
 

 

Glearly, fix) is between 0 and 1 and it is Riemann integrable.� 

Therefore by Theorem 1.2, y/ J f(x)dx <J Y{f{x))dx. Finally since 
\o n €€€; ' € 7: r;.:'- 7;. € 

€ = Ta:, • and [xim=y.w{x^' •, yve obtain 
1=1 

V''^" '=1 J '=1 

Differ en11ability 

Now we examine differentiability properties of convex fuhctions. 
Oiir goal is to show that convex functions are differentiable with the 
possible exception of a countable number of points. We will need 
some background on one-sided derivatives and monotonic functions. 

Defimtioii 1.3 The fight-hand derivative (x) and the left-hand 

derivative / (x) are defined to be as follows: 

and 

liniyt. f{y)-fix)f- (^) = 
y-x 

Theorem 1.4 Let / be convex on {a,b). Then 
a) /+ and f'_ exist on {a,b), 
b) /+ and /' are monotone increasing, and 
c) for w in lii;n/+W^/-(H')</;(H')<lini/+W�

xtw xiw 

Proof. Let ys{a,b). Consider the points w<x<y<z<t in {a,b) with P, 
Q, R, and S, the corresponding points on the graph of the function f. 
See Figure 10. 
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Since f is convex, by Proposition 1.1,
 
slopePQ<slopePR<slopeQR<slopeQS<slopeRS.
 

Since >v<jc<y, implies slopePR <slope QR, it follows that Slope QR
 
increases as jcTy. Similarly, slope RS decreases as ziy. Therefore,
 
the left-hand side of the inequality
 

slopeQR=^^— =slopeRS increases as xTy, and the 
x-y z-y 

f(x)—f(y^
right-hand side decreases as ziy. Therefore, /'(y)=liin 
 —
 

xty ^ y
 

and /+(y)= exist. Since ye(a,Z)) was arbitrary, part (a)
 
ziy Z-y
 

of the theorem is proved. Moreover, the monotonicity of the slopes
 
PR and QR implies that whenever x<y<z,
 

MzM<f(y)<f(y)<fi±:M, (12)
 
jf-y ^ z-y „
 

To prove (b), let w<y be two points in (a,i>). If w <x<y, then from
 

(12) we have f!.{w)<fi{w)<^\ , and < y:^(y)</^(y). On
 
x-w x-y
 

the other hand, from Proposition 2.1, we have </U) f(y)^
 
x-w x-y
 

and hence fl(w)<f^(w)<fl(y)</^(y), (13)
 
establishing the monotonic nature of /I and /+.
 
Finally to prove (c), let we(a,b). For y>w from (13) we have
 
f:{w)<f:{y). (14)
 
Since /+ is monotone increasing, letting yiw in (14), we get
 
/+(w)^lim/+(y)­

On the other hand, for x<w,from (13) we have f'^.{x)<f_{w). (15)
 

Letting xtw in (15), we get lim/+(^)-/-(^)­
xtw
 

In order to prove that the set E where the derivative of a convex
 
function fails to exist is countable, we need Theorem 1.2 below
 
regarding continuity of monotonic functions.
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Definition 1.4 If g is an increasing function on (a,b), then g_(x) is
 
defined to be linig(A:+/i). Similarly, g+(A:) is defined to be +
 

Since g is an increasing function, g_(A:) and g+(x) exist, and
 
g_(x)<g(x)<g^(x).
 

Lemma 1.1 Let an increasing function, g, be defined on (a,b). Let
 
Xi,X2,-",x„ be arbitrary points lying in (a,b). Then
 

i=l , '
 

Proof. We may assume that a<x^<X2<-'-<x„<b. Let Xq =a, =&.
 

Choose points yo,yi,--,y„ such that (A:=0,l,...,n) Since g is
 

an increasing function, ^+(xt)<g(yi) and g_(x;fc)>g(>'i_i). Combining
 
these inequalities, we obtain
 

(%)-^_(%)̂  )(^=1'2,•••,«)
 
(«)-.?(«) and
 

8{b)-g-{b)^g{b)-g(y,)
 
Adding the left and right side of the inequalities yields
 

S )~«?- ))+8 (̂a)-8ia)+8{b)-g.(b)<X ))+ )"8(a)+8(b)-g(y„,

it=l k=l
 

By simplifying the right-hand side of this inequality, we obtain (16).
 

Corollary 1.1 An increasing function, g, defined on (a,b) can have
 
only a finite number of points of discontinuity at which g^.(jc)-^g_(x) is
 
greater than a given positive number a.
 

Proof. If the points x^,X2,.-;X„ e (a,b) are points of discontinuity with
 
^+(x,)-g_(x,) greater than cr, then from (15),
 

hence n Therefore,
 
*=i ^
 

there can be only finitely many Xi,X2,...,x„€((fl,i)) for which g+(x,)-g_(x,)
 
is greater than <T.
 

Theorem 1.5 The set of points of discontinuity of an increasing
 
function, g, defined on (a,b) is at most countable.
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Proof. Let H be the set of all points of discontinuity of the function
 
g. Let //jt be the set of those points of discontinuity of this function,
 

at which g(x)-g_(x)org^(x)-g(x) is greater than —. Clearly, if xeH,
 

then there is an integer k such that g(A:)-g_(x)>^ or g+(x)-g(x)>-.
 
OO
 

Thus, jce//^, and hence, H= ]f xeH^, then
 
k=l
 

gAx)-gM=gAx)-g{x)+g{x)-g_{x)>j, therefore by Corollary 1.1, each
 
is finite. Hence H is at most countable.
 

Now we are ready to prove our main result of this section.
 

Theorem 1.6 If/ is convex on (a,b), then the set where /' fails to
 
exist is countable.
 

Proof. By Theorem 1.4, is an increasing function, and for
 
>v€(a,ft), lim/:W^/-(^)^/+(^)^lim/:W- Therefore, if w is a point
 

jcfw xiw
 

of continuity of /+, then /I(w)=/+(>v) i.e. f is differentiable at w. By
 
Theorem 1.5, the set of points where /+ is not continuous is at most
 
countable. Hence, the set of points where f is not differentiable is at
 
most countable. The converse is false, as the following example 
shows. 

h=2.X... 

Fig. 11
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Then f'{x) exists on (0,1) except at the sequence < Also it is
 

h
 h=\
 
clear that f\x)=\ where it exists, but f{x) is not convex.
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CHAPTER II
 

In this chapter, we give criteria for convexity. We divide these criteria
 
into two groups, and we present them from the weakest to the strongest.
 
We begin by the first set of criteria for convexity which is based on the
 
differentiability of a function.
 

2 First Set of Criteria for Convexity
 

The following is a useful criterion to check for convexity.
 

Proposition 2.1 Suppose /"(jc)>0. Then f(x) is convex.
 

Proof. Suppose f is not convex. Then there is a<x<b such that
 
(jc,/(jc)) is above the line connecting the points {a,f{a)) and {b,f{b)).
 
See Figures 12 and 13 below.
 

Fig. 12 Fig. 13
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For both cases, f(a)< f(b) and f(a)> f(b), it is obvious that the slope of
 
AC > the slope of AB, and also that the slope of BC < the slope of AB.
 
From here, we find that the slope of AC > the slope of BG. Since f is
 
differentiable, by the Mean Value Theorem, there exists a number c
 
in (a,x) such that
 

= slope of AC.
 
x-a
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Definition 2.1 Second Peano Derivative
 

If exists, then the limit is denoted f^ix) and
 
A-»o 2\ h
 

it is called the Second Peano Derivative.
 

If f'(x) exists, then by Taylor's formula /jCx) exists, and /2(x)=f"(x).
 
If /2(x) exists, f" doesn't necessarily exist as the following example
 
shows. 

■ ■ . \ 2 . ■■ 
„ ■ ^ v . X sm— jCi^O
Exaniple 2.6 /(;c)= jc
| 


■■ ■'■V ■ ■ ■ jc = 

Here /2(x) =0, but f"{x) doesn't exist.
 
By definition, if /2(x) exists, then f'{x) must exist.
 

Definition 2.2 The Schwartz Derivative is defined as 

h^o n 

If /2(jc) exists, then /^ (x) exists, as it can be easily verified. 
If (x) exists, then /2(x) doesn't have to exist. 

Theorem 2.1 If /2 >0 on {a,b), then f is convex. 

Proof. First we prove the special case when /2 >0. Suppose that f is 
not convex. Then there are d<Xp <Xj <Xj<b such that (xi,/(xi)) is above 
the graph of the function between the points Xp and X2. Let 

g(x)= /(X2) + /(xp) be the line connecting points (xp,/(xp)) 
. X2-X0 . X2-Xp .. ­

and (x2,/(x2)), and consider the function h(x) = f{x)-g(x). Then it is easy 
to check that /i(xp) = /i(x2) =0, /i(xi)>0; and since g"{x) =0 d2(x) = /2(x)>0. 
Since h is continuous on [xp.Xj], there is Xp < x < X2 such that h attains its 
maximum at x, and hence h'{x)=0. From 

fem.lini -'-nv),|in,M.v-'-')-m^ to all^ t^o t r 

sufficiently small t, we have >0, and from here it follows 
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h{x+t)>h{x) which is a contradiction to the choice of x. Therefore f is
 
convex.
 

To prove the general case /2(x)>0 implies f{x) is convex, we will
 
assume that f is not convex. Therefore, there are Xo<Xi<X2
 

such that (xi,/(jCi)) is above the chord connecting (xo,/(xo)) and
 
(jC2,/(jC2)). As in the special case, consider h{x)=f(x)-g(x). Then
 
7i(jCo)=/i(x2)=0, /i(xi)>0 and /t2(x)=/2(x)>0.
 

Let H{x)=h{x)- . Then H{xo)=H{x2)=0, and
 
2 -^0j(*^2 ~"^1/
 

//(xi)=h{xi)- >0 and therefore H is not convex. On the other
 
2 2
 

hand, H2{x)=h2{x)+y ^>o and by the special case, H is
 
{X,-X,){X2-X,)
 

convex. A contradiction. Therefore, f is convex.
 

Theorem 2.2 If f is continuous and the Schwartz derivative fXx)̂ 0
 

on {a,b), then f is convex.
 

Proof. First we prove the special case when /,'t^x)>0. Suppose that f
 
is not convex. Let Xo<Xi<X2, g and h be as in the proof of the special
 
case of Theorem 2.1. Then we have that h" exists and h">0. Since h
 

is continuous, there is Xo<x<X2 such that h attains its maximum at x.
 

From = 2h(^)+h{x sufficiently small t,
 
h{x+t)+h{x^t)> 2h{x). But this can happen only if h{x+t)> h{x) or
 
h(x-t)> h{x). In either case, h doesn't attain a maximum at x, which
 
is a contradiction.
 

The general case can be proved in exactly the same way as the
 
general case of Theorem 2.1.
 

In the proofs of Theorems 2.1 and 2.2, we used basically the same
 
idea which we briefly describe below:
 

We assume that a function / is not convex. By adding a suitable
 
function g, we obtain the function /i with the same original
 
hypothesis as the function /, but for which there are three points
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jfjCCjCCj such that h{xi)=h[x^)=0, and /j(jc2)>0. Since h is continuous
 
there is Xi<x<x^ such that the function h attains its maximum at x.
 

Finally the assumption on the function contradicts the choice of x.
 
We use the same idea to prove the next two theorems but first we
 
introduce Schwartz derivates:
 

Let / be a function, the following expression
 

f,{x)=lim inf ^ 0 called the lower Schwartz
 

derivate of / at a point x while //(x)=lim sup,_,o 2/(x)+/(x t)
 
is called the upper Schwartz derivate of / at a point x. Note that
 
although neither Peano nor Schwartz derivative has to exist, the
 
Schwartz derivates always exist.
 

Theorem 2.3 If/ is continuous and the lower Schwartz derivate is
 

positive, then f is convex.
 

Proof. Suppose that f is not convex. Let x^ <Xi<X2, g and h be as in
 

the proof of the special case of Theorem 2.1. Then we have that
 
^>0. Since h is continuous, there is Xo<x<X2 such that h attains its
 
maximum at x. As in proofs of Theorems 2.1 and 2.2 above, it is
 
enough to consider only the special case h'^>0. From
 

h(x+t)-2h(x)+h(x-t) ^ '
 ^(x)=liminf f ——^>0,for sufficiently small t,
 
h{x+t)-2h{x)+h{x-t)>0. But that can happen only if /j(x+r)>/i(x) or
 
h{x-i)> hi^x). In either case, h doesn't attain a maximum at x, which
 
is a contradiction.
 

Theorem 2.4 If f is continuous and the upper Schwartz derivate is
 
positive, then f is convex.
 

Proof. Suppose that f is not convex. Let Xo<Xi<X2, g and h be as in
 
the proof of the special case of Theorem 2.1. Then we have that
 
hi>0 Since h is continuous, there is x,, <x <X2 such that h attains its
 

hi^+i)-2h(x]+h(x-t)
maximum at x. From =lim sup,^^ ^ ^>0, there is
 

22
 



a sequence {?„} converging to 0 such that h{x-\- )-2h{x)+h{x-f„)>0.
 
But that can happen only if hix+t„)> h{x) or > h(x). In either
 
case, h doesn't attain a maximum at x, which is a contradiction.
 

23
 



BIBLIOGRAPHY
 

[1] K. "Q&mon,Euclidean Geometry and Convexity, McGraw-Hill,
 
New York, 1966.
 

[2] 	H. G. Eggleston, in Euclidean Space: Application of
 
Convexity, Cambridge University, New York, 1957.
 

[3] S. G. Kiantz,Real Analysis and Foundations, CRC Press, New York,
 
1991.
 

[4] I. P. Natanson, Theory of Functions of a Real Variable, Vol. II,
 
Frederick Ungar Publishing, New York, 1960, 36-47.
 

[5] 	A. W.Roberts and D. E. Varberg, Convex Functions, Academic
 
Press, New York, 1973.
 

[6] 	R. T. Rockafellar, Convex Analysis, Princeton University,
 
Princeton, New Jersey, 1970.
 

[7] W.Rudin,Real and Complex Analysis, McGraw-Hill, New York,
 
1974.
 

{8} 	A. Zygmund, Trigonometric Series, Cambridge University Press,
 
Cambridge and New York, 1990.
 

24
 


