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ABSTRACT 
  Ovarian cancer is the fifth leading cause of cancer death in women 
between the ages of 35 and 74.  With 22 thousand new cases and 15 thousand 
deaths annually ovarian cancer is among the most deadly cancers with a death 
to incidence ratio of 68%. With 70% of cases High Grade Serous Ovarian 
Carcinoma (HGSOC) is the most common type of ovarian cancer and causes 
90% of ovarian cancer deaths. 80% of patients have reoccurrence within five 
years and only 15-30% of patients with recurrent metastatic ovarian cancer 
respond to current therapies, chemotherapy and surgery. One reason for the 
high reoccurrence rate is thought to be linked to the heterogeneity of tumors: 
there is evidence that, among tumor cells, a subpopulation is cancer stem cells 
(CSCs). Since CSCs are frequently drug resistant, when the patient undergoes 
chemotherapy many of the cells may die but the CSCs are left behind and the 
tumors can therefore regrow. CSCs are also more likely to undergo epithelial-
mesenchymal transition which gives these cells the ability to more readily migrate 
and invade through the extracellular matrix, leaving the primary tumor to form 
metastases. One key inducer of EMT and therefore possibly of metastasis of 
particular interest in this project is SNAI1 (Snail). It is therefore the goal of this 
project to understand the growth, makeup and metastatic ability of HGSOC cell 
lines to test possible strategies to decrease growth of cancer and prevent 
metastasis.  
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 In this thesis project the phenotype, CSC population make up, and 
functionality of various HGSOC cell lines was examined. The cell lines assessed 
were A2780, Kuramochi, OVSAHO, COV318, SKOV3 and OVCAR8. A Snail 
knockdown OVCAR8 cell line was also assessed as described above and in a 
xenograft model. It was determined that the cell lines show varying phenotype 
from epithelial like to mesenchymal like morphology and the cell lines have 
varying concentrations of cancer stem cells. It was also determined that the CSC 
population of the HGSOC cell lines were positive for both epithelial and 
mesenchymal markers in the same cells. OVCAR8 stood out as a hybrid line with 
both epithelial and mesenchymal characteristics and was therefore chosen for 
the Snail knockdown model. In the Snail knockdown we observed that CSC 
markers were reduced, however no change between control and knockdown was 
seen in the in vitro functional experiments. There was a difference seen between 
Snail knockdown and control in the in vivo mouse xenograft model. Snail 
knockdown showed a trend for decreasing tumor burden in both primary and 
metastatic tumors and showed a significant decrease in growth of metastatic 
tumor at day 43. Based on these results Snail may be an important target for 
cancer therapy. 

 
 
 

  



v 

ACKNOWLEDGEMENTS  
Firstly, I would like to acknowledge Dr. Juli Unternaehrer for allowing me 

to work on this project in her laboratory and thank her for the incredible guidance 
I received throughout my time on this thesis project. I would also like to 
acknowledge the individuals in the Unternaehrer lab who helped with the 
progress leading to the completion of this thesis project, Linda Sanderman, Hugo 
Campos, Michael McCarthy, Hanmin Wang, and Evgeny Chirshev. I would like to 
acknowledge and thank Dr. Nicole Bournias-Vardiabasis and Dr. Jeffrey 
Thompson for all of their help serving on my thesis committee. I would also like to 
acknowledge the CIRM Bridges program and Loma Linda University for the 
funding that allowed this project to be undertaken. Last, I would like to thank and 
acknowledge my wonderful husband Christopher Hill and family who are always 
so supportive of me. 
 



vi 

TABLE OF CONTENTS 
ABSTRACT .......................................................................................................... iii 
ACKNOWLEDGEMENTS ..................................................................................... v 
LIST OF TABLES ............................................................................................... viii 
LIST OF FIGURES ...............................................................................................ix 
CHAPTER ONE: INTRODUCTION 

1.1 Epithelial Mesenchymal Transition....................................................... 1 
1.2 Epithilial Ovarian Cancer ..................................................................... 2 
1.3 Cancer Stem Cells ............................................................................... 3 
1.4 The Importance of the Let-7 and Snail Interaction ............................... 5 
1.5 Working Hypothesis ............................................................................. 6 

Aim1: Characterization of Epithelial Ovarian Cancer Cell Lines     
for Epithelial Mesenchymal Transistion Status, Cancer Stem      
Cell Makeup, and Metastatic Potential ............................................ 7 
Aim 2: Characterization of Snail Inhibition Model of Epithelial 
Ovarian Cancer for Epithelial Mesenchymal Transition Status, 
Cancer Stem Cell Makeup, and Metastatic Potential ...................... 7 

CHAPTER TWO: MATERIALS AND METHODS 
2.1 Cell Culture – In vitro Assays 

2.1.1 Ovarian Cancer Cell Culture .................................................. 9 
2.1.2 Motility .................................................................................... 9 
2.1.3 Anchorage Independent Growth .......................................... 10 

2.2 Xenograft – In vivo Assays 
2.2.1 Preparation of Ovarian Cancer Cells .................................... 11 
2.2.2 Lentiviral Knockdown ........................................................... 12 



vii 

2.2.3 Surgical Orthotopic Injection of Ovarian Cancer Cells ......... 13 
2.2.4 Live Mouse Imaging ............................................................. 13 
2.2.5 Tumor Harvest ..................................................................... 13 

2.3 Molecular Biology 
2.3.1 RNA Extraction and qPCR ................................................... 14 
2.3.2 Flow Cytometry .................................................................... 15 

CHAPTER THREE: RESULTS 
3.1 Aim 1: The Characterization of Epithelial Ovarian Cancer Cell Lines    
for Epithelial Mesenchymal Transition Status, Cancer Stem Cell    
Makeup, and Metastic Potential 

3.1.1 Epithelial Mesenchymal Transition Status and Cancer      
Stem Cell Makeup of Epithelial Ovarian Cancer Cell Lines ........... 17 
3.1.2 Metastatic Potential of Epithelial Ovarian Cancer Cell Lines 23 

3.2 Aim 2: The Effect of Snail Knockdown on Epithelial Mesenchymal 
Transition Status, Cancer Stem Cell Makeup, and Metastatic Potential     
of an Epithelial Ovarian Cancer Cell Line OVCAR8 

3.2.1 Confirmation of Snail Knockdown ........................................ 24 
3.2.2 Epithelial Mesenchymal Transition Status and Cancer      
Stem Cell Makeup of Snail Knockdown Model .............................. 26 
3.2.3 Metastatic Potential in Snail Knockdown Model ................... 28 
3.2.4 Orthotopic Xenograft of Snail Knockdown OVCAR8 ............ 29 

CHAPTER FOUR: DISCUSSION 
Epithelial Mesenchymal Transition and Cancer Stem Cells in Epithelial 
Ovarian Cancer ........................................................................................ 31 
Epithelial Mesenchymal Transition and Cancer Stem Cells in Snail 
Knockdown Model of Epithelial Ovarian Cancer ...................................... 33 

REFERENCES ................................................................................................... 36 



viii 

LIST OF TABLES 
 

Table 1. Primer sequences used for qPCR ........................................................ 14 
Table 2. Antibodies used for flow cytometry ....................................................... 15 
 
  



ix 

LIST OF FIGURES 
Figure 1.  Overview of epithelial mesenchymal transition ..................................... 1 
Figure 2.  Overview of cancer stem cell theory leading to cancer relapse. ........... 4 
Figure 3.  Schematic representation of the Snail/Let-7 and Snail/cadherin 
interactions. .......................................................................................................... 6 
Figure 4.  Schematic representation of the hypothesis. ........................................ 7 
Figure 5.  Luciferase plasmid construct. ............................................................. 12 
Figure 6.  Flow cytometry gating with the aid of isotype stained population ....... 16 
Figure 7.  Phase contrast brightfield microscopy images of epithelial ovarian 
cancer cell lines. ................................................................................................. 18 
Figure 8.  Epithelial mesenchymal transition markers in epithelial ovarian    
cancer cell lines. ................................................................................................. 19 
Figure 9.  Cancer stem cell markers in epithelial ovarian cancer cell lines ......... 21 
Figure 10.  Cancer stem cells and epithelial mesenchymal transition ................ 22 
Figure 11.  Metastatic potential assays of epithelial ovarian cancer ................... 24 
Figure 12.  Confirmation of Snail knockdown and let-7 expression in shSnail .... 25 
Figure 13.  Epithelial mesenchymal transition markers in Snail knockdown  
model. ................................................................................................................. 26 
Figure 14.  Cancer stem cell markers in Snail knockdown model. ...................... 28 
Figure 15.  Metastatic potential assays of Snail knockdown epithelial ovarian 
cancer ................................................................................................................. 29 
Figure 16.  Xenograft model of Snail knockdown epithelial ovarian cancer ........ 30 



1  

CHAPTER ONE 
INTRODUCTION 

1.1 Epithelial Mesenchymal Transition 
Epithelial-mesenchymal transition (EMT) is the process by which an 

epithelial cell becomes mesenchymal and gains the ability to exit the epithelial 
layer of cells and invade through the basement membrane layer. EMT can occur 
as the result of many cellular pathways including Wnt, Nodal, FGF, BMP, and 
Notch pathways1. EMT events normally occur during embryonic development. 
These developmental events that utilize EMT include embryo implantation, 
gastrulation, and neural crest formation2.  

 
 

Figure 1.  Overview of epithelial mesenchymal transition2.  
 
 

In cancer, EMT events lead to an invasive and metastatic phenotype 
allowing cells to leave the primary tumor and invade secondary sites forming 
metastasis2. EMT can be observed through changes in transcription factors and 
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proteins involved in EMT pathways. Some of the factors important in this process 
are Snail (Snai1), E-cadherin, and N-cadherin. Snail and other transcription 
factors are one controlling step in EMT. Snail has the ability to repress the 
transcription of E-cadherin, an adherens junction protein important for epithelial 
phenotype, and other epithelial proteins3. With this loss of E-cadherin there is a 
switch to N-cadherin production in the mesenchymal phenotype4. Not only is 
Snail involved in the EMT process it has also been linked to the development of 
chemoresistance in cancer linked to an increase in stemness5,6. 

 
1.2 Epithelial Ovarian Cancer 

Ovarian cancer is the fifth leading cause of cancer death in women7. With 
22,000 new cases and 15,000 deaths annually in the US, ovarian cancer has the 
highest death to incidence ratio of any gynecologic cancer8. Epithelial ovarian 
cancer (EOC) develops in the epithelial layer of the ovary and most patients are 
diagnosed in late stages. About three quarters of ovarian cancer patients present 
with stage III or IV tumors9, which means the diseased cells are in a highly 
aggressive state and have metastasized within the peritoneal cavity either by 
direct extension from the ovary or through the seeding of the cavity by the 
production of ascites10. With 70% of cases, High Grade Serous Ovarian 
Carcinoma (HGSOC) is the most common type of ovarian cancer and causes 9 
out of 10 of ovarian cancer deaths. About 70% of epithelial ovarian cancer 
patients experience relapse11 and only 15-30% of patients with recurrent 
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metastatic ovarian cancer respond to current therapies of chemotherapy and 
tumor debulking surgery12. 

 
1.3 Cancer Stem Cells 

Tumors are a heterogeneous mixture of cell types13. Cancer Stem Cells 
(CSCs), also known as tumor initiating (TI) cells, are one of these cell types. 
CSCs are thought to be more readily able to leave a primary tumor and invade a 
secondary site (undergo metastasis). Circulating tumor cells (CTCs) in patients 
have been identified in many cancers to have CSC and EMT markers14; this has 
not yet been reported in ovarian cancer. CSCs are also believed to play a role in 
drug resistance in cancer due to the fact that after chemotherapy many cancers 
return15. This role of chemoresistance of CSCs has been confirmed in ovarian 
cancer16,17. Like normal stem cells CSCs possess self-renewal capacity shown 
by the ability of isolated CSC populations to recapitulate the cancer tumor 
phenotype in vivo16. Because of this ability combined with the ability of CSCs to 
evade traditional cancer therapies, relapse occurs if CSCs are left behind after 
treatment.  
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Figure 2.  Overview of cancer stem cell theory leading to cancer relapse18.  
 
 

Cancer Stem cell make up of a population can be determined by looking 
at the presence of ribonucleic acids (RNAs) that mark pluripotency such as 
Nanog, Lin28, and Oct419. The presence of these stem cell markers are 
indicative of pluripotency, as opposed to multipotency as might be predicted for 
tissue stem cells. Lin28 has been shown to be highly expressed in some brain 
tumors, and knockdown of Lin28 in these tumors decreased the expression of 
Nanog and Oct420, therefore the expression of these pluripotency related RNAs 
is very important in assessing a stem cell phenotype. There is some controversy 
as to which markers best define ovarian CSC populations13. There is also some 
debate on what constitutes a progenitor cancer cell versus a CSC; it was 
therefore important for this study to access many of these markers and have a 
strict definition of what was identified as a CSC population. Ovarian CSC 
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populations can also be identified in a cell population through the use of Flow 
Cytometry for known ovarian CSC markers CD44, CD133, CD117 (c-kit), and 
Aldehyde Dehydrogenase I.13,21 Cancer cell lines with larger populations of 
cancer stem cells should be more readily metastatic. Cells with more metastatic 
ability have more activity in functional assays such as the scratch assay for 
motility analysis and the soft agar assay for anchorage independent growth 
ability. 

 
1.4 The Importance of the Let-7 and Snail Interaction 

Snail, which is known to cause EMT by repressing E-cadherin and other 
epithelial gene expression, has been shown to inhibit the microRNA Let-722. Let-
7 promotes differentiation and inhibits self-renewal via its targets including 
HMGA2, LIN28, IMP-1, CDC34, and many others 23. Let-7 is also seen as a 
tumor suppressor due to its repression of targets such as c-Myc and Ras 24. 
Because of this relationship between Let-7 and Snail, Let-7 and pluripotency, and 
the involvement of Snail in the EMT process, Snail could be a very important 
target in cancer research. 
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Figure 3.  Schematic representation of the Snail/Let-7 and Snail/cadherin 
interactions. Snail up-regulation leads to Let-7 down regulation and increased 
stemness of cells. Figure adapted from Unternaehrer et.al.22  
 
 

1.5 Working Hypothesis 
Because Snail is involved in promotion of EMT and in Let-7 inhibition, if 

we inhibit Snail we can inhibit EMT and metastasis, and promote tumor 
suppression. We should therefore see a shift in EMT status, CSC makeup, and 
metastatic potential with knockdown of Snail. 

 
 

Let-7 LIN28 

Snail Snail 

E- cadherin 
N- cadherin 



 

Figure 4.  Schematic representation of the hypothesis.
 
 
Aim 1: Characterization of
Epithelial Mesenchymal Transition
makeup, and metastatic potential
 

Epithelial ovarian cancer cell lines 
COV318, SKOV3, and OVCAR8
EMT and CSC markers. EOC cell lines 
EMT and CSC markers. 
Soft-agar assays to determine the relative metastatic potential of the lines.
Aim 2: Characterization of
ovarian cancer for Epithelial Mesenchymal Transition
Cancer Stem Cell makeu
 

Epithelial ovarian cancer cell line
cell lines were analyzed with qPCR 
markers. Knockdown and control cell lines 
EMT and CSC markers. Knockdown and control cell lines 
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.  Schematic representation of the hypothesis. 

ation of epithelial ovarian cancer cell lines for  
ithelial Mesenchymal Transition status, Cancer Stem Cell  

makeup, and metastatic potential  
Epithelial ovarian cancer cell lines A2780, Kuramochi, OVSAHO, 

COV318, SKOV3, and OVCAR8 were analyzed by qPCR at the level of
EMT and CSC markers. EOC cell lines were analyzed with flow cytometry for 
EMT and CSC markers. Finally, EOC cell lines were analyzed with Scratch and 

agar assays to determine the relative metastatic potential of the lines.
ation of Snail inhibition model of epithelial  
Epithelial Mesenchymal Transition status,  
makeup, and metastatic potential  

Epithelial ovarian cancer cell line OVCAR8 Snail knockdown and control 
analyzed with qPCR at the level of RNA for EMT and CSC 

markers. Knockdown and control cell lines were analyzed with flow cytometry for 
EMT and CSC markers. Knockdown and control cell lines were

 

A2780, Kuramochi, OVSAHO, 
at the level of RNA for 

analyzed with flow cytometry for 
analyzed with Scratch and 

agar assays to determine the relative metastatic potential of the lines. 

knockdown and control 
RNA for EMT and CSC 

analyzed with flow cytometry for 
were then analyzed 
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with scratch and soft-agar assays to determine the relative metastatic potential of 
the lines. Finally, knockdown and control cell lines are used in a xenograft model 
to determine in vivo primary and metastatic growth. 
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CHAPTER TWO 
MATERIALS AND METHODS 

2.1 Cell Culture – In vitro Assays 
2.1.1 Ovarian Cancer Cell Culture 

Human High Grade Serous Ovarian Carcinoma cell lines were used for all 
experiments. The cell lines used were A2780, Kuramochi, OVSAHO, COV318, 
SKOV3, and OVCAR8. A fibroblast line, D2F, was also used as a control in some 
experiments. A2780, OVSAHO, SKOV3, OVCAR8 and D2F cells were cultured 
in Dulbecco's Modification of Eagle's Medium (DMEM) with 10% fetal bovine 
serum (FBS), 1% penicillin-streptomycin (PS), and 1% L-Glutamine (L-Glut). 
COV318 cells were cultured in DMEM with 10%FBS, 1% PS, 1% L-Glut, and 1% 
antibiotic-antimycotic (anti-anti). Kuramochi were cultured in Roswell Park 
Memorial Institute Medium (RPMI) with 10% FBS, 1% anti-anti, 1% L-Glut, 
human insulin 0.25U/ml, and 1x MEM non-essential amino acids (NEAA). Images 
were taken of each cell line with a bright field microscope with phase contrast to 
assess general morphology of the cell lines. 
2.1.2 Motility 

To access motility of cell lines, a scratch wound healing assay was 
performed. Cells were grown to 90%+ confluency in 24-well tissue culture plates 
with ibidi inserts for wound closure assay (Culture-Inserts for self-insertion 
Catalog# 80209). Cells were plated and wounds imaged in triplicate. Images of 
wounds were taken every 4 hours for a 24-hour period after removal of insert 
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with a bright field microscope with phase contrast. Images were assessed with 
imageJ to measure size of wound. Six measurements of the wound width were 
taken for each image at each four-hour time point and averaged per well. Wound 
sizes were averaged for each cell line and compared through time lapse. 
2.1.3 Anchorage Independent Growth 

Soft agar assay was performed to assess the cell lines for ability to grow 
and form colonies in an anchorage independent growth environment, an ability 
which is a hallmark of aggressive cancer cells. Six-well plates were prepared with 
a bottom layer of Noble agar and DMEM Media mix. The noble agar was 
prepared as a 7% solution and was heated to mix agar powder with sterile 
distilled water. DMEM powder was mixed with sterile distilled water to make a 2x 
concentration of DMEM and was mixed with 20% FBS, 2% PS, 2% L-Glut, and 
2% anti-anti. The 2x DMEM mixture and the 7% agar were mixed together at a 
one to one ratio at 42oC and 1mL of the mixture was added into each well of all 
6-well plates to be used. This layer is allowed to cool at 37oC for at least one 
hour. Final concentration of this bottom agar layer was 1x DMEM mixture and 
3.5% agar. The next agar layer was then prepared using 3% noble agar heated 
to mix powder with water. DMEM was prepared by diluting the 2x DMEM to 1x 
and adding 10% FBS, 1% PS, 1% L-Glut, and 1% anti-anti. Cells were then 
added at a concentration of 100,000 cells per milliliter in to the 1x DMEM mixture. 
The 3% agar was allowed to cool to 42oC then mixed with the DMEM cell mixture 
at a one to one ratio. 1mL of this mixture was then added on top of the first agar 
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layer in each well of the 6-well plates. The final concentrations in this layer were 
1.5% agar, 0.5x DMEM mixture, and 50,000 cells per well. This layer was 
allowed to cool at 37oC for at least one hour. After cooling a 0.5 mL feeding layer 
was added to the top of the agar wells, the feeding layer consists of 1x DMEM, 
10% FBS, 1%PS, 1% L-Glut, and 1% anti-anti. Cells were allowed to grow for 30 
days and were fed at least twice per week with 0.5 mL feeding media per well. 
Wells were stained with 0.01% crystal violet at 37oC for 30 minutes and washed 
with water until colonies could be seen and counted with the naked eye. 

2.2 Xenograft – In vivo Assays 
2.2.1 Preparation of Ovarian Cancer Cells 

To allow in vivo visualization, cells were virally transduced with a 
luciferase/GFP expression vector. Luciferin was added to cells or mice to allow 
bioluminescence imaging; plasmid design shown in Figure 4. The cells were then 
selected for and isolated by their fluorescence through the use of a FACSAria 
flow cytometry cell sorter at the Genomics Core at the University of California 
Riverside. 



 

Figure 5.  Luciferase plasmid construct.
 
 
2.2.2 Lentiviral Knockdown

Snail or control (scrambled) knockdown (KD) cells 
xenograft experiments 
RNA vectors were created by selection with puromycin. Cells 
in order to obtain the number 
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.  Luciferase plasmid construct. 

Lentiviral Knockdown 
Snail or control (scrambled) knockdown (KD) cells were

xenograft experiments 22. Stable cell lines with pLK0.1-based small hairpin (sh)
created by selection with puromycin. Cells were

in order to obtain the number of cells to be injected during surgery.

 
 
 
 
 
 

 
 
 
 
 
 
 
 

were utilized for 
based small hairpin (sh) 

were then cultured 
of cells to be injected during surgery. 
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2.2.3 Surgical Orthotopic Injection of Ovarian Cancer Cells 
The ovarian cancer cells were prepared at 2.5 x105 cells per mouse in 

phosphate-buffered saline (PBS) and ovarian bursa injections were done as 
follows: before injection the cells were mixed with equal parts Matrigel from 
Corning (catalog #354248). The mouse was anesthetized and the right ovarian 
bursa was exposed through a dorsal incision. The cells were injected into the 
ovarian bursa, the bursa was replaced in the mouse, and the incision was closed. 
The mice were monitored for post-surgical recovery twice daily for three days, 
then daily for four days. 
2.2.4 Live Mouse Imaging 

Mice were imaged 1-2x weekly with an IVIS Lumina Series III In Vivo 
imaging system by PerkinElmer. Mice were anesthetized and given an 
intraperitoneal injection of luciferin. Images of mice were analyzed using Living 
Image In Vivo Imaging Software to determine size of primary and metastatic 
tumors. At the time of imaging weights and girth of mice were recorded. 
2.2.5 Tumor Harvest 

Mice were euthanized according to a Loma Linda University Institutional 
Animal Care and Use Committee approved protocol. Necropsy was then 
performed, removal of tumors from mouse with pictures and notes on location of 
tumor were done. Tumors are weighed and then processed for further 
assessment. A portion of each primary tumor or metastasis was sent to histology 
for further analysis. The remaining tumor was finely chopped and a portion was 
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saved for RNA analysis through qPCR. The remainder of the tumor is then 
broken down to the cellular level by washing the chopped tumor through a basket 
filter and cells were collected and saved for flow cytometry and western blot 
analysis. 

2.3 Molecular Biology 
2.3.1 RNA Extraction and qPCR 

RNA extraction was performed using TRIzol Reagent (catalog #15596) 
from Life Technologies. CDNA preparation was performed in MulitiGene OptiMax 
by Labnet International, Inc. using Maxima First Strand cDNA Synthesis Kit 
(catalog #K1671) by Thermo Scientific. Quantitative PCR was performed using 
KAPA SYBR FAST qPCR Kit Master Mix (2x) Universal (catalog #KK4600) in a 
Stratagene Mx3005P by Agilent Technologies. Primers used for cancer stem cell 
analysis included human Nanog, Lin28, and Oct4. Primers used for epithelial to 
mesenchymal phenotype included human E-cadherin, N-cadherin, and Snail. 
Activinβ was used as a control for all primers. All primers were purchased from 
Integrated DNA Technologies (IDT).  
Table 1. Primer sequences used for qPCR. 

Primer for Forward Reverse 
Nanog 5'-CAAAGGCAAACAACCCACTT-3' 5'-TCTGCTGGAGGCTGAGGTAT-3' 
Lin28 5'-GAGCATGCAGAAGCGCAGATCAAA-3' 5'-TATGGCTGATGCTCTGGCAGAAGT-3' 
Oct4 5'-AAGCGATCAAGCAGCGACTAT-3' GGAAAGGGACCGAGGAGTACA-3' 
E-cadherin 5'-TGCCCAGAAAATGAAAAAGG-3' 5'-GTGTATGTGGCAATGCGTTC-3' 
N-cadherin 5'-GAGGAGTCAGTGAAGGAGTCA-3' 5'-GGGAAGTTGATTGGAGGGATG-3' 
Snail 5'-CACTATGCCGCGCTCTTTC-3' 5'-GGTCGTAGGGCTGCTGGAA-3' 
ActB 5'-TGAAGTGTGACGTGGACATC-3' 5'-GGAGGAGCAATGATCTTGAT-3' 
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2.3.2 Flow Cytometry 
Flow cytometry analysis was performed on cell line and mouse xenograft 

samples. Cells were preserved in FACS Stain made of PBS with 1% FBS, 0.1% 
Sodium Azide, and 2mM EDTA. Cells were stained in FACS stain with antibodies 
at 4oC for 15 minutes, washed, and then fixed in FACS Fix, FACS Stain + 1% 
PFA. UltraComp eBeads (catalog #01-2222) from affymetrix eBioscience were 
used for compensation and were stained as single stain samples. Flow cytometry 
was performed on MACSQuant Analyzer 10 by Miltenyi Biotec and analysis of 
data was performed using FlowJo Version 10 from FLOWJo, LLC. Antibodies for 
CD44, CD117 (c-Kit), and CD133, as well as “Aldefluor” a fluorescent reagent 
system to detect aldehyde dehydrogenase 1 (ALDH1) were used to analyze 
cancer stem cell makeup of the cell population. Antibodies for E-cadherin 
(CD324) and N-cadherin (CD325) were used to analyze epithelial or 
mesenchymal makeup of the cell population. Populations were gated with the 
use of isotypes: each antibody channel was gated separately against forward 
scatter then overlaid to determine populations positive for multiple antibodies as 
shown in Figure 6.   
Table 2. Antibodies used for flow cytometry. 

Antibody/Kit Source Clone Manufacture Catalog # Isotype Catalog # 
CD44 Mouse G44-26 BD Biosciences 561292 IgG2b,k 560374 
CD117 Mouse A3C6E2 Miltenyi Biotec 130-099-326 IgG1, k 130-100-098 
CD133 Mouse 293C3 Miltenyi Biotec 130-090-854 IgG2b,k 400319 
E-cadherin Rat 67A4 Miltenyi Biotec 130-099-141 IgG1 130-098-563 
N-cadherin Mouse 8C11 BD Biosciences 563435 IgG1, k 550795 
Aldeflour N/A N/A Stemcell Technologies 01700 Control in kit    



 

Figure 6. Flow cytometry gating with the aid of isotype stained population.
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. Flow cytometry gating with the aid of isotype stained population.

  

. Flow cytometry gating with the aid of isotype stained population. 
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CHAPTER THREE 
RESULTS 

 
3.1 Aim 1: The Characterization of Epithelial Ovarian Cancer  

Cell Lines for Epithelial Mesenchymal Transition status,  
Cancer Stem Cell makeup, and metastatic potential 

3.1.1 Epithelial Mesenchymal Transition Status and Cancer Stem  
Cell Makeup of Epithelial Ovarian Cancer Cell Lines  

EOC cell lines were analyzed based on appearance in phase contrast 
bright field microscopy to determine general morphology and ability of cell lines 
to form colony like structures (Figure 7). It was determined by appearance and 
ability to form colony like structures that Kuramochi and OVSAHO have the most 
epithelial morphology. It was determined SKOV3 and COV318 have a more 
mesenchymal morphology. Based on their less epithelial structure but retention 
of the colony forming ability A2780-luc and OVCAR8 appear to be somewhat 
mesenchymal and somewhat epithelial. 
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Figure 7. Phase contrast bright field microscopy images of epithelial ovarian 
cancer cell lines. 
 
  
 With the use of qPCR of Snail, N-cadherin, and E-cadherin the cell lines 
can be identified as having epithelial or mesenchymal mRNA expression. If the 
E-cadherin expression is high and the N-cadherin is low the cells can be 
identified as more epithelial than mesenchymal. Therefore, OVCAR8, and 
OVSAHO can be identified as having epithelial mRNA expression and COV318 
and SKOV3 can be identified as having mesenchymal mRNA expression (Figure 
8a). Flow cytometry showed the protein level of E-cadherin was high in all the 
EOC cell lines (Figure 8b). The cell lines were split into two groups based on 
having larger N-cadherin populations: COV318, SKOV3 and OVCAR8 were all 

A2780-luc         SKOV3                  OVCAR8 

Kuramochi         OVSAHO                  COV318 
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designated as mesenchymal-like, and having a smaller N-cadherin population 
A2780-luc and Kuramochi were classified as epithelial. It was also observed that 
many cells were double positive for E-cadherin and N-cadherin.   
 
 

Figure 8. Epithelial mesenchymal transition markers in epithelial ovarian cancer 
cell lines. a) qPCR for Snail, N-cadherin, and E-cadherin expression in EOC cell 
lines. b) Flow cytometry percent positive cells for E-cadherin, N-cadherin, and E-
and N-cadherin double positive cells. 
 
 
 The CSC and pluripotency marker Lin28 is detectable in all cell lines 
except COV318 and the marker Nanog has detectable expression in COV318 
and OVSAHO (Figure 9a); Oct4 expression was low in all cells. The high Lin28 
levels in comparison to fibroblasts could be explained by the lower let-7 miRNA 
levels observed in the cell lines (Figure 9b). CD44 positive populations range 
from 6 to 95 percent of the total intact EOC cells with SKOV3 showing the 
highest activity. CD117 positive populations range from 31 to 79 percent of the 
total intact EOC cells with Kuramochi showing the highest activity. CD133 
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positive populations range from 10 to 93 percent with a2780-luc showing the 
highest activity (Figure 9c). We classified cells as CSCs if they were positive for 
more than one CSC marker. Shown are the triple CSC marker positive and 
therefore true cancer stem cells. These CSC populations range from 2 to 70 
percent of the total intact cell population of the EOC cell lines (Figure 9d). A2780-
luc, COV318, and Kuramochi are all positive for aldehyde dehydrogenase activity 
shown by Aldeflour positive populations, ALDH1 activity could not be determined 
in the OVCAR8 because they were GFP positive and the Aldeflour is detected in 
the GFP channel (Figure 9e). 
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 Figure 9. Cancer stem cell markers in epithelial ovarian cancer cell lines. a) 
qPCR for Lin28, Nanog and Oct4 expression in EOC cell lines. b)  QPCR of Let-7 
family members. c) Flow cytometry percent positive cells for CD44, CD117, and 
CD133. d) CD44, CD117, CD133 triple positive population of EOC cell lines. e) 
Aldeflour positive populations of EOC cell lines. 
 
 
 In the cancer stem cell population, it was observed that cells in the triple 
positive CD44/CD117/CD133 population were also double positive for N-
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cadherin and E-cadherin (Figure 10a). This triple positive CSC population is 85 to 
100 percent double positive for N
CD44, CD117, CD133, N
a small portion of the intact cells for most of the cell lines, ranging from 2 to 14 
percent, but SKOV3 stands out as having a high population of these cells at 60 
percent (Figure 10c). 
 
 

Figure 10. Cancer stem 
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cadherin (Figure 10a). This triple positive CSC population is 85 to 
100 percent double positive for N-cadherin and E-cadherin (Figure10b). The 

33, N-cadherin, and E-cadherin positive population makes up 
a small portion of the intact cells for most of the cell lines, ranging from 2 to 14 
percent, but SKOV3 stands out as having a high population of these cells at 60 
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and E-cadherin. c) CSC and N-cadherin/E-cadherin double positive cells out of 
entire intact population.  
 
3.1.2 Metastatic Potential of Epithelial Ovarian Cancer Cell Lines 
 It was observed that only two cell lines show high activity in the scratch 
assay, defined as higher than normal fibroblasts, showing they have high motility: 
SKOV3, and OVCAR8 (Figure 11a). Scratch assay could not be performed on 
Kuramochi, OVSAHO or COV318 as when the scratch is performed on confluent 
plates the cells remove as a sheet instead of leaving the wound behind. In the 
soft agar assay showing anchorage independent growth the A2780-luc, OVCAR8 
and SKOV3 all showed high ability to grow independent colonies (Figure 11b). 
 
 
 



 

 

Figure 11. Metastatic potential assays of e
assay percentage wound healing over time with representative images of 0 and 
24 hours of a wound. b) Soft agar assay colonies formed by each EOC cell line 
with representative image of colonies.
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Metastatic potential assays of epithelial ovarian cancer
assay percentage wound healing over time with representative images of 0 and 

b) Soft agar assay colonies formed by each EOC cell line 
with representative image of colonies. 

3.2 Aim 2: The Effect of Snail Knockdown on Epithelial 
Mesenchymal Transition status, Cancer Stem Cell 
makeup, and metastatic potential of an Epithelial  

Ovarian Cancer Cell Line OVCAR8 
3.2.1 Confirmation of Snail Knockdown 

Snail knockdown was done virally and was tested with qPCR to confirm 
Snail was knocked down (Figure 12a). With shSnail, as the pluripotency marker 
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Nanog decreases let-7 miRNA levels inc
Nanog and increase in let
shControl. OVCAR8 shControl and shSnail showed no noticeable morphological 
changes (Figure 12b). 
 
 

 Figure 12. Confirmation of Snail knockdown 
qPCR of Snail, Nanog, E

bright field microscopy images of shControl and shSnail 
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3.2.2 Epithelial Mesenchymal Transition Status and Cancer Stem  
Cell Makeup in Snail Knockdown Model 

The relative level of N-cadherin mRNA expression did not decrease in 
shSnail as expected; instead the expression increased (Figure 13a). shSnail did 
however decrease E-cadherin expression. The pathways leading to the mRNA 
expression of these two cadherins may not behave in cancerous cells as they do 
in normal cells. On a protein level, as percent of the total intact cell population, 
only very minor changes were detected in the shSnail OVCAR8 as compared to 
shControl. E-cadherin activity change was very low, 1.1x shControl. N-cadherin 
positive cells decreased only slightly to 0.98x shControl. N-cadherin/E-cadherin 
double positive cell populations did slightly increase with shSnail by 1.08x 
shControl (Figure 13b). 

 
 

  Figure 13. Epithelial mesenchymal transition markers in Snail knockdown model. 
a) qPCR for Snail, N-cadherin, and E-cadherin expression in shSnail EOC. b) 
Flow cytometry percent positive cells for E-cadherin, N-cadherin, and E-and N-
cadherin double positive cells in shSnail EOC. 
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In OVCAR8 shSnail pluripotency mRNA markers Lin28, Nanog, and Oct4 

all decreased (Figure 14a). CD133 positive cell population was extremely low in 
both shControl and shSnail, dramatically lower than the levels found in parental 
OVCAR8. The population of CD133 positive cells went from about 11% in the 
parental OVCAR8 (Figure 9c) to almost 0% in the virally treated cells 
(Figure14b). Cancer stem cell marker CD44 positive population was decreased 
by over half in OVCAR8 shSnail (Figure 14c). Percentage of CD117 positive cell 
populations increased in OVCAR8 shSnail (Figure 14b). There were no triple 
positive CSC populations of cells detected in the shSnail model due to the loss of 
CD133. 
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  Figure 14. Cancer stem cell markers in Snail knockdown model. a) qPCR for 
Lin28, Nanog, and Oct4 expression in shSnail EOC. b) Flow cytometry CD133 
activity in the virally transduced lines compared to the parental line. c) Flow 
cytometry percent positive cells for CD44, and CD117 in shSnail EOC 
normalized to shControl.  
 
 
3.2.3 Metastatic Potential in Snail Knockdown Model 

In OVCAR8, shSnail did not have a significant change in wound healing 
ability as compared to shControl. All virally treated cell lines were less able to 
colonize in anchorage independent growth compared to non virally treated cells. 
None of the virally treated pairs showed a significant difference in growth 
between the shControl and shSnail. 
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 Figure 15. Metastatic potential assays of Snail knockdown epithelial ovarian 
cancer. a) Scratch assay percentage wound healing over time. b) Soft agar 
assay colonies formed by a variety of shSnail EOC cells. 
 
 
3.2.4 Orthotopic Xenograft of Snail Knockdown OVCAR8 

Snail knockdown showed a trend of a decrease in primary and metastatic 
tumor burden when compared to control in weight of tumor at harvest time 
(Figure 16a). Live imaging of the mice allowed the analysis of tumor growth in the 
live mice (Figure 16b). The analysis of the weekly mouse images did not show a 
difference in the primary growth of tumors with shSnail. This analysis did show a 
decrease in metastatic growth with a significant decrease in growth at day 43. 
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 Figure 16. Xenograft model of Snail knockdown epithelial ovarian cancer. a) 
Representative IVIS images of shControl and shSnail tumors in mice. b) Weight 
of primary and metastatic tumors upon harvest. c) Fold increase from day 1 for 
primary ovarian tumor based on flux in IVIS images. d) Average flux of metastatic 
tumors in xenograft model.  
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CHAPTER FOUR 
DISCUSSION 

Epithelial Mesenchymal Transition and Cancer Stem Cells in  
Epithelial Ovarian Cancer 

During a normal EMT event a cadherin switch from N-cadherin to E-
cadherin occurs. E-cadherin transcription is down regulated and the competition 
between E- and N-cadherin for p120-catenin will increase N-cadherin activity and 
cause the endocytosis and degradation of E-cadherin25. Based on the high 
presence of N-cadherin/E-cadherin double positive cells in the EOC cell lines 
(Figure 8b) there could be changes in signaling leading to E-cadherin 
degradation with EMT events in cancer. Misregulation of the balance between 
p120 complexes at apical and basolateral cell-cell contact areas26 could 
contribute to a faulty cadherin switch. The hybrid epithelial/mesenchymal state 
represents aberrant EMT and has been observed in cancer27. This would explain 
why the cell lines in this experiment showed a continuum of epithelial to 
mesenchymal behavior rather than remaining on one end of the spectrum or the 
other.  

EOC lines have been evaluated as to their genomic similarity to patient 
samples28, growth characteristics, xenograft-forming ability29, genomic 
alterations, expression of markers, drug resistance, and in vitro behavior30. A few 
cell lines (OVSAHO, Kuramochi, COV318, OVCAR8) stood out as good 
examples of EOC based on previously published data28-30, therefore SKOV3 and 
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A2780 lines were eliminated from use after the initial characterization was 
complete. Kuramochi and OVSAHO stood out as the most epithelial lines when 
all data was combined and COV318 stood out as most mesenchymal. Notably, 
OVSAHO and Kuramochi were previously shown to poorly form xenografts30. 
OVCAR8 was shown to reliably and quickly form xenografts and ascites29. All 
three of these lines also contained CSCs at detectable but variable levels. 
OVCAR8 stood out as having a more hybrid phenotype between epithelial and 
mesenchymal states, a low to moderate level of CSCs, and high activity in 
metastatic potential assays; therefore, this line was chosen for the Snail 
knockdown model. Snail was detectable at levels above that in the mesenchymal 
fibroblasts used for normalization in all lines. Let-7 expression was observed to 
be lower than fibroblasts for most of the family members assessed. Notably, lines 
with lowest let-7 expression were observed to express higher levels of Lin28. 
This is consistent with decreased let-7 as a marker for CSC, but we have not 
tested whether the decreased let-7 levels are cause or effect of Lin28 
expression. 

EOC cell populations positive for CD44, CD117, and CD133 were 
classified as true cancer stem cells. Functional tests to prove this assertion will 
be done in the future. Cells positive for each of these markers individually have 
been classified as CSCs in other publications13,21,31 however individually or in 
certain pairings these markers can be detected in progenitor cancer cells and not 
only in CSC13. We show that these triple positive cancer stem cells are the same 
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cells which are double positive for E-cadherin and N-cadherin. Therefore, the 
process that causes a cell to become a CSC may be the pathway both turning N-
cadherin activity on and causing a loss of E-cadherin degradation that normally 
takes place in an EMT event. Identifying this CSC EMT positive subset of cells 
may be an important diagnostic and prognostic tool in the clinic. The ability to 
identify this subset could also be helpful in identifying best possible treatment 
plans for patients. 

 
Epithelial Mesenchymal Transition and Cancer Stem Cells in  

Snail Knockdown Model of Epithelial Ovarian Cancer 
In the shSnail model on a mRNA level the N-cadherin expression did not 

decrease, and the E-cadherin expression did not increase as expected. Instead 
the N-cadherin expression increased and the E-cadherin expression decreased 
(Figure 13a). On a protein level the percentage of cells positive for N-cadherin 
did decrease very slightly and the percentage of E-cadherin positive cells did 
slightly increase (Figure 13b). shSnail did decrease pluripotency mRNA 
expression for Lin28, Nanog, and Oct4. shSnail did not show a consistent loss of 
CSC surface markers; the CD44 positive population decreased as the CD117 
population increased compared with shControl. CD133 activity decreased to 
almost nothing in both the virally delivered shControl and shSnail. Therefore, 
there were no triple positive CSC populations in the viral shRNA model. Taken 
together, we conclude that CD133, which has no published known function, may 
be involved in or is sensitive to the viral response of the cell in some way.  
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In the metastatic potential for the viral shRNA cell lines we did not 
determine there to be a difference in the metastatic potential between the 
shControl and the shSnail. In the scratch assay if there was a difference in the 
motility between shControl and shSnail we may not have been able to determine 
a difference due to differing proliferation rates of the cells lines. In both the cell 
line and viral shRNA line characterizations the motility in the scratch assay may 
have in part been due to the proliferation of the cells; for this reason, in the future 
we can inhibit the proliferation of cells with the use of mitomycin c treatment 
during the scratch assay. 

In a xenograft model shSnail shows a trend of decreasing tumor burden 
for both primary and metastatic tumor burden as measured by weight of tumor 
burden at final harvest. A statistically significant difference was seen in the 
growth of the metastatic tumors by in vivo imaging analysis of live mice with 
metastatic growth in shSnail at day 43, as compared to shControl.  Although 
Snail knockdown did not show all the anticipated responses in vitro Snail may still 
be a viable target in decreasing metastasis in cancer. 

In the future we plan to use a different model to inhibit Snail activity in 
ovarian cancer, small inhibitory RNA (siRNA). In this study it became clear that 
the viral treatment of the ovarian cancer cells had some effect on the CSC and 
EMT makeup of the cell populations when comparing Figures 8 and 9 to raw 
population numbers in the sh model. The findings of the sh model are still valid 
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as the shSnail is compared to a shControl that was treated with the same viral 
treatment. This viral response would be avoided with the use of a siRNA. 
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