


Since f is convex, by Proposition 1.1,

slope PO <slope PR< slope QR < slope QS <slopeRS .

Since w<x<y, implies slope PR < slope OR, it follows that slope QR
increases as xTy. Similarly, slope RS decreases as zly. Therefore,
the left-hand side of the inequality '
sipe gr=10=10) JA=10).
x=y z=y

= slope RS increases as xT y, and the

: r1ght -hand side decreases as zly Therefore, f’(y)=] 1¥nf (sz:i )
f() f(y)

and fl(y)= hm

of the theorem is proved. Moreover, the monotonicity of the slopes
PR and QR implies that whenever x<y<z,

F&-£0) _ . _f()- f() | :
P < p10) < 720) s 750 | (12)

x—

exist. Smce'ye(a,b) was arbitrary, part (a)

To prove (b), let w<y be two points.ih (a,b). If w<x<y, then from

(12) we have f/(w)< f;(w)sM, and f—(’%:-y@s F()<£.(). On
—w - _

f@)=fw)  f@=10)

the other hand,' from Proposition 2.1, we have y
' X—-w x-
and hence f’(w)< fi(w)< f/(y) S £1(3), | 3)
establishing the monotonic nature of f’ and f;. |
Finally to prove (c), let we(a,b). For y>w from (13) we have

Fiw) < £1(). - » (14)
Since f; is monotone increasing, lettmg yiw in (14), we get
fiw)<lim£0)-

yvw
On the other hand, for x<w, from (13) we have f.(x)<f/(w). (15)

Letting xTw in (15), we get lim fi(x) < f.(w).
|  Txtw .

In order to prove that the set E where the derivative of a convex
function fails to exist is countable, we need Theorem 1.2 below
- regarding  continuity of monotonic functions.
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Definition 1.4 If 'g is an inereasing function on (a,b), then g_(x) is
defined to be ]im g(x+h). Slmllarly, g.(x) is defined to be hmg(x+h)

h—0" h—0"*

Since g is an increasing function, g (x) and g,(x) exist, and
g (x)<g(x)<g,(x).

Lemma 1.1 Let an increasing function, g, be defined on (a,b). Let
X,X,,++,X, be arbitrary points lying in (a, b) Then _
[2.(a) - g(@]+(3[e.( xk g-(xk)])+[g(b g-(b)]<g(b) @  (16)

k=1

Proof. We may assume that a<x, <x, ‘<~-<x,,<‘b.‘ Let x, =a, x,,+1=b.
Choose points YosYis* s Vu such that,x‘,c‘<y,(<x,;+1 - (k=0,1,...,n) Since g is
an increasing function, g,(x,)<g(y) and g (x,)2g(y,,). Combining
- these inequalities', we obtain |
8.(5)~8.(x)<8(n)~80s) (k=12:n)
8.(a)-g(a)<g(y)-g(a) and
- g(b)-g(b)< g(b)-2(3,)
Adding the left and right side of the inequalities yields
Y (g.(x) - 8_(x:)) + 8. (@) - g(a) + g(b) - g.(b)<2( 8(%) - 80a ))+g(yo)—g(a)+g(b)—g(yn:

k=1

- By simplifying the nght hand side of th1s 1nequahty, we obtain (16)

C.orollary 1.1 An ‘mcreasmg function, g, defined on (a,b) can have
only a finite number of points of discontinuity at which g, (x)-g_(x) is
greater than a given positive number o. o

Proof. If the points x,x,,...,x, é’(a,b) are points of discontinuity with
g.(x;)-g.(x;) greater than o, then from (15), |

nasi[g+f (%) - 8_(x,)] < g(B) - g(a) and hence n<§(_)6+g(a) Therefore,

there can be only f1n1te1y many XX, e(a b) for Wthh g.(x)-g.(x)
is greater than c. . . R . ‘

Theorem 1.5 The set of points.ef discontinuity of an increasing
function, g, defined on (a,b) is at most countable.
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Proof. Let H be the set of all points Qf discontinuity of the function
g. Let H, be the set of those points of discontinuity of this function,

at which g(x)—g_(x)or g,(x)-g(x) is greater than 71(- Clearly, if xeH,
then there is an integer k such that g(x)- g'(x)z-llz or g.(x)- g(x)Z%.

Thus, xeH,, and hence, H=|JH,. If xeH,, then

k=1
g.(x)-g.(x)=g,(x)—gx)+g(x)- g (x)2 %, therefore by Corollary 1.1, each

H, is finite. Hence H is at most countable.

Now we are ready to prove our main result of this section.

Theorem 1.6 If f is convex on (ab), then the set where f’ fails to
exist is countable. : ‘

Proof. By Theorem 1.4, f] is an increasing function, and for
we(a,b), lim/.(x)<f w)<fi(w)<limfi(x). Therefore, if w is a point
‘ *xTw ’ Coxdw

of continuity of f, then f’(w)=fi(w) ie. f is differentiable at w. By
Theorem 1.5, the set of points where f, is not continuous is at most
countable. Hence, the set of points where f is not differentiable is at
most countable. The converse is false, as the following example
shows.

f(x)={x—%for711-<xbs , h=273,...




A v - n-
Then f’(x) exists on (0,1) except at the sequence {——— . Alsoitis
h=1

clear that f’(x)=1 where it exists, but f(x) is not convex.
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CHAPTER II
In this chapter, we give criteria for convexity. We divide these criteria
into two groups, and we present them from the weakest to the strongest.
We begin by the first set of criteria for convexity which is based on the
differentiability of a function.
2 ~ First Set of Criteria for Convexity
The following is a useful criterion to check for convexity.
Proposition 2.1 Suppose f”(x)=0. Then f(x) is convex.
Proof. Suppose f is not convex. Then there is a<x<b such that

(x,f(x)) is above the line connecting the points (a,f(a)) and (b,f(b)).
See Figures 12 and 13 below. o '

Fig. 12 » Fig. 13
L |
o
¢ ()
| B (b, ()
| |
|

A |(Q,{‘\(a\) I l

.

o n b

For both cases, f(a)< f(b) and f(a)> f(b), it is obvious that the slope of
AC > the slope of AB, and also that the slope of BC < the slope of AB.
From here, we find that the slope of AC > the slope of BC. Since f is
“differentiable, by the Mean Value Theorem, there exists a number ¢
in (a,x) such that . ; . ' '

f’(c)=-f(—);)-:—J;(Q = slope of AC.
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Deflmtlon 2.1 Second Peano Derlvatlve

| lf(x+h) FO)—hf'(x) -

If] S
~Tho0 2' “h"

it 1S called the Second Peano Der1vat1ve

exrsts then the 11m1t 1s denoted fz(x) and o

If f"(x) ex1sts, then by Taylors formula fz(x) ex1sts, and fz(x)-f"(x)
If fz(x) ex1sts f" doesnt necessarrly exist as the follow1ng example
shows o : D - o
: Example 2 6 f(x) {x smx__,} x_¢
o x=0
Here fz(x) O but f”(x) doesn't exist. : o
By def1n1t1on if fz(x) ex1sts, then f (x) must ex1st S

: ‘j Defrnltlon 22 “The Schwartz Derrvatlve is deflned as
' h)=2f(x)+ f(x+h
- i LG =27 () f()f )

: > :
h->0_;”. L

If f,(x) exists,i ‘the’n' £. ) exists, as it can be easily verified.

S If fs‘”(x), eXists';, then' fzi(x)' d'oesn't h‘ave-to‘ exist.
vTheorér‘n‘-v 21 If f2 0 on (a,b) then f 1s convex -

‘Proof Flrst we prove the specral case when f2 >0 SuppoSe that f is
" not convex. Then there are a<xo<xl<x2<b such that (xl, flx )) is above]
- the graph of the functlon between the pornts x0 and x,. Let
= f( 2) =
v2 0 2 0

and (x,, f(xz))', and cons1der the functlon h(x) f(x) g(x) “Then it is easy

| )= ;

to check that h(x,)= h( ) 0, h(x)>0; and since g”(x) 0 hQ(x) fz(x)>0
| "_"-:”Smce h is contmuous on [x,,x,], there is X <X<X; such that h attams its
7‘_max1mum at ¥, and hence h’(x) 0. From | '

h(x+t) h(x) th(x) h(x+t) h(x)

._ hz(E) and hg(x)>0 for all

r—>0 o t_’ R x—>0

(x+t) h(x)

ssuffrcrently small 1, we have 0 and from here it follows

_; f( ) be the line connectlng pornts (xo; f(xo)) o



h(X+t)>h(¥) which is a contradiction to the choice of x. Therefore f is
convex. | | - | |

To prove the generalvcase’ f,(x)=0 implies f(x) is convex, we will
‘assume that f is not convex. Therefore, there are x,<x, <x,

such that (x,,f(x,)) is above the chord connecting (% f(x,)) and
(x,,f(x,)). As in the special case, consider A(x)= f(x)— g(x). Then
h(x,)=h(x,)=0, h(x,)>0 and h(x)=f,(x)20.

Let H(x)= h(x)- hx) (=% =x) e H(xo)%H(x2)=0, and

2 (o =x)(x-x)

H(x,)=h(x,)- Q=(—22>0 and therefore H is not convex, On the other

hand, H,(x)=h,(x)+ hx) >0 and by the special case, H is
o (xl—xo)(xzfx,) ) o
convex. A contradiction Therefore, f is convex.

‘Theorem - 2.2 If f is continuous and the Schwartz denvatlve f(x)>0
on (a, b) then f is convex. ‘

Proof. First we prove the spe01al case when f/{x)>0. Suppose that f
is not convex. Let x,<x <x,, g and h be as in the proof of the special
~case of Theorem 2.1. Then we have that A exists and A’>0. Since h
" is continuous, there is x,<X¥<ux, such that h attains its maximum at X.
(x+t) 2h(x)+h(x 1)
t—)o t
h(X+1)+ h(X—1)>2h(X). But this can happen only if h(X+ £)> h(X) or
h(x-t)>h(x). In either case, h doesnt attain a maximum at ¥, which
is a contradlctlon

From mi{x)=

>0 for all suff1c1ently small t,

The general case can be proved in exactly the same way as the
- general case of Theorem 2.1.

In the proofs ‘of Theorems 2.1 and 2. 2, we used basically the same
idea which we briefly describe below:
We assume that a function f is not convex. By adding a sulltable

function g, we obtain the function 4 with the same original
hypothesis as the function f, but for which there are three points
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X, <X, <x, such that h(x,)=h(x,)=0, and h(x,)>0. Since 4 is continuous
there is x, <x<x, such that the function A attains its maximum at X.
Finally the assumption on the function contradicts the choice of Xx.

We use the same idea to prove the next two theorems but first we
introduce Schwartz denvates

Let f be a function, the following expression

- fix)=liminf, i (x+t)—21: gx)+f =) is called the lower Schwartz

FO+ 1) =2£(x)+ f(x=1)
£

is called the upper Schwartz derivate of f at a point x. Note that

although neither Peano nor Schwartz derivative has to exist, the

Schwartz derivates always exist.

derivate of f at a point x While_ f(x)=lim sup,_,

" Theorem 2.3 Iff is contmuous and the lower Schwartz derivate is
positive, then f is convex. ’

Proof. Suppose that f is not convex. Let X, <X, <X,, g and h be as in
the proof of the special case of Theorem 2.1. Then we have that
h;20. Since h is continuous, there is x,<X¥<x, such that h attains its

maximum at ¥. As in proofs of Theorems 2.1 and 2.2 above, it is
enough to consider only the special case A/>0. From

h(x +1) = 2h(x)+ h(x - 1)
= ) t2 ]

h(x +1t) = 2h(x) + h(x — 1) > 0. But that can happen only if h(J—C +1)> h(x) or
h(x—1)>h(x). In either case, h doesn't attain a maximum at ¥, which
is a contradiction.

K(%) = lim inf,_, >0, for sufficiently small r,

s

'Theorem 2.4 If f is contlnuous and the upper Schwartz derivate is
positive, then f is convex.

Proof. ‘ Suppose that f is not convex. Let x,<x,<x,, g and h be as in
the’proof of the special case of Theorem 2.1. Then we have that
: h'>0 Since h is continuous, there is x, <¥<x, such that h attains its

maximum at f . From hs(x)=lim Sup, o h(x+t) Z}zl‘g )+h(x t)

>0, there is

22



al sequence {t} converglng to. 0 such that h(x+t) 2h(_)+h(; -1,)>0. .
~But that can happen only it h(x+t )>h( ) or h(x-t, )>h( ). In e1ther -

case, h doesnt attaln a maxtmum at x, Wthh 1s a contradlctlon
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