \exists x(\text{Prvt}(x) \land \overline{\text{Prvt}}(x)) \), where \(\overline{\text{Prvt}}(x) \) just in case there is a proof of the negation of the formula with Gödel number \(x \). Then \(T \) is consistent just in case there is no proof of a formula and its negation. This might seem a particularly natural consistency sentence. Again, \(\text{PA} \vdash \text{Cont} \iff \text{Cont}_b \). We show \(\text{PA} \vdash \text{Prvt}(\overline{\emptyset = S\emptyset^3}) \iff \exists x(\text{Prvt}(x) \land \overline{\text{Prvt}}(x)) \) and contrapose.

First from left to right: Since \(\text{PA} \vdash \emptyset \neq S\emptyset \), and a contradiction implies anything, \(\text{PA} \vdash \emptyset = S\emptyset \rightarrow A \) and \(\text{PA} \vdash \emptyset = S\emptyset \rightarrow \neg A \). Reason as follows.

1. \(\emptyset = S\emptyset \rightarrow A \) thrm
2. \(\emptyset = S\emptyset \rightarrow \neg A \) thrm
3. \(\text{Prvt}(\overline{\emptyset = S\emptyset} \rightarrow A^i) \) 1 D1
4. \(\text{Prvt}(\overline{\emptyset = S\emptyset} \rightarrow \neg A^i) \) 2 D1
5. \(\text{Prvt}(\overline{\emptyset = S\emptyset^3}) \) A (g, \(\rightarrow_i \))
6. \(\text{Prvt}(\overline{\emptyset = S\emptyset} \rightarrow \text{Prvt}(\overline{A^i}) \) 3 D2
7. \(\text{Prvt}(\overline{\emptyset = S\emptyset^3} \rightarrow \text{Prvt}(\overline{\neg A^i}) \) 4 D2
8. \(\exists x(\text{Prvt}(x) \land \overline{\text{Prvt}}(x)) \) 5, 6, 7
9. \(\exists x(\text{Prvt}(x) \land \overline{\text{Prvt}}(x)) \) 8 \(\exists I \)
10. \(\text{Prvt}(\overline{\emptyset = S\emptyset^3}) \rightarrow \exists x(\text{Prvt}(x) \land \overline{\text{Prvt}}(x)) \) 7-9 \(\rightarrow I \)

The other direction requires just a bit more work. First, say \(\mathcal{B}_1 \ldots \mathcal{B}_n \) are a (sentential) basis for the formulas of some context (say a derivation) just in case all the formulas of that context result from them by (sentential) definition \(\text{FR} \). For expressions of a sentential language, the sentence letters always form a basis, but we allow that more complex expressions may be a basis too. So for example \(A, B, C \) are a basis for \(\{ C \lor (A \land B), C \} \) but so are \(A \land B \) and \(C \). And \(Ax, Ay, Az \) are a basis for \(\{ Ax \lor (Ax \land Ay), Az \} \) but so are \(Ax \land Ay \) and \(Az \).

Now where \(\mathcal{B}_1 \ldots \mathcal{B}_n \) are a basis for \(\mathcal{A} \), consider some variables \(b_1 \ldots b_n \); let \(\mathcal{B}_i^* \) be \(b_i \); \(\neg \mathcal{P}^* \) be \(\neg \text{eg}(\mathcal{P}^*) \); and \((\mathcal{P} \rightarrow \mathcal{Q})^* \) be \(\text{end}(\mathcal{P}^*, \mathcal{Q}^*) \). Then by an easy induction \(\text{PA} \vdash (\text{Wff}(b_1) \land \ldots \land \text{Wff}(b_n)) \rightarrow \text{Wff}(\mathcal{A}^*) \). And we shall be able to
CHAPTER 13. GÖDEL'S THEOREMS

784

show that if \(\vdash_{ADs} \mathcal{P} \), and \(\mathcal{B}_1 \ldots \mathcal{B}_n \) are a basis for formulas of its derivation, then
\[
\text{PA} \vdash \mathcal{Wff}(b_1) \land \ldots \land \mathcal{Wff}(b_n) \rightarrow \mathcal{Prvt}(\mathcal{P}^*)
\]

Though we shall not go through all the details here, it is simple enough to see how the argument goes: The argument is an induction (of a sort we have seen before). Consider an ADs derivation of \(\mathcal{P} \); and assume \(\text{PA} \vdash \mathcal{Wff}(b_1) \land \ldots \land \mathcal{Wff}(b_n) \): Corresponding to any axiom \(\mathcal{A} \), we may use T13.39g to get \(\mathcal{A}xomt(\mathcal{A}^*) \) and then T13.56h for \(\mathcal{Prvt}(\mathcal{A}^*) \). Corresponding to an application of MP to some \(\mathcal{A} \) and \(\mathcal{A} \rightarrow \mathcal{B} \), use T13.53 to convert \(\mathcal{Prvt}(\mathcal{A}^*, \mathcal{B}^*) \) to \(\mathcal{Prvt}(\mathcal{A}^*) \rightarrow \mathcal{Prvt}(\mathcal{B}^*) \) and apply MP. As an example, consider the following lines of a sort we might have obtained in chapter 3,

1. \(A \rightarrow (B \rightarrow A) \) \hspace{2cm} A1
2. \([A \rightarrow (B \rightarrow A)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow A)] \) \hspace{2cm} A2
3. \((A \rightarrow B) \rightarrow (A \rightarrow A) \) \hspace{2cm} 1,2 MP

Then \(A \) and \(B \) are a basis. And we may reason,

0. \(\mathcal{Wff}(a) \land \mathcal{Wff}(b) \)

\[\frac{\text{Axiom}(\text{end}(a, \text{end}(b, a)))}{1.1} \]

1. \(\mathcal{Prvt}(\text{end}(a, \text{end}(b, a))) \)

\[\frac{\text{Axiom}(\text{end}[ext{end}(a, \text{end}(b, a)], \text{end}[ext{end}(a, b), \text{end}(a, a)])}{2.1} \]

2. \(\mathcal{Prvt}(\text{end}[ext{end}(a, \text{end}(b, a)], \text{end}[ext{end}(a, b), \text{end}(a, a)]) \)

3. \(\mathcal{Prvt}(\text{end}[ext{end}(a, b), \text{end}(a, a)]) \)

4. \((\mathcal{Wff}(a) \land \mathcal{Wff}(b)) \rightarrow \mathcal{Prvt}(\text{end}[ext{end}(a, b), \text{end}(a, a)]) \)

And similarly we might show the correlate to T3.9, \(\vdash \sim \mathcal{A} \rightarrow (\mathcal{A} \rightarrow \mathcal{B}) \), which we record as a theorem.

T13.75. \(\text{PA} \vdash (\mathcal{Wff}(a) \land \mathcal{Wff}(b)) \rightarrow \mathcal{Prvt}(\text{end}[\neg \text{end}(a), \text{end}(a, b)]) \).

But then we may reason as follows.

1. \(\mathcal{Wff}(\neg \neg \emptyset = S\emptyset) \)
2. \(\exists x[\mathcal{Prvt}(x) \land \mathcal{Prvt}(x)] \)
3. \(\mathcal{Prvt}(\neg \neg \emptyset = S\emptyset) \)
4. \(\mathcal{Wff}(\emptyset = S\emptyset) \)
5. \(\mathcal{Prvt}(\text{end}[
eg \text{end}(j, \text{end}(j, \neg \emptyset = S\emptyset)]) \)
6. \(\mathcal{Prvt}(\text{end}(j, \neg \emptyset = S\emptyset)) \)
7. \(\mathcal{Prvt}(\text{end}(j, \neg \emptyset = S\emptyset)) \)
8. \(\mathcal{Prvt}(\text{end}(j, \neg \emptyset = S\emptyset)) \)
9. \(\mathcal{Prvt}(\text{end}(j, \neg \emptyset = S\emptyset)) \)
10. \(\mathcal{Prvt}(\text{end}(j, \neg \emptyset = S\emptyset)) \)
11. \(\exists x[\mathcal{Prvt}(x) \land \mathcal{Prvt}(x)] \rightarrow \mathcal{Prvt}(\neg \neg \emptyset = S\emptyset) \)

\[\text{cap} \]
CHAPTER 13. GÖDEL’S THEOREMS

Note that we reason with free variables under the assumption for $\exists E$. Thus it is important that theorems 13.52l, 13.75 and 13.53 have application not merely to numerals, but to free variables.

Putting the parts together, $PA \vdash Prvt^c(\overline{\emptyset = S\emptyset}) \iff \exists x (Prvt(x) \land \overline{Prvt}(x))$ and, contrapositing, $PA \vdash Cont \iff Cont^c$. So, to this extent, it does not matter which version of the consistency statement we select. Underlying the point that these different statements are equivalent is that anything follows from a contradiction—so that the one follows from the others. Having proved $PA \not\models Cont$, we therefore have $PA \not\models Cont^a$ and $PA \not\models Cont^c$. These are particular sentences which, like \emptyset, are unprovable. And, now that we have the derivability conditions, with T13.9 neither are their negations provable. They have special interest because each “says” that PA is consistent.

Still, it is worth asking whether there is some different sentence to express the consistency of PA such that it would be provable. Consider for example a trick related to the Rosser sentence,

$$Prft^c(x, y) = Prft(x, y) \land (\forall v \leq x) \sim Prft(v, \overline{\emptyset = S\emptyset})$$

So $Prft^c(x, y)$ requires a measure of consistency: it says x numbers a proof of the formula numbered y and no proof numbered less than or equal to x demonstrates inconsistency ($\emptyset = \overline{1}$). Then so long as PA is consistent $Prft^c(x, y)$ continues to capture $Prft(x, y)$.

(i) Suppose $(m, n) \in PRFT$. (a) By capture, $PA \vdash Prft(\overline{m, n})$. And (b), since PA is consistent, there is no proof of a contradiction in PA and again by capture, $PA \vdash \sim Prft(\overline{\emptyset, \emptyset = S\emptyset})$; $PA \vdash \sim Prft(\overline{1, \emptyset = S\emptyset})$ and ... and $PA \vdash \sim Prft(\overline{\emptyset = S\emptyset})$; so with T8.23, $PA \vdash (\forall v \leq \overline{m}) \sim Prft(v, \overline{\emptyset = S\emptyset})$; so $PA \vdash Prft^c(\overline{m, n})$.

(ii) Suppose $(m, n) \notin PRFT$; then by capture, $PA \vdash \sim Prft(\overline{m, n})$. So $PA \vdash \sim [Prft(\overline{m, n}) \land (\forall v \leq \overline{m}) \sim Prft(v, \overline{\emptyset = S\emptyset})]$, which is to say $PA \vdash \sim Prft^c(\overline{m, n})$.

Given this, set $Prvt^c(x, y) = \exists x Prft^c(x, y)$, and $Cont^c = \sim Prvt^c(\overline{\emptyset = S\emptyset})$. The idea, then is that $Cont^c$ just in case there is no proof, in the sense of $Prft^c$, of a contradiction.

13 This equivalence breaks down in a non-classical logic which blocks ex falso quodlibet, the principle that from a contradiction anything follows. So, for example, in relevant logic, it might be that there is some A such that $T \vdash A \land \sim A$ but $T \not\models \emptyset = S\emptyset$. See Priest, *Non-Classical Logics* for an introduction to these matters.
CHAPTER 13. GÖDEL’S THEOREMS

But Prvt_c is designed so that Prvt_c(\[\overrightarrow{\emptyset} = S\overrightarrow{\emptyset}\]) is impossible—Prvt_c(\[\overrightarrow{\emptyset} = S\overrightarrow{\emptyset}\]) requires an x that numbers a proof of \(\emptyset = S\emptyset\) such that no v \leq x numbers a proof of \(\emptyset = S\emptyset\). This is impossible: it is nearly immediate that PA \(\vdash \exists x [Prft(x, \overrightarrow{\emptyset} = S\overrightarrow{\emptyset}) \land (\forall v \leq x) \neg Prft(v, \overrightarrow{\emptyset} = S\overrightarrow{\emptyset})]\), and so that PA \(\vdash \text{Cont}_c\). This works because Prft_c builds in from the start that nothing numbers a proof of \(\emptyset = S\emptyset\).

Intuitively, so long as PA is consistent, Prft_c works just fine. But if PA is not consistent, then it no longer tracks with proof. If PA is not consistent, then there may be an m such that Prft(m, \[\overrightarrow{\overrightarrow{\emptyset}}\]) though there is no n such that Prft_c(n, \[\overrightarrow{m}\])—just because m is greater than the number of the proof of \(\emptyset = \overrightarrow{\emptyset}\). Similarly, if PA is consistent, Cont_c plausibly “says” PA is consistent. But if PA is inconsistent then it no longer tracks with consistency. So its provability is, in this sense, uninteresting.

Insofar as Cont_c is provable it must be that Prvt_c fails one or more of the derivability conditions. To see how this might be, suppose PA is inconsistent and proofs are ordered so that,

\[\text{Prft}(p, \overrightarrow{\overrightarrow{A} \rightarrow \overrightarrow{B}}) \quad \text{Prft}(q, \overrightarrow{\overrightarrow{A} \rightarrow \overrightarrow{B}}) \quad \text{Prft}(r, \overrightarrow{\emptyset = S\emptyset}) \quad \text{Prft}(s, \overrightarrow{\overrightarrow{B} \rightarrow \overrightarrow{C}})\]

where p < q < r < s (we can always manipulate the length of proofs to achieve this order). Then PA \(\vdash \text{Prvt}(\overrightarrow{\overrightarrow{A} \rightarrow \overrightarrow{B}})\) and PA \(\vdash \text{Prvt}(\overrightarrow{\overrightarrow{A} \rightarrow \overrightarrow{B}})\), so that PA \(\vdash \text{Prvt}(\overrightarrow{\overrightarrow{B} \rightarrow \overrightarrow{C}})\). However both PA \(\vdash \text{Prvt}_c(\overrightarrow{\overrightarrow{A} \rightarrow \overrightarrow{B}})\) and PA \(\vdash \text{Prvt}_c(\overrightarrow{\overrightarrow{A} \rightarrow \overrightarrow{B}})\) but, insofar as the proof of \(\overrightarrow{B}\) is numbered greater than the proof of \(\emptyset = S\emptyset\), PA \(\not\vdash \text{Prvt}_c(\overrightarrow{\overrightarrow{B} \rightarrow \overrightarrow{C}})\). In this case, D2 fails, so that our main argument to show PA \(\not\vdash \text{Cont}\) does not apply to Cont_c.

E13.57. Provide the argument to show that if \(\vdash_{\text{QDs}} P\) and \(B_1 \ldots B_n\) are a basis for its derivation, then PA \(\vdash (\text{Wff}(b_1) \land \ldots \land \text{Wff}(b_n)) \rightarrow \text{Prvt}(P^*)\). You may take as given that for any \(Q_i\) in the derivation, PA \(\vdash (\text{Wff}(b_1) \land \ldots \land \text{Wff}(b_n)) \rightarrow \text{Wff}(Q_i)\).

E13.58. Provide the argument to show that PA \(\vdash \text{Cont}_c\).

13.6.2 Löb’s Theorem

If T is a recursively axiomatized theory extending Q, by the diagonal lemma there is a sentence H such that T \(\vdash H \leftrightarrow \text{Prvt}(\overrightarrow{\overrightarrow{H}})\)—that is, T \(\vdash H \leftrightarrow \text{\Box H}\). We have seen that such an H is not provable. G is one such sentence. But also, by the diagonal lemma, there is a sentence H such that T \(\vdash H \leftrightarrow \text{\Box H}\). In a brief note, “A Problem Concerning Provability” L. Henkin asks whether this H is provable. The answer has interesting ramifications. Supposing T \(\vdash H \leftrightarrow \text{\neg\Box H}\) is analogous to the
CHAPTER 13. GÖDEL’S THEOREMS

liar, ‘this sentence is not true’, $T \vdash \mathcal{H} \leftrightarrow \Box \mathcal{H}$ is like the truth-teller, ‘this sentence is true’. An answer to Henkin’s question follows immediately from Löb’s theorem.

T13.76. Suppose T is a recursively axiomatized theory for which the derivability conditions D1–D3 hold and $T \vdash \Box \mathcal{P} \rightarrow \mathcal{P}$, then $T \vdash \mathcal{P}$. Löb’s theorem.

Suppose T is a recursively axiomatized theory for which the derivability conditions hold and $T \vdash \Box \mathcal{P} \rightarrow \mathcal{P}$. Then the diagonal lemma obtains as well. Consider $Prvt(y) \rightarrow \mathcal{P}$; this is an expression of the sort $\mathcal{F}(y)$ to which the diagonal lemma applies; so by the diagonal lemma there is some \mathcal{H} such that $T \vdash \mathcal{H} \leftrightarrow (Prvt(\mathcal{H}) \rightarrow \mathcal{P})$—that is, $T \vdash \mathcal{H} \leftrightarrow (\Box \mathcal{H} \rightarrow \mathcal{P})$. Now reason as follows.

1. $\Box \mathcal{P} \rightarrow \mathcal{P}$ P
2. $\mathcal{H} \leftrightarrow (\Box \mathcal{H} \rightarrow \mathcal{P})$ diag lemma
3. $[\mathcal{H} \rightarrow (\Box \mathcal{H} \rightarrow \mathcal{P})] \land [(\Box \mathcal{H} \rightarrow \mathcal{P}) \rightarrow \mathcal{H}]$ 2 abv
4. $\mathcal{H} \rightarrow (\Box \mathcal{H} \rightarrow \mathcal{P})$ 3 with T3.21
5. $\Box[\mathcal{H} \rightarrow (\Box \mathcal{H} \rightarrow \mathcal{P})]$ 4 D1
6. $\Box[\mathcal{H} \rightarrow (\Box \mathcal{H} \rightarrow \mathcal{P})] \rightarrow [\Box \mathcal{H} \rightarrow \Box(\Box \mathcal{H} \rightarrow \mathcal{P})]$ D2
7. $\Box \mathcal{H} \rightarrow \Box(\Box \mathcal{H} \rightarrow \mathcal{P})$ 6,5 MP
8. $\Box(\Box \mathcal{H} \rightarrow \mathcal{P}) \rightarrow (\Box \mathcal{H} \rightarrow \Box \mathcal{P})$ D2
9. $\Box \mathcal{H} \rightarrow (\Box \mathcal{H} \rightarrow \Box \mathcal{P})$ 7,8 T3.2
10. $[\Box \mathcal{H} \rightarrow (\Box \Box \mathcal{H} \rightarrow \Box \mathcal{P})] \rightarrow [(\Box \mathcal{H} \rightarrow \Box \mathcal{H}) \rightarrow (\Box \mathcal{H} \rightarrow \Box \mathcal{P})]$ A2
11. $(\Box \mathcal{H} \rightarrow \Box \Box \mathcal{H}) \rightarrow (\Box \mathcal{H} \rightarrow \Box \mathcal{P})$ 10,9 MP
12. $\Box \mathcal{H} \rightarrow \Box \Box \mathcal{H}$ D3
13. $\Box \mathcal{H} \rightarrow \Box \mathcal{P}$ 11,12 MP
14. $\Box \mathcal{H} \rightarrow \mathcal{P}$ 13,1 T3.2
15. $(\Box \mathcal{H} \rightarrow \mathcal{P}) \rightarrow \mathcal{H}$ 3 with T3.20
16. \mathcal{H} 15,14 MP
17. $\Box \mathcal{H}$ 16 D1
18. \mathcal{P} 14,17 MP

Now return to our original question. Suppose $T \vdash \mathcal{H} \leftrightarrow \Box \mathcal{H}$; then $T \vdash \mathcal{H} \rightarrow \mathcal{H}$; so by Löb’s theorem, $T \vdash \mathcal{H}$. So if T proves $\mathcal{H} \leftrightarrow \Box \mathcal{H}$, then T proves \mathcal{H}.

Löb’s theorem is at least surprising! From soundness, if \mathcal{P} is provable then \mathcal{P}, so that $\Box \mathcal{P} \rightarrow \mathcal{P}$ is true. One might think that \mathcal{P} would “believe” in its soundness so that any such sentence would be provable. But from the theorem, if $\mathcal{P} \not\vdash \Box \mathcal{P}$, then $\mathcal{P} \not\vdash \Box \mathcal{P} \rightarrow \mathcal{P}$. So in any case when $\mathcal{P} \not\vdash \mathcal{P}$, \mathcal{P} does not “know” about its own soundness with respect to \mathcal{P}. Observe that insofar as $\Box \mathcal{P} \rightarrow \mathcal{P}$ is true, for any case where $\mathcal{P} \not\vdash \mathcal{P}$ we have here another sentence true but not provable.

And the theorem permits some interesting observations. First, an application to the logic of provability. We have thought of \Box as an abbreviation in \mathcal{L}_{nt}, applied in
forms whose operators are \(\neg, \rightarrow \) and \(\Box \). By obtaining the derivability conditions, we have shown that K4 is \(\vdash \) sound in the sense that, for \(P \) a form of this sort, if \(\vdash_{K4} P \) then \(\vdash_{PA} P \). It is natural to ask if the converse is true, whether K4 is \(\vdash \) complete so that if \(\vdash_{PA} P \), then \(\vdash_{K4} P \). But K4 is not so \(\vdash \) complete. To see this let K4LR be like K4 but with the addition of the Löb rule,

\[
\text{LR} \quad \quad \text{if } T \vdash \Box P \rightarrow P \text{ then } T \vdash P.
\]

By Löb’s theorem, K4LR is \(\vdash \) sound, so that if \(\vdash_{K4LR} P \), then \(\vdash_{PA} P \). But by its appeal to the diagonal lemma, the proof of Löb’s theorem is not entirely contained within K4. And, in fact, K4LR has theorems that are not theorems of K4. In particular, \(\vdash_{K4LR} \Box(\Box P \rightarrow P) \rightarrow \Box P \).

\[
\begin{align*}
1. \quad & \Box(\Box(\Box P \rightarrow P) \rightarrow \Box P) \rightarrow [\Box(\Box P \rightarrow P) \rightarrow \Box P] & \text{D2} \\
2. \quad & \Box(\Box P \rightarrow P) \rightarrow (\Box(\Box P \rightarrow P) & \text{D2} \\
3. \quad & \Box(\Box P \rightarrow P) \rightarrow \Box(\Box P \rightarrow P) & \text{D3} \\
4. \quad & \Box(\Box(\Box P \rightarrow P) \rightarrow \Box P) \rightarrow [\Box(\Box P \rightarrow P) \rightarrow \Box P] & 1, 2, 3 \text{T6.4} \\
5. \quad & \Box(\Box P \rightarrow P) \rightarrow \Box P & 4 \text{LR}
\end{align*}
\]

From this, \(\vdash_{PA} \Box(\Box P \rightarrow P) \rightarrow \Box P \). But from E13.61 just below, \(\vdash_{K4} \Box(\Box P \rightarrow P) \rightarrow \Box P \) so that from the \(\vdash \) soundness of K4 on its (worlds) semantics, \(\vdash_{K4} \Box(\Box P \rightarrow P) \rightarrow \Box P \). So PA proves something that K4 does not. So K4 is not \(\vdash \) complete in the sense that if \(\vdash_{PA} P \) then \(\vdash_{K4} P \).

It is worth observing that K4LR is equivalent to a logic GL that drops the Löb rule and is like K4 with D3 replaced by \(\Box(\Box P \rightarrow P) \rightarrow \Box P \). Since K4LR proves \(\Box(\Box P \rightarrow P) \rightarrow \Box P \), K4LR proves anything proved by GL. And GL proves anything proved by K4LR: By E13.60 immediately below, the Löb rule is derived in GL. And though D3 is replaced by the new axiom, it remains a theorem of GL.
CHAPTER 13. GÖDEL’S THEOREMS 789

1. $\Box P \to [P \to (\Box P \land P)]$ T9.4
2. $(\Box \Box P \land \Box P) \to \Box P$ T3.20
3. $(\Box \Box P \land \Box P) \to [P \to (\Box P \land P)]$ 1.2 T3.2
4. $P \to [(\Box P \land \Box P) \to (\Box P \land P)]$ 3 T3.3
5. $\Box (\Box P \land P) \to (\Box \Box P \land \Box P)$ E13.7
6. $[(\Box \Box P \land \Box P) \to (\Box P \land P)] \to [\Box (\Box P \land P) \to (\Box P \land P)]$ 5 T3.5
7. $P \to [\Box (\Box P \land P) \to (\Box P \land P)]$ 4.6 T3.2
8. $\Box (P \to [\Box (\Box P \land P) \to (\Box P \land P)])$ 7 D1
9. $\Box (P \to [\Box (\Box P \land P) \to (\Box P \land P)]) \to (\Box P \to [\Box (\Box P \land P) \to (\Box P \land P)])$ D2
10. $\Box P \to [\Box (\Box P \land P) \to (\Box P \land P)]$ 9.8 MP
11. $\Box (\Box P \land P) \to (\Box P \land P)$ GL
12. $\Box P \to \Box (\Box P \land P)$ 10,11 T3.2
13. $\Box (\Box P \land P) \to (\Box \Box P \land \Box P)$ E13.7
14. $\Box P \to (\Box P \land \Box P)$ 12,13 T3.2
15. $(\Box \Box P \land \Box P) \to \Box P$ T3.21
16. $\Box P \to \Box (\Box P \land P)$ 14,15 T3.2

Since they are equivalent, together with K4LR, GL is sound in the sense that if $P \vdash \Box P$ then $P \vdash \Box P$. In fact GL (K4LR) is also complete so that if $P \vdash \Box P$ then $P \vdash \Box P$. So GL (K4LR) represents the logic of provability. But discussion of its completeness is a matter for another place (see Boolos, The Logic of Provability).

Finally, given that Löb’s theorem depends upon the derivability conditions, it is perhaps not surprising that Löb’s theorem both results in and results from Gödel’s second theorem: First, the second theorem follows from Löb’s result.

For some recursively axiomatized T including PA, suppose Löb’s theorem but not Gödel’s second theorem. With the latter, T is consistent and $T \vdash \neg \Box (\Box \neg) = \neg \Box$; from the second of these, with \forall I and Impl, $T \vdash \Box (\Box \neg) = \neg \Box = \neg \Box$; so by Löb’s theorem $T \vdash \Box \neg = \neg \Box$: but $T \vdash \Box \neg = \neg \Box$; so T is inconsistent. Reject the assumption, Gödel’s second theorem obtains.

And Gödel’s second theorem replaces D3 in demonstration of Löb’s theorem.¹⁴ For this we shall need a result analogous to the Deduction Theorem (T9.3). For some theory T, let $T’$ be $T \cup \{P\}$. Then if $T’$ demonstrates that A is provable in T', it also demonstrates that $P \to A$ is provable in T. Thus, noticing the distinction between $Prvt$ and $Prvt’$,

T13.77. For a recursively axiomatized T including PA and sentences P and A, let $T’$ be $T \cup \{P\}$ then if $T’ \vdash Prvt’(\neg^T A)$, $T’ \vdash Prvt(\neg^T P \to \neg^T A)$.

¹⁴This argument originates from a lecture by Saul Kripke. See Smith, An Introduction to Gödel’s Theorems 257n6, and Boolos, The Logic of Provability xxvi.
Details are left for homework. However, to see how it goes, consider a recursively axiomatized theory T including PA and sentences \mathcal{P} and \mathcal{A} with Gödel numbers p and a. Let T' be $T \cup \{\mathcal{P}\}$. Reasoning in T', we reach a result about provability in T. By analogue to reasoning for the deduction theorem,

1. $\Prvt'(\mathfrak{A})$ \hfill P
2. $\text{Sent}(\mathfrak{P})$ \hfill \cap
3. $\exists x \Prff'(x, \mathfrak{A})$ \hfill 1 abv
4. $\Prff'(m, \mathfrak{A})$ \hfill $A (g, 3 \exists E)$
5. $\forall x \{ x < \text{len}(m) \rightarrow \Prvt(\text{and}(\mathfrak{P}, \text{exp}(m, x))) \}$ by strong induction
6. $\Prvt(\text{and}(\mathfrak{P}, \mathfrak{A}))$ \hfill with 5
7. $\Prvt(\text{and}(\mathfrak{P}, \mathfrak{A}))$ \hfill $3, 4 \rightarrow E$

So if $T' \vdash \Prvt'(\neg \mathfrak{A}^3)$, then $T' \vdash \Prvt(\neg \mathfrak{P} \rightarrow \mathfrak{A}^3)$. Distinguish \Box_T and $\Box_{T'}$ corresponding to \Prvt and \Prvt'. To show that D1, D2 and Gödel’s second theorem imply Löb’s theorem argue as follows.

For some recursively axiomatized T including PA, suppose D1, D2 and Gödel’s second theorem but not Löb’s theorem. From the latter, for some \mathcal{P}, $T \vdash \Box_T \mathcal{P} \rightarrow \mathcal{P}$ but $T \nvdash \mathcal{P}$. If T is inconsistent, then $T \vdash \mathcal{P}$; but $T \nvdash \mathcal{P}$; so T is consistent. Since T is consistent and $T \nvdash \mathcal{P}$ by T10.6, $T \cup \{\neg \mathcal{P}\}$ is consistent. Let T' be $T \cup \{\neg \mathcal{P}\}$; so T' is consistent. Since T' extends T, $T' \vdash \Box_T \mathcal{P} \rightarrow \mathcal{P}$, and since it has $\neg \mathcal{P}$ as an axiom, $T' \vdash \neg \mathcal{P}$; so by MT, $T' \vdash \neg \Box_T \mathcal{P}$. Since T includes PA, $T \vdash (\neg \mathcal{P} \rightarrow \mathfrak{B} = \mathfrak{T}) \rightarrow \mathcal{P}$; so with D1 and D2, $T \vdash \Box_T (\neg \mathcal{P} \rightarrow \mathfrak{B} = \mathfrak{T}) \rightarrow \Box_T \mathcal{P}$; and again because T' extends T, $T' \vdash \Box_T (\neg \mathcal{P} \rightarrow \mathfrak{B} = \mathfrak{T}) \rightarrow \Box_T \mathcal{P}$.

Now reasoning in T',

1. $\neg \Box_T \mathcal{P}$ \hfill P
2. $\Box_T (\neg \mathcal{P} \rightarrow \mathfrak{B} = \mathfrak{T}) \rightarrow \Box_T \mathcal{P}$ \hfill P
3. $\neg \text{Cont}'$ \hfill $A (c, \neg E)$
4. $\Box_T (\neg \mathcal{P} \rightarrow \mathfrak{B} = \mathfrak{T})$ \hfill 3 abv
5. $\Box_T (\neg \mathcal{P} \rightarrow \mathfrak{B} = \mathfrak{T})$ \hfill 4 T13.77
6. $\Box_T \mathcal{P}$ \hfill $2, 5 \rightarrow E$
7. \bot \hfill $1, 6 \bot 1$
8. Cont' \hfill $3, 7 \rightarrow 8$

The contradiction from T' with assumption $\neg \text{Cont}'$ is about what is proved in T.

So $T' \vdash \text{Cont}'$; but since T' is consistent, by Gödel’s second theorem, $T' \nvdash \text{Cont}'$.

This is impossible: Löb’s theorem obtains.
CHAPTER 13. GÖDEL’S THEOREMS

So the force of Löb’s theorem is closely related to that of Gödel’s second theorem. Perhaps this is obvious insofar as our K4 derivation of Löb’s theorem for T13.76 requires all three of the derivability conditions no less than the K4 derivation of the key result for Gödel’s second theorem for T13.7.

E13.59. In the middle of a restless night dreaming about PA you bolt out of bed. “Eureka!” you cry, “I have discovered a simple means for proving the consistency of arithmetic.” Your idea is to show \(\text{PA} \vdash \Box (\Box \phi = \top) \rightarrow \Box \phi = \top \); then from \(\text{PA} \vdash \Box \phi \neq \top \) it follows that \(\text{PA} \vdash \neg \Box (\Box \phi = \top) \) and so that \(\text{PA} \vdash \text{Con} \phi \). Explain why this is one of those ideas that seems better at night than in the cold light of day.

E13.60. Show that if \(\vdash_{gl} \Box \phi \rightarrow \phi \) then \(\vdash_{gl} \phi \), and so that the Löb rule is derived in GL.

*E13.61. For those with some knowledge of worlds semantics for modal logic: K4 is the normal modal logic with a transitive access relation. (i) Find a K4 interpretation to show \(\not\models_{K4} \Box (\Box \phi \rightarrow \phi) \rightarrow \Box \phi \) by a case where \(\phi \) is atomic. Hint: You can do this on an interpretation with just one world. (ii) Where the worlds are \(a, b, c \) and \(aRb, bRc, aRc \), show that the axiom is true at \(a \). Remark: The axiom is valid on interpretations which are such that \(R \) is transitive and every non-empty set \(Z \) of worlds has a member \(x \in Z \) with no \(y \in Z \) such that \(xRy \) (so \(R \) is transitive and \(R^{-1} \) is well-founded). Observe that (ii) meets this condition, but in your answer to (i) it must fail. Challenge: show that the axiom is valid on interpretations which meet the condition.

E13.62. Provide a demonstration for T13.77. You may assume that \(\text{Axiom} \) is defined and that the axioms of \(T \) include all the axioms of \(AD \). You may find the result from E13.46, that \(\text{PA} \vdash (\text{Sent}(p) \land \text{Var}(v)) \rightarrow \neg \text{F}ree(p, v) \) useful.

*E13.63. Reasoning for Löb’s theorem is closely related to Curry’s paradox. For this read \(\Box \phi \) to say that \(\phi \) is true rather than that it is provable. Consider some false sentence \(F \), as ‘I have no head’. Let \(C \) be the sentence, “If this sentence is true then \(F \)” —that is, “If ‘\(C \)’ is true then \(F \).” Take as given,

\[
\begin{align*}
\text{D1'} & \quad \text{if } \phi, \text{then } \Box \phi & \quad \text{truth analog to D1} \\
\text{D2'} & \quad \Box (\phi \rightarrow \Box \phi) \rightarrow (\Box \phi \rightarrow \Box \phi) & \quad \text{truth analog to D2} \\
\text{D3'} & \quad \Box \phi \rightarrow \Box \Box \phi & \quad \text{truth analog to D3}
\end{align*}
\]
And as premises,

1'. $\Box \neg F \rightarrow F$ from nature of truth (Tarski’s schema T)

2'. $C \leftrightarrow (\Box C \rightarrow F)$ from the definition of C

Use these principles to show that you have no head. Reflect on this result (if, indeed, you can without a head): When \Box indicates provability, we are in a position to deny (1) that $\text{PA} \vdash \Box \neg P \rightarrow P$ whenever $\text{PA} \vdash \neg \neg P$. But it may seem less plausible to deny (1’) in a context where $\neg F$. Supposing you do not have two heads, what do you think is wrong? For an accessible introduction to the semantic paradoxes, including Curry’s paradox, see chapter 6 of Read, *Thinking About Logic*.

E13.64. For each of the following concepts, explain in an essay of about two pages, so that (college freshman) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text. The last three might be based on working, or maybe just paging, through the relevant sections.

a. The essential elements contributing to the proof (from this chapter) of the incompleteness of arithmetic.

b. With special focus on section 13.2, the essential elements contributing to the demonstration that PA does not prove its own consistency.

c. The essential elements contributing to the demonstration that PA defines friendly recursive functions.

d. The essential elements contributing to the demonstration of the second derivability condition.

e. The essential elements contributing to the demonstration of the third derivability condition.
CHAPTER 13. GÖDEL’S THEOREMS

Final Theorems of Chapter 13

T13.54. Further results for Termsub.

T13.55. Further results for Formsib.

T13.56. Results for Gen and A4.

T13.57. Results for iterated substitutions.

T13.58. For any atomic A of the form $t = x$, there is a $P_{\Sigma*}$ such that $PA \vdash A \iff P_{\Sigma*}$.

T13.59. For any Δ_0 formula P, there is a normal formula P^* such that $\vdash P \iff P^*$.

T13.60. For any Δ_0 formula P there is a Σ_1 formula $P_{\Sigma*}$ such that $PA \vdash P \iff P_{\Sigma*}$.

T13.61. For any Σ_1 formula P there is a Σ_1 formula $P_{\Sigma*}$ such that $PA \vdash P \iff P_{\Sigma*}$.

T13.62. For any i and formula P, $PA \vdash Wff(sub_i(P^\gamma, \bar{y}))$.

T13.63. For $\bar{x} = x_1, \ldots, x_n$, $i \leq n$, and arbitrary \bar{u}, \bar{v}, $PA \vdash sub_i(\bar{P}^\tau, \bar{x}, \bar{u}) = sub_i(\bar{P}^\tau, \bar{x}, \bar{v})$.

T13.64. For any formula P and $i \leq n$, $PA \vdash sub_{i+1}(\bar{P}^\tau, y_1, \ldots, y_i, x_1, x_2, \ldots, x_n, y_{i+1}, \ldots, y_n) = sub_{i+1}(\bar{P}^\tau, x_1, \ldots, y_i, x_1, x_2, \ldots, x_n, y_{i+1}, \ldots, y_n)$. Corollary: $PA \vdash sub(\bar{P}^\tau, x_1, \ldots, x_n, y_1, \ldots, y_{i+1}, \ldots, y_n) = sub(\bar{P}^\tau, x_1, \ldots, y_i, x_1, x_2, \ldots, x_n, y_{i+1}, \ldots, y_n)$.

T13.65. If the variables of \bar{x} are the same as the variables of \bar{y} and $PA \vdash sub(\bar{P}^\gamma, \bar{y})$ then $PA \vdash sub(\bar{P}^\gamma, \bar{x})$.

T13.66. For any formula P and variable x_a not free in P, $PA \vdash sub_{i+1}(\bar{P}^\tau, x_1, \ldots, x_i, x_a, x_{i+1}, \ldots, x_n) = sub_{i+1}(\bar{P}^\tau, x_1, \ldots, x_i, x_a, x_{i+1}, \ldots, x_n)$.

T13.67. For any formula P and variable x_a duplicating a variable from earlier in the sequence, then $PA \vdash sub_{i+2}(\bar{P}^\gamma, x_1, \ldots, x_i, x_a, x_{i+1}, \ldots, x_n) = sub_{i+1}(\bar{P}^\gamma, x_1, \ldots, x_i, x_a, x_{i+1}, \ldots, x_n) = sub_{i+1}(\bar{P}^\gamma, x_1, \ldots, x_i, x_a, x_{i+1}, \ldots, x_n)$.

T13.68. If the variables of \bar{y} and \bar{z} are ordered by their subscripts, \bar{y} includes just the free variables of formula P, but \bar{z} includes variables not in \bar{y}, then $PA \vdash sub(\bar{P}^\gamma, \bar{y}) = sub(\bar{P}^\gamma, \bar{z})$.

T13.69. If \bar{x} and \bar{y} include all the free variables of formula P, then $PA \vdash sub(\bar{P}^\gamma, \bar{x}) = sub(\bar{P}^\gamma, \bar{y})$.

T13.70. If $PA \vdash P$, then $PA \vdash Prvl[P]$ (analog to D1)

T13.71. $PA \vdash Prvl[P \rightarrow Q] \rightarrow (Prvl[P] \rightarrow Prvl[Q])$ (analog to D2)

T13.72. If t is one of \emptyset, y or S_y, then $PA \vdash Prvl[P^t] \iff Prvl[P]^t$.

T13.73. For any Σ_1 formula P, $PA \vdash P \iff Prvl[P]$.

T13.74. For any formula P, $PA \vdash \Box P \rightarrow \Box \Box P$ (D3)

T13.75. $PA \vdash Wff(a) \land Wff(b) \rightarrow Prvl(end[a], end[a, b])$.

T13.76. Suppose T is a recursively axiomatized theory for which the derivability conditions D1–D2 hold and $T \vdash \Box P \rightarrow P$, then $T \vdash \Box P$. Löb’s Theorem.

T13.77. For a recursively axiomatized T including PA and sentences P and A, let T' be $T \cup \{P\}$; then if $T' \vdash Prvl(P^\wedge A), T' \vdash Prvl(P \rightarrow A')$.

\[\text{\scriptsize \text{Prvl}(P^\wedge A, T' \vdash P \rightarrow \Box P, T' \vdash \Box P \rightarrow P).}\]
Chapter 14

Logic and Computability

In this chapter, we begin with the notion of a Turing machine and a Turing computable function; then we shall be able to show that the Turing computable functions are the same as the recursive functions (section 14.1). Once we have seen this, it is a short step from a problem about computability—the halting problem, to another demonstration of essential results (section 14.2). Further, according to Church’s thesis, the Turing computable functions, and so the recursive functions, are all the algorithmically computable functions. This converts results like T12.23 according to which no recursive relation is true just of (numbers for) theorems of predicate logic, into ones according to which no algorithmically decidable relation is true just of theorems of predicate logic—where this result is much more than a curiosity about an obscure class of functions (section 14.3).

14.1 Turing Computable Functions

We begin saying what a Turing machine, and the Turing computable functions are. Then we turn to demonstrations that Turing computable functions are recursive, and recursive functions are Turing computable.

14.1.1 Turing Machines

A Turing machine is a simple device which, despite its simplicity, is capable of computing any recursive function—and capable of computing whatever is computable by the more sophisticated computers with which we are familiar.1

1So called after Alan Turing, who originally proposed them hypothetically, prior to the existence of modern computing devices, for purposes much like our own. Turing went on to develop electro-
We may think of a Turing machine as consisting of a tape, machine head, and a finite set of instruction quadruples.²

(A)

The tape is a sequence of cells, infinite in two directions, where the cells may be empty or filled with 0 or 1. The machine head, indicated by arrow, reads or writes the contents of a given cell, and moves left or right, one cell at a time. The head is capable of five actions: (L) move left one cell; (R) move right one cell; (B) write a blank; (0) write a zero; (1) write a one. When the head is over a cell it is capable of reading or writing the contents of that cell.

Instruction quadruples are of the sort, \(\langle q_1, C, A, q_2 \rangle \) and constitute a function in the sense that no two quadruples have \(\langle q_1, C \rangle \) the same but \(\langle A, q_2 \rangle \) different. For an instruction quadruple: \(q_1 \) labels the quadruple; \(C \) is a possible state or content of the scanned cell; \(A \) is one of the five actions; \(q_2 \) is a label for some (other) quadruples. In effect, an instruction quadruple \(q_1 \) says, “if the current cell has content \(C \), perform action \(A \) and go to instruction \(q_2 \).” The machine begins at an instruction with label \(q_1 = 1 \), and stops after executing an instruction with \(q_2 = 0 \).

For a simple example, consider the following quadruples, along with the tape (A) from above.

\[
\begin{align*}
(1, 0, R, 1) & \quad \text{if 0 move right} \\
(1, 1, 0, 1) & \quad \text{if 1 write 0} \\
(1, B, L, 2) & \quad \text{end of word, back up and go to instruction 2} \\
(2, 0, L, 2) & \quad \text{while value is 0, move left} \\
(2, B, R, 0) & \quad \text{end of word, return right and stop}
\end{align*}
\]

The machine begins at label 1. In this case, the head is over a cell with content 1; so from the second instruction the machine writes 0 in that cell and returns to instruction label 1. Because the cell now contains 0, the machine reads 0; so, from instruction 1, the head moves right one space and returns to instruction 1 again. Now the machine reads 0; so it moves right again and returns to instruction 1. Because it reads 1, again the machine writes 0 and goes to instruction 1 where it moves right and goes to 1. Now the head is over a blank; so it moves left one cell, and goes to 2. At instruction 2, the head moves left so long as the tape reads 0. When the head reaches a blank, it moves right one space, back over the word, and stops. So the result is,

2Specifications of Turing machines differ somewhat. So, for example, some versions allow instruction quintuples, and allow different symbols on the tape. Nothing about what is computable changes on the different accounts.
In the standard case, we begin with a blank tape except for one or more binary “words” where the words are separated by single blank cells, and the machine head is over the leftmost cell of the leftmost block. The above example is a simple case of this sort, but also,

And in the usual case the program halts with the head over the leftmost cell of a single word on the tape. A total function \(f(x) \) is Turing computable when, beginning with \(x \) on the tape in binary digits, the result is \(f(x) \). Thus our little program computes \(f(x) \), beginning with any \(x \) and returning the value 0.

It will be convenient to require that programs are dextral (right-handed), in the sense that (a) in executing a program we never write in a cell to the left of the initial cell, or scan a cell more than one to the left of the initial cell; and (b) when the program halts, the head is over the initial cell and the final result begins in the same cell as the initial scanned cell. This does not affect what can be computed, but aids in predicting results when Turing programs are combined. Our little program is dextral.

A program to compute \(\text{suc}(x) \) is not much more difficult. Let us begin by thinking about what we want the program to do. With a three-digit input word, the desired outputs are,

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c}
000 & 001 & 100 & 101 \\
001 & 010 & 101 & 110 \\
010 & 011 & 110 & 111 \\
011 & 100 & 111 & 1000 \\
\end{array}
\]

Moving from the right of the input word, we want to turn any one to a zero until we can turn a zero (or a blank) to a one. Here is a way to do that.

3 A Turing machine might calculate the values a function that is partial in the sense that it does not return a value for every input string. We are particularly interested in total functions.
Do not worry about the gap in instruction labels. Nothing so-far requires instruction labels be sequential. This program moves the head to the right end of the word; from the right, flips one to zero until it finds a zero or blank; once it has acted on a zero or blank, it returns to the start.

So far, so good. But there is a problem with this program: In the case when the input is, say,

```
(F) 1 1 1 1
```

the output is,

```
1 0 0 0
```

with the first symbol one to the left of the initial position. We turn the first blank to the left of the initial position to a one. So the program is not dextral. The problem is solved by “shifting” the word in the case when it is all ones.
Stages 5, 6 and 7 are as before. This time we test to see if the word is all ones. If not, the program jumps to 4 where it goes to the end, and to the routine from before. If it gets to the end without encountering a zero, it writes a one, returns to the beginning and deletes the initial symbol—so that the entire word is shifted one to the right. Then it goes to instruction 4 so that it goes to the right and works entirely as before. This time the output from tape (F) is,

```
    1 0 0 0
   ^
```

as it should be. It is worthwhile to follow the actual operation of this and the previous program on one of the many Turing simulators available on the web (see E14.1).

More complex is a copy program to take an input \(x\) and return \(x.x\). This program has four basic elements.

1. A sort of control section which says what to do, depending on what sort of character we have in the original word.

2. A program to copy 0; this will write a blank in the original word to “mark the spot”; move right to the second blank (across the blank between words, and to the blank to be filled); write a 0; move left to the original position, and replace the 0.

3. Similarly a program to copy 1; this will write a blank in the original word to mark the spot; move right to the second blank; write a 1; move left to the original position, and replace the 1.

4. And a program to move the head back to the original position when we are done.

Here is a program to do the job.
You should be able to follow each stage.

*E14.1. Study the copy program from the text along with the sample `suc` from the text website (https://tonyroyphilosophy.net/symbolic-logic/). Then, starting with the file `blank.rb`, create Turing programs to compute the following. It will be best to submit your programs electronically.

a. `copy(m)`. Takes input `m` and returns `m,m`. This is a simple implementation of the program from the text.

b. `zero()`. Hint: Since `zero()` has no input, it operates only on a blank portion of the tape. This will be the easiest Turing program you ever write.

c. `pred(n)`. Hint: Give your function two separate exit paths: One when the input is a string of 0s, returning with the input. In any other case, the output for input `n` is the predecessor of `n`. The method simply flips that for successor: From the right, change 0 to 1 until some 1 can be flipped to 0. There is no need to worry about the addition of a possible leading 0 to your result.
d. \(\text{idnt}^2(x, y, z) \). For \(x.y.z \) observe that \(z \) might be longer than \(x \) and \(y \) put together. Here is a way to proceed: \(z \) is not longer than \(x, y \) and \(z \) put together. So move to the start of the third word; use copy to generate \(x.y.z.z \) then plug spaces so that you have one long first word, \(xoyoz.z \); you can mark the first position of the long word with a blank (and similarly, each time you write a character, mark the next position to the right with a blank so that you are always writing into the second blank up from the one where the character is read); then it is a simple matter of running a basic copy routine from right to left, and erasing junk when you are done.

e. Combine your \(\text{zero}() \) and \(\text{idnt}^3(x, y, z) \) to form \(\text{zero}^2(x, y) = \text{idnt}^3(x, y, \text{zero}()) \). You will want to move past the first two words, run \(\text{zero}() \), return to the start, and run \(\text{idnt}^3 \).

14.1.2 Turing Computable Functions are Recursive

We turn now to showing that the (dextral) Turing computable functions are the same as the recursive functions. Our first aim is to show that every Turing computable function is recursive. But we begin with the simpler result that there is a recursive enumeration of Turing machines. We shall need this as we go forward, and it will let us compile some important preliminary results along the way.

The method is by now familiar. It will require some work, but we can do it in the same way as we approached formulas and theorems before. Begin by assigning to each symbol a Gödel Number.

\[
\begin{align*}
a. \quad & g[\text{B}] = 3 \quad & f. \quad & g[\text{L}] = 9 \\
b. \quad & g[\text{O}] = 5 \quad & g. \quad & g[\text{R}] = 11 \\
c. \quad & g[1] = 7 \quad & h. \quad & g[q_i] = 13 + 2i
\end{align*}
\]

For a quadruple, say, \(\langle q_1, \text{B}, \text{L}, q_1 \rangle \), set \(g = 2^{15} \times 3^3 \times 5^9 \times 7^{15} \). And for a sequence of quadruples with numbers \(g_0, g_1 \ldots g_n \) the super Gödel number \(g_s = 2^{g_0} \times 3^{g_1} \times \ldots \times n^{g_n} \). Again, for convenience we frequently refer to the individual symbol codes with angle quotes around the symbol so \(\langle \text{B} \rangle = 3 \), and to expressions by corner quotes so \(\langle \text{B} \rangle^n = 2^3 \).

Now we define a recursive function and some simple recursive relations,

\[
\begin{align*}
\text{lb}(v) &= \hat{13} + \hat{2v} \\
\text{LB}(n) &= (\exists v \leq n)(n = \text{lb}(v)) \\
\text{SYM}(n) &= n = \langle \text{B} \rangle \vee n = \langle \text{O} \rangle \vee n = \langle \text{L} \rangle \\
\text{ACT}(n) &= \text{SYM}(n) \vee n = \langle \text{R} \rangle
\end{align*}
\]
\(\text{QUAD}(n) = \text{len}(n) = 4 \land \text{LB}(\text{exp}(n, 0)) \land \text{SYM}(\text{exp}(n, 1)) \land \text{ACT}(\text{exp}(n, 2)) \land \text{LB}(\text{exp}(n, 3)) \)

\(\text{lb}(v) \) is the Gödel number of instruction \(v \). Then the relations are true when \(n \) is the number for an instruction label, a symbol, an action and a quadruple. In particular, a code for a quadruple numbers a sequence of four symbols of the appropriate sort.

We are now ready to number the Turing machines. For this, adopt a simple modification of our original specification: We have so-far supposed that a Turing machine might lack any given quadruple, say \(\langle 3, 1, x, y \rangle \). In case it lacks this quadruple, if the machine reads \(1 \) and is sent to state \(3 \) it simply “hangs” with no place to go. Where \(q \) is the largest label in the machine, we now suppose that for any \(p \preceq q \), if no \(\langle p, C, x, y \rangle \) is a member of the machine, the machine is simply supplemented with \(\langle p, C, C, p \rangle \). The effect is as before: In this case, there is a place for the machine to go; but if the machine goes to \(\langle p, C, C, p \rangle \), it remains in that state, repeating it over and over. In the case of label \(0 \), the states are added to the machine, but serve no function, as the zero label forces halt. Further, we suppose that the quadruples in a Turing machine are taken in order, \(\langle 0, 0, x, y \rangle, \langle 0, 1, x, y \rangle, \langle 0, B, x, y \rangle, \langle 1, 0, x, y \rangle, \langle 1, 1, x, y \rangle, \ldots \langle q, 0, x, y \rangle, \langle q, 1, x, y \rangle, \langle q, B, x, y \rangle \). So each Turing machine has a unique specification. On this account, a Turing machine halts only when it reaches a state of the sort \(\langle x, y, z, 0 \rangle \). And the ordered specification itself guarantees the functional requirement—that there are no two quadruples with the first values the same and the latter different. So for \(\text{TMACH}(n) \),

\[
(\exists w < \text{len}(n))(\text{len}(n) = 3 \times (w + 2)) \land (\forall v : 3 \times v + 2 < \text{len}(n))(\forall x \leq n)\{
\begin{align*}
& [x = \text{exp}(n, 3 \times v) \rightarrow (\text{QUAD}(x) \land \text{exp}(x, 0) = \text{lb}(v) \land \text{exp}(x, 1) = \hat{0})] \land \\
& [x = \text{exp}(n, 3 \times v + 1) \rightarrow (\text{QUAD}(x) \land \text{exp}(x, 0) = \text{lb}(v) \land \text{exp}(x, 1) = \hat{1})] \land \\
& [x = \text{exp}(n, 3 \times v + 2) \rightarrow (\text{QUAD}(x) \land \text{exp}(x, 0) = \text{lb}(v) \land \text{exp}(x, 1) = \hat{B})]\}
\end{align*}
\]

Given our modifications, the length of a Turing machine must be a non-zero multiple of three including at least the initial labels zero and one. So for some \(w \), \(\text{len}(n) = 3w + 2 \).

Then for each initial label \(v \) there are three quadruples; so there are quadruples \(3 \times v, 3 \times v + 1 \) and \(3 \times v + 2 \), taken in the standard order, each with initial label \(v \). Since \(n \) is a super Gödel number and each \(x \) the number of a quadruple, it is the exponents of \(x \) that reveal the instruction label and cell content.

But now it is easy to see,

T14.1. There is a recursive enumeration of the Turing machines. Set,

\[
\text{mach}(0) = \mu z[\text{TMACH}(z)] \\
\text{mach}(Sn) = \mu z[\text{mach}(n) < z \land \text{TMACH}(z)]
\]
Since $\text{mach}(n)$ is a recursive function from the natural numbers onto the Turing machines, they are recursively enumerable. While this enumeration is recursive, it is not primitive recursive.

Now, as we work toward a demonstration that Turing computable functions are recursive, let us pause for some key ideas. Consider a tape divided as follows,

(I)

\[
\begin{array}{c|c|c}
\text{left} & \text{right} & \\
1 & 0 & 1 \ 0 \ 1 \ 1 \ 0
\end{array}
\]

We shall code the tape with a pair of numbers. Where at any stage the head divides the tape into left and right parts, first a standard code for the right hand side, 10110^γ, and second, a code for the left side read from the inside out $B01^\gamma$. Taken as a pair, these numbers record at once contents of the tape, and the position of the head—which is always under the first digit of the coded right number.

Say a dextral Turing machine computes a total function $f(n) = m$. Let us suppose that we have recursive functions $\text{code}(a) = b$ and $\text{decode}(b) = a$ to move between a natural number a and the code b for its binary representation—so when $f(n) = m$, $\text{code}(n)$ takes natural number n and returns the code for the initial tape value; and decode takes the code for the final tape value and returns natural number m; so running code then the Turing machine then decode computes the function. Thus we concentrate on the machine itself, and wish to track the status of the Turing machine i given input n for each step j of its operation. In order to track the status of the machine, we shall require functions $\text{left}(i, n, j)$, $\text{right}(i, n, j)$ to record codes of the left and right portions of the tape, and $\text{state}(i, n, j)$ for the current quadruple state of the machine.

First, as we have observed, for any Turing machine, there is a unique quadruple for any instruction label q_1 and content C. Thus, $\text{machs}(i, m, n)$ numbers a quadruple as a function of the number of the machine in the enumeration, and Gödel numbers for an initial label and a cell content. Thus $\text{machs}(i, m, n)$ is,

$$
(\mu y \leq \text{mach}(i))(\exists v < \text{len}(\text{mach}(i))) [y = \exp(\text{mach}(i), v) \wedge \exp(v, \hat{0}) = m \wedge \exp(y, \hat{1}) = n]
$$

So $\text{machs}(i, m, n)$ returns the number of that quadruple in machine i whose initial label has number m and cell content number n. Since the machine is a function, there must be a unique state with those values (when m is not an initial label or n not a content the function simply defaults to $\text{mach}(i)$).

In addition, let us adopt a sort of converse to concatenation, $\text{lop}(n, a)$ that “lops” an initial portion of length a off from n.

The machine jumps to a new state depending on the label and value on the tape. Observe that we are here proceeding by simultaneous recursion, defining multiple functions together. It should be clear enough how this works (see E12.27, page 648).

If the machine enters a zero state then it halts. So set,

\[
\text{stop}(i, n, j) = (\mu y \leq \text{len}(\text{mach}(i)))(\text{exp}(i, n, j), \tilde{0}) = \text{lb}(y))
\]
exp(state(i, n, j), 0) is the Gödel number of the instruction label. So exp(state(i, n, j), 0) = lb(y) when y is the label itself. So stop(i, n, j) just takes the value of the current instruction label; so it takes the value 0 just in case machine i with input n is halted at step j.

T14.2. Every Turing computable function is a recursive function. Supposing Turing machine i computes a function f(n),

\[f(n) = \text{decode(right}(i, n, j)\mid\text{stop}(i, n, j) = 0) \]

When a dextral Turing machine stops, the value of right is just the code of its output value m; so if we decode right(i, n, j) at that stage, we have the value of the function calculated by the Turing machine. Since the Turing computable function is total, there must be some j where the machine is stopped; so the minimization operates on a regular function. Since this function is recursive, the function calculated by Turing machine i is a recursive function.

*E14.2. Find a recursive function to calculate right(i, n, Sj). Hint: You might find a combination of * and lop useful for the case when a symbol is written into the first cell.

*E14.3. Find recursive functions to calculate code(n) and decode(m). Hint: you may find it helpful to start with codes reversed so that they read from right to left; then you can find functions rsuc(n) for the code of a successor, and rcode(n) that “counts” up to the code for n, then flip the result.

E14.4. Suppose a “dual” Turing machine has two tapes, with a machine head for each. Instructions are of the sort \(\langle q_i, C_a, C_b, A_a, A_b, q_i \rangle \) where a and b indicate the relevant tape. Show that every function that is dual Turing computable is recursive. You may take code and decode as given, and assume the machine starts with values m and n on tapes a and b and ends with the value on tape a. Hint: once you set up your sextuples, each label will be associated with nine different possible input combinations.
Recursive Functions are Turing Computable

To show that the recursive functions are identical to the Turing computable functions, we now show that all recursive functions are Turing computable.

Suppose \(f \) is a recursive function. Then there is a sequence of recursive functions \(f_0, f_1, \ldots, f_n \) such that \(f_n = f \), where each member is either an initial function or arises from previous members by composition, recursion, or regular minimization. The argument is by induction on this sequence.

Basis: We have already seen that the initial functions \(\text{succ}(x) \) and then \(\text{zero}() \) and \(\text{idnt}_k \), as illustrated in E14.1, are Turing computable.

Assp: For any \(i, 0 \leq i < k \), \(f_i(\tilde{x}) \) is Turing computable.

Show: \(f_k(\tilde{x}) \) is Turing computable.

- \(f_k \) is either an initial function or arises from previous members by composition, recursion, or regular minimization. If an initial function, then as in the basis. So suppose \(f_k \) arises from previous members.

(c) \(f_k(\tilde{x}, \tilde{y}, \tilde{z}) \) arises by composition from \(g(\tilde{y}) \) and \(h(\tilde{x}, \tilde{w}, \tilde{z}) \). By assumption \(g(\tilde{y}) \) and \(h(\tilde{x}, \tilde{w}, \tilde{z}) \) are Turing computable. For the simplest case, consider \(h(g(\tilde{y})) \): Chain together Turing programs to calculate \(g(\tilde{y}) \) and then \(h(w) \)—so the first program operates upon \(y \) to calculate \(g(\tilde{y}) \) and the second begins where the first leaves off, operating on the result to calculate \(h(g(\tilde{y})) \). A case like \(h(x, g(\tilde{y}), z) \) is more complex insofar as \(g(\tilde{y}) \) may take up a different number of cells from \(y \): it is sufficient to run a copy to get \(x.y.z.y \); then \(g(\tilde{y}) \) to get \(x.y.z.g(\tilde{y}) \); then copy for \(x.y.z.g(\tilde{y}).z \) and a copy that replaces the last two numbers to get \(x.g(y).z \). Then you can run \(h \). And similarly in other cases.

(r) \(f_k(\tilde{x}, \tilde{y}) \) arises by recursion from \(g(\tilde{x}) \) and \(h(\tilde{x}, \tilde{y}, u) \). By assumption \(g(\tilde{x}) \) and \(h(\tilde{x}, \tilde{y}, u) \) are Turing computable. Recall our little programs from chapter 12 which begin by using \(g(\tilde{x}) \) to find \(f(0) \) and then use \(h(\tilde{x}, \tilde{y}, u) \) repeatedly for \(y \) in 0 to \(b - 1 \) to find the value of \(f(\tilde{x}, b) \) (see, for example, page 605). We shall reason similarly. For a representative case, consider \(f(m, b) \).

a. Produce a sequence,
\[
\text{m.b.m.b} - 1.\text{m.b} - 2.\ldots.\text{m.2.m.1.m.0.m}
\]
This requires a copypair \((x, y)\) that takes \(m.n \) and returns \(m.n.m.n \) and \(\text{pred}(x) \). Given \(m.b \) on the tape, run copypair to get \(m.b.m.b \) (and mark
the first \(m \) with a blank). Then loop as follows: if the final \(b \) is 0, delete it, go to the previous \(m \), and move on to (b); otherwise run \(\text{pred} \) on the final \(b \), move to previous \(m \), run \(\text{copypair} \), and loop.

b. Run \(\text{g} \) on the last block of digits \(m \). This gives,
\[
m.b.m.b - 1.m.b - 2 \ldots m.2.m.1.m.0.f(m, 0)
\]
c. Back up to the previous \(m \) and run \(\text{h} \) on the concluding three blocks
\[
m.0.f(m, 0)
\]
And so forth. Stop when you reach the \(m \) with an extra blank (with two blanks in a row). At that stage, we have, \(m^*.b.f(m, b) \). Fill the first blank, run \(\text{idnt}_3 \) and you are done. Observe that the original \(m.b \) plays no role in the calculation other to serve as the initial template for the series, and then as an end marker on your way back up—there is never a need to apply \(h \) to any value greater than \(b - 1 \) in the calculation of \(f(m, b) \).

(m) \(f_k(\bar{x}) \) arises by regular minimization from \(g(\bar{x}, y) \). By assumption, \(g(\bar{x}, y) \) is Turing computable. For a representative case, suppose we are given \(m \) and want \(\mu y[g(m, y) = 0] \).

a. Given \(m \), produce \(m.0.m.0 \).

b. From a tape of the form \(m.y.m.y \) loop as follows: Move to the second \(m \); run \(g \) on \(m.y \); this gives \(m.y.g(m, y) \); check to see if the result is zero; if it is, run \(\text{idnt}_2 \) and you are done (this is the same as deleting the last zero and running \(\text{idnt}_2 \)); if the result is not zero, delete \(g(m, y) \) to get \(m.y \); run \(\text{suc} \) on \(y \); and then a copier to get \(m.y'.m.y' \), and loop. The loop halts when it reaches the value of \(y \) for which \(g \) has output 0—and there must be some such value if \(g \) is regular.

Indct: Any recursive function \(f(\bar{x}) \) is Turing computable.

And from T14.2 together with T14.3, the Turing computable functions are identical to the recursive functions. It is perhaps an “amazing” coincidence that functions independently defined in these ways should turn out to be identical. And we have here the beginnings of an idea behind Church’s thesis which we shall explore in section 14.3.

*E14.5. From exercise E14.1 you should already have Turing programs for \(\text{suc}(x) \), \(\text{pred}(x) \), \(\text{copy}(x) \) and \(\text{idnt}_3(x, y, z) \). Now produce each of the following, in order,
leading up to the recursive addition function. When you require one as part of another simply copy it into the larger file.

a. The function, $hplus(x, y, u) = \text{suc}(\text{idnt}^3(x, y, u))$. For addition, $g(x) = \text{idnt}^1(x) = x$, which requires no action; so we will not worry about that.

b. The function, copypair. Take $a : b$ and return $a : a : b$. One approach is to produce a simple modification of copy that takes $a : b$ and produces $a : b : a$. Run this program starting at a, and then another copy of it starting at b.

c. The function, cascade. This is the program to produce $m : n : m : n : m : n : \ldots : m : 0 : m$. The key elements are copypair and pred. To prepare for the next stage, you should begin by running copypair and then “damage” the very first m by putting a blank in its first cell. Let the program finish with the head on m at the end.

d. The function, $\text{plus}(m, n)$. g is trivial. So from m at the far right of the sequence, back up two words; check to see if there is an extra blank; if so, run idnt^3 and you are done; if not, run $h(x, y, u)$. Though $m.n$ is part of the “cascade” series, we never run h on $m.n.u$. In a program we may make use of $m.n$ as described, but in damaged form—as an end marker for the series.

There are easier ways to do addition on a Turing machine. The obvious strategy is to put m in a location x and n in a location y; run suc on the value in location x and then pred on the value in location y; the result appears in x when pred hits zero. The advantage of our approach is that it illustrates (an important case of) the demonstration that a Turing machine can compute any recursive function.

E14.6. Produce each of the following, leading up to a Turing program for the function $\mu y[\text{ch}(x = \text{pred}(y)) = 0]$, that is the function which returns the least y such that x equals the predecessor of y—such that the characteristic function of $x = \text{pred}(y)$ returns 0.

a. The function $\text{idnt}^2(x, y)$. This can be a simple modification of idnt^3.

b. The function $\text{ch}(x = y)$, which returns 0 when $x = y$ and otherwise 1. This is, of course, a recursive function. But you can get it more efficiently and more directly. To compare numbers, you have to worry about leading zeros that might make equivalent numbers physically distinct. Here is one strategy: From $x : y$ run pred on x; if x is (already) 0, check to see if $y = 0$ and you have
your answer; if \(x \) is not (already) 0, run \(\text{pred} \) on \(y \); if \(y \) is (already) 0, you have
your answer; otherwise, loop.

c. The function \(\text{ch}(x = \text{pred}(y)) \). This is a simple case of composition.

d. The function \(\mu y[\text{ch}(x = \text{pred}(y)) = 0] \), by the routine discussed in the text.

Of course, for any number except 0, this is nothing but a long-winded equivalent
to \(\text{suc}(x) \). The point, however, is to apply the algorithm for regular minimization,
and so to work through the last stage of the demonstration that recursive functions
are Turing computable.

14.2 Essential Results

In chapter 12 essential results were built on Carnap’s equivalence and the diagonal
lemma. This time, we depend on a halting problem with special application to Turing
machines. Once we have established the halting problem, results like ones from before
follow in short order.

14.2.1 Halting

A Turing machine is a set of quadruples. Things are arranged so that Turing machines
do not “hang” in the sense that they reach a state with no applicable instruction. But a
Turing machine may go into a loop or routine from which it never emerges. That is, a
Turing machine may or may not \textit{halt} in a finite number of steps. So for example, this
machine never stops.

\[
\begin{align*}
&\langle 1, 0, 0, 1 \rangle \\
&\langle 1, 1, 1, 1 \rangle \\
&\langle 1, \text{B, B, 1} \rangle
\end{align*}
\]

For any input it simply repeats forever. This raises the question whether there is a
general way to \textit{tell} whether Turing machines \textit{halt} when started on a given input. This
is an issue of significance for computing theory. And, as we shall see, the answer has
consequences beyond computing.

The problem divides into narrower “self-halting” and broader “general-halting”
versions. First, the self-halting problem: By T14.1 there is an enumeration of the
Turing machines. Consider an enumeration, \(\Pi_0, \Pi_1 \ldots \) of Turing machines for
functions with a single free variable and an array as follows,
We run Π_0 on inputs $0, 1, \ldots$; Π_1 on $0, 1, \ldots$; and so forth. Now ask whether there is a Turing program (that is, a recursive function) to decide in general whether Π_i halts when applied to its own number in the enumeration—a program $H(i)$ such that $H(i) = 0$ if $\Pi_i(i)$ halts, and $H(i) = 1$ if $\Pi_i(i)$ does not halt.

T14.4. There is no Turing machine $H(i)$ such that $H(i) = 0$ if $\Pi_i(i)$ halts and $H(i) = 1$ if it does not.

Suppose otherwise. That is, suppose there is a halting machine $H(i)$ where for any $\Pi_i(i)$, $H(i) = 0$ if $\Pi_i(i)$ halts and $H(i) = 1$ if it does not. Chain this program into a simple looping machine $\Lambda(j)$ defined as follows,

\[
\begin{array}{c|cccc}
 & 0 & 1 & 2 & \ldots \\
 \Pi_0 & \Pi_0(0) & \Pi_0(1) & \Pi_0(2) \\
 \Pi_1 & \Pi_1(0) & \Pi_1(1) & \Pi_1(2) \\
 \Pi_2 & \Pi_2(0) & \Pi_2(1) & \Pi_2(2) \\
 \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

So when $j = 0$, Λ goes into an infinite loop, remaining in state q forever; when $j = 1$, Λ halts gracefully with output 1. Let the combination of H and Λ be $\Delta(i)$; so $\Delta(i)$ calculates $\Lambda(H(i))$. On our assumption that there is a Turing machine $H(i)$, the machine Δ must appear in the enumeration of Turing machines with some number d.

But this is impossible. Consider $\Delta(d)$ and suppose $\Delta(d)$ halts; since Δ halts on input d, the halting machine, $H(d) = 0$; and with this input, Λ goes into the infinite loop; so the composition $\Lambda(H(d))$ does not halt; and this is just to say $\Delta(d)$ does not halt. Reject the assumption, $\Delta(d)$ does not halt. But since $\Delta(d)$ does not halt, the halting machine $H(d) = 1$; and with this input, Λ halts gracefully with output 1; so the composition $\Lambda(H(d))$ halts; and this is just to say $\Delta(d)$ halts. Reject the original assumption, there is no machine $H(i)$ which says whether an arbitrary $\Pi_i(i)$ halts.

For this argument, it is important that H is a component of Δ. Information about whether Δ halts gives information about the behavior of H, and information about the behavior of H, about whether Δ halts.

The more general question is whether there is a machine to decide for any Π_i and n whether $\Pi_i(n)$ halts. But it is immediate that if there is no Turing machine to decide
the more narrow self-halting problem, there is no Turing machine to decide this more general version.

T14.5. There is no Turing machine $H(i, n)$ such that $H(i, n) = 0$ if $\Pi_i(n)$ halts and $H(i, n) = 1$ if it does not.

Suppose otherwise. That is, suppose there is a halting machine $H(i, n)$ where for any $\Pi_i(n)$, $H(i, n) = 0$ if $\Pi_i(n)$ halts and $H(i, n) = 1$ if it does not. Chain this program after a copier $K(n)$ which takes input n and gives n_n. The combination $H(K(i))$ decides whether $\Pi_i(i)$ halts. This is impossible; reject the assumption: There is no such Turing machine $H(i, n)$.

And when combined with T14.3 according to which every recursive function is Turing computable, these theorems which tell us that no Turing program is sufficient to solve the halting problem, yield the result that no recursive function solves the halting problem: if a function is recursive, then it is Turing computable; and since it is Turing computable, it does not solve the halting problem. Observe that we may be able to decide in particular cases whether a program halts. No doubt you have been able to do so in particular cases! What we have shown is that there is no perfectly general recursive method to decide whether $\Pi_i(n)$ halts.

E14.7. Say a function is μ-recursive just in case it satisfies the conditions for the recursive functions but without the regularity requirement for minimization; so $\mu y[g(\bar{x}, y) = 0]$ returns the least y such that both $g(\bar{x}, y) = 0$ and for every $z < y$, $g(\bar{x}, z) > 0$ if there is one and otherwise is undefined. Where every recursive function $f(\bar{x})$ is total in the sense that it returns a value for every \bar{x}, some μ-recursive functions are partial insofar as there may be values of \bar{x} for which they return no value (as occurs when minimization is applied to a $g(\bar{x}, y)$ that never evaluates to zero); so all the recursive functions are μ-recursive, but some μ-recursive functions are not recursive. Suppose that the μ-recursive functions can be numbered and that there is a μ-recursive function $\text{emurec}(i)$ to enumerate them; so $\text{emurec}(i)$ returns the Gödel number of the ith function in the enumeration. (You will have occasion to produce this function in a later exercise.) Show that there is no μ-recursive function $\text{def}(i)$ such that $\text{def}(i) = 0$ if $f_i(i)$ is defined and $\text{def}(i) = 1$ if $f_i(i)$ is undefined. Hint: Let your diagonal function $\text{diag}(i) = \mu y[\text{def}(i) = y \land y = i]$. We might think of this as the definition problem.
14.2.2 The Decision Problem

Recall our demonstration from section 12.5.3 that if \(Q \) is consistent then no recursive relation identifies the theorems of predicate logic. With the identity between the recursive functions and the Turing computable functions, this is the same as the result that if \(Q \) is consistent then no Turing computable function identifies the theorems of predicate logic. We are now in a position to obtain a related result directly, by means of the halting problem. Recall from section 12.5.2 (page 667) that a theory \(T \) is \(\omega \)-inconsistent iff for some \(P(x) \), \(T \) proves each \(P(m) \) but also proves \(\neg \forall x P(x) \). Equivalently, \(T \) is \(\omega \)-inconsistent iff \(T \) proves each \(P(m) \) but also proves \(\exists x P(x) \). We show,

T14.6. For a language including \(\mathcal{L}_{nt} \), if \(Q \) is \(\omega \)-consistent then no Turing computable function \(prvpl(n) \) is such that \(prvpl(n) = 0 \) just in case \(n \) numbers a theorem of predicate logic.

Suppose \(Q \) is \(\omega \)-consistent, and suppose some Turing computable \(prvpl(n) = 0 \) just in case \(n \) numbers a theorem of predicate logic. Consider our recursive function \(\text{stop}(i, n, j) \) which takes the value 0 iff \(\text{stop}(i, n, j) \) halts at step \(j \). Since it is recursive, \(\text{stop} \) is captured by some \(\text{Stop}(i, n, j, z) \) so that,

(i) If \(\text{Stop}(i, n, j, z) \) halts by step \(j \), \(Q \vdash \text{Stop}(i, n, j, z) \)

(ii) If \(\text{Stop}(i, n, j, z) \) never halts, \(Q \nvdash \text{Stop}(i, n, j, z) \) for any \(j \)

Let \(\mathcal{H}(i) = \exists z \text{Stop}(i, n, j, z) \). Then if \(\Pi_i(i) \) halts, there is some \(j \) such that \(Q \vdash \text{Stop}(i, n, j, \emptyset) \); so \(Q \vdash \mathcal{H}(i) \). And if \(\Pi_i(i) \) never halts, for every \(j \), \(Q \nvdash \neg \text{Stop}(i, n, j, \emptyset) \); and since \(Q \) is \(\omega \)-consistent, \(Q \nvdash \mathcal{H}(i) \). So \(\Pi_i(i) \) halts iff \(Q \vdash \mathcal{H}(i) \). The axioms Q1–Q7 of \(Q \) are equivalent to their universal closures; with the axioms in this form, let \(Q \) be the conjunction of Q1–Q7; since Q1–Q7 are particular sentences, \(Q \) is a particular sentence; so \(Q \vdash \mathcal{H}(i) \) iff \(Q \vdash \mathcal{H}(i) \); by DT iff \(Q \vdash Q \rightarrow \mathcal{H}(i) \). So,

\[Q \rightarrow \mathcal{H}(i) \quad \text{iff} \quad \Pi_i(i) \text{ halts} \]

Let \(q = \forall Q \Gamma \) and \(h(i) = \text{formsub}(\forall Q \Gamma, h(i)) \); so \(h(i) \) is the number of \(\mathcal{H}(i) \). Then \(prvpl(\text{cnd}(Q, h(i))) \) takes the value 0 iff \(Q \rightarrow \mathcal{H}(i) \) is a theorem, iff \(\Pi_i(i) \) halts. So \(prvpl \) solves the halting problem. This is impossible; reject the assumption: If \(Q \) is \(\omega \)-consistent, then there is no Turing computable function that returns the value zero just for numbers of theorems of predicate logic.

And any Turing machine that identifies the theorems of predicate logic naturally extends to one that identifies their numbers. Since no machine does the latter, none
do the former. So any attempt to identify all and only theorems of predicate logic by a Turing machine must fail. And, of course, this result according to which if Q is ω-consistent no Turing computable function returns zero just for theorems of predicate logic is equivalent to the result that if Q is ω-consistent, then no recursive function returns zero just for theorems of predicate logic.\(^4\)

E14.8. Return again to the \(\mu\)-recursive functions from E14.7. On a somewhat modified account of expression, and by a modified version of the argument for T12.5, any \(\mu\)-recursive function \(f\) is expressed by a \(\Sigma_1\) formula \(\mathcal{F}\) so that if \(\langle m_1 \ldots m_n, a \rangle \in f\) then \(N[\mathcal{F}(\overline{m}_1 \ldots \overline{m}_n, \overline{a})] = T\) and if \(\langle m_1 \ldots m_n, a \rangle \notin f\) then \(N[\neg \mathcal{F}(\overline{m}_1 \ldots \overline{m}_n, \overline{a})] = T\). Also, with the enumeration of \(\mu\)-recursive functions, as for Turing machines, there is a \(\mu\)-recursive \(\text{murec}(i, n)\) such that \(\text{murec}(i, n) = f_i(n)\).

Given this, use the definition problem from E14.7 to show that if Q is sound, then no \(\mu\)-recursive function \(\text{muprvpl}(n)\) is such that \(\text{muprvpl}(n) = 0\) just in case \(n\) numbers a theorem of predicate logic. Hint: Let \(\text{Defined}(T) = \exists z \text{Murec}(T, T, z)\); you may find T12.8 helpful.

14.2.3 İncompleteness Again

In chapter 12 and chapter 13 we saw incompleteness results in different forms: one from consistency and capture, and another from soundness and expression. We are positioned to see the result again in both forms.

Semantic Version

In T12.19 we showed that the theorems of a recursively axiomatized formal theory are recursively enumerable, and used this to show that \(\text{PRVT}\) is recursive for consistent and negation complete theories. This contrasts with the corollary to T12.21 according to which \(\text{PRVT}\) is not recursive for consistent theories extending Q. An incompleteness result follows. This time we shall be able to contrast the enumeration of theorems with an enumeration of truths. The idea is to show that a Turing machine \(\Pi_e(i)\) to enumerate the truths of \(\mathcal{L}_{\pi_1}\) solves the halting problem, and so that there is no such Turing machine.

\(^4\)This argument, and the parallel one in chapter 12 have the advantage of simplicity. However, this result that no recursive function returns zero just for theorems of predicate logic need not be conditional on the consistency (or \(\omega\)-consistency) of Q. For an illuminating version of the strengthened result from the halting problem, see chapter 11 of Boolos, Burgess and Jeffrey, \textit{Computability and Logic}. See also page 672n18.
T14.7. The set of truths of \mathcal{L}_{nt} is not recursively enumerable.

Consider again our recursive function $\text{stop}(i,n,j)$; since it is recursive, it is expressed by some $\text{Stop}(i,n,j,z)$; set $\mathcal{H}(i) = \exists z \text{Stop}(i,i,z,\emptyset)$ and let $h(i) = \text{form}_\text{sub}(\text{\mathcal{H}}(i),\odot,\tilde{i},\text{num}(i))$—so $h(i)$ is the number of $\mathcal{H}(\tilde{i})$.

Suppose $N[\mathcal{H}(\tilde{i})] = T$; then for some m, $N[\text{Stop}(\tilde{i}, \tilde{m}, \emptyset)] = T$; so by expression, $\langle (i,i,m), 0 \rangle \in \text{stop}$; so $\Pi_i(i)$ stops. Suppose $N[\mathcal{H}(\tilde{i})] \neq T$; then for any $m \in U$, $N[\text{Stop}(\tilde{i}, \tilde{m}, \emptyset)] \neq T$; so by expression, $\langle (i,i,m), 0 \rangle \notin \text{stop}$; so $\Pi_i(i)$ never halts. So (a) $N[\mathcal{H}(\tilde{i})] = T$ iff $\Pi_i(i)$ halts.

Now suppose some $\Pi_e(i)$ enumerates the truths of \mathcal{L}_{nt}, halting with output 0 if $h(i)$ appears in the enumeration—if $N[\mathcal{H}(\tilde{i})] = T$, and halting with output 1 if $\text{neg}(h(i))$ appears in the enumeration—if $N[\neg \mathcal{H}(\tilde{i})] = T$. Exactly one of $\mathcal{H}(\tilde{i})$ or $\neg \mathcal{H}(\tilde{i})$ is true; so the number for one of them will eventually turn up insofar as Π_e enumerates all the truths of \mathcal{L}_{nt}. So (b) $\Pi_e(i)$ halts with output 0 iff $N[\mathcal{H}(\tilde{i})] = T$.

By (a) and (b) $\Pi_e(i)$ halts with output 0 iff $\Pi_i(i)$ halts; so $\Pi_e(i)$ solves the halting problem. This is impossible; reject the assumption: there is no such Turing machine. And since no Turing machine enumerates the truths of \mathcal{L}_{nt}, no recursive function enumerates the truths of \mathcal{L}_{nt}.

This theorem, together with T12.19 which tells us that if T is a recursively axiomatized formal theory then the set of theorems of T is recursively enumerable, puts us in a position to obtain an incompleteness result mirroring T12.17 and T13.3.

T14.8. If T is a recursively axiomatized sound theory whose language includes \mathcal{L}_{nt}, then T is negation incomplete.

Suppose T is a recursively axiomatized sound theory whose language includes \mathcal{L}_{nt}. By T12.19, there is an enumeration of the theorems of T, and since T is sound, all of the theorems in the enumeration are true. But by T14.7, there is no enumeration of all the truths of \mathcal{L}_{nt}; so the enumeration of theorems is not an enumeration of all truths; so some true P is not among the theorems of T; and since P is true, $\neg P$ is not true; and since T is sound, neither is $\neg P$ among the theorems of T. So $T \not\vdash P$ and $T \not\vdash \neg P$.

This incompleteness result requires the soundness of T, where soundness is more than mere consistency. But it requires only that the language include \mathcal{L}_{nt} and so have the power to express recursive functions—where this leaves to the side a requirement that T extends Q, and so be able to capture recursive functions.
Syntactic Version

From the halting problem, we can obtain the other sort of incompleteness result as well. Thus we have a theorem like T12.18 and T13.4.

T14.9. If T is a recursively axiomatized theory extending Q, then there is a sentence \mathcal{P} such that if T is consistent $T \not\vdash \mathcal{P}$, and if T is ω-consistent, $T \not\vdash \neg \mathcal{P}$.

Suppose T is a recursively axiomatized theory extending Q. Once again consider stop(i, n, j); since stop is recursive and T extends Q, stop is captured in T by some $\text{Stop}(i, n, j, z)$; let $\mathcal{H}(i) = \exists z \text{Stop}(i, i, z, \emptyset)$, and $h(i) = \text{formsub}((\mathcal{H}(i)\upharpoonright, \mathcal{H}(i)\upharpoonright, \text{num}(i)))$. Consider a Turing machine $\Pi_s(i)$ which tests whether successive values of m number a proof of $\neg \mathcal{H}(\overline{1})$, halting if some m numbers a proof and otherwise continuing forever—so $\Pi_s(i)$ evaluates $\text{PRFT}(m, \neg \text{neg}(h(i)))$ for successive values of m; since T is a recursively axiomatized theory, this is a recursive relation so that there must be some such Turing machine. We can think of $\Pi_s(i)$ as seeking a proof that $\Pi_i(i)$ does not halt.

Suppose T is consistent and $\Pi_s(s)$ halts. By its definition, $\Pi_s(i)$ halts just in case some m numbers a proof of $\neg \mathcal{H}(\overline{1})$; since $\Pi_s(s)$ halts, then, there is some m such that $\text{PRFT}(m, \neg \text{neg}(h(s)))$; so $T \vdash \neg \mathcal{H}(\overline{s})$. But if $\Pi_s(s)$ halts, for some $m, \langle s, s, m, 0 \rangle \in \text{stop}$; so by capture, $T \vdash \text{Stop}(\overline{s}, \overline{s}, \overline{m}, \emptyset)$; so $T \vdash \exists z \text{Stop}(\overline{s}, \overline{s}, z, \emptyset)$, which is to say, $T \vdash \mathcal{H}(\overline{s})$; and since T is consistent, $T \not\vdash \neg \mathcal{H}(\overline{s})$. This is impossible; reject the assumption: (i) if T is consistent, then $\Pi_s(s)$ does not halt.

(i) Suppose T is consistent and $T \vdash \neg \mathcal{H}(\overline{s})$; then for some $m, \text{PRFT}(m, \neg \text{neg}(h(s)))$; so by its definition, $\Pi_s(s)$ halts. But since T is consistent, by (i) $\Pi_s(s)$ does not halt. Reject the assumption: $T \not\vdash \neg \mathcal{H}(\overline{s})$.

(ii) Suppose T is ω-consistent and $T \vdash \mathcal{H}(\overline{s})$; then $T \vdash \exists z \text{Stop}(\overline{s}, \overline{s}, z, \emptyset)$. But since T is ω-consistent, it is consistent; so by (i) $\Pi_s(s)$ does not halt; so for any $m, \langle s, s, m, 0 \rangle \notin \text{stop}$; and by capture, for any $m, T \vdash \neg \text{Stop}(\overline{s}, \overline{s}, \overline{m}, \emptyset)$; so by ω-consistency, $T \not\vdash \exists z \text{Stop}(\overline{s}, \overline{s}, z, \emptyset)$. This is impossible, $T \not\vdash \mathcal{H}(\overline{s})$

Again, this is roughly the form in which Gödel first proved the incompleteness of arithmetic. However, as we have seen, it is possible to strengthen this version of the result to drop the requirement of ω-consistency for the simple result that no consistent, recursively axiomatizable theory extending Q is negation complete.

E14.9. Use the definition problem for μ-recursive functions to show that there is no recursive enumeration of the set of truths of \mathcal{L}_{NT}. Use this result to show that if T is a recursively axiomatized sound theory whose language includes \mathcal{L}_{NT}, ...
then \(T \) is negation incomplete. Hint: Return to \textsf{murec}(i, n), \textsf{Murec}(i, n, y) and \textsf{Defined}(\overline{T}). Suppose there is an enumeration \textsf{entruth}(n) of the truths of \(\mathcal{L}_{PT} \); and let \textsf{enumdef} be the equality
\[\forall y (\textsf{entruth}(y) = \textsf{defined}(i) \lor \textsf{entruth}(y) = \neg\textsf{defined}(i)) = \textsf{defined}(i); \]
then its characteristic function, \textsf{chenumdef} is \(0 \) when \(\neg\textsf{Defined}(\overline{T}) \) appears in the enumeration, and \(1 \) when \(\neg\textsf{Defined}(\overline{T}) \) is in the enumeration.

14.3 Church’s Thesis

We have attained a number of negative results, as T14.6 that if \(Q \) is \(\omega \)-consistent then no Turing computable function \textsf{prvpl}(n) returns zero just for numbers of theorems of predicate logic, and from T14.7 that no Turing machine enumerates the truths of \(\mathcal{L}_{PT} \). These are interesting. But, one might very well think, if no Turing machine computes a function, then we ought simply to compute the function some other way. So the significance of our negative results is magnified if the Turing computable functions are, in some sense, the only computable functions. If in some important sense the Turing computable functions are the only computable functions, and no Turing machine computes a function, then in the relevant sense the function is not computable. Thus Church’s Thesis:

\[\text{CT} \quad \text{The total numerical functions that are effectively computable by some algorithmic method are just the recursive functions.} \]

We want to be clear first, on the content of this thesis, and once we know what it says, on reasons for thinking that it is true.

14.3.1 The Content of Church’s thesis

Church’s thesis makes a claim about “total numerical functions that are effectively computable by an algorithmic method.” Original motivations are from the simple routines we learn in grade school for addition, multiplication, and the like. These effectively compute total numerical functions by an algorithmic method. By themselves, such methods are of interest. However, we mean to include the sorts of methods contemporary computing devices can execute. These are of considerable interest as well. Let us take up the different elements of the proposal in turn.

First, as always, a numerical function is total iff it is defined on the entire numerical domain. Arbitrary functions on a finite domain may be finitely specified by listing their members, and then computed by simple lookup. This was our approach with
simple, but arbitrary, functions from chapter 4. The question of computability becomes interesting when domains are not finite (and from methods like those in the countability reference, a function on an infinite domain is always comparable to one that is total). So Church’s thesis is a thesis about the computability of total functions.

A function is effectively computable iff there is a method for finding its output for any given input value(s). Correspondingly, a property or relation is effectively decidable iff its characteristic function is effectively computable. So methods for addition and multiplication are adequate to calculate the value of the function for any inputs. Or consider a Turing machine programmed to enumerate the theorems of T, stopping with output 0 if it reaches (the number for) P, and output 1 if it reaches ~P. If T is a consistent recursively axiomatized and negation complete theory, then this is an effective method for deciding the theorems of T. If P is a theorem, it eventually shows up in the enumeration, and the Turing machine stops with output 0. If P is not a theorem, ~P is a theorem, so ~P eventually shows up in the enumeration, and the machine stops with output 1. This was the idea behind T12.20. But if T is not negation complete, this is not an effective method for deciding theorems of T. If P is a theorem, it eventually shows up in the enumeration, and the machine stops with output 0. But if P is not a theorem and T is not negation complete, ~P might also fail to be a theorem. In this case, the machine continues forever, and does not stop with output 1; so for some inputs, this method does not find the value of the characteristic function, and we have not described an effective method for deciding the theorems of this T.

From the start, we may agree that there is some uncertainty about the notion of an algorithmic method; so, for example, different texts offer somewhat different definitions. However, as we did for logical validity and soundness in chapter 1, we shall take a particular account as a technical definition—partly as clarified in the definition (AC) and examples that follow. Difficulties to the side, there does seem to be a relevant core notion: for our purposes an algorithmic method is a finitely constrained rule-based procedure (rote, if you will).5

There is some vagueness in how much “processing” is allowed in following a rule. So, “write down the value of f(n)” will not do a as a rule for arbitrary f(n); and, less dramatically, an algorithm for multiplication does not typically include instructions for required additions. However, we may take it that if a function is Turing computable, then the function is algorithmically computable. A Turing machine operates by a finitely constrained rule-based method. Again, standard methods for addition and multiplication are examples of algorithmic procedures. Truth table construction is

5We have no intention of engaging Wittgenstenian concerns about following a rule. See, for example, Kripke Wittgenstein on Rules and Private Language.
another example of a method that proceeds by rote in this way. Given the basic tables for the operators, one simply follows the rules to complete the tables and determine validity—and one could program a Turing machine to perform the same task. Thus validity in sentential logic is effectively decidable by an algorithmic method. In contrast, derivations are not an algorithmic method. The strategies are helpful! But, at least in complex cases, there may come a stage where insight or something like lucky guessing is required. And at such a stage, you are not following any rules by rote, and so not following any specific algorithm to reach your result.

And algorithmic methods operate under finite constraints. In general, we shall not worry about how large these constraints may be, so long as they remain finite. Consider, first, truth table construction. If this is to be an effective method for determining validity, it should return a result for any sentence. But for any \(n > 0 \) there are sentences with that many atomic sentences (for example, \(A_1 \land A_2 \land \ldots \land A_n \)), so the corresponding table requires \(2^n \) rows. This number may be arbitrarily large—and a table may require more paper or memory than are in the entire universe. But, in every case, the limit is finite. So, for our purposes, it qualifies as an effective algorithmic method. Contrast this case with a device, which we may call “god’s mind,” that stores all the theorems of predicate logic sorted in order of their Gödel numbers. To calculate whether \(\mathcal{P} \) is a theorem, simply search up to the Gödel number of \(\mathcal{P} \) to see if that sentence is in the database: if it is \(\mathcal{P} \) is a theorem, if it is not \(\mathcal{P} \) is not a theorem. It is not our intent to deny the existence of god, or that one might very well solve mathematical problems by prayer (though this might not go over very well on examinations which require that you show your work)! But, insofar as a device requires infinite memory or the like, it will not for our purposes count as an algorithmic method.

Or consider again a Turing machine programmed to enumerate the theorems of \(T \), stopping with output 0 if it reaches (the number for) \(\mathcal{P} \), but continuing forever if \(\mathcal{P} \) does not appear. One might suppose the information that \(\mathcal{P} \) is not a theorem is contained already in the fact that the machine never halts, and that god or some being with an infinite perspective might very well extract this information from the machine. Perhaps so. But this method is not algorithmic just because it requires the infinite perspective. Still, there are interesting attempts to attain the effect of this latter machine without appeals to god. Consider, first, “Zeno’s machine.” As before, the machine enumerates theorems, this time flashing a light if \(\mathcal{P} \) appears in the list. However, for some finite time \(t \) (say 60 seconds), this machine takes its first step in \(t/2 \) seconds, its second step in \(t/4 \) seconds, and for any \(n \), step \(n \) in \(t/2^n \) seconds. But the sum of \(t/2 + t/4 + \ldots = t \), and the Turing machine runs through all of infinitely many steps in time \(t \). So start the machine. If the light flashes before \(t \) seconds elapse,
\(\mathcal{P} \) is a theorem. If \(t \) elapses, the machine has run through all of infinitely many steps, so if the light does not flash, \(\mathcal{P} \) is not a theorem.

One might object that this proposal reduces to a tautology of the sort, “If such-and-such (impossible) circumstances obtain, then the theorems are decidable.” Great, but who cares? However we should not reject the general strategy out of hand. From even a very basic introduction to special relativity, one is exposed to time dilation effects (for a simple case see the time dilation reference). General relativity allows a related effect. Where special relativity applies just to reference frames moving at constant velocity relative to one another, general relativity allows accelerated frames. And it is at least consistent with the laws of general relativity for one frame to have an infinite elapsed time, while another’s time is finite.\(^6\) So, for a Malament-Hogarth (MH) machine, put a Turing machine in the one frame and an observer in the other. The Turing machine operates in the usual way in its frame enumerating the theorems forever. If \(\mathcal{P} \) is a theorem, it sends a signal back to the observer’s frame that is received within the finite interval. From the observer’s perspective, this machine runs through infinitely many operations. So if a signal is received in the finite interval, \(\mathcal{P} \) is a theorem. If no signal is received in the finite interval, then \(\mathcal{P} \) is not a theorem. There is considerable room for debate about whether such a machine is physically possible. But, even if physically realized, it is not algorithmic. For we require that an algorithmic method terminates in a finite number of steps.

Church’s thesis is thus that the total numerical functions that are effectively computable by some algorithmic method are the same as the recursive functions. Suppose we obtain a negative result that some function is not algorithmically computable. Even with the finite limits we have placed on memory, number of instructions and the like, the negative result remains of considerable interest: So long as a routine follows definite rules, no (finite) amount of parallel processing, high-speed memory, nanotechnology, and so forth is going to make a difference—the function remains uncomputable.

14.3.2 The Basis for Church’s thesis

It is widely accepted that Church’s thesis is true, but also that it is not susceptible to proof. We shall return to the question of proof. There are perhaps three sorts of reasons that have led philosophers, computer scientists and logicians to think

\(^6\)Students with the requisite math and physics background might be interested in Hogarth, “Does General Relativity Allow an Observer To View an Eternity In a Finite Time?” See also Earman and Norton, “Forever is a Day,” and for the same content, chapter 4 of Earman, Bangs, Crunches, Whimpers, and Shrieks (but with additional, though still difficult, setup in earlier chapters of the text).
Simple Time Dilation

It is natural to think that, just as a wave in water approaches a boat faster when the boat is moving toward it than when the boat is moving away, so light would approach an observer faster when she is moving toward it, and more slowly when she is moving away. But this is not so. The 1887 Michelson-Morley experiment (and many others) verify that the speed of light has the *same* value for all observers. Special relativity takes as foundational:

1. The laws of physics may be expressed in equations having the same form in all frames of reference moving at constant velocity with respect to one another.

2. The speed of light in free space has the same value for all observers, regardless of their state of motion.

These principles have many counterintuitive consequences. Here is one: Consider a clock which consists of a pulse of light bouncing between two mirrors separated by distance L as in (A) below. Where c is the constant speed of light, the time between ticks is the distance traveled by the pulse divided by its speed L/c.

![Diagram](A)

Now consider the same clock as observed from a reference frame relative to which it is in motion, as in (B). The speed of light remains c (instead of being increased, as one might expect, by the addition of the horizontal component to its velocity). But the distance traveled between ticks is greater than L, so the time between ticks is greater than L/c—which is to say the clock ticks more slowly from the perspective of the second frame.

One might wonder what happens if this clock is rotated 90 degrees so that the pulse is bouncing parallel to the direction of motion, or what would happen if time were measured by a pendulum clock. But within a frame, everything is coordinated according to the usual laws: On special relativity, there are coordinated changes to length, mass and the like so that the effect is robust. As observed from a reference frame relative to which the frame is in motion, time, mass, and length are distorted together. For further discussion, consult any textbook on introductory modern physics.
it is true. (i) A number of independently defined notions plausibly associated with
computability converge on the recursive functions. (ii) No plausible counterexamples—
algorithmically computable functions not recursive, have come to light. And (iii)
there is a sort of rationale from the nature of an algorithm. This last may verge on, or
amount to, demonstration of Church’s thesis.

Independent Definitions

We have already seen that the Turing computable functions are the same as the
recursive functions. And we are in a position to close another loop. From T12.14,
the recursive functions are captured by recursively axiomatized theories extending Q.
But the recursive functions are total functions; and consistent recursively axiomatized
theories extending Q are among the recursively axiomatized theories extending Q.
So the recursive functions are total functions captured by consistent recursively
axiomatized theories extending Q. But also,

T14.10. Every total function that can be captured by a consistent recursively axiomatized theory is recursive.

Suppose a total function $f(m)$ can be captured in a consistent recursively axi-
omatized theory T; then there is some $F(x, y)$ such that if $\langle m, n \rangle \in f$, then
$T \vdash F(m, n)$ and if $\langle m, n \rangle \notin f$ then $T \vdash \neg F(m, n)$. Suppose $\langle m, n \rangle \in f$; since f
is a function, any $k \neq n$ is such that $\langle m, k \rangle \notin f$; so $T \vdash \neg F(m, k)$; and since T
is consistent, $T \nvDash F(m, k)$. So for any m there is some n such that $\langle m, n \rangle \in f$ and
(i) for $b = \upharpoonright F(m, n)$ there is some a such that $\text{PRFT}(a, b)$; and (ii) for $k \neq n$ and
$b' = \upharpoonright F(m, k)$ there is no a such that $\text{PRFT}(a, b')$.

Intuitively, we can find the value of $f(m)$ by searching the theorems until we find
one of the sort $F(m, n)$; and from this derive the value n. More formally: First,
for the number of $F(m, n)$,

$$\text{num}(m, n) = \text{formsub}[\text{formsub}(\upharpoonright F(x, y), x^3), \text{num}(m), x^3, \text{num}(n)]$$

So $\text{num}(m, n)$ gives the Gödel number of $F(m, n)$ as a function of m and n. By
(loose) analogy with code from chapter 12 (page 668),

$$\text{code}(m) = \mu z[\text{len}(z) = 2 \land \text{PRFT}(\text{exp}(z, \delta), \text{num}(m, \text{exp}(z, \hat{\delta})))]$$

So $\text{code}(m)$ is of the sort $2^a \times 3^n$, where a numbers a proof of $\text{num}(m, n)$, that
is, of $F(m, n)$. The minimization is well-defined since there always are such an a and
n. And there is only one n for which there is a proof of $F(m, n)$. So,

$$f(m) = \text{exp}(\text{code}(m), \hat{\delta})$$
n is easily recovered from codef: the exponents of codef(m) are a and n; and exp(codef(m), 1) returns the n. And since exp(codef(m), 1) is a recursive function, f(m) is a recursive function.

We use the \(\mathcal{F} (x, y) \) that captures \(f(m) \) to generate a recursive specification for \(f(m) \).

And since consistent recursively axiomatized theories extending Q are among the consistent recursively axiomatized theories, every total function that can be captured by a consistent recursively axiomatized theory extending Q is recursive. So a total function is captured in a consistent recursively axiomatized theory extending Q iff it is recursive. And increasing the power of a deductive system from Q to PA and beyond does not extend the range of captured functions. So the recursive functions, Turing computable functions and total functions captured by a consistent recursively axiomatized theory extending Q are the same.\(^7\)

E14.10. Given that \(\text{Plus}(x, y) \) captures plus(m, n) in consistent theory \(T \), apply the method of T14.10 to show that plus is recursive.

Failure of Counterexamples

Another reason for accepting Church’s thesis is the failure to find counterexamples. This may be very much the same point as before: When we set out to define a notion of computability, or compute a function, what we end up with are recursive functions, rather than something other. We have seen that many standard computable functions are in fact recursive. Of course, god’s mind, Zeno’s machine, an MH machine, or the like might compute a non-recursive function. Perhaps there are such devices. However, on our account, they are not algorithmic. What we do not seem to have are algorithmic methods for computing non-recursive functions.

But also in this category of reasons to accept Church’s thesis is the failure of a natural strategy for showing that Church’s thesis is false. Suppose one were to propose that the primitive recursive functions are all the computable functions, and so that regular minimization is redundant (perhaps you have had this very idea). Here is a way to see this hypothesis false:

Observe, as in the recursive enumeration box, that the primitive recursive functions are recursively enumerable, primitive recursive functions of one free variable are

\(^7\)And there are more. Church himself was originally impressed by an equivalence between his lambda-definable functions and the recursive functions. As additional examples, Markov algorithms are discussed in Mendelson, *Introduction to Mathematical Logic*, §5.5; abacus machines in Boolos, Burgess and Jeffrey, *Computability and Logic*, §5; see below for discussion of the Kolmogorov-Uspenskii machine.
enumerable, and so forth. Consider an enumeration of the primitive recursive functions of one free variable and an array as follows.

(K)
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0</td>
<td>$f_0(0)$</td>
<td>$f_0(1)$</td>
<td>$f_0(2)$</td>
</tr>
<tr>
<td>f_1</td>
<td>$f_1(0)$</td>
<td>$f_1(1)$</td>
<td>$f_1(2)$</td>
</tr>
<tr>
<td>f_2</td>
<td>$f_2(0)$</td>
<td>$f_2(1)$</td>
<td>$f_2(2)$</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

And consider the function $d(n) = f_n(n) + \hat{1}$. This function is computable; for any n: (i) run the enumeration to find f_n; (ii) run f_n to find $f_n(n)$; (iii) add one. Since each step is recursive, the whole is computable. But $d(n)$ is not primitive recursive: $d(0) \neq f_0(0)$; $d(1) \neq f_1(1)$; and in general, $d(n) \neq f_n(n)$; so d is not identical to any of the primitive recursive functions. So there are computable functions that are not primitive recursive.

It is natural to think that a related argument would show that not all computable functions are recursive: recursively enumerate the recursive functions; then diagonalize to find a computable function not on the list. But this does not work! As described in the recursive enumeration box, it is an entirely "grammatical" matter to enumerate the primitive recursive functions. But there is no parallel method for the recursive functions. This is clear already by the halting and definition problems (for the latter see E14.7)—there is no recursive way to say in general whether a function is regular, and so to identify functions as recursive. But we may make the point by another diagonal argument (here applied to Turing machines).

Suppose there is a recursive enumeration of Turing machines to compute recursive functions (of one free variable) and consider an array as follows.

(L)
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Π_0</td>
<td>$\Pi_0(0)$</td>
<td>$\Pi_0(1)$</td>
<td>$\Pi_0(2)$</td>
</tr>
<tr>
<td>Π_1</td>
<td>$\Pi_1(0)$</td>
<td>$\Pi_1(1)$</td>
<td>$\Pi_1(2)$</td>
</tr>
<tr>
<td>Π_2</td>
<td>$\Pi_2(0)$</td>
<td>$\Pi_2(1)$</td>
<td>$\Pi_2(2)$</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With modifications appropriate to this enumeration, by reasoning from T14.2 each $\Pi_n(n)$ computes a recursive $f(n) = \text{decode}(\text{right}(n, n, i, j|\text{stop}(n, n, j) = \hat{0}))$; since $f(n)$ is recursive $f(n) + \hat{1}$ is recursive and computed by some $\Delta(n)$; $\Delta(n)$ is a Turing program of one free variable; so $\Delta(n)$ appears in the enumeration of Turing programs. But this is impossible: $\Delta(0) \neq \Pi_0(0)$; $\Delta(1) \neq \Pi_1(1)$; and in general $\Delta(n) \neq \Pi_n(n)$. Reject the assumption: there is no recursive enumeration of Turing machines to compute recursive functions.
Enumerating Primitive Recursive Functions

Introduce a language L_0 for an alternative representation of the recursive functions. The syntax of this language is developed in the usual way. Symbols are Z^0, S^1, I^n_1, $Comp^n$ and Rec^n with parentheses and comma. Then,

1. **RL**
 - (b) If P^n is Z^0, S^1 or I^n_i (for $1 \leq i \leq n$) then P^n is a formula.
 - (c) If P^m and Q^n_1, \ldots, Q^n_m are formulas, then $Comp^2(P^m, Q^n_1, \ldots, Q^n_m)$ is a formula.
 - (r) If P^n and R^{n+2} are formulas, then $Rec^{n+1}(P^n, R^{n+2})$ is a formula.
 - (c) Any formula can be formed by repeated application of these rules.

For (c) we allow the superscript on a Q_i to be 0 so long as at least some are n. These expressions may be exhibited on trees in the usual way. So, for example, you should be able to see that $Rec^2(I^3_1, Comp^3(S^1, I^2_3))$ is a formula.

And expressions of this language may be interpreted so that each P^n represents a recursive function that applies to n objects. Say \bar{x} is x_1, \ldots, x_n.

1. **IR**
 - (z) $I[Z^0] = \text{zero}()$
 - (s) $I[S^1](x) = \text{suc}(x)$
 - (i) $I[I^n](\bar{x}) = \text{idn}^n_i(\bar{x})$
 - (c) $I[\text{Comp}^{3}(\text{P}^m, Q^n_1, \ldots, Q^n_m)](\bar{x}) = I[\text{P}^m](I[Q^n_1](\bar{x}) \ldots I[Q^n_m](\bar{x}))$
 - (r) $I[\text{Rec}^{n+1}(P^n, R^{n+2})](\bar{x}, 0) = I[P^n](\bar{x})$
 - $I[\text{Rec}^{n+1}(P^n, R^{n+2})](\bar{x}, y) = I[R^{n+2}](\bar{x}, y, I[\text{Rec}^{n+1}(P^n, R^{n+2})](\bar{x}, y))$

You should be able to construct a tree parallel to one that shows P is a formula, to show its interpretation. Thus, for example, $I[\text{Rec}^{2}(I^3_1, Comp^3(S^1, I^2_3))](x, y) = \text{plus}(x, y)$, where $I[\text{Rec}^{2}(I^3_1, Comp^3(S^1, I^2_3))](x, 0) = \text{idnt}^3_1(\bar{x})$ and $I[\text{Rec}^{2}(I^3_1, Comp^3(S^1, I^2_3))](x, y) = \text{suc}(\text{idnt}^3_2(x, y, \text{plus}(x, y)))$. Again, for case (c), \bar{x} may be empty when the superscript on some Q_i is 0.*

Now a recursive enumeration of the primitive recursive functions is straightforward. From their interpretation, an enumeration of the formulas is an enumeration of the primitive recursive functions: Assign numbers to the symbols and formulas of L_0; find a recursive $RLWFF(n)$ true of numbers for formulas; and enumerate,

$$\text{eprfc}(0) = \mu Z[RWFF(Z)]$$
$$\text{eprfc}(Sn) = \mu Z[eprfc(n) < Z \land RWFF(Z)]$$

So there is a recursive enumeration of the primitive recursive functions, there is an enumeration of the functions of one free variable, and so forth. Observe that the enumeration of the primitive recursive functions is based entirely on syntactical considerations from the formulas of our language.

*Observe that we apply a generalized version of composition on which $I[Q^n_1](\bar{x}) \ldots I[Q^n_m](\bar{x})$ are substituted respectively for the variables of $I[P^m]$. Clearly, a generalized composition results from multiple applications of our familiar singular form. And singular composition can be seen as an instance of the generalized form: Say we have $P^n(\bar{x}, w, \bar{z})$ and $Q^n(\bar{y})$ and want $R^n(\bar{x}, \bar{y}, \bar{z}) = P^n(\bar{x}, Q^n(\bar{y}), \bar{z})$. Suppose subscripts on the variables of R are $x_1, \ldots, x_d, y_1, \ldots, y_b$ and z_1, \ldots, z_c where y-subscripts may or may not overlap x- and z-subscripts. If $b = 0$ so that \bar{y} is empty, then $Comp^n(P^n, I^n_{x_1} \ldots I^n_{x_d}, Q^n, I^n_{y_1} \ldots I^n_{y_b})$ will do. Otherwise take, $Comp^n(P^n, I^n_{x_1} \ldots I^n_{x_d}, Comp^n(Q^n, I^n_{y_1} \ldots I^n_{y_b}, I^n_{z_1} \ldots I^n_{z_c})$.
There is no recursive enumeration of the recursive functions. Still, we could “diagonalize out” of the recursive functions given a computable enumeration of the recursive functions—a computable enumeration would let us compute a function not on the list. We have shown that there is no recursive enumeration of the recursive functions. This does not show that there is no computable enumeration. But it does show that our strategy for finding a counterexample to Church’s thesis requires that which it is attempting to show: a computable function (to do the enumeration) that is not recursive. There is a recursive enumeration of Turing machines; but as in the case of a machine that never halts, not every Turing machine computes a total function. Thus the enumeration of Turing machines does not automatically convert to a recursive enumeration of Turing machines to compute recursive functions. And we are in fact blocked from recursively enumerating the recursive functions. So we are blocked from the proposed means of finding a computable function that is not a recursive function. So this attempt to find a counterexample to Church’s thesis fails.8

*E14.11. (i) Taking Plus2 to abbreviate Rec2(\textit{I}_1, \textit{Comp}^3(\textit{I}_1, \textit{I}_2)) as above, write down the \textit{L}_r expression that corresponds to \textit{times}. (ii) Taking Times2 to abbreviate the expression you have just found, write down the \textit{L}_r expression that corresponds to fact.

*E14.12. (i) Assign numbers to expressions of \textit{L}_r and produce the relation \textit{RLWFF} to complete the demonstration that there is an enumeration of primitive recursive functions. (ii) Extend the demonstration that there is an enumeration of primitive recursive functions to an enumeration \textit{emurec} of \(\mu\)-recursive functions (as from E14.7). Hints: Take section 10.3.2 as a model for assigning numbers to symbols with superscripts and/or subscripts. For an \textit{RLSEQ} like \textit{FORMSEQ}, you will need to know the number of \textit{PLACES} for members of the sequence (always contained in the first symbol). Also, for \textit{Comp}, you will want a number for a sequence of \(m\) prior formulas each of which has \(0\) or \(n\) places.

8S. Kleene reports that “When Church proposed this thesis [around 1933], I sat down to disprove it by diagonalizing out of the class of the \(\lambda\)-definable functions. But, quickly realizing that the diagonalization cannot be done effectively, I became overnight a supporter of the thesis.” (“Origins of Recursive Function Theory,” 59). Again, the \(\lambda\)-definable functions are equivalent to the recursive functions (page 821n7).
The nature of an Algorithm

There are also reasons for Church’s thesis from the very nature of an algorithm. Perhaps the “received wisdom” with respect to Church’s thesis is as follows.

The reason why Church’s [Thesis] is called a thesis is that it has not been rigorously proved and, in this sense, it is something like a “working hypothesis.” Its plausibility can be attested inductively—this time not in the sense of mathematical induction, but “on the basis of particular confirming cases.” The Thesis is corroborated by the number of intuitively computable functions commonly used by mathematicians, which can be defined within recursion theory. But Church’s Thesis is believed by many to be destined to remain a thesis. The reason lies, again, in the fact that the notion of effectively computable function is a merely intuitive and somewhat fuzzy one. It is quite difficult to produce a completely rigorous proof of the equivalence between intuitively computable and recursive functions, precisely because one of the sides of the equivalence is not well-defined (Berto, *There’s Something About Gödel*, pages 76–77).

There are a couple of themes in this passage. First, that Church’s thesis is typically accepted on grounds of the sort we have already considered. Fair enough. But second that it is not, and perhaps cannot, be proved. The idea seems to be that the recursive functions are a precise mathematically defined class, while the algorithmically computable functions are not. Thus there is no hope of a demonstrable equivalence between the two.

But we should be careful. Granted: If we start with an inchoate notion of computable function that includes, at once, calculations with pencil and paper, calculations on the latest and greatest supercomputer, and calculations on Zeno’s machine, there will be no saying whether the computable functions definitely are, or are not, identical to the Turing computable functions. But this is not the notion with which we are working. We have a relatively refined technical account of algorithmic computability. Of course, it is not yet a mathematical definition. But neither are our chapter 1 accounts of logical validity and soundness; yet we have been able to show in T9.1 that any argument that is quantificationally valid (in our mathematical sense) is logically valid. And similarly, the whole translation project of chapter 5 assumes the possibility of moving between ordinary and mathematical notions. It is at least possible that an

9Material in this section is developed from Smith, *An Introduction to Gödel’s Theorems*, chapter 45; Smith, “Squeezing Arguments”; along with Kolmogorov and Uspenskii, “On the Definition of an Algorithm.” See also Black, “Proving Church’s Thesis.”
informally defined predicate might pick out a precise object. The question is whether we can “translate” the notion of an algorithm to formal terms.

So let us turn to the hard work of considering whether there is an argument for accepting Church’s thesis. A natural first suggestion is that the step-by-step and finite nature of any algorithm is always within the reach of, or reflected by, some Turing program or recursive function, so that the algorithmically computable functions are inevitably recursively computable. Already, this may amount to a consideration or reason in favor of accepting the Thesis. In chapter 45 of his *An Introduction to Gödel’s Theorems*, Peter Smith advances a proposal according to which such considerations amount to proof.

Smith’s overall strategy involves “squeezing” algorithmic computability between a pair of mathematically precise notions. Even if a condition C (say, “being a tall person”) is vague, it might remain that there is some completely precise sufficient condition S (being over seven feet tall), such that anything that is S is C, and perfectly precise necessary condition N (being over five feet tall) such that anything that is C is N. So,

$$ S \implies C \implies N $$

If it should also happen that N implies S, then the loop is closed, so that,

$$ S \iff C \iff N $$

And the target condition C is equivalent to (squeezed between) the precise necessary and sufficient conditions. Of course, in our simple example, N does not imply C: being over five feet tall does not imply being over seven feet tall.

For Church’s thesis, we already have that Turing computability is sufficient for algorithmic computability. So what is required is some necessary condition so that,

$$ T \implies A \implies N $$

Turing computability implies algorithmic computability and algorithmic computability implies the necessary condition. Church’s thesis follows if, in addition, N implies Turing computability. As it turns out, we shall be able to specify a condition N which (mathematically) implies T. Then translation connects T to A and then A to N.

The argument has three stages: The idea is that, (i) there are some necessary features of an algorithm, such that any algorithm has those features; (ii) any routine with those features is embodied in a modified Kolmogorov-Uspenskii (MKU) machine; (iii) every function that is MKU computable is recursive, and so Turing computable.

10. This idea is contained already in the foundational papers of Church, “An Unsolvable Problem,” and Turing, “On Computable Numbers.”
The result is that MKU computability works as the precise condition N in the squeezing argument: A implies N, and N implies T. So T iff A iff N, and Church’s thesis is established.

Perhaps the following are necessary conditions on any algorithm, so that any algorithm satisfies the conditions. If, additionally, we hold that any routine which satisfies the constraints is an algorithm, then the conditions are necessary and sufficient—so we may see them as an extension or sharpening of our initial more sketchy account. At this stage, though, the important requirement is that any algorithm satisfies the conditions.\footnote{Smith seems to grant that some such conditions are necessary, even though some method may satisfy the conditions yet fail to count as an algorithm. Perhaps this is because he is impressed by the initial examples of routines implemented by human agents with relatively limited computing power. This is not a problem for his squeezing argument, since the corresponding recursive function may yet be computable by some other method which satisfies more narrow constraints—for example, by a Turing machine.}

\begin{enumerate}[AC (1)]
\item There is some \textit{dataspace} consisting of a finite array of “cells” which may stand in some relations $R_0, R_1 \ldots R_a$ and contain some entities $s_0, s_1 \ldots s_b$.
\item At every stage in a computation, there is some finite “active” portion of the dataspace upon which the algorithm operates.
\item The body of the algorithm includes finitely many instructions for modifying the active portion of the dataspace depending on its character, and for jumping to the next set of instructions.
\item For the calculation of a function $f(\tilde{x}) = y$ there is some finite initial representation of \tilde{x} and some way to read off the value of y, after a finite number of steps.
\end{enumerate}

So this sets up an algorithm abstractly described. It is hard to see how an algorithm would not involve some space, portions of which would stand in different relations. At any given stage the algorithm operates on some portion of the space, where these operations may depend upon and modify the arrangement of the active space. The algorithm itself consists of some instructions for operating on the dataspace, where these are generically of the sort, “if the active area is of type t, perform action a, and go to new instructions q.” The calculation of a function $f(\tilde{x})$ somehow takes \tilde{x} as
an input, and gives a way to read off the value of \(y \) as an output. And an algorithm terminates in a finite number of steps.

Observe that the finite constraints on the dataspace, relations, and symbols in (1) are a consequence of the other conditions: Beginning with a finite initial representation of some \(\bar{x} \), including finitely many cells of the dataspace standing in finitely many relations and filled with finitely many symbols, then modifying finite portions of the space finitely many times, all we are going to get are finitely many cells, standing in finitely many relations, filled with finitely many symbols.

Just as there are infinitely many integers, each individually finite, so our account of an algorithm permits infinitely many different active areas, each individually finite. Continuing with the analogy to integers, it is natural to think that an algorithm could contain instructions of the sort “if \(a \) is odd write 1, and otherwise 0.” This instruction has application to infinitely many integers, and might be represented as a set (function),

\[
\{(0, 0), (1, 1), (2, 0), (3, 1), \ldots\}
\]

with infinitely many members. One might therefore think that an algorithm should permit infinitely many instructions (one for each pair) to accommodate the infinitely many inputs. But consider how the instruction to write 1 iff \(a \) is odd is actually implemented: given an input, we do not apply an infinite “lookup table” to find the result; rather, we apply a rule, dividing by 2 to see if there is a remainder. As for a Turing machine, such a rule is implemented by finitely many instructions. If an instruction does require an infinite lookup table, then it is not algorithmic just because it requires the infinite table. This is is an application of finite constraint from section 14.3.1. And we exhibit the point that finitely many instructions cannot include specifications for all the infinitely many possible arrangements of a dataspace.

All the same, algorithms have wide compass. On the face of it, given their extreme simplicity, it is not obvious that Turing machines compute every algorithmically computable function. But a related device, the MKU machine (modified from Kolmogorov and Uspenskii, “On the Definition of an Algorithm”) purports to implement conditions along these lines.

MKU (1) There are some cells \(c_0, c_1 \ldots c_a \) which may stand in relations \(R_0, R_1 \ldots R_b \) and contain symbols \(s_0, s_1 \ldots s_c \). In simple cases, we may think of such arrangements graphically as follows,
In this case there are four cells with contents a, b, c, d—though there is no requirement that a cell contain just a single symbol. There are relations R1 and R2; R2 is a binary relation and R1 tertiary; each such relation constitutes an *edge*.

(2) Among the one-place relations is an *origin* property O such that exactly one cell has it—as indicated by \ast above. Then the active area includes all cells on paths $\leq n$ edges from the origin. From (M), cells other than the origin are all one edge from the origin cell.

(3) Instructions are finitely many quadruples of the sort $\langle q_i, S_a, S_b, q_j \rangle$ where q_i and q_j are instruction labels; S_a describes an active area; and S_b a state with which the active area is to be replaced. Associate each cell in S_a with the least number of edges between it and the origin; let n be the greatest such integer in S_a; this n remains the same in every quadruple with label q_i, though the value of n may vary as q_i varies. Again, instructions are a function in the sense that no instruction has $\langle q_i, S_a \rangle$ the same but $\langle S_b, q_j \rangle$ different.\(^\text{12}\) We may see S_a and S_b as follows.

In this case $n = 2$. The active area S_a is replaced by the configuration S_b. The concentric rectangles indicate the “boundary” cells which may themselves be related to cells not part of the active area; the replacing area S_b and S'_a might both map onto a given dataspace in case one is included in the other. But the consistency requirement is satisfied when n is constant: for consistency, it is sufficient to require that so long as $n(q_i, S_a)$ is a constant, there are no instructions with $\langle q_i, S_a \rangle$ the same but $\langle S_b, q_j \rangle$ different.

\(^\text{12}\)
must have a boundary with cells to match boundary cells of the active area. Relations from and to boundary cells from outside the active area are maintained when an active area is replaced.

(4) There is some finite initial setup, and some means of reading off the final value of the function (for different relation and symbol sets, these may be different). We think of the origin cell as the “machine head,” where an algorithm always begins with an instruction label \(q_i = 1 \) and terminates when \(q_i = 0 \).

So an MKU machine is a significant generalization of a Turing machine. We allow arbitrarily many symbols. And the dataspace is no longer a tape with cells in a fixed linear relation, but a space with cells in arbitrary relations which may themselves be modified by the program. Instructions respond to, and modify, not just individual cells, but arbitrarily large areas of the dataspace. Still, it remains that an instruction \(q_i \) is of the sort, if \(S_a \) perform action \(A \) and go to instruction \(q_j \). So, the instruction (N) might be applied to get,

As indicated by the dotted line, the dataspace (A) has an active area of the sort required in instruction (N); so the active area is replaced according to the instruction for the resultant space (B). The example is arbitrary. But that is the point: The machine allows arbitrary rote modifications of a dataspace.

Insofar as the MKU machine is a generalization of a Turing machine, it is clear enough that Turing computable functions are MKU computable. But for us the important point is that every MKU computable function is recursive and so Turing computable.

T14.11. Every MKU computable function is a recursive function.
We have been through this sort of thing before. And there are different ways to proceed. I indicate only some natural first steps. Begin assigning numbers to labels, symbols, cells and relations in some reasonable way.

\[
\begin{align*}
 a. & \quad g[q_i] = 3 + 8i \\
 b. & \quad g[s_i] = 5 + 8i \\
 c. & \quad g[c_i] = 7 + 8i \\
 d. & \quad g[r^j] = 9 + 8(2^i \times 3^j)
\end{align*}
\]

Then the number for a page is \(\pi_0^n \times \pi_1^n \times \ldots \times \pi_n^n \), and for an edge \(\pi_0^n \times \pi_1^n \times \ldots \times \pi_{|w|}^n \). So a page is a cell with some symbols, and an edge is an i-place relation applied to i cells. Some data is a sequence of pages with distinct cell numbers, and a structure is a sequence of distinct edges. Cells are (immediately) connected on a structure when the structure has an edge of which both are members, and connected on a structure when there is a sequence of cells from the structure, beginning with the one, ending with the other such that each is immediately connected to the next. A space is a structure with exactly one origin and every cell connected to all the others. A datasource is of the sort \(m_0^n \times n^k \) where \(m \) numbers some data, \(n \) a space, and every cell from \(m \) appears in \(n \).

After that, with considerable work, \(\text{MKUMACH}(n) \) numbers the MKU machines. (Given the potential for arbitrarily many cells \(n \) edges from the origin,\(^\text{13}\) rather than supplementing the machine with repeating commands for every missing instruction, it is simplest to include a single label that loops on the origin, such that the machine defaults to it.) Then \(\text{kumach}(i, m, n) \) numbers an instruction as a function of the number for the machine, initial label, and dataspace. (Where cells are numbered, some \(S_a \) matches the active portion of a dataspace when there is a map on cells that makes \(S_a \) match the active area.) For machine i with input \(n \), \(\text{mkuspace}(i, n, j) \) and \(\text{mkustate}(i, n, j) \) give the current number of the dataspace and state. And \(\text{mkustop}(i, n, j) \) takes the value zero when the machine is stopped. Then,

\[
f(n) = \text{mkudecode}((\text{mkuspace}(i, n, j), \text{mkustate}(i, n, j), \text{mkustop}(i, n, j) = 0)))
\]

It is a chore to work this out (and you have an opportunity to do so in exercises). But it should be clear that it can be done. Then any MKU computable function is recursive, and therefore every MKU computable function is Turing computable.

Given this, the squeezing argument is complete: Turing computability implies algorithmic computability and algorithmic computability implies MKU and so Turing computability.

\(^{13}\) So, for example, a command might replace \(\circ \rightarrow \circ^* \) with \(\circ \rightarrow \circ^* \). After multiple iterations (and a shift of origin), the result might look like this:

\[
\begin{array}{c}
\text{o} \\
\rightarrow \circ \\
\circ \\
\end{array}
\]
computability. So the algorithmically computable functions are the same as the Turing computable functions. So Church’s thesis! This argument is just as strong as the premise that algorithmic computability implies MKU and so Turing computability. For this, we have translated an informal notion into a formal one. Insofar as translation is not itself a formal procedure, the result is not formal proof of Church’s thesis. But not all proof is entirely formal—it is natural think that, say, cases of translation and then derivation in chapter 6 prove their conclusions (as E6.22). So it may be that our argument is sufficient to prove its conclusion.

Perhaps it is difficult to imagine an algorithmic method that does not conform to AC and then MKU. But failure of imagination is not the same as proof. So there is space for different objections: First, one might worry that the account AC of an algorithm is insufficient in some respect. But AC is offered as a further exposition or sharpening of what it is to be an algorithm. Given this, our version of Church’s thesis applies to it. An argument about whether Church’s thesis applies to a class C of functions is not undercut by observing that there are classes other than C.

Still, one might worry that the MKU machine does not compute every algorithm from AC. Against this, there are a couple of replies. First, careful about what the MKU machine can do. Say we are interested in parallel computing, whether by persons following instructions or by computing devices. An MKU machine has but a single origin; this might seem to be a problem. Still, an active area might have many “shapes”—and things might be set up as follows,

(P)

with “satellite” centers to achieve the effect of parallel computing. Similarly, with a bit of thought, one can see how the MKU machine might achieve the effect of absolute addressing or the like. So it is important to recognize the generality already built into the MKU machine.

Perhaps, though, the objection goes through and some algorithmic method really is beyond the reach of the MKU machine. So for example some algorithm might require physical actions other than symbol manipulation. Consider a method for truth table construction with the instruction, “whack yourself in the head three times and write a T in the first row of the first column.” An MKU machine does not have a
head, and so cannot perform this action. More seriously, we might consider actions as applied to, say, a physical abacus—as “move the bead on the second wire to the leftmost available position.” The MKU machine does not move physical beads on a wire, so it does not perform addition on an abacus. Still, it should be possible to number the states of an abacus, and to represent the successive states so as to calculate any function that can be worked on the physical device. In this case, the claim is not that the MKU machine effectuates every algorithm, but rather that it models every algorithm. Supposing this is sustained, the argument for Church’s thesis stands.

So we are not left with a formal proof of Church’s thesis. Rather we have a (powerful) case for the result that Church’s thesis is true from the independent definitions, the failure of counterexamples, and the nature of an algorithm. For the latter, we translated an informal notion into a formal one—and our argument is as strong as that translation. Plausibly, there is no formal proof that you have a head. Still, there is a strong case to establish that you do! Similarly our case may seem sufficient to establish Church’s thesis.

To the extent that Church’s thesis is either plausible or established, our limiting results become full-fledged incomputability results with applications to logic and computing more generally. So, for example, by the decision problem, no Turing machine computes numbers for theorems of predicate logic. So by Church’s thesis, no algorithmic method computes numbers for theorems of predicate logic. And the result does not apply just to numbers: Suppose some algorithmic method identifies the theorems of predicate logic; this method is naturally extended to one that calculates numbers for theorems of predicate logic—but there is no such method; so no algorithmic method identifies the theorems of predicate logic. Thus there is, say, no extension of our proof strategies from chapter 6 to an algorithmic method that determines, for arbitrary \(P \), whether \(P \) is a theorem. Insofar as there is no such method, provability is not a decidable relation (see page 598).

In addition, from Church’s thesis, the computability of a function implies that it is recursive. Having attained Church’s thesis only at the very end, we have not applied the thesis in this way. But one might move from the observation that some function is computable, through the thesis, to the result that the function is recursive. In many cases, this shortcuts elaborate demonstrations that a function can be built up from the initial functions. So, for example, from the existence of computerized proof-checking programs, one might move to the conclusion that there is a recursive \(\text{PRFT}(m, n) \) to say whether the object \(m \) is a proof of \(n \). We already know that there is this recursive relation. But this sort of thing is frequently done.

*E14.13. Work out codes for the MKU machine through dataspace. Very hard-core:
Theorems of Chapter 14

T14.1 There is a recursive enumeration of the Turing machines.

T14.2 Every Turing computable function is a recursive function.

T14.3 Every recursive function is Turing computable.

T14.4 There is no Turing machine H_i such that $H_i(i) = 0$ if $\Pi_i(i)$ halts and $H_i(i) = 1$ if it does not.

T14.5 There is no Turing machine $H_i(n)$ such that $H_i(i, n) = 0$ if $\Pi_i(n)$ halts and $H_i(i, n) = 1$ if it does not.

T14.6 If Q is ω-consistent, then no Turing computable function $f(n)$ is such that $f(n) = 0$ just in case n numbers a theorem of predicate logic.

T14.7 The set of truths of \mathcal{L}_{nt} is not recursively enumerable.

T14.8 If T is a recursively axiomatized sound theory whose language includes \mathcal{L}_{nt}, then T is negation incomplete.

T14.9 If T is a recursively axiomatized theory extending Q, then there is a sentence \mathcal{P} such that if T is consistent $T \not\vdash \mathcal{P}$, and if T is ω-consistent, $T \not\vdash \sim \mathcal{P}$.

T14.10 Every total function that can be captured by a recursively axiomatized consistent theory extending Q is recursive.

T14.11 Every MKU computable function is a recursive function.

And we mention,

CT Church’s Thesis: The total numerical functions that are effectively computable by some algorithmic method are just the recursive functions.

Assuming functions $\text{code}(n)$ and $\text{decode}(d)$, complete the demonstration that any MKU computable function $f(n)$ is recursive.

E14.14. For each of the following concepts, explain in an essay of about two pages, so that (college freshman) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

a. The Turing computable functions, and their relation to the recursive functions.
b. The essential elements from the chapter contributing to a demonstration of the decision problem, along with the significance of Church’s thesis for this result.

c. The essential elements from this chapter contributing to a demonstration of (the semantic version of) the incompleteness of arithmetic.

d. Church’s thesis, along with reasons for thinking it is true, including the possibility of demonstrating its truth.
Concluding Remarks
We began this text in part I setting up the elements of classical symbolic logic. Thus we began with four notions of validity: logical validity, validity in AD, validity in ND, and semantic quantificational validity. After a parenthesis in part II to think about techniques for reasoning about logic, we began to put those techniques to work. The main burden of part III was to show soundness and completeness of our classical logic, that $\Gamma \vdash \mathcal{P}$ iff $\Gamma \vDash \mathcal{P}$. This is the good news. In part IV we established some limiting results. These include Gödel’s first and second theorems, that no consistent, recursively axiomatizable extension of Q is negation complete, and that no consistent recursively axiomatized theory extending PA proves its own consistency. Results about derivations are associated with computations, and the significance of this association extended by means of Church’s thesis. This much constitutes a solid introduction to classical logic, and should position you make progress in logic and philosophy along with related areas of mathematics and computer science.

Excellent texts which mostly overlap the content of this one, but extend it in different ways are Mendelson, *Introduction to Mathematical Logic*; Enderton, *A Mathematical Introduction to Logic*; and Boolos, Burgess and Jeffrey, *Computability and Logic*; these put increased demands on the reader (and such demands are one motivation for our text), but should be accessible to you now; Shoenfield, *Mathematical Logic* is excellent yet still more difficult. Smith, *An Introduction to Gödel’s Theorems* extends the material of part IV; Cooper, *Computability Theory* develops it especially from the perspective of chapter 14. Manzano, *Model Theory* and, more advanced, Hodges, *A Shorter Model Theory* extend the material of section 11.4. Much of what we have done presumes some set theory as Enderton, *Elements of Set Theory*.

In places, we have touched on logics alternative to classical logic, including free logic, multi-valued logic, modal logic, and logics with alternative accounts of the conditional. A good place to start is Priest, *Non-Classical Logics*, which is profitably read with Roy, “Natural Derivations for Priest” which introduces derivations in a style much like our own. Our logic is first-order insofar as quantifiers bind
just variables for objects. Second-order logic lets quantifiers bind variables for
classes or properties as well (so $\forall x \forall y[x = y \rightarrow \forall F(Fx \leftrightarrow Fy)]$ expresses
the indiscernibility of identicals). Second-order logic has important applications
in mathematics, and raises important issues in metalogic. For this, see Shapiro,

Plural logic adds to our symbols quantifiers $\forall xx$ and $\exists yy$, read *for any things xx*, and
there are some things yy, along with relations of the sort $t < T$ to say that t is among
the T’s. This permits some (but not all) the powers of second-order logic without
apparent quantification over classes or properties. Oliver and Smiley, *Plural Logic* is
a good introduction. Though our languages have infinitely many symbols, *formulas*
are always finitely long. Infinitary logic drops this constraint and allows expressions
that are infinitely long. As for plural and second-order logic, the expressive power of
infinitary logic exceeds that of our own. Discussions of infinitary logic presuppose
significant background in set theory though Nadel, $L_{\omega_1 \omega}$ and Admissible Fragments
is a reasonable survey.

Philosophy of logic and mathematics is a subject matter of its own. Shapiro,
“Philosophy of Mathematics and Its Logic” (along with the rest of the articles in the
Oxford Handbook), and Shapiro, *Thinking About Mathematics* are a good place to
start. Benacerraf and Putnam, *Philosophy of Mathematics* and Marcus and McEvoy,
Philosophy of Mathematics are collections of classic articles.

Smith’s online, “Teach Yourself Logic” is an excellent comprehensive guide to
further resources.

Have fun!
Bibliography

Index

~ tilde, 34, 49
→ arrow, 34, 49
∨ wedge, 42, 61
∧ caret, 42, 61
↔ double arrow, 42, 61
= equals, 49, 66, 91
∀ for all, 49
∀x universal quantifier, 52
∃ reversed E, 61
∃x existential quantifier, 61
∅ zero (object language), 66, 91
S successor, 66, 91
+ plus, 66, 91
× times, 66, 91
< less than, 66, 91, 323
⊢ single turnstile, 72, 215
.A x replaced by t, 84, 286
≤ less than or equal, 91, 323
|= double turnstile, 109, 133
∈ set membership, 119
{ } curly brace, 119
() angle brace, 119
∩, ∩ intersection, 119
∪, ∪ union, 119
ϕ empty set, 119
N interpretation L_{NT}, 120
d(ϕ|o) variable assignment, 122
l_0[t] term assignment, 122
l_0[ϕ] satisfaction assignment, 125
ll interpretation function, 143
ll_0 intended interpretation, 143
⊥ bottom, 234
P'/s replace one or more, 314
N interpretation L_{NT}, 325
⊢ stroke, 344
⇒ metalinguistic conditional, 345
⇔ metalinguistic biconditional, 345
→ metalinguistic negation, 345
Δ metalinguistic conjunction, 345
∨ metalinguistic disjunction, 345
⊥ metalinguistic contradiction, 345
S metalinguistic existential, 349
A metalinguistic universal, 363
n numeral of L_{NT}, 419, 609
T r/s replace at most one, 455
A B /C replace one, 459
P^c closure, 498, 579
\mathfrak{M} b(\Sigma) models of \Sigma, 539
|\mathfrak{M}| sentences true on \mathfrak{M}, 540
\cong \ t-isomorphism, 543
≈ isomorphism, 543
≡ elementary equivalence, 545
\subseteq submodel, 551
\subseteq elementary submodel, 552
\subseteq t-embedding, 555
\subseteq embedding, 555
\cong t-elementary embedding, 557
\cong elementary embedding, 557
|\mathfrak{R}| range of restriction, 556
\mathcal{M}_n at most n, 559
L_n at least n, 559
≈ same size set, 570
\aleph cardinal number, 570
INDEX

<table>
<thead>
<tr>
<th>Concept</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gödel number</td>
<td>650</td>
</tr>
<tr>
<td>numeral</td>
<td>650</td>
</tr>
<tr>
<td>recursive function</td>
<td>650</td>
</tr>
<tr>
<td>symbol code</td>
<td>650</td>
</tr>
<tr>
<td>number after sub</td>
<td>771</td>
</tr>
</tbody>
</table>

Alternatives to classical logic

- free logic: 118
- infinitary logic: 562
- modal logic: 440
- GL: 788
- K4, 684, 791
- K4LR, 788
- multi-valued logic: 161
- relevant logic: 27, 785
- second-order logic: 562

Argument AR
- standard form: 5

Axiomatic derivation
- A^*: 82, 406
- A^*: 448, 455, 460, 470, 474, 482, 509
- $A^\#$: 523
- AD: 87
 - deduction theorem: 448–452
 - equivalent to ND: 441–474
 - independence of axioms: 407, 534–538
- Peano arithmetic: 91–98
- quantificational ADq: 84
- sentential ADs: 75

Generic account AL
- axiom: 71
- consequence AV: 72
- cumulative nature: 74, 77–78, 93, 452
- derivation: 74
- preliminary system AP: 72
- proof: 72
- rule: 71
- theorem: 72
- validity: 72

Beta function
- see recursive functions

Biconditional
- formal expression: 43
- ordinary operator
 - if and only if: 168
 - just in case: 168

Chinese remainder theorem
- proved in PA: 716

Church’s thesis
- see computability

Completeness
- 435
 - completeness: 476
 - for sentences: 542
 - quantificational: 495–523
 - sentential: 484–495
 - completeness, definitions for
 - consistency Con: 485, 497, 520
 - core thesis \star: 486
 - core thesis $\star\star$: 498
 - core thesis $\star\star\star$: 510
 - maximality Max: 490, 502, 520
 - scapegoat set Sctg: 502, 521
 - universal closure: 498
 - completeness: 548, 599
 - finite domain: 582
 - of theory L: 592
 - of theory S: 586
 - incompleteness of arithmetic: 666–671, 676–682, 812–815
 - relative completeness: 542
 - completeness and: 542
 - completeness and: 548

Computability
- algorithmic computability: 816–818
 - definition AC: 827
- Church’s thesis CT: 815–818
 - basis for: 818–833
- effective computability: 816
- effective decidability: 598, 816
- halting problem: 808
- MKU computable function
INDEX

same as recursive, 830–831
MKU machine, 828–830
Turing computable function, 796
same as recursive, 800–806
Turing machine, 794–799

conditional
and cause, 169
formal expression, 34
antecedent, 40
consequent, 40
material, 40
ordinary operator
if then, 166
only if, 167
subjunctive, 169

conjunction
formal expression, 43
conjunct, 43
ordinary operator
and, 161
both and, 163
but, 161

consistency
defined Con, 485, 497, 520
formal consistency sentences
alternatives to Cont, 783–786
Cont, 683
not provable in PA, 682–782
derivability conditions, 684
semantic argument for, 483

consistent story, 6–12

countability, 36, 51

decidability, effective, see computability
decision problem, 672, 811

disjunction
formal expression, 43
disjunct, 43
ordinary operator
either or, 163
or, exclusive, 162
or, inclusive, 162
unless, 163

equality
reflexivity
theorem of AD, 88
theorem of ND, 316
symmetry
theorem of AD, 88
theorem of ND, 316
transitivity
theorem of AD, 89
theorem of ND, 316
equivalence class, 517
equivalence relation, 516
expressive completeness, 526–530

font conventions, 731
formal language
Δ₀ formula, 625
Π₁ formula, 625
Σ₁ formula, 625
Σᵅ formula, 766
basic sentence, 100
defined expressions, 689–697
diagonalization, 663, 676–677
expression of, 35
expressive completeness, 526–530
characteristic sentence, 527
Lᵥₑₙₑ, 66
Lₑₙₑ, 91, 323
Lₙₑ, 50
Lₑ, 35

normal form, 401
conjunctive normal form, 583
extended normal form, 768

object language, 35
operator
binary, 40, 58
scope, 58
unary, 40, 58
unique readability, 531–533
see also formal language, sentential;
formal language, quantificational

formal language, quantificational, 48–68
abbreviation AB, 61, 63, 66
atomic formula, 57, 62
bound variable, 59
bounded quantifiers, 323
closure
 existential, 509, 579
 universal, 498
formula FR, FR’, 55, 62
free for, 84, 286
free term, 314, 417, 455
free variable, 59
immediate subformula, 57, 62
main operator, 57, 62
operator, 57, 62
restricted quantifiers, 319, 323
sentence, 59
subformula, 57, 62
term TR, 53
variable-free term, 84, 286, 506
vector, 603
vocabulary VC, 49
see also formal language

formal language, sentential, 34–47
abbreviation AB, 42, 44
atomic formula AS, 41, 43
formula FR, FR’, 38, 43
immediate subformula IS, 41, 43
main operator MO, 41, 43
sentence, 38
subformula SB, 41, 43
unabbreviation, 45–47
vocabulary VC, 34
see also formal language

function
capture of CPf, 624
expression of EXf, 610
see also set theory; recursive function
fundamental theorem of arithmetic, 489, 501

Gödel number
formula, 487, 499, 649
super, 650
Turing machine, 800

Gödel’s first incompleteness theorem
see completeness
Gödel’s second incompleteness theorem
see consistency
Gödel, K., 484, 596, 617, 678
generalization
 existential
 formal expression, 61
 universal
 formal expression, 49

halting problem
see computability
Henkin, L., 484, 786
Hilbert, D., 597, 686

incompleteness of arithmetic
see completeness
invalidity
in derivation systems
 semantic argument for, 483
logical
 test for IT, 13
quantificational
 and tree diagram, 133
 in metalanguage, 381
sentential
 and truth table, 110
see also validity

Löb’s theorem, 786–791

mathematical induction
 formal scheme
 axiom, 92, 330
 rule, 92, 331
 general form, 391, 396
metalanguage
 derivations in, 347
 formalized, 345–346, 357, 379
 natural, 35–37, 52, 71
rules for reasoning in
 biconditional rules bcond, 354
 bottom introduction bot, 346
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>commutation com</td>
<td>346</td>
</tr>
<tr>
<td>conditional rules cnd</td>
<td>354</td>
</tr>
<tr>
<td>conjunctive rules cnj</td>
<td>346</td>
</tr>
<tr>
<td>definition def</td>
<td>376</td>
</tr>
<tr>
<td>DeMorgan dem</td>
<td>346</td>
</tr>
<tr>
<td>disjunctive rules dsj</td>
<td>346</td>
</tr>
<tr>
<td>distribution dst</td>
<td>356</td>
</tr>
<tr>
<td>equality rules eq</td>
<td>366</td>
</tr>
<tr>
<td>existential rules exs</td>
<td>349</td>
</tr>
<tr>
<td>idempotence idm</td>
<td>346</td>
</tr>
<tr>
<td>inspection ins</td>
<td>350</td>
</tr>
<tr>
<td>negation rules neg</td>
<td>346</td>
</tr>
<tr>
<td>quantifier negation qn</td>
<td>364</td>
</tr>
<tr>
<td>universal rules unv</td>
<td>363</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Theory</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>axiomatization</td>
<td>539</td>
</tr>
<tr>
<td>finite</td>
<td>539</td>
</tr>
<tr>
<td>categorical set</td>
<td>549</td>
</tr>
<tr>
<td>completeness</td>
<td>558</td>
</tr>
<tr>
<td>completeness, for sentences</td>
<td>542</td>
</tr>
<tr>
<td>completeness, relative</td>
<td>542</td>
</tr>
<tr>
<td>elementary equivalence</td>
<td>545</td>
</tr>
<tr>
<td>embedding EM</td>
<td>555</td>
</tr>
<tr>
<td>embedding, elementary</td>
<td>557</td>
</tr>
<tr>
<td>isomorphism IS</td>
<td>543</td>
</tr>
<tr>
<td>model</td>
<td>483</td>
</tr>
<tr>
<td>nonstandard for arithmetic</td>
<td>566</td>
</tr>
<tr>
<td>size of</td>
<td>569</td>
</tr>
<tr>
<td>standard for $\mathcal{L}_{\text{NT}} \setminus \mathbb{N}$</td>
<td>120</td>
</tr>
<tr>
<td>standard for $\mathcal{L}_{\text{NT}} \setminus \mathbb{N}$</td>
<td>325</td>
</tr>
<tr>
<td>quantifier elimination</td>
<td>582</td>
</tr>
<tr>
<td>and theory L</td>
<td>589</td>
</tr>
<tr>
<td>and theory S</td>
<td>584</td>
</tr>
<tr>
<td>satisfiability</td>
<td>558</td>
</tr>
<tr>
<td>finite</td>
<td>558</td>
</tr>
<tr>
<td>Skolem’s paradox</td>
<td>575</td>
</tr>
<tr>
<td>soundness, for sentences</td>
<td>541</td>
</tr>
<tr>
<td>soundness, relative</td>
<td>541</td>
</tr>
<tr>
<td>soundness</td>
<td>548, 599</td>
</tr>
<tr>
<td>submodel SM</td>
<td>551</td>
</tr>
<tr>
<td>submodel, elementary</td>
<td>552</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Natural Derivation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>N^*</td>
<td>470</td>
</tr>
<tr>
<td>N^*</td>
<td>474</td>
</tr>
<tr>
<td>accessible formula FA</td>
<td>221</td>
</tr>
<tr>
<td>accessible subderivation SA</td>
<td>221</td>
</tr>
<tr>
<td>auxiliary assumption</td>
<td>217</td>
</tr>
<tr>
<td>discharge of</td>
<td>220</td>
</tr>
<tr>
<td>condition on rules</td>
<td>215</td>
</tr>
<tr>
<td>ND equivalent to AD</td>
<td>441–474</td>
</tr>
<tr>
<td>preliminary system</td>
<td>213</td>
</tr>
<tr>
<td>proof</td>
<td>215</td>
</tr>
<tr>
<td>scope line</td>
<td>217</td>
</tr>
<tr>
<td>subderivation SD</td>
<td>221</td>
</tr>
<tr>
<td>exit strategy for</td>
<td>224, 233, 245</td>
</tr>
<tr>
<td>theorem</td>
<td>215</td>
</tr>
<tr>
<td>validity</td>
<td>215</td>
</tr>
<tr>
<td>without premises</td>
<td>245</td>
</tr>
<tr>
<td>see also</td>
<td></td>
</tr>
<tr>
<td>natural derivation, sentential; natural derivation, quantificational</td>
<td></td>
</tr>
<tr>
<td>natural derivation, quantificational</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rules of ND</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>\forall exploitation $\forall E$</td>
<td>286</td>
</tr>
<tr>
<td>\forall introduction $\forall I$</td>
<td>292</td>
</tr>
<tr>
<td>\exists exploitation $\exists E$</td>
<td>295</td>
</tr>
<tr>
<td>\exists introduction $\exists I$</td>
<td>288</td>
</tr>
<tr>
<td>\Rightarrow exploitation $\Rightarrow E$</td>
<td>314</td>
</tr>
<tr>
<td>\Rightarrow introduction $\Rightarrow I$</td>
<td>313</td>
</tr>
<tr>
<td>bounded \forall exploitation ($\forall E$)</td>
<td>319</td>
</tr>
<tr>
<td>bounded \forall introduction ($\forall I$)</td>
<td>319</td>
</tr>
<tr>
<td>bounded \exists exploitation ($\exists E$)</td>
<td>319</td>
</tr>
<tr>
<td>bounded \exists introduction ($\exists I$)</td>
<td>319</td>
</tr>
<tr>
<td>quantifier negation QN</td>
<td>318</td>
</tr>
<tr>
<td>restricted quantifier negation RQN</td>
<td>320</td>
</tr>
<tr>
<td>strategies SC, SG</td>
<td>302, 309</td>
</tr>
<tr>
<td>SC1</td>
<td>306</td>
</tr>
</tbody>
</table>
INDEX

SC2, 307
SC3, 308
SG1, 302
SG2, 303
SG3, 304
SG4, 305
SG5, 305
with equality, 315

see also natural derivation

natural derivation, sentential

rules of NDs, 222–247
reiteration R, 221
→ exploitation →E, 223
→ introduction →I, 224
∧ exploitation ∧E, 227
∧ introduction ∧I, 228
∼ exploitation ∼E, 232, 234
∼ introduction ∼I, 232, 234
∨ exploitation ∨E, 236
∨ introduction ∨I, 235
↔ exploitation ↔E, 242
↔ introduction ↔I, 242

rules of NDs+, (NDs and), 275–283
⊥ introduction ⊥I, 234
⊥ exploitation ⊥E, 275
association Assoc, 279
commutation Com, 278
DeMorgan DeM, 279
disjunctive syllogism DS, 276
distribution Dist, 280
double negation DN, 277
equivalence Equiv, 279
exportation Exp, 279
hypothetical syllogism HS, 276
idempotence Idem, 279
implication Impl, 279
modus tollens MT, 276
negated biconditional NB, 276
transposition Trans, 279

strategies for a contradiction SC, 263–272
SC1, 263
SC2, 264
SC3, 266
SC4, 267

strategies for a goal SG, 250–263
SG1, 251
SG2, 252
SG3, 253
SG4, 254
SG5, 255

strategy for main operator ∨, 271
in NDs+, 280

see also natural derivation

negation
and quantity, 22
formal expression, 34
ordinary operator
neither nor, 163
not both, 163
not the case that, 160

number
integer Z, 555
natural number N, 120
positive integer P, 545
real number R, 570

Peano arithmetic
axioms of PA, 91, 330
in AD, 91–98
in ND, 330–336
theorem of, 91, 330

proof
formal relation
Prvt, 683
Prvt, 753
informal, 832

see also axiomatic derivation; natural
derivation; recursive relations, proof

quotation symbols, 650

recursive definition, 38
basis for mathematical induction, 392,
393

recursion theorem RT, 606
simultaneous recursion, 648

see also recursive function; recursive relation

recursive function
captured in Q, Qₜ, 623–640
canonical formula, 639
original formula, 631
coordinate definitions, 728, 729
defined, 607
composition CM, 603
\(\text{cmp} \), 698
initial functions, 602
recursion RC, 603
by \(g \) and \(h\), 725
regular minimization RM, 607
\(\mu y Q(\bar{x}, y)\), 699
defined complements
friendly recursive, 704
\(\mu\)-recursive, 810, 812, 814, 824
primitive recursive PR, 608
expressed in \(\mathcal{L}_{\text{st}}\), 609–621
canonical formula, 638
original formula, 616
represented in RL, 823
same as captured functions, 820

see also recursive functions

recursive functions
arithmetic
\(\text{absval} \mid x - y\), 641
\(\text{absval}\), 734
\(\text{fact}\), 605
\(\text{fact}\), 739
\(\text{icm}\), 715
\(\text{maxp}\), 716
\(\text{maxs}\), 718
\(\text{f}\), 603
\(\text{f}\), 732
\(\text{plm}\), 715
\(\text{plus} +\), 604
\(\text{plus}\), 730, 732
\(\text{power} x^y\), 608
\(\text{power}\), 738
\(\text{pred}\), 640
\(\text{pred}\), 733
\(\text{qt}\), 648
\(\text{qt}\), 703
\(\text{rm}\), 648
\(\text{rm}\), 703
\(\text{subc} \triangleq\), 640
\(\text{subc}\), 734
\(x \triangleq y\), 707
times \(x\), 604
times, 733
\(\beta\)-function, 618
capture of, 631
definition in \(PA\), 704
expression of, 620
enumeration of theorems
code, 668
ethrmt, 668
pos, 669
formula substitution
formsub, 657

Gödel numbers
cncat \(\star\), 650
cncat \(\ast\), 744
cnd, 653
cnd, 730
diag, 663
gvar, 759
gvar, 762
neg, 653
neg, 730
num, 663
num, 762
numseq, 762
sub, 770
unv, 653
unv, 730
initial functions
idnt, 602
idnt\(_l\), 705
suc \(S\), 120, 602
suc, 705
zero, 602
INDEX

851

zero, 705

prime
 exp, 647
 exp, 741
 ex, 741
 exc, 743
 len, 647
 len, 742
 pi x, 646
 pi, 740
 xal, 743
 xal*, 743

selection by cases
 f(\lambda x. \lambda y. z) = t, 645

sign
 csg, 641
 csg, 734
 sg, 641
 sg, 733

Turing machine
 lb, 800
 left, 803
 mach, 801
 machs, 802
 right, 803
 state, 803
 stop, 803

recursive operator
 coordinate definitions, 729
 friendly, 726

recursive relations

recursive relations
 arithmetic
 EQ, 642
 Eq, 734
 FCTR [], 646
 Fctr, 735
 m|n, 712
 LEQ \leq, 643
 Leq, 734
 LESS <, 643
 Less, 734
 PRIME, 646
 Prime, 735
 Pr, 713
 Rp, 713

formula
 ATOMIC, 653
 Atomic, 748
 ATOMSUB, 656
 Atoms, 749
 FFSEQ, 658
 Ffseq, 762
 FORMSEQ, 653
 Formseq, 748
 FORMSUB, 657

 (\forall y \leq z), 735
 (\forall y \leq z), 700

truth functions
 CNJ \land, 643
 CNJ, 735
 DSJ \lor, 643
 DSJ, 735
 IMP \rightarrow, 643
 Imp, 735
 NEG \neg, 643
 Neg, 734

see also recursive operator

recursive relation, 642
 captured in Q, 642
 coordinate, 729
 expressed in \mathcal{L}_{et}, 642
 friendly, 727

see also recursive relations

recursive operators
 bounded quantification
 (\forall y \leq z), 644
 (\forall y \leq z), 735
 (\forall y < z), 644
 (\forall y < z), 735
 (\exists y \leq z), 644
 (\exists y \leq z), 730, 735
 (\exists y < z), 644
 (\exists y < z), 735

least under bound
 (\mu y \leq z), 644
 (\mu y \leq z), 700
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formsub</td>
<td>750</td>
</tr>
<tr>
<td>FREEI</td>
<td>658</td>
</tr>
<tr>
<td>Freeq</td>
<td>761</td>
</tr>
<tr>
<td>FREEFOR</td>
<td>658</td>
</tr>
<tr>
<td>Freefor</td>
<td>762</td>
</tr>
<tr>
<td>FSUBSEQ</td>
<td>657</td>
</tr>
<tr>
<td>\mathcal{F}_{subseq}</td>
<td>750</td>
</tr>
<tr>
<td>SENT</td>
<td>658</td>
</tr>
<tr>
<td>WFF</td>
<td>653</td>
</tr>
<tr>
<td>Wff</td>
<td>748</td>
</tr>
<tr>
<td>proof</td>
<td></td>
</tr>
<tr>
<td>AXIOMAD</td>
<td>661</td>
</tr>
<tr>
<td>AXIOMADS</td>
<td>654</td>
</tr>
<tr>
<td>AXIOMPA</td>
<td>661</td>
</tr>
<tr>
<td>Axiompa</td>
<td>737</td>
</tr>
<tr>
<td>AXIOMO</td>
<td>661</td>
</tr>
<tr>
<td>GEN</td>
<td>661</td>
</tr>
<tr>
<td>Gen</td>
<td>737</td>
</tr>
<tr>
<td>ICON</td>
<td>660</td>
</tr>
<tr>
<td>Icon</td>
<td>737</td>
</tr>
<tr>
<td>MP</td>
<td>655</td>
</tr>
<tr>
<td>Mp</td>
<td>730</td>
</tr>
<tr>
<td>PRFAD</td>
<td>661</td>
</tr>
<tr>
<td>PRFADS</td>
<td>655</td>
</tr>
<tr>
<td>PRFPA</td>
<td>661</td>
</tr>
<tr>
<td>PRFQ</td>
<td>661</td>
</tr>
<tr>
<td>PRFT</td>
<td>666</td>
</tr>
<tr>
<td>P'rf</td>
<td>737</td>
</tr>
<tr>
<td>PRVT (negation complete theory)</td>
<td>669</td>
</tr>
<tr>
<td>term</td>
<td></td>
</tr>
<tr>
<td>FREEI</td>
<td>658</td>
</tr>
<tr>
<td>Free</td>
<td>759</td>
</tr>
<tr>
<td>TERM</td>
<td>652</td>
</tr>
<tr>
<td>Term</td>
<td>746</td>
</tr>
<tr>
<td>TERMSEQ</td>
<td>652</td>
</tr>
<tr>
<td>Termseq</td>
<td>746</td>
</tr>
<tr>
<td>TERMSUB</td>
<td>656</td>
</tr>
<tr>
<td>Termsub</td>
<td>749</td>
</tr>
<tr>
<td>TSUBSEQ</td>
<td>656</td>
</tr>
<tr>
<td>Tsubseq</td>
<td>749</td>
</tr>
<tr>
<td>VAR</td>
<td>652</td>
</tr>
<tr>
<td>Var</td>
<td>746</td>
</tr>
<tr>
<td>Turing machine</td>
<td></td>
</tr>
</tbody>
</table>

Proof

- **ACT**, 800
- **LB**, 800
- **QUAD**, 800
- **SYM**, 800
- **TMACH**, 801

Relation
- capture of \mathcal{C}_{Pr}, 624
- characteristic function of \mathcal{C}_f, 642
- expression of \mathcal{E}_{Xr}, 610
- see also set theory; recursive relation

Robinson Arithmetic
- axioms of Q, 324
- decides atomics of \mathcal{L}_N, 418–424
- decides Δ_0 sentences, 626
- in ND, 324–329
- incompleteness and, 600
- proves true Σ_1 sentences, 628
- theorem of, 324
- trichotomy in, 424–430

Rosser, B., 679

Semantic Reasoning
- derivations for, 347
- general, 342–345
- quantificational, 360–385
- sentential, 345–359
- see also metalanguage; semantics sentential; semantics quantificational

Semantics, Quantificational, 117–139
- abbreviations, 137–139
- entailment \mathcal{Q}_V
 - formal, 363
 - natural, 133
- interpretation \mathcal{Q}_I, 117
 - universe of, 117, 118
- satisfaction $\mathcal{S}_F\mathcal{F}'$
 - formal, 361, 368, 371
 - natural, 125, 140
- tautology, 133
- term assignment \mathcal{A}_T
 - formal, 366
 - natural, 122
- term on interpretation \mathcal{A}_I, 422

Turing Machine

- \mathcal{A}_T, 800
- \mathcal{L}_B, 800
- \mathcal{Q}_UAD, 800
- \mathcal{S}_Y, 800
- \mathcal{T}_MACH, 801
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree branch conditions</td>
<td>B(s), B(r), B(\sim), B(\rightarrow), B(\forall), B(\land), B(\lor), B(\leftrightarrow), B(\exists), trees for term assignment, 122 for satisfaction, 125–129, 138 invalidity, 133–135, 138 truth, 131 truth on interpretation TI formal, 363 natural, 131 validity QV formal, 363 natural, 133 variable assignment, 121 variable, semantics of, 380 semantics, sentential, 100–115 abbreviations, 113 and abbreviations, 115 characteristic table T(\sim), T(\rightarrow), T(\forall), T(\land), T(\lor), T(\leftrightarrow), T(\exists), T(\top), 345 entailment SV formal, 349 natural, 108 interpretation, 101 tautology, 109 truth on interpretation ST, ST', formal, 346, 354 natural, 101, 116, 344 truth table and validity, 109–110, 114 base column, 103–104 constructing values, 104–107, 114 short method, 110–112, 115 truth tree, 102, 113 validity SV formal, 349 natural, 108 set theory Cantor's theorem, 572 cardinality, 570 cardinal number, 570 closure under constants, 551 under functions, 551 continuum hypothesis, 538, 570 function, 119 domain, 606 one-to-one, 543 onto, 543 partial, 606 range of, 556 regular, 607 restriction of, 551 total, 119 n-tuple, 119 orderings linear order, 563 partial order, 561 well-order, 563 ordinal number, 570 relation, 119 restriction of, 551 set, 119 countable, 34 enumeration of, 668 intersection, 119 same size, 570 union, 119 subset, 119 ZFC, 564, 570, 575 see also function; recursive function; relation; recursive relation Smith, P., 826</td>
</tr>
</tbody>
</table>
soundness, 435
 logical LS, 12
 and truth, 13, 24–25
relative soundness, 541
 soundness and, 541
 soundness and, 548
soundness, 476–482
 for sentences, 541
 strong, 406
 weak, 405
 soundness, 548, 599
successor, see recursive functions

Tarski, A., 380
Tarski’s theorem, 672–673
theory, 599
 ω-complete, 667
 ω-consistent, 667
recursively axiomatized, 666
theories
 L, 589
 PA, 91–98, 330–336
 Q, 324–329
 Qs, 630
 S, 584
translation
 basis for evaluation of validity, 171
 criterion of goodness CG, 143
 intended interpretation, 143
 interpretation function, 143
 natural, 159
 of argument, 144, 170
 see also translation, sentential; translation, quantificational
translation, quantificational, 175–208
equality, 204–208
 definite descriptions, 206
 quantity expressions, 204–207
exception clauses, 187
 equality in, 207
overlapping quantifiers, 191–196
 quantifier placement, 196–201
quantification of complexes, 181–188
quantifier switching, 186
quantification of simples, 176
quantifier switching, 178
sentences without quantifiers, 175–176
variables as placeholders, 179
see also translation
translation, sentential, 144–172
 compound and simple CS, 146, 149
declarative sentence DC, 145, 149
main operator MO, 146, 149
sentential operator SO, 145, 149
 and underlines, 145–147
translation procedure TP, 151
equivalent sentences, 152
equivalent operators, 155
parallel tree, 155
parse tree, 152
results in good translation, 158
 \neg, 160–161
 \land, 161–162
 \lor, 162–164
 \rightarrow, 166–168
 \leftrightarrow, 168
truth functional operator TF, 147–150
test not truth functional, 147
test truth functional, 148
see also translation; negation; conjunction; disjunction; conditional; biconditional
tree diagram
 consequence in AL, 72
formula, 38, 45, 56, 62, 67
invalidity, quantificational, 133, 138
parallel tree, translation, 155
parse tree, translation, 152
satisfaction, 126–129, 138
 application to translation, 176–206
sentential truth, 102, 113
term, 53
term assignment, 122
unabbreviation, 47, 62, 67
truth table, see semantics, sentential
Turing machine
INDEX

see computability
Turing, A., 794

unique readability, 531–533

validity
in axiomatic derivation, 72
in natural derivation, 215
logical LV, 12
and form, 25–26
and relevance, 26–29
and truth, 13, 24
test for VT, 17
quantificational QV
formal, 363
implies logical validity, 436–437
natural, 133
sentential SV
formal, 349
implies logical validity, 436–437
natural, 108

see also invalidity